JP2005158623A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005158623A
JP2005158623A JP2003398301A JP2003398301A JP2005158623A JP 2005158623 A JP2005158623 A JP 2005158623A JP 2003398301 A JP2003398301 A JP 2003398301A JP 2003398301 A JP2003398301 A JP 2003398301A JP 2005158623 A JP2005158623 A JP 2005158623A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode mixture
positive electrode
mixture layer
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003398301A
Other languages
Japanese (ja)
Inventor
Kenji Hara
賢二 原
Katsunori Suzuki
克典 鈴木
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2003398301A priority Critical patent/JP2005158623A/en
Publication of JP2005158623A publication Critical patent/JP2005158623A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery realizing high output, high output especially under a low temperature environment and improving safety. <P>SOLUTION: A positive electrode is prepared by forming a positive mix layer by applying a positive mix containing a lithium-nickel-manganese-cobalt composite oxide having layered crystal structure and an average particle size of 5-20 μm, flake graphite, and PVDF to an aluminum foil. A positive electrode porosity is limited to 25-35%, and a negative electrode is prepared by forming a negative mix layer by applying a negative mix containing amorphous carbon having an average particle size of 5-20 μm, acetylene black, and PVDF to a rolled copper foil, and a negative electrode porosity is limited to 30-40%. The amount of a nonaqueous electrolyte penetrating into the positive and negative mix layers is made appropriate and the distribution of the nonaqueous electrolyte is made almost uniform. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は非水電解液二次電池に係り、特に、層状結晶構造を有する平均粒子径5〜20μmのリチウム遷移金属複合酸化物、黒鉛系炭素材を主とする導電剤及び結着剤を含む正極合剤を正極集電体にほぼ均等に塗着して正極合剤層を形成した正極と、負極とを非水電解液に浸潤させた非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and particularly includes a lithium transition metal composite oxide having a layered crystal structure and an average particle diameter of 5 to 20 μm, a conductive agent mainly composed of a graphite-based carbon material, and a binder. The present invention relates to a non-aqueous electrolyte secondary battery in which a positive electrode in which a positive electrode mixture is applied almost uniformly to a positive electrode current collector to form a positive electrode mixture layer and a negative electrode are infiltrated into the non-aqueous electrolyte.

従来、再充電可能な二次電池の分野では、鉛電池、ニッケル−カドミウム電池、ニッケル−水素電池等の水溶液系電池が主流であった。しかしながら、地球温暖化や燃料枯渇の問題から電気自動車(EV)や駆動の一部を電気モータで補助するハイブリッド自動車(HEV)が着目され、これらの電源に用いられる電池にはより高容量で高出力な性能が求められるようになってきた。このような要求に合致する電源として、高電圧を有する非水電解液二次電池が注目されている。   Conventionally, in the field of rechargeable secondary batteries, aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries have been mainstream. However, attention has been paid to electric vehicles (EV) and hybrid vehicles (HEV) in which a part of driving is supported by electric motors due to problems of global warming and fuel depletion, and batteries used for these power sources have higher capacity and higher capacity. Output performance has been demanded. As a power source that meets such requirements, a non-aqueous electrolyte secondary battery having a high voltage has attracted attention.

非水電解液二次電池の正極材には、一般に、リチウム遷移金属複合酸化物が用いられており、中でも容量やサイクル特性等のバランスからコバルト酸リチウムが用いられている。ところが、コバルトは資源量が少なくコスト高となることから、EVやHEV用電池の正極材としてはマンガン酸リチウムに代表されるマンガンを含むリチウム遷移金属複合酸化物が有望視され開発が進められている。このリチウム遷移金属複合酸化物の結晶構造がスピネル結晶構造の場合は、リチウムイオンの拡散経路が三次元的であるのに対し、層状結晶構造の場合は二次元的である。このため、層状結晶構造のリチウム遷移金属複合酸化物は、常温環境下ではリチウムイオンの拡散性が高く出力特性に優れるものの、低温環境下では結晶が収縮してリチウムイオンの拡散性が低下するため、出力の低下を招く。   Generally, a lithium transition metal composite oxide is used for a positive electrode material of a non-aqueous electrolyte secondary battery, and lithium cobalt oxide is used in particular because of a balance of capacity and cycle characteristics. However, since cobalt is low in resources and high in cost, lithium transition metal composite oxides containing manganese typified by lithium manganate are promising as cathode materials for EV and HEV batteries, and development has been promoted. Yes. When the crystal structure of this lithium transition metal complex oxide is a spinel crystal structure, the diffusion path of lithium ions is three-dimensional, whereas when it is a layered crystal structure, it is two-dimensional. Therefore, the lithium transition metal composite oxide with a layered crystal structure has high lithium ion diffusibility and excellent output characteristics under normal temperature environment, but the crystal shrinks and the lithium ion diffusivity decreases under low temperature environment. Incurs a decrease in output.

一方、負極材には、一般に、天然黒鉛、鱗片状や塊状等の人造黒鉛、メソフェーズピッチ系黒鉛等の黒鉛系材料、フルフリルアルコール等のフラン樹脂等を焼成した非晶質炭素材料の炭素材が用いられている。非晶質炭素は理論容量値が黒鉛より高いため、容量、サイクル特性に優れると共に、充放電時の電圧特性に傾きを有しているため、電圧を測定するだけで電池の状態を容易かつ正確に推定可能な非水電解液二次電池を得ることができるが、不可逆容量が黒鉛系材料より大きいため、電池での高容量化が難しく、また、電子伝導性が黒鉛系材料に比べて劣る、という欠点がある。これに対し、黒鉛系材料は不可逆容量が小さく電圧特性も平坦であることから、高容量、高出力の非水電解液二次電池を得ることができるが、充放電に伴う結晶の体積変化が大きいため、電子伝導性を長期間維持できず早期に寿命に至り、また、電気自動車用などの大型電池を想定した場合は、大電流密度での充電受け入れ性が非晶質炭素に比べて劣る、という問題がある。   On the other hand, the negative electrode material is generally a carbon material of an amorphous carbon material obtained by firing natural graphite, artificial graphite such as scale or lump, graphite material such as mesophase pitch graphite, furan resin such as furfuryl alcohol, etc. Is used. Since amorphous carbon has a higher theoretical capacity value than graphite, it has excellent capacity and cycle characteristics, and has a slope in the voltage characteristics during charging and discharging, so the battery state can be easily and accurately measured simply by measuring the voltage. A non-aqueous electrolyte secondary battery can be obtained, but the irreversible capacity is larger than that of the graphite material, so it is difficult to increase the capacity of the battery, and the electronic conductivity is inferior to that of the graphite material. , There is a drawback. In contrast, graphite-based materials have a low irreversible capacity and flat voltage characteristics, so that a high-capacity, high-power non-aqueous electrolyte secondary battery can be obtained. Due to its large size, the electron conductivity cannot be maintained for a long period of time, resulting in an early life. In addition, when a large battery for an electric vehicle is assumed, charge acceptance at a large current density is inferior to that of amorphous carbon. There is a problem.

上述したEVやHEV用電池では、充放電における電流密度が大きく、かつ、長寿命、高出力特性が要求されるため、一般に、複数の単電池を接続して用いられる。単電池の特性のバラツキが寿命特性や安全性を大きく左右することから、通常、制御システムを併用して単電池の電圧、電流、温度などを監視・制御することでバラツキの抑制が図られている。ところが、上述したように黒鉛系材料では電圧特性が平坦であるため、電圧から電池の状態を正確に監視することが難しく、これを解決するには高精度な制御システムが必要となる。従って、EVやHEV用電池の負極材としては、非晶質炭素を主とすることが望ましく、正極材に層状結晶構造のリチウム遷移金属複合酸化物を用いて、高出力化の改善を進めることが有望である。   The above-described EV and HEV batteries have a large current density in charge and discharge, and require a long life and high output characteristics. Therefore, a plurality of single cells are generally connected and used. Since fluctuations in the characteristics of single cells greatly affect the life characteristics and safety, it is usually possible to suppress fluctuations by monitoring and controlling the voltage, current, temperature, etc. of the single cells in combination with a control system. Yes. However, as described above, since the voltage characteristics of the graphite-based material are flat, it is difficult to accurately monitor the state of the battery from the voltage. To solve this, a highly accurate control system is required. Therefore, it is desirable that the negative electrode material of the battery for EV or HEV is mainly amorphous carbon, and use of a lithium transition metal composite oxide having a layered crystal structure as the positive electrode material to promote improvement in output. Is promising.

