JP2011054334A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2011054334A
JP2011054334A JP2009200434A JP2009200434A JP2011054334A JP 2011054334 A JP2011054334 A JP 2011054334A JP 2009200434 A JP2009200434 A JP 2009200434A JP 2009200434 A JP2009200434 A JP 2009200434A JP 2011054334 A JP2011054334 A JP 2011054334A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
transition metal
crystal structure
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009200434A
Other languages
Japanese (ja)
Inventor
Masahisa Okuda
昌久 奧田
Hiroyuki Toshiro
博行 戸城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2009200434A priority Critical patent/JP2011054334A/en
Publication of JP2011054334A publication Critical patent/JP2011054334A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery capable of achieving both a high power and long life. <P>SOLUTION: The lithium ion secondary battery 25 houses a wound-around group 16 and nonaqueous electrolyte solution in a battery can 17. The wound-around group 16 has a positive and a negative electrode plates wound around through a separator 15. As a cathode active material, lithium transition metal complex oxide of a lamellar crystal structure containing manganese and nickel and lithium transition metal complex oxide of a spinel crystal structure containing manganese are mixed and used. A composition ratio of nickel to transition metal elements other than lithium of the complex oxide of the lamellar crystal structure is adjusted at ≥50% in a molar ratio. An interlayer distance of the lamellar crystal structure is expanded with the nickel. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウム二次電池に係り、特に、リチウムイオンを挿入離脱可能な正極板と負極板とを備えたリチウム二次電池に関する。   The present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery including a positive electrode plate and a negative electrode plate capable of inserting and removing lithium ions.

リチウム二次電池は、高エネルギー密度である特長を生かして、VTRカメラやノート型パソコン、携帯電話等の民生用機器の電源に広く使用されている。また、自動車産業界においては、環境問題に対応するために、リチウム二次電池のみを動力源とする電気自動車や、内燃機関エンジンとリチウム二次電池との両方を動力源とするハイブリッド式電気自動車等の開発が進められている。   Lithium secondary batteries are widely used as power sources for consumer devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of their high energy density. In the automobile industry, in order to deal with environmental problems, an electric vehicle using only a lithium secondary battery as a power source, or a hybrid electric vehicle using both an internal combustion engine and a lithium secondary battery as power sources Etc. are being developed.

一般に、電気自動車等の移動体用の電源として利用されるリチウム二次電池では、厳寒時の走行性能を確保するために、低温環境下で所定の出力を確保することが重要である。そのため、常温環境下だけでなく低温環境下においても電池の高出力化が求められている。また、環境問題やコスト削減を考慮し、電池の長寿命化も求められている。すなわち、移動体用リチウム二次電池の開発では、電池出力の低下を抑制し、必要な電気エネルギーを長期に亘って供給できることが技術的な課題の中心である。   In general, in a lithium secondary battery used as a power source for a mobile object such as an electric vehicle, it is important to ensure a predetermined output in a low temperature environment in order to ensure traveling performance in extreme cold. Therefore, it is required to increase the output of the battery not only in a normal temperature environment but also in a low temperature environment. In addition, in consideration of environmental problems and cost reduction, there is a demand for longer battery life. That is, in the development of a lithium secondary battery for mobile bodies, the main technical problem is that it is possible to suppress a decrease in battery output and supply necessary electric energy over a long period of time.

