JP2006338977A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2006338977A
JP2006338977A JP2005160820A JP2005160820A JP2006338977A JP 2006338977 A JP2006338977 A JP 2006338977A JP 2005160820 A JP2005160820 A JP 2005160820A JP 2005160820 A JP2005160820 A JP 2005160820A JP 2006338977 A JP2006338977 A JP 2006338977A
Authority
JP
Japan
Prior art keywords
carbon
graphite
amorphous
negative electrode
amorphous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005160820A
Other languages
Japanese (ja)
Inventor
Yuichi Takatsuka
祐一 高塚
Takayuki Mitani
貴之 三谷
Katsunori Suzuki
克典 鈴木
Tsunemi Aiba
恒美 相羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2005160820A priority Critical patent/JP2006338977A/en
Publication of JP2006338977A publication Critical patent/JP2006338977A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery capable of securing high capacity even in low-temperature environment and suppressing deterioration of cycle characteristics. <P>SOLUTION: The cylindrical lithium ion secondary battery has a wound group in which a positive and a negative electrode plates are wound around through a separator immersed into an non-aqueous electrolytic solution in a battery container. The positive electrode plate has a positive electrode mixture containing lithium-manganese cobalt-nickel compound oxide powder painted on an aluminum foil. The negative electrode plate has a negative electrode mixture containing two kinds or more of carbon materials capable of insertion and release of lithium ions painted on a rolled copper foil. One kind out of the carbon materials uses a graphite system carbon material of which the surface is amorphous carbon, and at least the other one kind uses amorphous carbon powder. In a low-temperature environment, when lithium ions in the graphite system carbon are released, electron conduction is performed through amorphous carbon on the surface of the graphite system carbon material and the amorphous carbon material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はリチウム二次電池に係り、特に、リチウム遷移金属複合酸化物を含む正極板と、リチウムイオンを挿入、放出可能な負極材を含む負極板とを非水電解液に浸潤させたリチウム二次電池に関する。   The present invention relates to a lithium secondary battery, and in particular, a lithium secondary battery in which a positive electrode plate containing a lithium transition metal composite oxide and a negative electrode plate containing a negative electrode material capable of inserting and releasing lithium ions are infiltrated into a non-aqueous electrolyte. Next battery.

リチウムイオン二次電池は、高エネルギー密度であるメリットを活かして、主にVTRカメラやノートパソコン、携帯電話等のポータブル機器の電源に使用されている。一般的なリチウムイオン二次電池の寸法は、直径18mm、高さ65mmであり、18650型と呼ばれ、小形民生用リチウムイオン二次電池として広く普及している。18650型リチウムイオン二次電池では、電池容量はおおむね1.3Ah〜1.8Ah、出力はおよそ10W程度である。   Lithium ion secondary batteries are mainly used as power sources for portable devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of the high energy density. A typical lithium ion secondary battery has a diameter of 18 mm and a height of 65 mm, is called 18650 type, and is widely used as a small-sized consumer lithium ion secondary battery. In the 18650 type lithium ion secondary battery, the battery capacity is about 1.3 Ah to 1.8 Ah, and the output is about 10 W.

一方、自動車産業界においては環境問題に対応すべく、動力源を完全に電池のみにした排出ガスのない電気自動車(EV)、内燃機関エンジンと電池との両方を動力源とするハイブリッド(電気)自動車(HEV)の開発が加速され、実用化の段階にきている。このEVやHEV用の電源となる電池には、当然高容量、高出力であることが要求され、この要求にマッチした電池としてリチウムイオン二次電池が注目されている。   On the other hand, in the automobile industry, in order to cope with environmental problems, an electric vehicle (EV) without exhaust gas in which the power source is completely a battery only, and a hybrid (electricity) with both an internal combustion engine and a battery as power sources The development of automobiles (HEV) has been accelerated and is in the stage of commercialization. A battery serving as a power source for the EV or HEV is naturally required to have a high capacity and a high output, and a lithium ion secondary battery is attracting attention as a battery that matches this requirement.

また、EVやHEVは、寒冷地でも長期にわたり使用されることがあるため、電源となる電池には低温環境下での高容量化や長寿命化も求められている。低温環境下では、非水電解液中のリチウムイオン拡散性が非常に小さくなり電子伝導性が低下するため、出力、容量が低下する。これを解決するために、例えば、非水電解液に混合有機溶媒を用いることで低温環境下でのリチウムイオン拡散性の低下を抑制する技術が開示されている(特許文献1参照)。ところが、この技術では、非水電解液中のリチウムイオン拡散性は改善されるものの、正負極板の電子伝導性が改善されないため、低温環境下での高容量化が十分とはいえない。このことから、正負極板に導電剤を添加して電子伝導のネットワークを確保する等の電子伝導性の向上を図ることが重要である。   Further, since EV and HEV may be used for a long time even in a cold region, a battery serving as a power source is required to have a high capacity and a long life under a low temperature environment. Under a low temperature environment, the lithium ion diffusibility in the non-aqueous electrolyte is very small and the electron conductivity is lowered, so that the output and capacity are lowered. In order to solve this, for example, a technique for suppressing a decrease in lithium ion diffusibility in a low temperature environment by using a mixed organic solvent in a nonaqueous electrolytic solution is disclosed (see Patent Document 1). However, with this technique, although the lithium ion diffusibility in the non-aqueous electrolyte is improved, the electron conductivity of the positive and negative electrode plates is not improved, so that it is not sufficient to increase the capacity in a low temperature environment. For this reason, it is important to improve the electron conductivity such as adding a conductive agent to the positive and negative electrode plates to ensure an electron conduction network.

一般に、リチウムイオン二次電池の正極材には、リチウム遷移金属複合酸化物が用いられており、中でも容量やサイクル特性等のバランスからコバルト酸リチウムが用いられている。ところが、コバルトは資源量が少なくコスト高となることから、EVやHEV用電池の正極材としてはマンガン酸リチウムに代表されるマンガンを含むリチウム遷移金属複合酸化物が有望視されている。   Generally, a lithium transition metal composite oxide is used as a positive electrode material of a lithium ion secondary battery, and lithium cobalt oxide is used among them in terms of balance of capacity and cycle characteristics. However, since cobalt has a small amount of resources and high costs, lithium transition metal composite oxides containing manganese typified by lithium manganate are considered promising as a positive electrode material for EV and HEV batteries.

一方、負極材には、リチウムイオンを挿入、放出可能な炭素材が用いられており、一般に、天然黒鉛、鱗片状や塊状等の人造黒鉛、メソフェーズピッチ系黒鉛等の黒鉛系炭素材、フルフリルアルコール等のフラン樹脂等を焼成した非晶質系炭素材が用いられている。非晶質系炭素材では、理論容量値が黒鉛系炭素材より高いことから、容量、サイクル特性に優れるが、不可逆容量が大きいため、電池での高容量化が難しくなる。一方、黒鉛系炭素材では、不可逆容量が非晶質系炭素材より小さく電子伝導性に優れることから、高容量を得ることができるが、充放電に伴う結晶の体積変化が大きいため、結晶の崩壊や負極材の剥離が生じて電子伝導性を長期間維持できずサイクル特性が低下する。これらを解決するために、電子伝導性に優れる天然黒鉛と、結晶の体積変化の程度が小さい人造黒鉛とを併用する技術が開示されている(例えば、特許文献2参照)。   On the other hand, a carbon material capable of inserting and releasing lithium ions is used for the negative electrode material. Generally, natural graphite, artificial graphite such as flakes and blocks, graphite-based carbon materials such as mesophase pitch-based graphite, and furfuryl An amorphous carbon material obtained by firing a furan resin such as alcohol is used. An amorphous carbon material has a higher theoretical capacity value than a graphite carbon material, and thus has excellent capacity and cycle characteristics. However, since the irreversible capacity is large, it is difficult to increase the capacity of the battery. On the other hand, a graphite-based carbon material has a smaller irreversible capacity than an amorphous carbon material and excellent electronic conductivity, so that a high capacity can be obtained. However, since the volume change of the crystal accompanying charge / discharge is large, Decay or peeling of the negative electrode material occurs, and the electronic conductivity cannot be maintained for a long period of time, resulting in poor cycle characteristics. In order to solve these problems, a technique is disclosed in which natural graphite having excellent electronic conductivity and artificial graphite having a small degree of crystal volume change are used in combination (for example, see Patent Document 2).