非水電解液二次電池の高出力化を図るためには、正負極合剤層内の電子伝導性及びリチウムイオンの拡散性を向上させる必要がある。電子伝導性を向上させるためには、導電剤を添加したり、正負極合剤密度を大きくしたりして、電子伝導のネットワークを確保する等種々の低抵抗化の改善がなされている。一方、リチウムイオンの拡散性を向上させるためには、正負極合剤層中に非水電解液の浸透する空間が必要である。例えば、スピネル結晶構造のマンガン酸リチウムを用いたときに、正極合剤層の厚さに応じて正極合剤層の空孔率を設定する技術が開示されている(特許文献1参照)。また、低温環境下では、非水電解液中でのリチウムイオンの移動が非常に鈍くなると共に、正負極合剤層中の非水電解液の分布により出力特性が著しく変化する。これを解決するために、非水電解液に混合有機溶媒を用いることにより低温環境下でのリチウムイオン伝導性の低下を抑制する技術が開示されている(例えば、特許文献2参照)。   In order to increase the output of the non-aqueous electrolyte secondary battery, it is necessary to improve the electron conductivity and lithium ion diffusibility in the positive and negative electrode mixture layers. In order to improve the electron conductivity, various improvements in resistance reduction have been made, such as adding a conductive agent or increasing the positive / negative electrode mixture density to ensure an electron conduction network. On the other hand, in order to improve the diffusibility of lithium ions, a space through which the nonaqueous electrolyte solution permeates is required in the positive and negative electrode mixture layers. For example, when lithium manganate having a spinel crystal structure is used, a technique for setting the porosity of the positive electrode mixture layer according to the thickness of the positive electrode mixture layer is disclosed (see Patent Document 1). Further, in a low temperature environment, the movement of lithium ions in the non-aqueous electrolyte solution becomes very slow, and the output characteristics change remarkably due to the distribution of the non-aqueous electrolyte solution in the positive and negative electrode mixture layers. In order to solve this, a technique for suppressing a decrease in lithium ion conductivity in a low temperature environment by using a mixed organic solvent in a nonaqueous electrolytic solution is disclosed (for example, see Patent Document 2).

特開2001−325948号公報JP 2001-325948 A 特開2001−155766号公報JP 2001-155766 A

しかしながら、特許文献1の技術では、スピネル結晶構造のマンガン酸リチウムの場合は非水電解液の浸透する空間が確保されるが、上述したように低温環境下で結晶の収縮が起こる層状結晶構造のリチウム遷移金属複合酸化物の場合は、非水電解液の浸透する空間が十分とはいえない。また、特許文献2の技術では、非水電解液中のリチウムイオン伝導性の低下は抑制されるものの、正負極合剤層内のリチウムイオンの拡散性を向上させることは難しい。更に、正負極合剤密度を大きくすることで電子伝導性は向上するが、正負極合剤密度が大きくなると、正負極の合剤中に浸透する非水電解液の量が減少しリチウムイオンの拡散性が低下するため、電極反応に部分的な偏りを生ずることから、過充電状態に陥ると、急激な内圧や温度の上昇などを引き起こすこととなる。   However, in the technique of Patent Document 1, in the case of lithium manganate having a spinel crystal structure, a space through which a non-aqueous electrolyte permeates is ensured. However, as described above, a layered crystal structure in which crystal shrinkage occurs in a low temperature environment. In the case of a lithium transition metal composite oxide, it cannot be said that the space through which the nonaqueous electrolyte permeates is sufficient. Moreover, although the technique of patent document 2 suppresses the fall of lithium ion conductivity in a non-aqueous electrolyte, it is difficult to improve the diffusibility of the lithium ion in a positive / negative electrode mixture layer. Furthermore, increasing the positive and negative electrode mixture density improves the electron conductivity. However, as the positive and negative electrode mixture density increases, the amount of non-aqueous electrolyte that permeates into the positive and negative electrode mixture decreases and the lithium ion concentration increases. Since the diffusibility is lowered, a partial bias occurs in the electrode reaction. Therefore, when the battery is overcharged, an abrupt increase in internal pressure or temperature is caused.

本発明は上記事案に鑑み、高出力化、特に低温環境下での高出力化を図りつつ、安全性を改善することができる非水電解液二次電池を提供することを課題とする。   An object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of improving safety while achieving high output, particularly high output in a low temperature environment.

上記課題を解決するために、本発明の第1の態様は、層状結晶構造を有する平均粒子径5〜20μmのリチウム遷移金属複合酸化物、黒鉛系炭素材を主とする導電剤及び結着剤を含む正極合剤を正極集電体にほぼ均等に塗着して正極合剤層を形成した正極と、負極とを非水電解液に浸潤させた非水電解液二次電池において、前記正極合剤層の体積に対する前記正極合剤層内の空孔体積の割合が25%以上35%以下であることを特徴とする。   In order to solve the above problems, a first aspect of the present invention is a conductive agent and a binder mainly composed of a lithium transition metal composite oxide having a layered crystal structure and an average particle diameter of 5 to 20 μm, and a graphite-based carbon material. In a non-aqueous electrolyte secondary battery in which a non-aqueous electrolyte is infiltrated with a positive electrode in which a positive electrode mixture containing is applied to a positive electrode current collector almost uniformly to form a positive electrode mixture layer and a negative electrode. The ratio of the pore volume in the positive electrode mixture layer to the volume of the mixture layer is 25% or more and 35% or less.

第1の態様では、正極合剤層の体積に対する正極合剤層内の空孔体積の割合が25%に満たないと、正極合剤層内に浸透する非水電解液の量が減少するため、リチウムイオンの拡散性が低下する。特に、低温環境下ではリチウム遷移金属複合酸化物の層状結晶が収縮することからリチウムイオンの拡散性の低下が顕著となる。このため、層状結晶構造を有する平均粒子径5〜20μmのリチウム遷移金属複合酸化物と非水電解液との電極反応が起こりにくくなるので、出力特性が低下する。また、非水電解液の分布が不均一となることから、電極反応に部分的な偏りを生ずるので、通常状態で出力の低下や寿命の短縮を招き、過充電状態に陥ると安全性の低下を招く。反対に、空孔体積の割合が35%を超えると、正極合剤の割合が減少して出力の低下を招く。   In the first aspect, when the ratio of the pore volume in the positive electrode mixture layer to the volume of the positive electrode mixture layer is less than 25%, the amount of the non-aqueous electrolyte that penetrates into the positive electrode mixture layer decreases. , Lithium ion diffusibility decreases. In particular, under the low temperature environment, the layered crystal of the lithium transition metal composite oxide contracts, so that the decrease in lithium ion diffusivity becomes significant. For this reason, since the electrode reaction between the lithium transition metal composite oxide having a layered crystal structure and an average particle diameter of 5 to 20 μm and the nonaqueous electrolytic solution hardly occurs, the output characteristics are deteriorated. In addition, non-uniform distribution of the non-aqueous electrolyte causes a partial bias in the electrode reaction, leading to a decrease in output and a shortened life in a normal state, and a decrease in safety if the battery is overcharged. Invite. On the other hand, when the proportion of the pore volume exceeds 35%, the proportion of the positive electrode mixture is reduced, leading to a decrease in output.