これを解決するために、リチウム二次電池では正極材料の改善が進められている。例えば、正極活物質にニッケルの組成比がリチウム以外の遷移金属元素に対するモル比で50%より小さい層状結晶構造のリチウムニッケル複合酸化物と、スピネル結晶構造のリチウムマンガン複合酸化物とを用いることで低温環境下での出力特性を改善する技術が開示されている(特許文献1参照)。また、正極活物質に層状結晶構造リチウムマンガン複酸化物とスピネル結晶構造リチウムマンガン複酸化物とを含み、正極の可逆容量を負極の可逆容量以下とすることで、電池容量を高め長寿命化を図る技術が開示されている(特許文献2参照)。   In order to solve this, improvement of the positive electrode material has been promoted in the lithium secondary battery. For example, by using a lithium nickel composite oxide having a layered crystal structure in which the composition ratio of nickel is less than 50% in molar ratio to a transition metal element other than lithium and a lithium manganese composite oxide having a spinel crystal structure as a positive electrode active material. A technique for improving output characteristics in a low temperature environment has been disclosed (see Patent Document 1). In addition, the positive electrode active material includes a layered crystal structure lithium manganese complex oxide and a spinel crystal structure lithium manganese complex oxide, and the reversible capacity of the positive electrode is less than the reversible capacity of the negative electrode, thereby increasing the battery capacity and extending the life. The technique which tries is disclosed (refer patent document 2).

特開2004−259511号公報JP 2004-259511 A 特開2003−36846号公報JP 2003-36846 A

しかしながら、リチウム二次電池を移動体用の電源として用いるには、高容量化だけではなく、加速性能などを左右する高出力化が求められる。また、長期の使用期間に対応すべく電池の長寿命化も求められている。これらの要求に対し、十分な性能を持つリチウム二次電池が得られていないのが現状である。例えば、特許文献1の技術では、低温環境下において電池出力を改善することができるものの、電池の長寿命化については十分とは言えない。また、特許文献2の技術では、電池の長寿命化を図ることができるものの、移動体用電池に要求される低温環境下における高出力性を十分に発揮することが難しい。   However, in order to use a lithium secondary battery as a power source for a mobile body, not only high capacity but also high output that affects acceleration performance and the like are required. In addition, there is a demand for longer battery life in order to cope with a long use period. At present, lithium secondary batteries having sufficient performance are not obtained in response to these requirements. For example, although the technique of Patent Document 1 can improve battery output in a low temperature environment, it cannot be said to be sufficient for extending battery life. Further, with the technique of Patent Document 2, although the battery life can be extended, it is difficult to sufficiently exhibit the high output performance in a low temperature environment required for the mobile battery.

本発明は上記事案に鑑み、高出力および長寿命を両立することができるリチウム二次電池を提供することを課題とする。   In view of the above-described case, an object of the present invention is to provide a lithium secondary battery that can achieve both high output and long life.

上記課題を解決するために、本発明は、リチウムイオンを挿入離脱可能で、マンガン、ニッケルを含有する層状結晶構造のリチウム遷移金属複合酸化物と、マンガンを含有するスピネル結晶構造のリチウム遷移金属複合酸化物とを含む正極活物質が塗工された正極板と、リチウムイオンを挿入離脱可能な負極活物質が塗工された負極板と、を備え、前記正極活物質は、前記層状結晶構造のリチウム遷移金属複合酸化物におけるリチウム以外の遷移金属元素に対するニッケルの組成比がモル比で50%以上であることを特徴とする。   In order to solve the above-described problems, the present invention provides a lithium transition metal composite oxide having a layered crystal structure capable of inserting and releasing lithium ions and containing manganese and nickel, and a lithium transition metal composite having a spinel crystal structure containing manganese. A positive electrode plate coated with a positive electrode active material containing an oxide; and a negative electrode plate coated with a negative electrode active material capable of inserting and releasing lithium ions, the positive electrode active material having the layered crystal structure The composition ratio of nickel to the transition metal element other than lithium in the lithium transition metal composite oxide is 50% or more in terms of molar ratio.