特開2001−155766号公報JP 2001-155766 A 特開2004−127913号公報JP 2004-127913 A

しかしながら、特許文献2の技術では、黒鉛系炭素材のみを用いているため、体積変化に伴う電子伝導性の低下を回避することができずサイクル特性が低下する。また、黒鉛系炭素材の表面では、非水電解液の分解が生じるため、電子伝導を阻害する被膜が形成される。このため、低温環境下では、リチウムイオン拡散性が低下する上に、黒鉛系炭素材の表面に形成された被膜で電子伝導性が阻害されることから、容量、サイクル特性の低下を招く。上述したEVやHEV用の電池では、低温環境下でも高容量、高出力を長期間持続することが重要であるにもかかわらず、満足できる性能を発揮する電池が開発されていないのが現状である。   However, in the technique of Patent Document 2, since only a graphite-based carbon material is used, it is impossible to avoid a decrease in electronic conductivity associated with a volume change, resulting in a decrease in cycle characteristics. In addition, since the nonaqueous electrolytic solution is decomposed on the surface of the graphite-based carbon material, a film that inhibits electron conduction is formed. For this reason, in a low temperature environment, the lithium ion diffusibility is lowered, and the film formed on the surface of the graphite-based carbon material impedes the electron conductivity, thereby causing a reduction in capacity and cycle characteristics. In the above-described EV and HEV batteries, it is important to maintain a high capacity and a high output for a long time even in a low temperature environment, but a battery that exhibits satisfactory performance has not been developed. is there.

本発明は上記事案に鑑み、低温環境下でも高容量を確保しサイクル特性の低下を抑制することができるリチウム二次電池を提供することを課題とする。   An object of the present invention is to provide a lithium secondary battery capable of securing a high capacity even in a low temperature environment and suppressing deterioration of cycle characteristics even in the low temperature environment.

上記課題を解決するために、本発明は、リチウム遷移金属複合酸化物を含む正極板と、リチウムイオンを挿入、放出可能な負極材を含む負極板とを非水電解液に浸潤させたリチウム二次電池において、前記負極材には2種以上の炭素材が使用されており、少なくとも前記炭素材の1種は表面が非晶質炭素である黒鉛系炭素材であり、少なくとももう1種は非晶質系炭素材であることを特徴とする。   In order to solve the above problems, the present invention provides a lithium secondary battery in which a positive electrode plate containing a lithium transition metal composite oxide and a negative electrode plate containing a negative electrode material capable of inserting and releasing lithium ions are infiltrated into a non-aqueous electrolyte. In the secondary battery, two or more types of carbon materials are used for the negative electrode material, at least one of the carbon materials is a graphite-based carbon material whose surface is amorphous carbon, and at least one of the other carbon materials. It is a crystalline carbon material.

本発明では、負極材に2種以上の炭素材が使用されており、少なくとも炭素材の1種は表面が非晶質炭素である黒鉛系炭素材のため、黒鉛系炭素材が非水電解液に直接接触しないことから、黒鉛系炭素材による非水電解液の分解が抑制されるので、非水電解液の分解により生じ電子伝導を阻害する被膜の形成が防止され容量の低下を抑制することができ、充放電に伴い黒鉛系炭素材が体積変化しても表面の非晶質炭素が黒鉛系炭素材の剥落を防止するので、黒鉛系炭素材の電子伝導性を維持してサイクル特性の低下を抑制することができると共に、少なくとも炭素材のもう1種が非晶質系炭素材のため、低温環境下で非水電解液中のリチウムイオン拡散性が低下しても、黒鉛系炭素材中のリチウムイオンが放出される際に黒鉛系炭素材の表面の非晶質炭素や非晶質系炭素材を介して電子伝導するので、低温環境下でも容量を確保することができる。   In the present invention, two or more types of carbon materials are used for the negative electrode material, and at least one of the carbon materials is a graphite-based carbon material whose surface is amorphous carbon. Therefore, the graphite-based carbon material is a non-aqueous electrolyte. Since the non-aqueous electrolyte is not decomposed by the graphite-based carbon material because it is not in direct contact with the glass, the formation of a coating that inhibits electron conduction caused by the decomposition of the non-aqueous electrolyte is prevented, and the decrease in capacity is suppressed. Even if the volume of the graphite-based carbon material changes with charge / discharge, the amorphous carbon on the surface prevents the graphite-based carbon material from peeling off. It is possible to suppress the decrease, and at least one of the carbon materials is an amorphous carbon material. Therefore, even if the lithium ion diffusibility in the non-aqueous electrolyte decreases in a low temperature environment, the graphite carbon material The surface of graphite-based carbon material when lithium ions are released Since electronic conduction through the amorphous carbon or amorphous carbon material, it is possible to ensure the capacity in a low temperature environment.

この場合において、負極材に占める非晶質系炭素材の割合を5%〜90%とすることが好ましくこの割合を5%〜50%としてもよい。また、黒鉛系炭素材の平均粒子径を1.0としたときに、非晶質系炭素材の平均粒子径を1.0未満とすれば、非晶質系炭素材が黒鉛系炭素材表面の非晶質炭素と接触しやすくなるため、電子伝導性を向上させることができる。   In this case, the ratio of the amorphous carbon material in the negative electrode material is preferably 5% to 90%, and the ratio may be 5% to 50%. Further, when the average particle size of the graphite-based carbon material is 1.0, and the average particle size of the amorphous-based carbon material is less than 1.0, the amorphous-based carbon material becomes the surface of the graphite-based carbon material. Since it becomes easy to contact with the amorphous carbon, the electron conductivity can be improved.

本発明によれば、負極材に2種以上の炭素材が使用されており、少なくとも炭素材の1種は表面が非晶質炭素である黒鉛系炭素材のため、非水電解液の分解により生じ電子伝導を阻害する被膜の形成が防止され容量の低下を抑制することができ、充放電に伴い黒鉛系炭素材が体積変化しても表面の非晶質炭素が黒鉛系炭素材の剥落を防止するので、サイクル特性の低下を抑制することができると共に、少なくとも炭素材のもう1種が非晶質系炭素材のため、黒鉛系炭素材中のリチウムイオンが放出される際に黒鉛系炭素材の表面の非晶質炭素や非晶質系炭素材を介して電子伝導するので、低温環境下でも容量を確保することができる、という効果を得ることができる。   According to the present invention, two or more carbon materials are used for the negative electrode material, and at least one of the carbon materials is a graphite-based carbon material whose surface is amorphous carbon. This prevents the formation of a coating that inhibits electron conduction and suppresses the decrease in capacity. Even if the volume of the graphite-based carbon material changes due to charge / discharge, the amorphous carbon on the surface does not peel off the graphite-based carbon material. Therefore, the deterioration of the cycle characteristics can be suppressed, and at least one of the carbon materials is an amorphous carbon material. Therefore, when lithium ions in the graphite carbon material are released, the graphite carbon Electron conduction is performed through the amorphous carbon or amorphous carbon material on the surface of the material, so that it is possible to obtain an effect that the capacity can be secured even in a low temperature environment.

以下、図面を参照して、本発明が適用可能な円筒型リチウムイオン二次電池の実施の形態について説明する。   Embodiments of a cylindrical lithium ion secondary battery to which the present invention can be applied will be described below with reference to the drawings.

(構成)
図1に示すように、本実施形態の円筒型リチウムイオン二次電池20は、ニッケルメッキが施されたスチール製で有底円筒状の電池容器7及びポリプロピレン製で中空円筒状の軸芯1に帯状の正負極板がセパレータW5を介して断面渦巻状に捲回された捲回群6を有している。
(Constitution)
As shown in FIG. 1, a cylindrical lithium ion secondary battery 20 of the present embodiment includes a nickel-plated steel bottomed cylindrical battery container 7 and a polypropylene hollow cylindrical shaft core 1. A strip-like positive and negative electrode plate has a wound group 6 wound in a spiral shape through a separator W5.