第1の態様によれば、正極合剤層の体積に対する正極合剤層内の空孔体積の割合を25%以上35%以下としたので、正極合剤層内の非水電解液の量が適正化されて非水電解液の分布がほぼ均一となりリチウムイオンの拡散性及び電子伝導性が確保されることから、低温環境下における電極反応がほぼ均一に行われるため、出力特性に優れると共に、電極反応が部分的に集中することなく過充電時の安全性に優れた非水電解液二次電池を得ることができる。   According to the first aspect, since the ratio of the void volume in the positive electrode mixture layer to the volume of the positive electrode mixture layer is 25% or more and 35% or less, the amount of the non-aqueous electrolyte in the positive electrode mixture layer is Because it is optimized and the distribution of the non-aqueous electrolyte is almost uniform and the diffusivity and electronic conductivity of lithium ions are ensured, the electrode reaction is performed almost uniformly in a low-temperature environment, so the output characteristics are excellent, It is possible to obtain a nonaqueous electrolyte secondary battery that is excellent in safety during overcharge without partial concentration of electrode reactions.

また、上記課題を解決するために、本発明の第2の態様は、平均粒子径5〜20μmの非晶質炭素、導電剤及び結着剤を含む負極合剤を負極集電体にほぼ均等に塗着して負極合剤層を形成した負極と、正極とを非水電解液に浸潤させた非水電解液二次電池において、前記負極合剤層の体積に対する前記負極合剤層内の空孔体積の割合が30%以上40%以下であることを特徴とする。   In order to solve the above problem, the second aspect of the present invention is that a negative electrode mixture containing amorphous carbon having an average particle diameter of 5 to 20 μm, a conductive agent and a binder is substantially equal to a negative electrode current collector. In a non-aqueous electrolyte secondary battery in which a negative electrode coated with a negative electrode mixture layer and a positive electrode are infiltrated into a non-aqueous electrolyte solution, the negative electrode mixture layer has a volume within the negative electrode mixture layer. The ratio of the pore volume is 30% or more and 40% or less.

第2の態様では、負極合剤層の体積に対する負極合剤層内の空孔体積の割合が30%に満たないと、負極合剤層内に浸透する非水電解液の量が減少してリチウムイオンの拡散性が低下するため、平均粒子径5〜20μmの非晶質炭素と非水電解液との電極反応が起こりにくくなるので、出力特性が低下すると共に、非水電解液の分布が不均一となり電極反応に部分的な偏りを生ずるので、通常状態で出力の低下や寿命の短縮を招き、過充電状態に陥ると安全性の低下を招く。反対に、空孔体積の割合が40%を超えると、負極合剤の割合が減少して出力の低下を招く。   In the second aspect, when the ratio of the void volume in the negative electrode mixture layer to the volume of the negative electrode mixture layer is less than 30%, the amount of the nonaqueous electrolyte solution penetrating into the negative electrode mixture layer is reduced. Since the diffusibility of lithium ions is reduced, the electrode reaction between amorphous carbon having an average particle size of 5 to 20 μm and the non-aqueous electrolyte is less likely to occur, so that the output characteristics are reduced and the distribution of the non-aqueous electrolyte is reduced. Since it becomes non-uniform and a partial bias occurs in the electrode reaction, the output is reduced and the life is shortened in the normal state, and the safety is lowered when the battery is overcharged. On the other hand, when the ratio of the pore volume exceeds 40%, the ratio of the negative electrode mixture is decreased, leading to a decrease in output.

第2の態様によれば、負極合剤層の体積に対する負極合剤層内の空孔体積の割合を30%以上40%以下としたので、負極合剤層内の非水電解液の量が適正化されて非水電解液の分布がほぼ均一となりリチウムイオンの拡散性及び電子伝導性が確保されることから、低温環境下における電極反応がほぼ均一に行われるため、出力特性に優れると共に、電極反応が部分的に集中することなく過充電時の安全性に優れた非水電解液二次電池を得ることができる。   According to the second aspect, since the ratio of the pore volume in the negative electrode mixture layer to the volume of the negative electrode mixture layer is set to 30% or more and 40% or less, the amount of the nonaqueous electrolytic solution in the negative electrode mixture layer is Because it is optimized and the distribution of the non-aqueous electrolyte is almost uniform and the diffusivity and electronic conductivity of lithium ions are ensured, the electrode reaction is performed almost uniformly in a low-temperature environment, so the output characteristics are excellent, It is possible to obtain a nonaqueous electrolyte secondary battery that is excellent in safety during overcharge without partial concentration of electrode reactions.

また、本発明の第3の態様は、層状結晶構造を有する平均粒子径5〜20μmのリチウム遷移金属複合酸化物、黒鉛系炭素材を主とする導電剤及び結着剤を含む正極合剤を正極集電体にほぼ均等に塗着して正極合剤層を形成した正極と、平均粒子径5〜20μmの非晶質炭素、導電剤及び結着剤を含む負極合剤を負極集電体にほぼ均等に塗着して負極合剤層を形成した負極と、を非水電解液に浸潤させた非水電解液二次電池において、前記正極合剤層の体積に対する前記正極合剤層内の空孔体積の割合が25%以上35%以下であり、かつ、前記負極合剤層の体積に対する前記負極合剤層内の空孔体積の割合が30%以上40%以下であることを特徴とする。本態様によれば、上記第1の態様の正極及び第2の態様の負極を有するので、第1、第2の態様の作用を同時に奏することができ、出力特性及び安全性に優れた非水電解液二次電池を得ることができる。   The third aspect of the present invention is a positive electrode mixture comprising a lithium transition metal composite oxide having a layered crystal structure and an average particle diameter of 5 to 20 μm, a conductive agent mainly composed of a graphite-based carbon material, and a binder. A negative electrode current collector comprising: a positive electrode in which a positive electrode mixture layer is formed by being applied almost uniformly to the positive electrode current collector; and a negative electrode mixture comprising amorphous carbon having an average particle diameter of 5 to 20 μm, a conductive agent and a binder. In a non-aqueous electrolyte secondary battery in which a negative electrode formed by coating almost evenly on a non-aqueous electrolyte is infiltrated with a non-aqueous electrolyte, the inside of the positive electrode mixture layer with respect to the volume of the positive electrode mixture layer The ratio of the pore volume is 25% or more and 35% or less, and the ratio of the pore volume in the negative electrode mixture layer to the volume of the negative electrode mixture layer is 30% or more and 40% or less. And According to this aspect, since the positive electrode according to the first aspect and the negative electrode according to the second aspect are included, the effects of the first and second aspects can be achieved at the same time, and non-water excellent in output characteristics and safety. An electrolyte secondary battery can be obtained.

上記第1、第3の態様において、正極に用いるリチウム遷移金属複合酸化物は、化学式LiNiMnCo1−x−y(0<a<1.2、0<x<0.50、0<y<0.50)で表されることが好ましい。 In the first and third embodiments, the lithium transition metal composite oxide used for the positive electrode has the chemical formula Li a Ni x Mn y Co 1-xy O 2 (0 <a <1.2, 0 <x <0 .50, 0 <y <0.50).

本発明によれば、正極合剤層の体積に対する正極合剤層内の空孔体積の割合を25%以上35%以下としたので、正極合剤層内の非水電解液の量が適正化されて非水電解液の分布がほぼ均一となりリチウムイオンの拡散性及び電子伝導性が確保されることから、低温環境下における電極反応がほぼ均一に行われるため、出力特性に優れると共に、電極反応が部分的に集中することなく過充電時の安全性に優れた非水電解液二次電池を得ることができる、という効果を得ることができる。   According to the present invention, the ratio of the void volume in the positive electrode mixture layer to the volume of the positive electrode mixture layer is set to 25% or more and 35% or less, so that the amount of the non-aqueous electrolyte in the positive electrode mixture layer is optimized. As a result, the non-aqueous electrolyte distribution is almost uniform, and lithium ion diffusibility and electronic conductivity are ensured. Therefore, the electrode reaction is performed almost uniformly in a low-temperature environment. The effect that the non-aqueous-electrolyte secondary battery excellent in the safety | security at the time of an overcharge can be obtained without being concentrated partially can be acquired.