本発明では、正極活物質に層状結晶構造のリチウム遷移金属複合酸化物と、スピネル結晶構造のリチウム遷移金属複合酸化物とが含まれることで、正極活物質の安定性が増して温度の影響を受けにくくなり、リチウムイオンの拡散性が確保されるため、電池の長寿命化を図ることができると共に、層状結晶構造のリチウム遷移金属複合酸化物におけるリチウム以外の遷移金属元素に対するニッケルの組成比をモル比で50%以上とすることで、層状結晶構造の層間距離が拡大され、充放電時にリチウムイオンが挿入離脱しやすくなるため、リチウムイオンの拡散性が向上し、高出力化を図ることができる。   In the present invention, the positive electrode active material contains a lithium transition metal composite oxide having a layered crystal structure and a lithium transition metal composite oxide having a spinel crystal structure. The lithium ion diffusibility is ensured and the battery life can be extended, and the composition ratio of nickel to the transition metal element other than lithium in the lithium transition metal composite oxide having a layered crystal structure can be increased. By setting the molar ratio to 50% or more, the interlayer distance of the layered crystal structure is expanded, and lithium ions can be easily inserted and removed during charging and discharging, thereby improving the diffusibility of lithium ions and increasing the output. it can.

この場合において、層状結晶構造のリチウム遷移金属複合酸化物とスピネル結晶構造のリチウム遷移複合酸化物との混合割合が重量比で、60:40〜95:5の範囲であることが好ましい。また、層状結晶構造のリチウム遷移金属複合酸化物におけるリチウム以外の遷移金属元素に対するニッケルの組成比がモル比で80%以下であることが好ましい。   In this case, the mixing ratio of the lithium transition metal composite oxide having a layered crystal structure and the lithium transition composite oxide having a spinel crystal structure is preferably in the range of 60:40 to 95: 5 by weight ratio. Moreover, it is preferable that the composition ratio of nickel with respect to transition metal elements other than lithium in the lithium transition metal composite oxide having a layered crystal structure is 80% or less in terms of molar ratio.

本発明によれば、正極活物質に層状結晶構造のリチウム遷移金属複合酸化物と、スピネル結晶構造のリチウム遷移金属複合酸化物とが含まれることで、正極活物質の安定性が増して温度の影響を受けにくくなり、リチウムイオンの拡散性が確保されるため、電池の長寿命化を図ることができると共に、層状結晶構造のリチウム遷移金属複合酸化物におけるリチウム以外の遷移金属元素に対するニッケルの組成比をモル比で50%以上とすることで、層状結晶構造の層間距離が拡大され、充放電時にリチウムイオンが挿入離脱しやすくなるため、リチウムイオンの拡散性が向上し、高出力化を図ることができる、という効果を得ることができる。   According to the present invention, the positive electrode active material includes the lithium transition metal composite oxide having a layered crystal structure and the lithium transition metal composite oxide having a spinel crystal structure. Since it is less affected and lithium ion diffusibility is ensured, the battery life can be extended and the composition of nickel with respect to transition metal elements other than lithium in the layered crystal structure lithium transition metal composite oxide By setting the ratio to 50% or more in terms of molar ratio, the interlayer distance of the layered crystal structure is increased, and lithium ions can be easily inserted and released during charge and discharge, so that the diffusibility of lithium ions is improved and the output is increased. Can be obtained.

本発明を適用した実施形態の円筒型リチウムイオン二次電池の断面図である。It is sectional drawing of the cylindrical lithium ion secondary battery of embodiment to which this invention is applied.

以下、図面を参照して、本発明を適用した円筒型リチウムイオン二次電池の実施の形態について説明する。   Embodiments of a cylindrical lithium ion secondary battery to which the present invention is applied will be described below with reference to the drawings.

(構成)
図1に示すように、本実施形態の円筒型リチウムイオン二次電池25は、電池容器となるニッケルメッキを施された鉄製で有底円筒状の電池缶17を有している。電池缶17には、帯状の正負極板が捲回された捲回群16が収容されている。
(Constitution)
As shown in FIG. 1, the cylindrical lithium ion secondary battery 25 of the present embodiment has a bottomed cylindrical battery can 17 made of iron plated with nickel and serving as a battery container. The battery can 17 accommodates a wound group 16 in which strip-like positive and negative electrode plates are wound.