捲回群6の上側には、軸芯1のほぼ延長線上に正極板からの電位を集電するためのアルミニウム製の正極集電リング4が配置されている。正極集電リング4は、軸芯1の上端部に固定されている。正極集電リング4の周囲から一体に張り出している鍔部周縁には、正極板から導出された正極リード片2の端部が超音波溶接で接合されている。正極集電リング4の上方には、正極外部端子となる円盤状の電池蓋が配置されている。電池蓋は、蓋ケース12と、蓋キャップ13と、気密を保つ弁押え14と、内圧上昇により開裂する内圧開放機構の開裂弁(内部ガス排出弁)11とで構成されており、これらが積層されて蓋ケース12の周縁をカシメることで組立てられている。開裂弁11の開裂圧は、約9×10Paに設定されている。正極集電リング4の上部には複数枚のアルミニウム製リボンを重ね合わせて構成した2本の正極リード板9のうち1本の一端が固定されており、蓋ケース12の下面には他の1本の一端が溶接されている。2本の正極リード板9の他端同士は溶接で接合されている。 On the upper side of the winding group 6, an aluminum positive electrode current collecting ring 4 for collecting the electric potential from the positive electrode plate is disposed on an almost extension line of the shaft core 1. The positive electrode current collecting ring 4 is fixed to the upper end portion of the shaft core 1. The edge part of the positive electrode lead piece 2 led out from the positive electrode plate is joined by ultrasonic welding to the peripheral edge of the flange part integrally protruding from the periphery of the positive electrode current collecting ring 4. A disc-shaped battery lid serving as a positive electrode external terminal is disposed above the positive electrode current collecting ring 4. The battery lid includes a lid case 12, a lid cap 13, a valve retainer 14 that keeps airtightness, and a cleavage valve (internal gas discharge valve) 11 of an internal pressure release mechanism that cleaves when the internal pressure rises. Then, the lid case 12 is assembled by caulking the periphery. The cleavage pressure of the cleavage valve 11 is set to about 9 × 10 5 Pa. One end of two positive electrode lead plates 9 formed by overlapping a plurality of aluminum ribbons is fixed to the upper portion of the positive electrode current collecting ring 4, and another one is fixed to the lower surface of the lid case 12. One end of the book is welded. The other ends of the two positive electrode lead plates 9 are joined by welding.

一方、捲回群6の下側には負極板からの電位を集電するための銅製の負極集電リング5が配置されている。負極集電リング5の内周面には軸芯1の下端部外周面が固定されている。負極集電リング5の外周縁には、負極板から導出された負極リード片3の端部が溶接で接合されている。負極集電リング5の下部には電気的導通のための銅製の負極リード板8が溶接されており、負極リード板8は電池容器7の内底部に溶接で接合されている。電池容器7は、本例では、外径40mm、内径39mmに設定されている。   On the other hand, a copper negative electrode current collecting ring 5 for collecting a potential from the negative electrode plate is disposed below the winding group 6. The outer peripheral surface of the lower end portion of the shaft core 1 is fixed to the inner peripheral surface of the negative electrode current collecting ring 5. The end of the negative electrode lead piece 3 led out from the negative electrode plate is joined to the outer peripheral edge of the negative electrode current collecting ring 5 by welding. A negative electrode lead plate 8 made of copper for electrical conduction is welded to the lower part of the negative electrode current collecting ring 5, and the negative electrode lead plate 8 is joined to the inner bottom portion of the battery container 7 by welding. In this example, the battery container 7 has an outer diameter of 40 mm and an inner diameter of 39 mm.

電池蓋は、絶縁性及び耐熱性のEPDM樹脂製ガスケット10を介して電池容器7の上部にカシメることで固定されている。このため、正極リード9は電池容器7内に折りたたむようにして収容されており、リチウムイオン二次電池20は密封されている。また、電池容器7内には、図示しない非水電解液が注液されている。非水電解液には、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの体積比1:1:1の混合溶媒中にリチウム塩として6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものが用いられている。なお、リチウムイオン二次電池20には、電池温度の上昇に応じて電気的に作動する、例えば、PTC(Positive Temperature Coefficient)素子や、電池内圧の上昇に応じて正極又は負極の電気的リードが切断される電流遮断機構を必要に応じて配置することができる。 The battery lid is fixed by caulking to the upper part of the battery container 7 via an insulating and heat resistant EPDM resin gasket 10. For this reason, the positive electrode lead 9 is accommodated in the battery container 7 so as to be folded, and the lithium ion secondary battery 20 is sealed. Further, a non-aqueous electrolyte (not shown) is injected into the battery container 7. In the non-aqueous electrolyte, 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) as a lithium salt is dissolved in a 1: 1: 1 volume ratio of ethylene carbonate, dimethyl carbonate, and diethyl carbonate. Is used. The lithium ion secondary battery 20 has a PTC (Positive Temperature Coefficient) element that operates electrically in response to an increase in battery temperature, or a positive or negative electrical lead in response to an increase in battery internal pressure. A current interrupting mechanism to be disconnected can be arranged as necessary.

捲回群6は、正極板と負極板とがこれら両極板が直接接触しないように、幅90mm、厚さ40μmで多孔質ポリエチレン製のセパレータW5を介して軸芯1の周囲に捲回されている。正極リード片2及び負極リード片3は、それぞれ捲回群6の互いに反対側の両端面に配置されている。捲回群6及び正極集電リング4の鍔部周面全周には、絶縁被覆が施されている。絶縁被覆には、ポリイミド製の基材の片面にヘキサメタアクリレートの粘着剤が塗布された粘着テープが用いられている。粘着テープは鍔部周面から捲回群6外周面に亘って一重以上巻かれている。正極板、負極板、セパレータW5の長さを調整することで、捲回群6の直径が38±0.1mmに設定されている。   In the winding group 6, the positive electrode plate and the negative electrode plate are wound around the shaft core 1 via a separator W5 made of porous polyethylene having a width of 90 mm and a thickness of 40 μm so that the two electrode plates do not directly contact each other. Yes. The positive electrode lead piece 2 and the negative electrode lead piece 3 are respectively disposed on opposite end surfaces of the wound group 6. Insulation coating is applied to the entire circumference of the collar surface of the winding group 6 and the positive electrode current collector ring 4. For the insulation coating, an adhesive tape in which a hexamethacrylate adhesive is applied to one side of a polyimide base material is used. The pressure-sensitive adhesive tape is wound one or more times from the collar surface to the outer periphery of the wound group 6. By adjusting the length of the positive electrode plate, the negative electrode plate, and the separator W5, the diameter of the wound group 6 is set to 38 ± 0.1 mm.

捲回群6を構成する正極板は正極集電体としてアルミニウム箔W1を有しており、負極板は負極集電体として圧延銅箔W3を有している。アルミニウム箔W1及び圧延銅箔W3の厚さは、本例では、それぞれ20μm及び10μmに設定されている。アルミニウム箔W1及び圧延銅箔W3の長寸方向一側の側縁には、それぞれ幅30mmで正極合剤W2及び負極合剤W4の未塗着部が形成されている。未塗着部は櫛状に切り欠かれており、切り欠き残部でそれぞれ正極リード片2及び負極リード片3が形成されている。隣り合う正極リード片2の間隔及び負極リード片3の間隔がそれぞれ50mm、正極リード片2及び負極リード片3の幅がそれぞれ5mmに設定されている。   The positive electrode plate constituting the wound group 6 has an aluminum foil W1 as a positive electrode current collector, and the negative electrode plate has a rolled copper foil W3 as a negative electrode current collector. In this example, the thicknesses of the aluminum foil W1 and the rolled copper foil W3 are set to 20 μm and 10 μm, respectively. On the side edges on one side in the longitudinal direction of the aluminum foil W1 and the rolled copper foil W3, uncoated portions of the positive electrode mixture W2 and the negative electrode mixture W4 are formed with a width of 30 mm, respectively. The uncoated part is cut out in a comb shape, and the positive electrode lead piece 2 and the negative electrode lead piece 3 are formed in the notch remaining part, respectively. The interval between the adjacent positive electrode lead pieces 2 and the interval between the negative electrode lead pieces 3 is set to 50 mm, and the width of each of the positive electrode lead piece 2 and the negative electrode lead piece 3 is set to 5 mm.