以下、本発明を電気自動車用電源に用いられる円筒型リチウムイオン二次電池に適用した実施の形態について説明する。   Embodiments in which the present invention is applied to a cylindrical lithium ion secondary battery used for a power source for an electric vehicle will be described below.

(正極)
正極活物質には、層状結晶構造を有する平均粒子径5〜20μmのリチウム遷移金属複合酸化物としてのリチウム・ニッケル・マンガン・コバルト複合酸化物(LiNi0.33Mn0.33Co0.33)を用いた。正極活物質100質量部に対して、10質量部の導電剤としての鱗片状黒鉛と、5質量部の結着剤としてのポリフッ化ビニリデン(PVDF)とを添加し、これに分散溶媒としてN−メチルピロリドンを添加、混練してスラリを得た。このスラリを、厚さ20μmの正極集電体としてのアルミニウム箔の両面にロール・ツー・ロールによる転写で塗布し、乾燥させることでアルミニウム箔上にほぼ均等かつ均質な正極合剤層を形成した。その後、ロールプレス機で正極合剤層を所定のプレス圧でプレスすることで、正極合剤層全体の体積に対する正極合剤層内の空孔体積の割合を25〜35体積%の範囲とした。プレス後、幅80mmに裁断して帯状の正極を得た。なお、正極合剤層内の空孔体積の割合はプレス圧を変えることによって調整可能である。また、X線回折法により、リチウム・ニッケル・マンガン・コバルト複合酸化物が層状結晶構造であることを確認し、また、レーザ式粒度分布測定装置で平均粒子径が5〜20μmであることを確認した。
(Positive electrode)
The positive electrode active material includes a lithium-nickel-manganese-cobalt composite oxide (LiNi 0.33 Mn 0.33 Co 0.33 O as a lithium transition metal composite oxide having a layered crystal structure and an average particle diameter of 5 to 20 μm. 2 ) was used. To 100 parts by mass of the positive electrode active material, 10 parts by mass of flaky graphite as a conductive agent and 5 parts by mass of polyvinylidene fluoride (PVDF) as a binder are added, and N- Methylpyrrolidone was added and kneaded to obtain a slurry. This slurry was applied to both surfaces of an aluminum foil as a positive electrode current collector with a thickness of 20 μm by transfer by roll-to-roll, and dried to form a substantially uniform and homogeneous positive electrode mixture layer on the aluminum foil. . Thereafter, the positive electrode mixture layer is pressed at a predetermined pressing pressure with a roll press, so that the ratio of the pore volume in the positive electrode mixture layer to the total volume of the positive electrode mixture layer is in the range of 25 to 35% by volume. . After pressing, it was cut into a width of 80 mm to obtain a strip-shaped positive electrode. In addition, the ratio of the void | hole volume in a positive mix layer can be adjusted by changing a press pressure. Also, the X-ray diffraction method confirms that the lithium / nickel / manganese / cobalt composite oxide has a layered crystal structure, and confirms that the average particle size is 5 to 20 μm using a laser type particle size distribution analyzer. did.

(負極)
負極活物質には平均粒子径が5〜20μmの非晶質炭素粉末を用いた。負極活物質100質量部に対して、5質量部の導電剤としてのアセチレンブラックと、10質量部の結着剤としてのPVDFとを添加し、これに分散溶媒としてN−メチルピロリドンを添加、混練してスラリを得た。このスラリを、厚さ10μmの負極集電体としての圧延鋼箔の両面にロール・ツー・ロールによる転写で塗布し、乾燥させることで銅箔上にほぼ均等かつ均質な負極合剤層を形成した。その後、ロールプレス機で負極合剤層を所定のプレス圧でプレスすることで、負極合剤層全体の体積に対する負極合剤層内の空孔体積の割合を30〜40体積%の範囲とした。プレス後、幅85mmに裁断して帯状の負極を得た。なお、正極と同様に、負極合剤層内の空孔体積の割合はプレス圧を変えることによって調整可能である。
(Negative electrode)
As the negative electrode active material, amorphous carbon powder having an average particle diameter of 5 to 20 μm was used. 5 parts by mass of acetylene black as a conductive agent and 10 parts by mass of PVDF as a binder are added to 100 parts by mass of the negative electrode active material, and N-methylpyrrolidone is added as a dispersion solvent thereto, and kneaded. To get a slurry. This slurry is applied to both surfaces of a rolled steel foil as a negative electrode current collector having a thickness of 10 μm by transfer by roll-to-roll, and dried to form a substantially uniform and homogeneous negative electrode mixture layer on the copper foil. did. Then, the ratio of the void | hole volume in the negative mix layer with respect to the volume of the whole negative mix layer was made into the range of 30-40 volume% by pressing a negative mix layer with a predetermined press pressure with a roll press machine. . After pressing, the strip was cut into a width of 85 mm to obtain a strip-shaped negative electrode. As with the positive electrode, the ratio of the pore volume in the negative electrode mixture layer can be adjusted by changing the press pressure.

(電池組立)
作製した正負極を、厚さ40μmのポリエチレン製セパレータとともに捲回して電極群を作製し、この電極群を円筒状の電池容器に挿入し、非水電解液を所定量注液後、上蓋をカシメ封口することにより円筒型リチウムイオン二次電池を完成させた。非水電解液には、エチレンカーボネートとジメチルカーボネートとの混合溶液中に6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものを用いた。
(Battery assembly)
The produced positive and negative electrodes are wound together with a polyethylene separator having a thickness of 40 μm to produce an electrode group, the electrode group is inserted into a cylindrical battery container, a predetermined amount of nonaqueous electrolyte is injected, and the upper lid is caulked. The cylindrical lithium ion secondary battery was completed by sealing. As the non-aqueous electrolyte, a solution in which 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solution of ethylene carbonate and dimethyl carbonate was used.

次に、本実施形態に従って、正極合剤層内及び負極合剤層内の空孔体積を変更して作製した実施例の電池について説明する。なお、比較のために作製した比較例の電池についても併記する。   Next, a battery of an example produced by changing the pore volume in the positive electrode mixture layer and the negative electrode mixture layer according to the present embodiment will be described. In addition, it describes together about the battery of the comparative example produced for the comparison.

(実施例1)
下表1に示すように、実施例1では、正極合剤層全体の体積に対する正極合剤層内の空孔体積の割合(以下、正極空孔率という。)を25体積%、負極合剤層全体の体積に対する負極合剤層内の空孔体積の割合(以下、負極空孔率という。)を35体積%として電池を作製した。正極空孔率及び負極空孔率は、正負極それぞれの集電体から合剤層を剥離し、水銀圧入法により測定した(以下の実施例及び比較例においても同じ。)。なお、正負極合剤層中に存在する各種材料の真比重、質量配合量、プレス後の正負極板の厚さの値から算出した空孔体積は、水銀圧入法による測定結果と極めて近似な値が得られた。
(Example 1)
As shown in Table 1 below, in Example 1, the ratio of the pore volume in the positive electrode mixture layer to the total volume of the positive electrode mixture layer (hereinafter referred to as positive electrode porosity) is 25% by volume, and the negative electrode mixture. A battery was manufactured by setting the ratio of the pore volume in the negative electrode mixture layer to the volume of the entire layer (hereinafter referred to as negative electrode porosity) to 35 volume%. The positive electrode porosity and the negative electrode porosity were measured by peeling the mixture layer from the current collectors of the positive and negative electrodes, and the mercury intrusion method (the same applies to the following examples and comparative examples). The pore volume calculated from the true specific gravity, mass blending amount, and thickness of the positive and negative electrode plates after pressing in the positive and negative electrode mixture layers is very close to the measurement result by the mercury intrusion method. A value was obtained.