捲回群16は、正負極板がポリエチレン製微多孔膜のセパレータ15を介して断面渦巻状に捲回されている。セパレータ15は、本例では、厚さが40μmに設定されている。捲回群16の上端面には、一端を正極板に固定されたアルミニウム製でリボン状の正極タブ端子19が導出されている。正極タブ端子19の他端は、捲回群16の上側に配置され正極外部端子となる円盤状の電池蓋18の下面に超音波溶接で接合されている。一方、捲回群16の下端面には、一端を負極板に固定された銅製でリボン状の負極タブ端子21が導出されている。負極タブ端子21の他端は、電池缶17の内底部に抵抗溶接で接合されている。従って、正極タブ端子19および負極タブ端子21は、それぞれ捲回群16の両端面の互いに反対側に導出されている。捲回群16の外周面全周には、図示を省略した絶縁被覆が施されている。   In the winding group 16, the positive and negative electrode plates are wound in a spiral shape through a polyethylene microporous membrane separator 15. In this example, the separator 15 has a thickness of 40 μm. A ribbon-like positive electrode tab terminal 19 made of aluminum and having one end fixed to the positive electrode plate is led out from the upper end surface of the wound group 16. The other end of the positive electrode tab terminal 19 is joined by ultrasonic welding to the lower surface of a disk-shaped battery lid 18 that is disposed on the upper side of the wound group 16 and serves as a positive electrode external terminal. On the other hand, a ribbon-shaped negative electrode tab terminal 21 made of copper and having one end fixed to the negative electrode plate is led out to the lower end surface of the winding group 16. The other end of the negative electrode tab terminal 21 is joined to the inner bottom portion of the battery can 17 by resistance welding. Accordingly, the positive electrode tab terminal 19 and the negative electrode tab terminal 21 are led out to the opposite sides of the both end surfaces of the wound group 16, respectively. An insulation coating (not shown) is applied to the entire outer peripheral surface of the wound group 16.

電池蓋18は、絶縁性の樹脂製ガスケット20を介して電池缶17の上部にカシメ固定されている。このため、リチウムイオン二次電池25の内部は密封されている。また、電池缶17内には、図示しない非水電解液が注液されている。非水電解液には、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)およびジメチルカーボネート(DMC)の体積比1:1:1のカーボネート系混合溶媒中に6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解して使用することができる。非水電解液の注液量は、本例では、5mlに設定されている。 The battery lid 18 is caulked and fixed to the upper portion of the battery can 17 via an insulating resin gasket 20. For this reason, the inside of the lithium ion secondary battery 25 is sealed. In addition, a non-aqueous electrolyte (not shown) is injected into the battery can 17. Examples of the non-aqueous electrolyte include lithium hexafluorophosphate (LiPF 6 ) in a carbonate-based mixed solvent having a volume ratio of 1: 1: 1 of ethylene carbonate (EC), diethyl carbonate (DEC), and dimethyl carbonate (DMC). ) Can be used by dissolving 1 mol / liter. The injection amount of the non-aqueous electrolyte is set to 5 ml in this example.