アルミニウム箔W1の両面には、正極活物質(正極材)としてリチウム遷移金属複合酸化物のリチウムマンガンコバルトニッケル複合酸化物(LiMnCoNiO)粉末を含む正極合剤W2が略均等に塗着されている。正極合剤W2には、例えば、正極活物質の85質量部に対して、導電材として黒鉛粉末の8質量部、アセチレンブラック(以下、ABと略記する。)の2質量部及びバインダ(結着材)としてポリフッ化ビニリデン(以下、PVDFと略記する。)の5質量部が配合されている。アルミニウム箔W1に正極合剤W2を塗着するときは、分散溶媒のN−メチル−2−ピロリドン(以下、NMPと略記する。)で粘度調整される。正極合剤W2の塗着量は、乾燥後重量で180g/mとなるように設定されている。正極板は、乾燥後、正極合剤W2層のかさ密度が2.65g/cmとなるようにプレス加工され、幅82mmに裁断されている。 A positive electrode mixture W2 including lithium transition metal composite oxide lithium manganese cobalt nickel composite oxide (LiMnCoNiO) powder as a positive electrode active material (positive electrode material) is applied to both surfaces of the aluminum foil W1 substantially evenly. In the positive electrode mixture W2, for example, 8 parts by mass of graphite powder as a conductive material, 2 parts by mass of acetylene black (hereinafter abbreviated as AB), and a binder (binding) with respect to 85 parts by mass of the positive electrode active material. As a material, 5 parts by mass of polyvinylidene fluoride (hereinafter abbreviated as PVDF) is blended. When the positive electrode mixture W2 is applied to the aluminum foil W1, the viscosity is adjusted with a dispersion solvent N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP). The coating amount of the positive electrode mixture W2 is set to be 180 g / m 2 by weight after drying. After drying, the positive electrode plate is pressed so that the bulk density of the positive electrode mixture W2 layer is 2.65 g / cm 3 and cut into a width of 82 mm.

一方、圧延銅箔W3の両面には、負極活物質(負極材)としてリチウムイオンを挿入、放出可能な2種以上の炭素材を含む負極合剤W4が略均等に塗着されている。炭素材のうち1種には、表面が非晶質炭素である黒鉛系炭素材が用いられており、少なくとももう1種には、非晶質系炭素材としての非晶質炭素粉末(呉羽化学工業株式会社製、商品名カーボトロン)が用いられている。表面が非晶質炭素である黒鉛系炭素材は、天然黒鉛とコールタールピッチとを混合し、1000〜1500°Cで焼成することで調製したものである。得られた炭素材の表面が非晶質化していることを、透過型電子顕微鏡(TEM)写真、X線回折法、ラマン分光分析法等で確認した。   On the other hand, a negative electrode mixture W4 containing two or more kinds of carbon materials capable of inserting and releasing lithium ions as a negative electrode active material (negative electrode material) is coated on both surfaces of the rolled copper foil W3 substantially evenly. One of the carbon materials is a graphite-based carbon material whose surface is amorphous carbon, and at least one of the other carbon materials is an amorphous carbon powder (Kureha Chemical). Kogyo Co., Ltd., trade name Carbotron) is used. The graphite-based carbon material whose surface is amorphous carbon is prepared by mixing natural graphite and coal tar pitch and firing at 1000 to 1500 ° C. It was confirmed by a transmission electron microscope (TEM) photograph, an X-ray diffraction method, a Raman spectroscopic analysis method and the like that the surface of the obtained carbon material was amorphized.

負極合剤W4には、上述した炭素材以外にバインダのPVDFが配合されており、必要に応じて導電材の気相成長炭素繊維(昭和電工株式会社製、商品名VGCF)やABが配合される。圧延銅箔W3に負極合剤W4を塗着するときは、分散溶媒のNMPで粘度調整される。負極合剤W4の塗着量は、正極板単位面積あたり容量の1.1倍となるように調整されている。負極板は、乾燥後、線圧を一定にして、正極板と同様にプレス加工され、幅86mmに裁断されている。   In addition to the above-mentioned carbon material, PVDF as a binder is blended in the negative electrode mixture W4, and vapor-grown carbon fiber (trade name VGCF, manufactured by Showa Denko KK) or AB as a conductive material is blended as necessary. The When the negative electrode mixture W4 is applied to the rolled copper foil W3, the viscosity is adjusted with NMP as a dispersion solvent. The coating amount of the negative electrode mixture W4 is adjusted to be 1.1 times the capacity per unit area of the positive electrode plate. After drying, the negative electrode plate is pressed in the same manner as the positive electrode plate with a constant linear pressure, and cut to a width of 86 mm.

次に、本実施形態に従い負極合剤W4に配合する2種以上の炭素材の平均粒子径及び配合割合を変えて作製したリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例の電池についても併記する。   Next, an example of the lithium ion secondary battery 20 produced by changing the average particle diameter and the blending ratio of two or more kinds of carbon materials blended in the negative electrode mixture W4 according to the present embodiment will be described. In addition, it describes together about the battery of the comparative example produced for the comparison.

(実施例1)
下表1に示すように、実施例1では、平均粒子径15μmで表面が非晶質炭素である黒鉛系炭素材(以下、非晶質表面黒鉛系炭素という。)70重量部に対し、平均粒子径10μmの非晶質炭素30重量部を混合し、それに対し、PVDF溶液を固形分で7重量部となるように配合した。
Example 1
As shown in Table 1 below, in Example 1, the average particle diameter was 15 μm and the surface of the graphite-based carbon material whose surface was amorphous carbon (hereinafter referred to as amorphous surface-graphite carbon) was 70 parts by weight. 30 parts by weight of amorphous carbon having a particle diameter of 10 μm was mixed, and the PVDF solution was blended to 7 parts by weight in terms of solid content.

Figure 2006338977
Figure 2006338977

(実施例2〜実施例4)
表1に示すように、実施例2〜実施例4では、非晶質表面黒鉛系炭素及び非晶質炭素の配合割合を変える以外は実施例1と同様にした。実施例2では、非晶質表面黒鉛系炭素95重量部に対し非晶質炭素5重量部とし、実施例3では、非晶質表面黒鉛系炭素50重量部に対し非晶質炭素50重量部とし、実施例4では、非晶質表面黒鉛系炭素10重量部に対し非晶質炭素90重量部とした。
(Example 2 to Example 4)
As shown in Table 1, Examples 2 to 4 were the same as Example 1 except that the blending ratio of amorphous surface-graphite carbon and amorphous carbon was changed. In Example 2, 5 parts by weight of amorphous carbon is used for 95 parts by weight of amorphous surface graphite-based carbon. In Example 3, 50 parts by weight of amorphous carbon is used for 50 parts by weight of amorphous surface-graphite carbon. In Example 4, 90 parts by weight of amorphous carbon was used per 10 parts by weight of amorphous surface graphite-based carbon.

(実施例5〜実施例6)
表1に示すように、実施例5〜実施例6では、非晶質表面黒鉛系炭素及び非晶質炭素の平均粒子径を変える以外は実施例1と同様にした。実施例5では、非晶質表面黒鉛系炭素の平均粒子径を10μm、非晶質炭素の平均粒子径を15μmとし、実施例6では、非晶質表面黒鉛系炭素の平均粒子径を15μm、非晶質炭素の平均粒子径を15μmとした。
(Example 5 to Example 6)
As shown in Table 1, Examples 5 to 6 were the same as Example 1 except that the average particle diameters of amorphous surface graphite-based carbon and amorphous carbon were changed. In Example 5, the average particle diameter of amorphous surface graphite-based carbon was 10 μm and the average particle diameter of amorphous carbon was 15 μm. In Example 6, the average particle diameter of amorphous surface graphite-based carbon was 15 μm, The average particle diameter of the amorphous carbon was 15 μm.

(実施例7)
表1に示すように、実施例7では、平均粒子径15μmの非晶質表面黒鉛系炭素35重量部に対し、平均粒子径15μmの非晶質表面を有しない黒鉛系炭素35重量部、平均粒子径10μmの非晶質炭素30重量部を配合した以外は実施例1と同様にした。
(Example 7)
As shown in Table 1, in Example 7, 35 parts by weight of graphite-based carbon not having an amorphous surface with an average particle diameter of 15 μm, an average of 35 parts by weight of amorphous-surface graphite-based carbon with an average particle diameter of 15 μm, The procedure was the same as Example 1 except that 30 parts by weight of amorphous carbon having a particle diameter of 10 μm was blended.

(比較例1)
表1に示すように、比較例1では、非晶質表面黒鉛系炭素100重量部のみとした以外は実施例1と同様にした。
(Comparative Example 1)
As shown in Table 1, Comparative Example 1 was the same as Example 1 except that only 100 parts by weight of amorphous surface graphite-based carbon was used.

(比較例2)
表1に示すように、比較例2では、非晶質表面を有しない黒鉛系炭素70重量部に対し、非晶質炭素30重量部を混合した以外は実施例1と同様にした。
(Comparative Example 2)
As shown in Table 1, Comparative Example 2 was the same as Example 1 except that 30 parts by weight of amorphous carbon was mixed with 70 parts by weight of graphite-based carbon having no amorphous surface.