(実施例2〜実施例3)
表1に示すように、実施例2〜実施例3では、正極空孔率を変える以外は実施例1と同様にした。実施例2では、正極空孔率を30体積%とし、実施例3では正極空孔率を35体積%とした。
(Example 2 to Example 3)
As shown in Table 1, Examples 2 to 3 were the same as Example 1 except that the positive electrode porosity was changed. In Example 2, the positive electrode porosity was 30% by volume, and in Example 3, the positive electrode porosity was 35% by volume.

(実施例4)
表1に示すように、実施例4では正極空孔率を30体積%、負極空孔率を30体積%として電池を作製した。
Example 4
As shown in Table 1, in Example 4, a battery was produced with a positive electrode porosity of 30% by volume and a negative electrode porosity of 30% by volume.

(実施例5〜実施例6)
表1に示すように、実施例5〜実施例6では、負極空孔率を変える以外は実施例4と同様にした。実施例5では、負極空孔率を35体積%とし、実施例6では、負極空孔率を40体積%とした。
(Example 5 to Example 6)
As shown in Table 1, Examples 5 to 6 were the same as Example 4 except that the negative electrode porosity was changed. In Example 5, the negative electrode porosity was 35% by volume, and in Example 6, the negative electrode porosity was 40% by volume.

(比較例1〜比較例2)
表1に示すように、比較例1〜比較例2では、正極空孔率を変える以外は実施例1と同様にした。比較例1では、正極空孔率を24体積%とし、比較例2では、正極空孔率を36体積%とした。
(Comparative Examples 1 to 2)
As shown in Table 1, Comparative Examples 1 and 2 were the same as Example 1 except that the positive electrode porosity was changed. In Comparative Example 1, the positive electrode porosity was 24% by volume, and in Comparative Example 2, the positive electrode porosity was 36% by volume.

(比較例3〜比較例4)
表1に示すように、比較例3〜比較例4では、それぞれ正極空孔率及び負極空孔率を、24体積%及び28体積%、36体積%及び41体積%として電池を作製した。
(Comparative Example 3 to Comparative Example 4)
As shown in Table 1, in Comparative Examples 3 to 4, batteries were prepared with the positive electrode porosity and the negative electrode porosity being 24% by volume, 28% by volume, 36% by volume, and 41% by volume, respectively.

(比較例5〜比較例6)
表1に示すように、比較例5〜比較例6では、負極空孔率を変える以外は実施例4と同様にした。比較例5では、負極空孔率を28体積%とし、比較例6では、負極空孔率を41体積%とした。
(Comparative Example 5 to Comparative Example 6)
As shown in Table 1, Comparative Examples 5 to 6 were the same as Example 4 except that the negative electrode porosity was changed. In Comparative Example 5, the negative electrode porosity was 28% by volume, and in Comparative Example 6, the negative electrode porosity was 41% by volume.

(試験)
次に、以上のように作製した実施例及び比較例の各電池について以下の試験を実施した。
(test)
Next, the following tests were carried out on the batteries of Examples and Comparative Examples produced as described above.

まず、室温(25°C)雰囲気下にて3時間率(0.33C)で定電流定電圧充電(設定電圧4.1V)を5時間行った後、1時間率(1C)で放電終止電圧2.7Vに至るまで放電し、再度同条件で充電した。次に、日本蓄電池工業会規格SBA8503に準じ、放電電流1、3、6Aの各電流値で放電して5秒目の電圧を測定し、この電流−電圧特性より初期の出力を求めた。   First, a constant-current / constant-voltage charge (set voltage 4.1 V) is performed for 5 hours at a 3-hour rate (0.33 C) in a room temperature (25 ° C.) atmosphere, and then a discharge end voltage is set at 1 hour rate (1 C) The battery was discharged to 2.7 V and charged again under the same conditions. Next, according to Japan Storage Battery Industry Association Standard SBA8503, discharge was performed at each current value of discharge currents 1, 3, and 6A, and the voltage at 5 seconds was measured. The initial output was obtained from the current-voltage characteristics.

初期の出力を測定した電池を低温(−25°C)の恒温槽内に24時間静置して電池全体が−25°Cになるように冷却し、上述した室温雰囲気下での初期出力の測定と同条件で、低温雰囲気下での出力特性を測定した。   The battery whose initial output was measured was allowed to stand in a low temperature (−25 ° C.) constant temperature bath for 24 hours to cool the entire battery to −25 ° C. The output characteristics in a low temperature atmosphere were measured under the same conditions as the measurement.

次に、充放電サイクルによる出力劣化を確認するため、室温雰囲気下に24時間静置した後、室温雰囲気下にて3時間率(0.33C)で定電流定電圧充電(設定電圧4.1V)を5時間行った後、1時間率(1C)で放電終止電圧2.7Vに至るまでの放電を繰り返し、100サイクル経過後、初期出力の測定と同様に電池の出力を測定した。初期の出力に対する100サイクル後の出力の割合を百分率で求め維持率とした。   Next, in order to confirm the output deterioration due to the charge / discharge cycle, the sample was allowed to stand in a room temperature atmosphere for 24 hours, and then constant current and constant voltage charge (set voltage 4.1 V) at a room temperature atmosphere at a rate of 3 hours (0.33C) ) Was repeated for 5 hours, and the discharge until reaching the discharge end voltage of 2.7 V was repeated at a rate of 1 hour (1 C). The ratio of the output after 100 cycles to the initial output was obtained as a percentage and used as the maintenance rate.

また、作製した電池を、室温において10A定電流で連続充電を行い過充電状態とし、そのときの電池表面の最高温度を測定し、電池の現象を観察した(過充電試験)。   Moreover, the produced battery was continuously charged at a constant current of 10 A at room temperature to be in an overcharged state, the maximum temperature of the battery surface at that time was measured, and the phenomenon of the battery was observed (overcharge test).

下表2に、室温雰囲気下及び低温雰囲気下における出力、100サイクル後の出力の維持率、並びに、過充電試験における電池の最高温度及び現象の試験結果を示す。   Table 2 below shows the test results of the output under room temperature atmosphere and low temperature atmosphere, the output maintenance rate after 100 cycles, and the maximum battery temperature and phenomenon in the overcharge test.

表1及び表2に示すように、正極空孔率が25体積%以上35体積%以下とした実施例1〜実施例3の電池では、低温雰囲気下での出力が320W以上確保され、また、充放電サイクルを100回繰り返した後でも初期出力の85%以上の出力が維持されている。過充電試験においても、最高温度が200°C以下であり、電池に異常は見られず良好であった。   As shown in Tables 1 and 2, in the batteries of Examples 1 to 3 in which the positive electrode porosity was 25% by volume or more and 35% by volume or less, the output in a low temperature atmosphere was secured at 320 W or more, An output of 85% or more of the initial output is maintained even after the charge / discharge cycle is repeated 100 times. Also in the overcharge test, the maximum temperature was 200 ° C. or less, and the battery was good without any abnormality.

これに対し、正極空孔率が25体積%未満の比較例1、比較例3の電池では、低温での出力の低下が著しく、また、過充電試験において、最高温度が240°Cを超え、電池が破裂して安全性を著しく損ねている。比較例1の電池は、実施例1〜実施例3の電池と負極空孔率が同じであるにも拘わらず現象が見られることから、正極合剤層中の非水電解液分布が不均一で、その結果非水電解液の存在する部分に電極反応が集中して、その部分が早期から過充電状態に至ったものと考えられる。逆に、正極空孔率が35体積%を超える比較例2、比較例4の電池では、室温雰囲気下での初期出力が低いことから、正極合剤層中の電子伝導性が低下して電極反応が不均一となっていると考えられる。しかしながら、初期から出力特性が劣っていることもあって、破裂の状態にまでは至らなかった。   In contrast, in the batteries of Comparative Example 1 and Comparative Example 3 having a positive electrode porosity of less than 25% by volume, the decrease in output at a low temperature was remarkable, and in the overcharge test, the maximum temperature exceeded 240 ° C, Batteries are ruptured and the safety is significantly impaired. Since the phenomenon of the battery of Comparative Example 1 is the same as that of the batteries of Examples 1 to 3 even though the negative electrode porosity is the same, the non-aqueous electrolyte distribution in the positive electrode mixture layer is uneven. As a result, it is considered that the electrode reaction is concentrated on the portion where the non-aqueous electrolyte is present, and that portion has reached an overcharged state from an early stage. On the contrary, in the batteries of Comparative Example 2 and Comparative Example 4 in which the positive electrode porosity exceeds 35% by volume, the initial output at room temperature atmosphere is low, so that the electron conductivity in the positive electrode mixture layer decreases and the electrode The reaction is considered to be non-uniform. However, since the output characteristics were inferior from the beginning, it did not reach a rupture state.