捲回群16を構成する正極板は、正極集電体としてアルミニウム箔13を有している。アルミニウム箔13の厚さは本例では20μmに設定されており、15〜25μmの範囲で設定することができる。アルミニウム箔13の両面には、正極活物質を含む正極合材が略均等に塗着されて正極合材層14が形成されている。正極合材には、正極活物質以外に、例えば、導電材として黒鉛粉末とアセチレンブラック、および、バインダ(結着材)のポリフッ化ビニリデン(以下、PVDFと略記する。)が配合されている。正極合材をアルミニウム箔13に塗着するときには、粘度調整溶媒のN−メチルピロリドン(以下、NMPと略記する。)に正極合材を分散させてスラリ状の溶液を作製する。このとき、分散溶液は回転翼を具備した混合機を用いて攪拌される。この溶液がアルミニウム箔13にロール・ツー・ロール転写法で塗布される。正極板は、乾燥後、プレス加工で一体化され、裁断される。正極板のアルミニウム箔13を含まない正極合材塗布部厚さは、本例では、70μmに調整されている。正極板の長手方向略中央部には、正極タブ端子19が超音波溶接で接合されている。   The positive electrode plate constituting the wound group 16 has an aluminum foil 13 as a positive electrode current collector. The thickness of the aluminum foil 13 is set to 20 μm in this example, and can be set in the range of 15 to 25 μm. On both surfaces of the aluminum foil 13, a positive electrode mixture containing a positive electrode active material is applied substantially evenly to form a positive electrode mixture layer 14. In addition to the positive electrode active material, for example, graphite powder and acetylene black and a binder (binder) polyvinylidene fluoride (hereinafter abbreviated as PVDF) are blended in the positive electrode mixture. When the positive electrode mixture is applied to the aluminum foil 13, the positive electrode mixture is dispersed in N-methylpyrrolidone (hereinafter abbreviated as NMP) as a viscosity adjusting solvent to prepare a slurry solution. At this time, the dispersion solution is agitated using a mixer equipped with a rotor blade. This solution is applied to the aluminum foil 13 by a roll-to-roll transfer method. After drying, the positive electrode plate is integrated by pressing and cut. In this example, the thickness of the positive electrode mixture application portion that does not include the aluminum foil 13 of the positive electrode plate is adjusted to 70 μm. A positive electrode tab terminal 19 is joined to the substantially central portion in the longitudinal direction of the positive electrode plate by ultrasonic welding.

正極合材に含まれる正極活物質には、リチウムイオンを挿入離脱可能で、マンガン、ニッケルを含有する層状岩塩型結晶構造のリチウム遷移金属複合酸化物(以下、層状複合酸化物という。)と、マンガンを含有するスピネル結晶構造のリチウム遷移金属複合酸化物(以下、スピネル複合酸化物という。)と、が含まれている。層状複合酸化物とスピネル複合酸化物との混合比は、60:40〜95:5の範囲に調整されている。層状複合酸化物の平均粒径は、8.0〜17.5μmの範囲であり、比表面積は、0.7〜1.2m/gの範囲で設定することができる。スピネル複合酸化物は、化学式がLiMnで表され、平均粒径10μm、比表面積0.8m/gのものを用いることができる。また、層状複合酸化物におけるニッケルの組成比がリチウム以外の遷移金属元素に対するモル比で50%以上に調整されている。ニッケルの組成比は、原料の配合割合で調整することができる。 In the positive electrode active material contained in the positive electrode mixture, lithium transition metal composite oxide (hereinafter referred to as layered composite oxide) having a layered rock salt type crystal structure capable of inserting and releasing lithium ions and containing manganese and nickel, And a lithium transition metal composite oxide having a spinel crystal structure containing manganese (hereinafter referred to as a spinel composite oxide). The mixing ratio of the layered complex oxide and the spinel complex oxide is adjusted in the range of 60:40 to 95: 5. The average particle diameter of the layered composite oxide is in the range of 8.0 to 17.5 μm, and the specific surface area can be set in the range of 0.7 to 1.2 m 2 / g. As the spinel composite oxide, a chemical formula represented by LiMn 2 O 4 , an average particle diameter of 10 μm, and a specific surface area of 0.8 m 2 / g can be used. Moreover, the composition ratio of nickel in the layered composite oxide is adjusted to 50% or more in terms of a molar ratio with respect to the transition metal element other than lithium. The composition ratio of nickel can be adjusted by the mixing ratio of the raw materials.