〔試験・評価〕
各実施例及び比較例の電池について、25°C連続放電容量、0°C分割放電容量、−10°C分割放電容量をそれぞれ次のようにして測定し温度特性を評価した。25°C連続放電容量は、各電池を周囲温度25±2°Cで、電流6A、定電圧4.15V、4時間で充電状態(SOC)100%まで充電した後、電流6Aで連続して終止電圧3.0Vまで放電したときの放電容量を測定した。分割放電容量は、各電池を周囲温度25±2°Cで電流6A、定電圧4.15V、4時間でSOC100%まで充電した後、0°C、−10°Cの各温度で6時間放置後に、30Aで5分間放電、休止1時間のパターンを繰り返し実施し、3.0V到達時の放電容量を測定した。放電容量の測定結果から、比較例1の25°C連続放電容量を100%とした相対値を求めて温度特性を評価した。また、各実施例及び比較例の電池について、充放電サイクル特性を次のようにして評価した。各電池を周囲温度50±2°Cで、電流6A、定電圧4.15V、4時間でSOC100%まで充電した後、電流12A、終止電圧3.0Vまで放電するパターンを繰り返し実施し、200サイクル経過時の放電容量を測定した。放電容量の測定結果から、比較例1の25°C連続放電容量を100%とした相対値を求めて充放電サイクル特性を評価した。温度特性及び充放電サイクル特性の結果を下表2に示す。
[Test / Evaluation]
About the battery of each Example and the comparative example, 25 degreeC continuous discharge capacity, 0 degreeC division | segmentation discharge capacity, and -10 degreeC division | segmentation discharge capacity were measured as follows, respectively, and the temperature characteristic was evaluated. The continuous discharge capacity at 25 ° C is that each battery is charged at an ambient temperature of 25 ± 2 ° C with a current of 6A, a constant voltage of 4.15V and a state of charge (SOC) of 100% in 4 hours, and then continuously with a current of 6A. The discharge capacity when discharged to a final voltage of 3.0 V was measured. The divided discharge capacity is determined by charging each battery to an SOC of 100% in an ambient temperature of 25 ± 2 ° C at a current of 6A and a constant voltage of 4.15V for 4 hours, and then standing at 0 ° C and −10 ° C for 6 hours. Later, a pattern of discharging at 30 A for 5 minutes and resting for 1 hour was repeatedly performed, and the discharge capacity when 3.0 V was reached was measured. From the measurement results of the discharge capacity, a relative value with the 25 ° C. continuous discharge capacity of Comparative Example 1 as 100% was obtained to evaluate the temperature characteristics. Moreover, about the battery of each Example and the comparative example, the charging / discharging cycle characteristic was evaluated as follows. Each battery was charged at an ambient temperature of 50 ± 2 ° C at a current of 6 A, a constant voltage of 4.15 V, and SOC was charged to 100% in 4 hours, and then repeatedly discharged to a current of 12 A and a final voltage of 3.0 V, followed by 200 cycles. The discharge capacity at the time was measured. From the measurement results of the discharge capacity, the charge / discharge cycle characteristics were evaluated by obtaining a relative value with the 25 ° C. continuous discharge capacity of Comparative Example 1 as 100%. The results of temperature characteristics and charge / discharge cycle characteristics are shown in Table 2 below.

Figure 2006338977
Figure 2006338977

表2に示した温度特性及び充放電サイクル特性の結果をグラフ化して図2に示す。図2に示すように、負極材を非晶質表面黒鉛系炭素のみとした比較例1の電池、非晶質表面を有しない黒鉛系炭素と非晶質炭素とを配合した比較例2の電池では、25°C連続放電容量に対して、0°C分割放電容量及び−10°C分割放電容量が大きく低下している。また、充放電サイクル特性も大きな低下が認められる。これは、比較例2の電池では、黒鉛系炭素が表面に非晶質炭素を有しないことから、充放電に伴う体積変化で黒鉛系炭素が部分的に剥落するため、充放電サイクル特性が大きく低下したと考えられる。また、黒鉛系炭素の表面に非水電解液の分解に伴う被膜が形成されることで、電子伝導性が阻害されるため、容量の低下、特に低温環境下での容量の低下が大きくなったものと考えられる。比較例1の電池では、黒鉛系炭素の表面を非晶質炭素とすることで、黒鉛系炭素の剥落は抑制されるものの、非晶質表面黒鉛系炭素のみでは低温環境下での電子伝導性が不十分なため、低温特性が大きく低下したものと考えられる。これに対して、非晶質表面黒鉛系炭素及び非晶質炭素を配合した実施例1〜実施例7の電池では、0°C分割放電容量、−10°C分割放電容量の低下が抑制されており、充放電サイクル特性についても、容量維持率の低下が抑制されていることが判る。   The results of temperature characteristics and charge / discharge cycle characteristics shown in Table 2 are graphed and shown in FIG. As shown in FIG. 2, the battery of Comparative Example 1 in which the negative electrode material is only amorphous surface graphite-based carbon, and the battery of Comparative Example 2 in which graphite-based carbon having no amorphous surface and amorphous carbon are blended. Then, with respect to the 25 ° C continuous discharge capacity, the 0 ° C divided discharge capacity and the -10 ° C divided discharge capacity are greatly reduced. In addition, the charge / discharge cycle characteristics are greatly reduced. This is because, in the battery of Comparative Example 2, since the graphite-based carbon does not have amorphous carbon on the surface, the graphite-based carbon partially peels off due to the volume change accompanying charging / discharging, so the charge / discharge cycle characteristics are large. It is thought that it fell. In addition, the formation of a coating that accompanies the decomposition of the non-aqueous electrolyte on the surface of the graphite-based carbon hinders electronic conductivity, resulting in a large decrease in capacity, particularly in a low-temperature environment. It is considered a thing. In the battery of Comparative Example 1, the surface of the graphite-based carbon is amorphous carbon, but the graphite-based carbon is prevented from peeling off. However, the amorphous surface graphite-based carbon alone has electron conductivity in a low-temperature environment. It is considered that the low-temperature characteristics were greatly deteriorated because of insufficient. On the other hand, in the batteries of Examples 1 to 7 in which amorphous surface graphite-based carbon and amorphous carbon were blended, the decrease in 0 ° C. divided discharge capacity and −10 ° C. divided discharge capacity was suppressed. It can also be seen that the decrease in the capacity retention rate is suppressed in the charge / discharge cycle characteristics.

表2及び図2に示すように、25°C連続放電容量では、非晶質表面黒鉛系炭素100重量部とした比較例1の電池の容量に対して、非晶質炭素をそれぞれ5重量部、30重量部、50重量部、90重量部の割合で加えた実施例2、実施例1、実施例3、実施例4の電池の容量が順に減少している。このことから、非晶質炭素の割合を大きくすることで25°C連続放電容量が減少することが判る。これは、非晶質炭素の方が黒鉛系炭素より真密度が低く、またプレスに対して潰れにくい性質があることから、電極密度が上がらないためである。しかしながら、0°C分割放電容量及び−10°C分割放電容量では、比較例1の電池の容量が大きく低下しているのに対して、実施例1〜実施例7の電池の容量は、容量低下が抑制されている。このことから、非晶質表面黒鉛系炭素及び非晶質炭素を配合することで低温特性が向上することが判る。これは、低温環境下で非水電解液中のリチウムイオン拡散速度(拡散性)が低下するものの、黒鉛系炭素中のリチウムイオンを放出する際に電子伝導が黒鉛系炭素の表面の非晶質炭素や非晶質炭素を介して生じやすくなる働きがあるものと考えられる。   As shown in Table 2 and FIG. 2, in the continuous discharge capacity at 25 ° C., 5 parts by weight of amorphous carbon was used for each capacity of the battery of Comparative Example 1 in which amorphous surface graphite carbon was 100 parts by weight. , 30 parts by weight, 50 parts by weight, and 90 parts by weight, the battery capacities of Example 2, Example 1, Example 3, and Example 4 were sequentially decreased. From this, it can be seen that the 25 ° C. continuous discharge capacity is reduced by increasing the proportion of amorphous carbon. This is because amorphous carbon has a lower true density than graphite-based carbon and is less likely to be crushed by the press, so that the electrode density does not increase. However, in the 0 ° C. divided discharge capacity and the −10 ° C. divided discharge capacity, the capacity of the battery of Comparative Example 1 is greatly reduced, whereas the capacity of the batteries of Examples 1 to 7 is the capacity. The decrease is suppressed. From this, it can be seen that the low temperature characteristics are improved by blending amorphous surface-graphite carbon and amorphous carbon. This is because the diffusion rate of lithium ions (diffusibility) in the non-aqueous electrolyte decreases in a low-temperature environment, but the electron conduction is amorphous on the surface of the graphite carbon when releasing lithium ions in the graphite carbon. It is considered that there is a function that tends to occur through carbon or amorphous carbon.