一方、負極空孔率が30体積%以上40体積%以下とした実施例4〜6の電池では、正極と同様に、低温での出力が300W以上確保され、また、充放電サイクルを100回繰り返した後でも初期出力の88%以上の出力が維持されている。過充電試験においても、最高温度が190°C以下であり、電池に異常は見られず良好であった。   On the other hand, in the batteries of Examples 4 to 6 in which the negative electrode porosity was 30% by volume or more and 40% by volume or less, similarly to the positive electrode, an output at a low temperature of 300 W or more was secured, and the charge / discharge cycle was repeated 100 times. Even after this, an output of 88% or more of the initial output is maintained. Also in the overcharge test, the maximum temperature was 190 ° C. or less, and the battery was good without any abnormality.

これに対し、負極空孔率が30体積%未満の比較例5の電池では、低温での出力の低下が著しく、また、過充電試験において、最高温度が250°Cに達し、電池が破裂して安全性を著しく損ねている。これは、正極の場合と同様に、負極合剤層中の非水電解液分布が不均一で、その結果非水電解液の存在する部分に電極反応が集中して、その部分が早期から過充電状態に至ったものと考えられる。負極の電極反応が部分的に偏ると活物質間にリチウムイオンが挿入できず、金属状のリチウムが負極合剤層表面に析出する。このため、出力の著しい低下はもちろん、破裂など安全性が損なわれる原因となる。逆に、負極空孔率が40体積%を超える比較例6の電池でも、初期出力が著しく低下していた。   On the other hand, in the battery of Comparative Example 5 in which the negative electrode porosity was less than 30% by volume, the output at a low temperature was remarkably reduced, and in the overcharge test, the maximum temperature reached 250 ° C., and the battery burst. This significantly reduces safety. As in the case of the positive electrode, this is because the non-aqueous electrolyte distribution in the negative electrode mixture layer is non-uniform, and as a result, the electrode reaction concentrates on the portion where the non-aqueous electrolyte exists, and this portion is excessively exceeded from an early stage. It is considered that the battery has reached a state of charge. If the electrode reaction of the negative electrode is partially biased, lithium ions cannot be inserted between the active materials, and metallic lithium is deposited on the surface of the negative electrode mixture layer. For this reason, not only the output is significantly reduced, but also safety such as rupture is impaired. Conversely, even in the battery of Comparative Example 6 in which the negative electrode porosity exceeded 40% by volume, the initial output was significantly reduced.

正極空孔率が25%に満たないと、正極合剤層内に浸透する非水電解液の量が減少してリチウムイオンの拡散性が低下する。特に、低温雰囲気下では層状結晶が収縮することからリチウムイオンの拡散性が更に低下する。このため、層状結晶構造を有するリチウム・ニッケル・マンガン・コバルト複合酸化物と非水電解液との電極反応が起こりにくくなるので、出力特性が低下する。また、正極合剤層内の非水電解液の量が減少すると、非水電解液の分布が不均一となるので、電極反応に部分的な偏りを生ずる。このため、非水電解液の存在する部分に電極反応が集中して、通常状態で出力の低下や寿命の短縮を招き、過充電状態に陥ると電池内圧や温度の急激な上昇を招くので、安全性が低下する。反対に、正極空孔率が35%を超えると、正極合剤の割合が減少して電子伝導性が低下するので、電極反応が不均一となり出力が低下する。   If the positive electrode porosity is less than 25%, the amount of the non-aqueous electrolyte that permeates into the positive electrode mixture layer decreases, and the diffusibility of lithium ions decreases. In particular, the diffusibility of lithium ions is further reduced because the layered crystal shrinks in a low temperature atmosphere. For this reason, since the electrode reaction between the lithium-nickel-manganese-cobalt composite oxide having a layered crystal structure and the non-aqueous electrolyte is difficult to occur, the output characteristics are deteriorated. Further, when the amount of the non-aqueous electrolyte in the positive electrode mixture layer is reduced, the distribution of the non-aqueous electrolyte becomes non-uniform, resulting in a partial bias in the electrode reaction. For this reason, the electrode reaction concentrates on the part where the non-aqueous electrolyte is present, leading to a decrease in output and shortening the life in a normal state, and incurring a rapid increase in battery internal pressure and temperature when falling into an overcharge state, Safety is reduced. On the other hand, when the positive electrode porosity exceeds 35%, the proportion of the positive electrode mixture decreases and the electron conductivity decreases, so that the electrode reaction becomes non-uniform and the output decreases.

また、負極空孔率が30%に満たないと、正極空孔率が25%に満たない場合と同様に、負極合剤層内に浸透する非水電解液の量が減少してリチウムイオンの拡散性が低下するため、非晶質炭素と非水電解液との電極反応が起こりにくくなるので、出力特性が低下する。また、非水電解液の分布が不均一となり電極反応に部分的な偏りを生ずるため、非水電解液の存在する部分に電極反応が集中して、通常状態で出力の低下や寿命の短縮を招き、過充電状態に陥ると安全性が低下する。反対に、負極空孔率が40%を超えると、負極合剤の割合が減少して電子伝導性が低下するので、電極反応が不均一となり出力が低下する。   Further, if the negative electrode porosity is less than 30%, the amount of the nonaqueous electrolyte solution penetrating into the negative electrode mixture layer is reduced, as in the case where the positive electrode porosity is less than 25%. Since the diffusibility is lowered, the electrode reaction between the amorphous carbon and the non-aqueous electrolyte is less likely to occur, so that the output characteristics are lowered. In addition, the non-aqueous electrolyte distribution is non-uniform and the electrode reaction is partially biased. Therefore, the electrode reaction concentrates on the area where the non-aqueous electrolyte is present, reducing output and shortening the life under normal conditions. Inviting and falling into an overcharged state reduces safety. On the other hand, if the negative electrode porosity exceeds 40%, the proportion of the negative electrode mixture decreases and the electron conductivity decreases, so that the electrode reaction becomes non-uniform and the output decreases.

以上のように、正極空孔率及び負極空孔率には、正負極合剤中に浸透する非水電解液の量を適正化して電子伝導性とリチウムイオンの拡散性とを共に良好に維持可能な範囲が存在する。本実施形態の円筒型リチウムイオン二次電池では、正極は正極空孔率を25体積%〜35体積%の範囲、負極は負極空孔率を30体積%〜40体積%の範囲として正負極合剤層中に空孔を存在させることで、低温雰囲気下でも良好な出力特性が得られ、かつ、過充電状態でも安全性が確保されるリチウムイオン二次電池を得ることができる。   As described above, for the positive electrode porosity and the negative electrode porosity, the amount of non-aqueous electrolyte that permeates into the positive and negative electrode mixture is optimized to maintain both good electron conductivity and lithium ion diffusibility. There is a possible range. In the cylindrical lithium ion secondary battery of this embodiment, the positive electrode has a positive electrode porosity in the range of 25% to 35% by volume, and the negative electrode has a negative electrode porosity in the range of 30% to 40% by volume. The presence of pores in the agent layer makes it possible to obtain a lithium ion secondary battery that can provide good output characteristics even in a low-temperature atmosphere and can ensure safety even in an overcharged state.