一方、負極板は、負極集電体として圧延銅箔11を有している。圧延銅箔11の厚さは本例では10μmに設定されており、5〜20μmの範囲に設定することができる。圧延銅箔11の両面には、負極活物質として非晶質炭素粉末を含む負極合材が略均等に塗着されて負極合材層12が形成されている。負極合材には、負極活物質以外に、例えば、導電材のアセチレンブラック、および、バインダのPVDFが配合されている。このとき、負極活物質と導電材とPVDFとの質量比を、80:10:10とすることができる。負極合材を圧延銅箔11に塗着するときには、粘度調整溶媒のNMPに負極合材を分散させてスラリ状の溶液を作製する。このとき、分散溶液は回転翼を具備した混合機を用いて攪拌される。この溶液が圧延銅箔11にロール・ツー・ロール転写法で塗布される。負極板は、乾燥後、プレス加工で一体化され、裁断される。負極板の圧延銅箔11を含まない負極合材塗布部厚さは、本例では、70μmに調整されている。負極板長手方向一端には、負極タブ端子21が超音波溶接で接合されている。   On the other hand, the negative electrode plate has a rolled copper foil 11 as a negative electrode current collector. The thickness of the rolled copper foil 11 is set to 10 μm in this example, and can be set to a range of 5 to 20 μm. On both surfaces of the rolled copper foil 11, a negative electrode mixture containing amorphous carbon powder as a negative electrode active material is applied substantially evenly to form a negative electrode mixture layer 12. In addition to the negative electrode active material, for example, acetylene black as a conductive material and PVDF as a binder are blended in the negative electrode mixture. At this time, the mass ratio of the negative electrode active material, the conductive material, and PVDF can be set to 80:10:10. When the negative electrode mixture is applied to the rolled copper foil 11, the slurry is prepared by dispersing the negative electrode mixture in the viscosity adjusting solvent NMP. At this time, the dispersion solution is agitated using a mixer equipped with a rotor blade. This solution is applied to the rolled copper foil 11 by a roll-to-roll transfer method. After drying, the negative electrode plate is integrated by pressing and cut. In this example, the thickness of the negative electrode mixture application part thickness not including the rolled copper foil 11 of the negative electrode plate is adjusted to 70 μm. A negative electrode tab terminal 21 is joined to one end of the negative electrode plate in the longitudinal direction by ultrasonic welding.

(電池の作製)
電池の作製では、まず、得られた正負極板をセパレータ15を介して捲回し捲回群16を作製する。このとき、負極タブ端子21が捲回群16の最外周に位置するように捲回する。捲回群16を電池缶17内に挿入し、負極タブ端子21を電池缶17の内底部に溶接する。電池缶17内に非水電解液を注液後、予め正極タブ端子19の他端を溶接した電池蓋18を電池缶17の上部にガスケット20を介して嵌合させる。電池缶17の上部をカシメ固定することでリチウムイオン二次電池25の組立を完成する。
(Production of battery)
In the production of the battery, first, the obtained positive and negative electrode plates are wound through the separator 15 to produce a wound group 16. At this time, the negative electrode tab terminal 21 is wound so as to be positioned on the outermost periphery of the wound group 16. The wound group 16 is inserted into the battery can 17, and the negative electrode tab terminal 21 is welded to the inner bottom portion of the battery can 17. After injecting a non-aqueous electrolyte into the battery can 17, a battery lid 18, in which the other end of the positive electrode tab terminal 19 is welded in advance, is fitted to the upper part of the battery can 17 via a gasket 20. The assembly of the lithium ion secondary battery 25 is completed by caulking and fixing the upper part of the battery can 17.

次に、本実施形態に従い作製したリチウムイオン二次電池25の実施例について詳細に説明する。なお、比較のために作製した比較例の電池についても併記する。   Next, examples of the lithium ion secondary battery 25 manufactured according to the present embodiment will be described in detail. In addition, it describes together about the battery of the comparative example produced for the comparison.