また、非晶質炭素の配合割合を5重量部と少なくした実施例2の電池では低温環境下での容量低下の抑制効果が若干小さくなり、反対に、配合割合を90重量部と多くした実施例4の電池では25°C連続放電容量が若干低下している。このことから、非晶質炭素の配合割合は、5〜90%とすることが好ましく、さらに好ましくは、5〜50%である。   In addition, in the battery of Example 2 in which the blending ratio of amorphous carbon was reduced to 5 parts by weight, the effect of suppressing the decrease in capacity under a low temperature environment was slightly reduced, and conversely, the blending ratio was increased to 90 parts by weight. In the battery of Example 4, the 25 ° C continuous discharge capacity is slightly reduced. For this reason, the blending ratio of amorphous carbon is preferably 5 to 90%, and more preferably 5 to 50%.

非晶質表面黒鉛系炭素及び非晶質炭素の平均粒子径について、非晶質表面黒鉛系炭素より非晶質炭素を小さくした実施例1、非晶質表面黒鉛系炭素より非晶質炭素を大きくした実施例5、同じとした実施例6の結果から、非晶質表面黒鉛系炭素より非晶質炭素の平均粒子径を小さくした方、すなわち、非晶質表面黒鉛系炭素の平均粒子径を1.0としたときに、非晶質炭素の平均粒子径を1.0未満とした方が温度特性及び充放電サイクル特性共に大きい効果を得られることが分かる。これは、非晶質炭素の平均粒子径を非晶質表面黒鉛系炭素より小さくすることで、非晶質炭素と黒鉛系炭素の表面の非晶質炭素とが効率的に接触しやすくなることによると考えられる。   Example 1 in which the amorphous carbon was made smaller than the amorphous surface graphite carbon, and the average particle size of the amorphous surface graphite carbon and the amorphous carbon was smaller than the amorphous surface graphite carbon. From the results of Example 5 which was increased and Example 6 which was the same, the average particle size of amorphous carbon was made smaller than that of amorphous surface graphite-based carbon, that is, the average particle size of amorphous surface graphite-based carbon. When 1.0 is set to 1.0, it can be seen that when the average particle diameter of amorphous carbon is less than 1.0, both temperature characteristics and charge / discharge cycle characteristics can be improved. This means that the amorphous carbon and the amorphous carbon on the surface of the graphite-based carbon can easily come into contact efficiently by making the average particle diameter of the amorphous carbon smaller than that of the amorphous-surface graphite-based carbon. It is thought that.

更に、非晶質表面を有しない黒鉛系炭素を配合した実施例7の電池でも、低温環境下での温度特性及び充放電サイクル特性が比較例1の電池より向上する結果を示している。このことから、非晶質表面黒鉛系炭素及び非晶質炭素以外に他の炭素材を配合しても、非晶質表面黒鉛系炭素と非晶質炭素との2種が存在していれば、低温環境下での放電性能を向上させる効果があることが判る。   Furthermore, even in the battery of Example 7 in which graphite-based carbon having no amorphous surface was blended, the results show that the temperature characteristics and charge / discharge cycle characteristics under a low temperature environment are improved as compared with the battery of Comparative Example 1. Therefore, even if other carbon materials are blended in addition to amorphous surface graphite-based carbon and amorphous carbon, two types of amorphous surface graphite-based carbon and amorphous carbon exist. It can be seen that there is an effect of improving the discharge performance in a low temperature environment.

また、充放電サイクル特性では、非晶質表面黒鉛系炭素及び非晶質炭素を配合した各実施例の電池は、非晶質表面黒鉛系炭素のみとした比較例1の電池及び非晶質表面を有しない黒鉛系炭素と非晶質炭素とを配合した比較例2の電池と比較して容量維持率に優れた性能を示した。これも、電子伝導性が優れていることで、電極の膨張収縮が抑制され、集電体からの合剤(活物質)剥離などが生じにくくなったことによると考えられる。   Moreover, in the charge / discharge cycle characteristics, the battery of each example in which the amorphous surface graphite-based carbon and the amorphous carbon were blended was the amorphous surface graphite-based carbon and the amorphous surface. Compared to the battery of Comparative Example 2 in which graphite-based carbon having no carbon and amorphous carbon were blended, the performance excellent in capacity retention was exhibited. This is also considered to be due to the fact that due to the excellent electron conductivity, the expansion and contraction of the electrode is suppressed, and the mixture (active material) peeling from the current collector hardly occurs.

以上説明したように、本実施形態のリチウムイオン二次電池20では、負極活物質に2種以上の炭素材が用いられている。この炭素材のうち1種には非晶質表面黒鉛系炭素が用いられており、少なくとももう1種には非晶質炭素が用いられている。非晶質表面黒鉛系炭素を用いたため、表面の非晶質炭素により黒鉛系炭素が直接非水電解液に接触することがないことから、黒鉛系炭素による非水電解液の分解が抑制される。このため、非水電解液の分解により生じ電子伝導を阻害する被膜の形成が防止されるので、放電容量の低下を抑制することができる。また、黒鉛系炭素は充放電に伴うリチウムイオンの挿入、放出で膨張、収縮して体積変化を生じるが、黒鉛系炭素の表面が非晶質炭素のため、内部の黒鉛系炭素が部分的に剥離して脱落することが防止される。これにより、黒鉛系炭素の電子伝導性が維持されるので、サイクル特性の低下を抑制することができる。   As described above, in the lithium ion secondary battery 20 of the present embodiment, two or more kinds of carbon materials are used for the negative electrode active material. Among these carbon materials, amorphous surface graphite carbon is used as one kind, and amorphous carbon is used as at least one kind. Since amorphous surface graphite-based carbon is used, graphite carbon does not come into direct contact with the non-aqueous electrolyte due to the amorphous carbon on the surface, so decomposition of the non-aqueous electrolyte by graphite-based carbon is suppressed. . For this reason, since the formation of the film which is generated by the decomposition of the non-aqueous electrolyte and inhibits the electron conduction is prevented, the decrease in the discharge capacity can be suppressed. Graphite carbon expands and contracts due to the insertion and release of lithium ions accompanying charge and discharge, resulting in a volume change. However, because the surface of the graphite carbon is amorphous carbon, the internal graphite carbon partially It is prevented from peeling off and falling off. Thereby, since the electronic conductivity of graphite-type carbon is maintained, the fall of cycling characteristics can be suppressed.

また、低温環境下では非水電解液中のリチウムイオン拡散性が低下するが、非晶質表面黒鉛系炭素及び非晶質炭素が配合されているため、黒鉛系炭素からリチウムイオンが放出されるときに、非晶質表面黒鉛系炭素の表面の非晶質炭素や別に配合した非晶質炭素を介して電子伝導が生じる。これにより、低温環境下でも容量の低下を抑制することができる。従って、本実施形態のリチウムイオン二次電池20は、低温環境下でも高容量を確保することができ、かつ、充放電サイクルによる容量維持率の低下を抑制することができる。   In addition, diffusibility of lithium ions in the non-aqueous electrolyte is reduced in a low-temperature environment, but since amorphous surface graphite carbon and amorphous carbon are blended, lithium ions are released from graphite carbon. Occasionally, electron conduction occurs through amorphous carbon on the surface of the amorphous surface graphite-based carbon or amorphous carbon added separately. Thereby, the fall of a capacity | capacitance can be suppressed also in a low temperature environment. Therefore, the lithium ion secondary battery 20 of the present embodiment can secure a high capacity even in a low temperature environment, and can suppress a decrease in capacity maintenance rate due to a charge / discharge cycle.