また、本実施形態では、正極活物質のリチウム・ニッケル・マンガン・コバルト複合酸化物が層状結晶構造を有している。このため、リチウムイオンの拡散経路が二次元的であることから、常温環境下におけるリチウムイオンの拡散性に優れるので、常温環境下で良好な出力特性を得ることができる。   In the present embodiment, the lithium-nickel-manganese-cobalt composite oxide of the positive electrode active material has a layered crystal structure. For this reason, since the diffusion path of lithium ions is two-dimensional, it is excellent in lithium ion diffusibility in a room temperature environment, so that excellent output characteristics can be obtained in a room temperature environment.

なお、本実施形態では、正極活物質にLiNi0.33Mn0.33Co0.33、正極導電剤に鱗片状黒鉛、結着剤にPVDF、負極導電剤にアセチレンブラック、非水電解液にエチレンカーボネートとジメチルカーボネートとの混合溶液中へ6フッ化リン酸リチウムを溶解したものを例示したが、以下に詳述するように、これらは上述した特許請求の範囲において通常用いられているいずれのものも使用可能である。 In this embodiment, LiNi 0.33 Mn 0.33 Co 0.33 O 2 is used as the positive electrode active material, scaly graphite is used as the positive electrode conductive agent, PVDF is used as the binder, acetylene black is used as the negative electrode conductive agent, and nonaqueous electrolysis is used. Examples of the solution of lithium hexafluorophosphate dissolved in a mixed solution of ethylene carbonate and dimethyl carbonate in the liquid were exemplified, but as described in detail below, these are usually used in the above-mentioned claims. Either can be used.

本実施形態で例示した正極活物質は、Li−Ni−Mn−Co複合酸化物でNi/Mn/Coの比が1:1:1であるが、層状結晶構造を有する限りこの比率に限定されるものではない。また、Li/(Ni+Mn+Co)比も本実施形態では1.0としたが、この値に限定されずLi過剰としても良い。また、化学式LiNiMnCo1−x−y(0<a<1.2、0<x<0.50、0<y<0.50)で表されるリチウム遷移金属複合酸化物を用いるようにしてもよい。更に、CoやNiの複合酸化物や、Mn、Co、Niの一部を例えば、Li、Co、Ni、Mn、Fe、Cu、Al、Cr、Mg、Zn、V、Ga、B、Fの少なくとも1種類以上の元素で置換又はドープしたリチウム遷移金属複合酸化物等を用いてもよい。 The positive electrode active material exemplified in the present embodiment is a Li—Ni—Mn—Co composite oxide having a Ni / Mn / Co ratio of 1: 1: 1, but is limited to this ratio as long as it has a layered crystal structure. It is not something. The Li / (Ni + Mn + Co) ratio is 1.0 in the present embodiment, but is not limited to this value and may be excessive Li. Further, a lithium transition metal composite represented by the chemical formula Li a Ni x Mn y Co 1-xy O 2 (0 <a <1.2, 0 <x <0.50, 0 <y <0.50) An oxide may be used. Further, a composite oxide of Co or Ni, or a part of Mn, Co, or Ni, for example, Li, Co, Ni, Mn, Fe, Cu, Al, Cr, Mg, Zn, V, Ga, B, or F A lithium transition metal composite oxide or the like substituted or doped with at least one element may be used.

また、本実施形態以外で用いることのできる結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体及びこれらの混合体などがある。   In addition, examples of the binder that can be used in other embodiments include polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, and cyanoethyl cellulose. And various latexes, polymers such as acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and mixtures thereof.

更に、本実施形態以外で用いることのできる正極導電剤としても黒鉛系炭素材であれば特に制限されるものではない。例えば、天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料等でよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、いずれを用いてもよい。また、本実施形態以外で用いることができる負極導電剤にも特に制限がなく、例えば、ケッチェンブラック等の無定形炭素を用いるようにしてもよい。   Further, the positive electrode conductive agent that can be used in other than the present embodiment is not particularly limited as long as it is a graphite-based carbon material. For example, natural graphite, various artificial graphite materials, carbonaceous materials such as coke, and the like may be used, and any of particle shapes such as flaky, spherical, fibrous, and massive may be used. Moreover, there is no restriction | limiting in particular also in the negative electrode electrically conductive agent which can be used except this embodiment, For example, you may make it use amorphous carbon, such as ketjen black.

また更に、非水電解液としては、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液を用いることができる。また、用いられるリチウム塩や有機溶媒も特に制限はない。例えば、電解質としては本実施形態の他に、LiC1O、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を用いることができる。また、本実施形態以外の有機溶媒としては、プロピレンカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等またはこれら2種類以上の混合溶媒が用いられる。混合配合比についても限定されるものではない。 Furthermore, as the non-aqueous electrolyte, a non-aqueous electrolyte obtained by using a general lithium salt as an electrolyte and dissolving it in an organic solvent can be used. Further, the lithium salt and organic solvent used are not particularly limited. For example, as the electrolyte, in addition to this embodiment, LiC1O 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof may be used. it can. Examples of organic solvents other than the present embodiment include propylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1 , 3-dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, or a mixed solvent of two or more of these. The mixing ratio is not limited.

本発明に係る非水電解液二次電池によれば、高出力化、特に低温環境下での高出力化を図りつつ、安全性を改善することができるため、製造、販売等に寄与し、産業上利用可能である。   According to the non-aqueous electrolyte secondary battery according to the present invention, it is possible to improve safety while achieving high output, particularly high output in a low temperature environment, contributing to manufacturing, sales, etc. Industrially available.

Claims (4)

層状結晶構造を有する平均粒子径5〜20μmのリチウム遷移金属複合酸化物、黒鉛系炭素材を主とする導電剤及び結着剤を含む正極合剤を正極集電体にほぼ均等に塗着して正極合剤層を形成した正極と、負極とを非水電解液に浸潤させた非水電解液二次電池において、前記正極合剤層の体積に対する前記正極合剤層内の空孔体積の割合が25%以上35%以下であることを特徴とする非水電解液二次電池。   A cathode mixture containing a lithium transition metal composite oxide having a layered crystal structure and an average particle diameter of 5 to 20 μm, a conductive material mainly composed of a graphite-based carbon material, and a binder is applied almost evenly to the cathode current collector. In the non-aqueous electrolyte secondary battery in which the positive electrode in which the positive electrode mixture layer is formed and the negative electrode are infiltrated into the non-aqueous electrolyte, the volume of pores in the positive electrode mixture layer with respect to the volume of the positive electrode mixture layer A non-aqueous electrolyte secondary battery, wherein the ratio is 25% or more and 35% or less. 平均粒子径5〜20μmの非晶質炭素、導電剤及び結着剤を含む負極合剤を負極集電体にほぼ均等に塗着して負極合剤層を形成した負極と、正極とを非水電解液に浸潤させた非水電解液二次電池において、前記負極合剤層の体積に対する前記負極合剤層内の空孔体積の割合が30%以上40%以下であることを特徴とする非水電解液二次電池。   A negative electrode in which a negative electrode mixture containing an amorphous carbon having an average particle size of 5 to 20 μm, a conductive agent, and a binder is applied almost evenly to the negative electrode current collector to form a negative electrode mixture layer and a positive electrode In the non-aqueous electrolyte secondary battery infiltrated with an aqueous electrolyte, the ratio of the pore volume in the negative electrode mixture layer to the volume of the negative electrode mixture layer is 30% or more and 40% or less. Non-aqueous electrolyte secondary battery. 層状結晶構造を有する平均粒子径5〜20μmのリチウム遷移金属複合酸化物、黒鉛系炭素材を主とする導電剤及び結着剤を含む正極合剤を正極集電体にほぼ均等に塗着して正極合剤層を形成した正極と、平均粒子径5〜20μmの非晶質炭素、導電剤及び結着剤を含む負極合剤を負極集電体にほぼ均等に塗着して負極合剤層を形成した負極と、を非水電解液に浸潤させた非水電解液二次電池において、前記正極合剤層の体積に対する前記正極合剤層内の空孔体積の割合が25%以上35%以下であり、かつ、前記負極合剤層の体積に対する前記負極合剤層内の空孔体積の割合が30%以上40%以下であることを特徴とする非水電解液二次電池。   A cathode mixture containing a lithium transition metal composite oxide having a layered crystal structure and an average particle diameter of 5 to 20 μm, a conductive material mainly composed of a graphite-based carbon material, and a binder is applied almost evenly to the cathode current collector. The negative electrode mixture obtained by forming a positive electrode mixture layer and a negative electrode mixture containing amorphous carbon having an average particle diameter of 5 to 20 μm, a conductive agent and a binder almost evenly on the negative electrode current collector In a non-aqueous electrolyte secondary battery in which a negative electrode having a layer formed is infiltrated with a non-aqueous electrolyte, a ratio of a void volume in the positive electrode mixture layer to a volume of the positive electrode mixture layer is 25% or more and 35 %, And the ratio of the void volume in the negative electrode mixture layer to the volume of the negative electrode mixture layer is 30% or more and 40% or less. 前記リチウム遷移金属複合酸化物が、化学式LiNiMnCo1−x−y(0<a<1.2、0<x<0.50、0<y<0.50)で表されることを特徴とする請求項1又は請求項3に記載の非水電解液二次電池。 The lithium transition metal composite oxide has the chemical formula Li a Ni x Mn y Co 1-xy O 2 (0 <a <1.2, 0 <x <0.50, 0 <y <0.50). The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte secondary battery is expressed by:
JP2003398301A 2003-11-28 2003-11-28 Nonaqueous electrolyte secondary battery Pending JP2005158623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398301A JP2005158623A (en) 2003-11-28 2003-11-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398301A JP2005158623A (en) 2003-11-28 2003-11-28 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005158623A true JP2005158623A (en) 2005-06-16