更に、負極材に占める非晶質炭素の配合割合が少なすぎると低温環境下での容量が低下し、反対に多すぎると25°C連続放電容量が低下する。本実施形態のリチウムイオン二次電池20では、負極材に占める非晶質炭素の配合割合を5〜90%に調整したので、25°C連続放電容量及び低温環境下での容量のいずれについても低下を抑制することができる。また、非晶質表面黒鉛系炭素では内部の黒鉛系炭素の剥落が防止されるため、黒鉛系炭素の電子伝導性が維持されるので、充放電サイクル特性についても容量維持率の低下を抑制することができる。非晶質炭素の配合割合を5〜50%とすることで、低温環境下での容量及び充放電サイクル特性の低下を更に抑制することができる。   Furthermore, when the blending ratio of amorphous carbon in the negative electrode material is too small, the capacity under a low temperature environment decreases, and on the contrary, the continuous discharge capacity at 25 ° C. decreases. In the lithium ion secondary battery 20 of the present embodiment, since the blending ratio of amorphous carbon in the negative electrode material was adjusted to 5 to 90%, both the 25 ° C continuous discharge capacity and the capacity in a low temperature environment were used. The decrease can be suppressed. In addition, the amorphous surface graphite-based carbon prevents the graphite-based carbon inside from being peeled off, so that the electronic conductivity of the graphite-based carbon is maintained. be able to. By setting the blending ratio of amorphous carbon to 5 to 50%, it is possible to further suppress a decrease in capacity and charge / discharge cycle characteristics under a low temperature environment.

また、本実施形態のリチウムイオン二次電池20では、非晶質炭素の平均粒子径が非晶質表面黒鉛系炭素の平均粒子径より小さく設定されている。このため、負極合剤W4中で非晶質炭素と非晶質表面黒鉛系炭素とを効率よく接触させることができる。これにより、非晶質表面黒鉛系炭素の内部の黒鉛系炭素からリチウムイオンが放出されるときに、表面の非晶質炭素や別に配合された非晶質炭素を介して電子伝導が生じるので、電子伝導性を低下させることなく容量を確保することができる。   Moreover, in the lithium ion secondary battery 20 of this embodiment, the average particle diameter of amorphous carbon is set smaller than the average particle diameter of amorphous surface graphite carbon. For this reason, amorphous carbon and amorphous surface graphite-based carbon can be efficiently contacted in the negative electrode mixture W4. As a result, when lithium ions are released from the graphite-based carbon inside the amorphous-surface graphite-based carbon, electron conduction occurs through the amorphous carbon on the surface and the amorphous carbon that is blended separately, The capacity can be ensured without lowering the electron conductivity.

なお、本実施形態のリチウムイオン二次電池20では、非晶質表面黒鉛系炭素の調製に天然黒鉛とコールタールピッチとを混合し焼成する例を示したが、本発明は非晶質表面黒鉛系炭素の調製法に制限されるものではない。表面を非晶質化した黒鉛系炭素材を得る方法としては、例えば、黒鉛系炭素材を、石炭系重質油、直流系重質油、石油系重質油等と混合して焼成する方法、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物等の有機物と混合して焼成する方法を挙げることができる。用いる黒鉛系炭素材としては、天然黒鉛に限定されるものではなく、人造黒鉛、気相成長炭素繊維等の黒鉛化材であればよい。また、炭素材の形状についても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。   In the lithium ion secondary battery 20 of the present embodiment, an example in which natural graphite and coal tar pitch are mixed and fired for preparation of amorphous surface graphite-based carbon has been shown. It is not limited to the method for preparing the system carbon. As a method for obtaining a graphite-based carbon material having an amorphous surface, for example, a method in which a graphite-based carbon material is mixed with coal-based heavy oil, direct-current heavy oil, petroleum-based heavy oil, and the like and fired. And a method of mixing and baking with organic substances such as aromatic hydrocarbons, nitrogen-containing cyclic compounds, and sulfur-containing cyclic compounds. The graphite-based carbon material to be used is not limited to natural graphite, and may be any graphitized material such as artificial graphite and vapor-grown carbon fiber. Further, the shape of the carbon material is not particularly limited, such as a scale shape, a spherical shape, a fiber shape, or a lump shape.

また、本実施形態では、正極活物質のリチウム遷移金属複合酸化物にリチウム、マンガン、コバルト、ニッケルの複合酸化物を例示したが、本発明はこれに限定されるものではない。本実施形態以外で使用可能なリチウム遷移金属複合酸化物としては、リチウムを挿入・放出可能な材料であり、予め十分な量のリチウムが挿入されていればよく、例えば、スピネル結晶構造や層状結晶構造のリチウムマンガン複酸化物や、結晶中のマンガンやリチウムの一部をそれら以外の例えば、Fe、Co、Ni、Cr、Al、Mg、等の元素で置換又はドープした材料、結晶中の酸素の一部をS、P等の元素で置換又はドープした材料を挙げることができる。また、これら以外に、電池電圧として5V級が可能なリチウムマンガン複酸化物を用いても本発明の効果に変わりはない。   In the present embodiment, the lithium transition metal composite oxide of the positive electrode active material is exemplified by a composite oxide of lithium, manganese, cobalt, and nickel, but the present invention is not limited to this. The lithium transition metal composite oxide that can be used in other embodiments is a material capable of inserting and releasing lithium, and a sufficient amount of lithium may be inserted in advance. For example, a spinel crystal structure or a layered crystal Lithium manganese complex oxide having a structure, a material in which a part of manganese or lithium in a crystal is substituted or doped with other elements such as Fe, Co, Ni, Cr, Al, Mg, etc., oxygen in a crystal A material in which a part of is substituted or doped with an element such as S or P can be given. In addition to the above, the effect of the present invention is not changed even when a lithium manganese complex oxide capable of 5V class as the battery voltage is used.

更に、本実施形態では、非水電解液にエチレンカーボネートとジメチルカーボネートとジエチルカーボネートの体積比1:1:1の混合溶液中へ6フッ化リン酸リチウムを1モル/リットル溶解したものを用いたが、本発明の電池には特に制限はなく、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解したものを使用することができる。用いられるリチウム塩や有機溶媒は特に制限されず、例えば、電解質としては、LiClO、LiAsF、LiPF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を用いることができる。有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等またはこれらの2種以上の混合溶媒を用いてもよく、混合配合比についても限定されるものではない。 Furthermore, in this embodiment, a solution obtained by dissolving 1 mol / liter of lithium hexafluorophosphate in a mixed solution of ethylene carbonate, dimethyl carbonate, and diethyl carbonate in a volume ratio of 1: 1: 1 was used as the nonaqueous electrolytic solution. However, the battery of the present invention is not particularly limited, and a battery in which a general lithium salt is used as an electrolyte and this is dissolved in an organic solvent can be used. The lithium salt and organic solvent to be used are not particularly limited, and examples of the electrolyte include LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, and CF 3 SO 3. Li or the like or a mixture thereof can be used. As the organic solvent, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether , Sulfolane, methylsulfolane, acetonitrile, propionitrile, etc., or a mixed solvent of two or more of these may be used, and the mixing ratio is not limited.

また更に、本実施形態以外で用いることのできるバインダ(結着材)としては、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロ−ス、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体及びこれらの混合体等を挙げることができる。   Furthermore, as binders (binders) that can be used in other embodiments, polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose -Polymers such as sulfur, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and mixtures thereof.

更にまた、本実施形態では、正負極板を捲回した捲回群6を有する円筒型リチウムイオン二次電池20を例示したが、本発明は電池の形状、構造等に制限されるものではない。例えば、角形、その他の多角形としてもよく、正負極板を積層した積層タイプの電池にも適用可能である。また、電池サイズ、電池容量についても特に制限されるものではない。更に、本発明が適用可能な電池構造としては、本実施形態の有底円筒状容器(缶)に電池上蓋がカシメによって封口された構造以外に、例えば、正負外部端子が電池蓋を貫通し電池容器内で軸芯を介して正負外部端子が押し合っている構造を挙げることができる。   Furthermore, in the present embodiment, the cylindrical lithium ion secondary battery 20 having the wound group 6 in which the positive and negative electrode plates are wound is illustrated, but the present invention is not limited to the shape and structure of the battery. . For example, it may be a rectangular shape or other polygonal shapes, and can be applied to a stacked type battery in which positive and negative electrode plates are stacked. Further, the battery size and the battery capacity are not particularly limited. Furthermore, as a battery structure to which the present invention can be applied, in addition to the structure of the bottomed cylindrical container (can) of the present embodiment in which the battery upper cover is sealed by caulking, for example, positive and negative external terminals penetrate the battery cover and the battery An example is a structure in which positive and negative external terminals are pressed against each other through a shaft core in the container.

本発明は、低温環境下でも高容量を確保しサイクル特性の低下を抑制することができるリチウム二次電池を提供するため、リチウム二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   The present invention contributes to the manufacture and sale of lithium secondary batteries in order to provide a lithium secondary battery that can secure a high capacity and suppress the deterioration of cycle characteristics even in a low temperature environment. Have sex.