Family

ID=34723185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398301A Pending JP2005158623A (en) 2003-11-28 2003-11-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005158623A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287622A (en) * 2006-04-20 2007-11-01 Nec Tokin Corp Lithium ion secondary battery
JP2010225366A (en) * 2009-03-23 2010-10-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2010140260A1 (en) * 2009-06-05 2010-12-09 トヨタ自動車株式会社 Lithium secondary battery
KR20120084670A (en) * 2011-01-19 2012-07-30 가부시키가이샤 지에스 유아사 Negative electrode, electrode assembly and electric storage device
WO2012169030A1 (en) * 2011-06-08 2012-12-13 トヨタ自動車株式会社 Lithium ion secondary cell
WO2013031226A1 (en) * 2011-08-31 2013-03-07 パナソニック株式会社 Nonaqueous electrolyte secondary cell
WO2013069643A1 (en) * 2011-11-09 2013-05-16 新神戸電機株式会社 Nonaqueous electrolyte secondary battery
JP2013222551A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode, and lithium ion secondary battery
JP2013222550A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode and lithium ion secondary battery
JP2014056847A (en) * 2007-03-27 2014-03-27 Hitachi Vehicle Energy Ltd Lithium secondary battery
US9209459B2 (en) 2010-10-15 2015-12-08 Toyota Jidosha Kabushiki Kaisha Secondary battery
US20160133922A1 (en) * 2013-07-26 2016-05-12 Lg Chem, Ltd. Electrode for secondary battery having improved energy density and lithium secondary battery including the same
US9837663B2 (en) 2011-05-06 2017-12-05 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287622A (en) * 2006-04-20 2007-11-01 Nec Tokin Corp Lithium ion secondary battery
JP2014056847A (en) * 2007-03-27 2014-03-27 Hitachi Vehicle Energy Ltd Lithium secondary battery
JP2010225366A (en) * 2009-03-23 2010-10-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5311157B2 (en) * 2009-06-05 2013-10-09 トヨタ自動車株式会社 Lithium secondary battery
CN102460778A (en) * 2009-06-05 2012-05-16 丰田自动车株式会社 Lithium secondary battery
WO2010140260A1 (en) * 2009-06-05 2010-12-09 トヨタ自動車株式会社 Lithium secondary battery
US9209459B2 (en) 2010-10-15 2015-12-08 Toyota Jidosha Kabushiki Kaisha Secondary battery
KR20120084670A (en) * 2011-01-19 2012-07-30 가부시키가이샤 지에스 유아사 Negative electrode, electrode assembly and electric storage device
JP2012164638A (en) * 2011-01-19 2012-08-30 Gs Yuasa Corp Negative electrode, electrode body, and electrical storage device
KR101886874B1 (en) 2011-01-19 2018-08-08 가부시키가이샤 지에스 유아사 Negative electrode, electrode assembly and electric storage device
US9449764B2 (en) 2011-01-19 2016-09-20 Gs Yuasa International Ltd. Electric storage device
US9837663B2 (en) 2011-05-06 2017-12-05 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
WO2012169030A1 (en) * 2011-06-08 2012-12-13 トヨタ自動車株式会社 Lithium ion secondary cell
CN103597638A (en) * 2011-06-08 2014-02-19 丰田自动车株式会社 Lithium ion secondary cell
JPWO2012169030A1 (en) * 2011-06-08 2015-02-23 トヨタ自動車株式会社 Lithium ion secondary battery
JPWO2013031226A1 (en) * 2011-08-31 2015-03-23 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
US9484599B2 (en) 2011-08-31 2016-11-01 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
WO2013031226A1 (en) * 2011-08-31 2013-03-07 パナソニック株式会社 Nonaqueous electrolyte secondary cell
WO2013069643A1 (en) * 2011-11-09 2013-05-16 新神戸電機株式会社 Nonaqueous electrolyte secondary battery
JP2013222550A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode and lithium ion secondary battery
JP2013222551A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode, and lithium ion secondary battery
US20160133922A1 (en) * 2013-07-26 2016-05-12 Lg Chem, Ltd. Electrode for secondary battery having improved energy density and lithium secondary battery including the same
US9991507B2 (en) * 2013-07-26 2018-06-05 Lg Chem, Ltd. Electrode for secondary battery having improved energy density and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
US9515313B2 (en) Nonaqueous electrolyte secondary battery and method of producing same
CN108808098B (en) Method for manufacturing lithium ion secondary battery
EP3754763B1 (en) Negative electrode active material for lithium secondary battery, method of preparing the same, and negative electrode for lithium secondary battery and lithium secondary battery including the same
US20170104347A1 (en) Secondary battery apparatus
US8257847B2 (en) Lithium secondary battery
CN111602274A (en) Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery comprising same
US10044072B2 (en) Lithium secondary battery pack, as well as electronic device, charging system, and charging method using said pack
KR20140018628A (en) Positive active material, and positive electrode and lithium battery containing the material
JP2012104290A (en) Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
CN107660316B (en) Positive electrode of lithium electrochemical power generation device
WO2011001666A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2014035877A (en) Nonaqueous electrolyte secondary battery manufacturing method
JP2013110022A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing the same
CN106133952B (en) Non-aqueous electrolyte secondary battery
JP2013114848A (en) Lithium ion secondary battery and method for manufacturing the same
EP2490287B1 (en) Nonaqueous electrolyte lithium ion secondary battery
CN101494302A (en) Battery
JP2009064715A (en) Positive electrode and lithium secondary battery using the same
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
KR20140108380A (en) Secondary battery including silicon-metal alloy-based negative active material
JP2005158623A (en) Nonaqueous electrolyte secondary battery
KR101175375B1 (en) Lithium secondary battery and preparation method thereof
JP2011054334A (en) Lithium secondary battery
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery
WO2017179541A1 (en) Electricity storage device, and charging method and manufacturing method therefor