本発明が適用可能な実施形態の円筒型リチウムイオン二次電池を示す断面図である。It is sectional drawing which shows the cylindrical lithium ion secondary battery of embodiment which can apply this invention. 実施形態のリチウムイオン二次電池の温度特性及び充放電サイクル特性の評価結果を示すグラフである。It is a graph which shows the evaluation result of the temperature characteristic and charging / discharging cycle characteristic of the lithium ion secondary battery of embodiment.

符号の説明Explanation of symbols

W2 正極合剤
W4 負極合剤
1 軸芯
6 捲回群
7 電池容器
20 円筒型リチウムイオン二次電池(リチウム二次電池)
W2 Positive electrode mixture W4 Negative electrode mixture 1 Axle core 6 Winding group 7 Battery container 20 Cylindrical lithium ion secondary battery (lithium secondary battery)

Claims (4)

リチウム遷移金属複合酸化物を含む正極板と、リチウムイオンを挿入、放出可能な負極材を含む負極板とを非水電解液に浸潤させたリチウム二次電池において、前記負極材には2種以上の炭素材が使用されており、少なくとも前記炭素材の1種は表面が非晶質炭素である黒鉛系炭素材であり、少なくとももう1種は非晶質系炭素材であることを特徴とするリチウム二次電池。   In the lithium secondary battery in which a positive electrode plate containing a lithium transition metal composite oxide and a negative electrode plate containing a negative electrode material capable of inserting and releasing lithium ions are infiltrated into a non-aqueous electrolyte, the negative electrode material includes two or more types The carbon material is used, and at least one of the carbon materials is a graphite-based carbon material whose surface is amorphous carbon, and at least one of the other carbon materials is an amorphous carbon material. Lithium secondary battery. 前記負極材に占める前記非晶質系炭素材の割合が5%〜90%であることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein a ratio of the amorphous carbon material in the negative electrode material is 5% to 90%. 前記負極材に占める前記非晶質系炭素材の割合が5%〜50%であることを特徴とする請求項2に記載のリチウム二次電池。   The lithium secondary battery according to claim 2, wherein a ratio of the amorphous carbon material in the negative electrode material is 5% to 50%. 前記黒鉛系炭素材の平均粒子径を1.0としたときに、前記非晶質系炭素材の平均粒子径が1.0未満であることを特徴とする請求項1乃至請求項3のいずれか1項に記載のリチウム二次電池。   The average particle diameter of the amorphous carbon material is less than 1.0 when the average particle diameter of the graphite-based carbon material is 1.0. The lithium secondary battery according to claim 1.
JP2005160820A 2005-06-01 2005-06-01 Lithium secondary battery Pending JP2006338977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005160820A JP2006338977A (en) 2005-06-01 2005-06-01 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005160820A JP2006338977A (en) 2005-06-01 2005-06-01 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2006338977A true JP2006338977A (en) 2006-12-14

Family

ID=37559366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160820A Pending JP2006338977A (en) 2005-06-01 2005-06-01 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2006338977A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038494A1 (en) * 2012-09-06 2014-03-13 株式会社クレハ Material for negative electrode of non-aqueous electrolyte secondary battery
WO2014092141A1 (en) * 2012-12-13 2014-06-19 昭和電工株式会社 Negative electrode material for lithium ion secondary battery, negative electrode sheet for lithium ion secondary battery, and lithium secondary battery
US11024470B2 (en) 2017-03-23 2021-06-01 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307977A (en) * 1992-04-28 1993-11-19 Mitsubishi Petrochem Co Ltd Nonaqueous solvent secondary battery and electrode material thereof
JPH09199114A (en) * 1996-01-12 1997-07-31 Hitachi Maxell Ltd Nonaqueous electrolyte secondary cell
JPH09326253A (en) * 1996-06-04 1997-12-16 Denso Corp Negative electrode for secondary battery and nonaqueous electrolyte secondary battery
JPH11176469A (en) * 1997-12-09 1999-07-02 Sharp Corp Nonaqueous battery
JPH11317228A (en) * 1998-04-30 1999-11-16 Jiikon:Kk Negative electrode material for lithium ion secondary battery and its manufacture
JP2000040510A (en) * 1998-07-24 2000-02-08 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2002110155A (en) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003017059A (en) * 2001-04-24 2003-01-17 Shin Kobe Electric Mach Co Ltd Non-aqueous electrolyte secondary battery
JP2005209591A (en) * 2004-01-26 2005-08-04 Sanyo Electric Co Ltd Negative electrode and non-aqueous type electrolyte secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307977A (en) * 1992-04-28 1993-11-19 Mitsubishi Petrochem Co Ltd Nonaqueous solvent secondary battery and electrode material thereof
JPH09199114A (en) * 1996-01-12 1997-07-31 Hitachi Maxell Ltd Nonaqueous electrolyte secondary cell
JPH09326253A (en) * 1996-06-04 1997-12-16 Denso Corp Negative electrode for secondary battery and nonaqueous electrolyte secondary battery
JPH11176469A (en) * 1997-12-09 1999-07-02 Sharp Corp Nonaqueous battery
JPH11317228A (en) * 1998-04-30 1999-11-16 Jiikon:Kk Negative electrode material for lithium ion secondary battery and its manufacture
JP2000040510A (en) * 1998-07-24 2000-02-08 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2002110155A (en) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003017059A (en) * 2001-04-24 2003-01-17 Shin Kobe Electric Mach Co Ltd Non-aqueous electrolyte secondary battery
JP2005209591A (en) * 2004-01-26 2005-08-04 Sanyo Electric Co Ltd Negative electrode and non-aqueous type electrolyte secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038494A1 (en) * 2012-09-06 2014-03-13 株式会社クレハ Material for negative electrode of non-aqueous electrolyte secondary battery
CN104428926A (en) * 2012-09-06 2015-03-18 株式会社吴羽 Negative electrode for non-aqueous electrolyte secondary battery
TWI487181B (en) * 2012-09-06 2015-06-01 Kureha Corp Negative electrode for nonaqueous electrolyte secondary battery
JPWO2014038494A1 (en) * 2012-09-06 2016-08-08 株式会社クレハ Nonaqueous electrolyte secondary battery negative electrode material
US9537176B2 (en) 2012-09-06 2017-01-03 Kureha Corporation Material for non-aqueous electrolyte secondary battery negative electrode
WO2014092141A1 (en) * 2012-12-13 2014-06-19 昭和電工株式会社 Negative electrode material for lithium ion secondary battery, negative electrode sheet for lithium ion secondary battery, and lithium secondary battery
JPWO2014092141A1 (en) * 2012-12-13 2017-01-12 昭和電工株式会社 Negative electrode material for lithium ion secondary battery, negative electrode sheet for lithium ion secondary battery, and lithium secondary battery
US11024470B2 (en) 2017-03-23 2021-06-01 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device
US11562862B2 (en) 2017-03-23 2023-01-24 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device

Similar Documents

Publication Publication Date Title
JP5286200B2 (en) Lithium ion secondary battery
JP5257700B2 (en) Lithium secondary battery
JP5489353B2 (en) Non-aqueous electrolyte secondary battery
JP2003308842A (en) Nonaqueous electrolyte lithium secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP2011054334A (en) Lithium secondary battery
JP2005158623A (en) Nonaqueous electrolyte secondary battery
JP2007165114A (en) Lithium secondary battery
KR20040098420A (en) Negative active material for large capacity rechargeable lithium battery and large capacity rechargeable lithium battery comprising thereof
JP2006338977A (en) Lithium secondary battery
CN111480250A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
JP4048763B2 (en) Non-aqueous electrolyte secondary battery
JP4147994B2 (en) Method for producing negative electrode for lithium secondary battery
JP2002100408A (en) Flat nonaqueous electrolyte secondary battery
JP2005100955A (en) Winding type lithium ion battery
JP5254910B2 (en) Lithium ion secondary battery
JP3624793B2 (en) Lithium ion battery
JP5433484B2 (en) Lithium ion secondary battery
JP4211542B2 (en) Lithium secondary battery
JP4839518B2 (en) Non-aqueous electrolyte secondary battery
JP2002198101A (en) Nonaqueous electrolytic solution secondary battery
JP2005327521A (en) Manufacturing method of nonaqueous electrolyte secondary battery and using method of the same
JP2004164988A (en) Manufacturing method of lithium containing metal oxide and lithium secondary battery using same
JP2005071712A (en) Manufacturing method of positive electrode
JP3518484B2 (en) Lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120424