(実施例1)
下表1に示すように、実施例1では、層状複合酸化物として、リチウム以外の遷移金属元素に対するニッケルの組成比がモル比で50%のものを用いた。層状複合酸化物の平均粒径は8.0〜17.5μmの範囲であり、比表面積0.7〜1.2m/gのものを用いた。スピネル複合酸化物として、化学式LiMnで表され、平均粒径10μm、比表面積0.8m/gのものを用いた。層状複合酸化物とスピネル複合酸化物とを重量比で80:20の割合で混合して正極活物質とし、実施例1の電池を作製した。このとき、正極の導電材として黒鉛とアセチレンブラック粉末との混合物を13重量%添加した。
Example 1
As shown in Table 1 below, in Example 1, a layered composite oxide having a composition ratio of nickel with respect to a transition metal element other than lithium in a molar ratio of 50% was used. The average particle diameter of the layered composite oxide is in the range of 8.0 to 17.5 μm, and the specific surface area is 0.7 to 1.2 m 2 / g. As the spinel composite oxide, one represented by the chemical formula LiMn 2 O 4 and having an average particle diameter of 10 μm and a specific surface area of 0.8 m 2 / g was used. The battery of Example 1 was fabricated by mixing the layered composite oxide and the spinel composite oxide in a weight ratio of 80:20 to obtain a positive electrode active material. At this time, 13% by weight of a mixture of graphite and acetylene black powder was added as a conductive material for the positive electrode.

Figure 2011054334
Figure 2011054334

(実施例2〜3)
表1に示すように、実施例2では、層状複合酸化物としてリチウム以外の遷移金属元素に対するニッケルの組成比がモル比で60%であり、コバルトをモル比で20%含むものを用いたこと以外は、実施例1と同様にして電池を作製した。また、実施例3では、層状複合酸化物としてニッケルの組成比がリチウム以外の遷移金属元素に対するモル比で80%のものを用いたこと以外は、実施例1と同様にして電池を作製した。
(Examples 2-3)
As shown in Table 1, in Example 2, as the layered composite oxide, the composition ratio of nickel with respect to the transition metal element other than lithium was 60% in terms of molar ratio and 20% in terms of cobalt was used. A battery was fabricated in the same manner as in Example 1 except for the above. In Example 3, a battery was fabricated in the same manner as in Example 1 except that the layered composite oxide had a nickel composition ratio of 80% in terms of a molar ratio to the transition metal element other than lithium.

(比較例1〜2)
表1に示すように、比較例1では、層状複合酸化物としてリチウム以外の遷移金属元素に対するニッケルの組成比がモル比で33%であり、コバルトをモル比で34%含むものを用いたこと以外は、実施例1と同様にした電池を作製した。また、比較例2では、層状複合酸化物としてニッケルの組成比がリチウム以外の遷移金属元素に対するモル比で40%であり、コバルトをモル比で20%含むものを用いたこと以外は実施例1と同様にして電池を作製した。
(Comparative Examples 1-2)
As shown in Table 1, in Comparative Example 1, a layered composite oxide having a composition ratio of nickel to a transition metal element other than lithium in a molar ratio of 33% and containing cobalt in a molar ratio of 34% was used. A battery was manufactured in the same manner as in Example 1 except for the above. Further, in Comparative Example 2, Example 1 was used except that the layered composite oxide had a nickel composition ratio of 40% in terms of a molar ratio with respect to a transition metal element other than lithium and 20% of cobalt in a molar ratio. A battery was produced in the same manner as described above.

(実施例4〜7)
下表2に示すように、実施例4〜7では、層状複合酸化物とスピネル複合酸化物との混合割合を変えること以外は、実施例2と同様にして電池を作製した。すなわち、層状複合酸化物とスピネル複合酸化物との混合割合は重量比で、実施例4では95:5、実施例5では90:10、実施例6では70:30、実施例7では60:40にそれぞれ調整した。なお、表2には、実施例2についても併記した。
(Examples 4 to 7)
As shown in Table 2 below, in Examples 4 to 7, batteries were produced in the same manner as in Example 2 except that the mixing ratio of the layered composite oxide and the spinel composite oxide was changed. That is, the mixing ratio of the layered complex oxide and the spinel complex oxide is a weight ratio of 95: 5 in Example 4, 90:10 in Example 5, 70:30 in Example 6, and 60: in Example 7. Each was adjusted to 40. In Table 2, Example 2 is also shown.

Figure 2011054334
Figure 2011054334

(比較例3〜5)
表2に示すように、比較例3〜5では、層状複合酸化物とスピネル複合酸化物との混合割合を変えること以外は、実施例2と同様にして電池を作製した。すなわち、層状複合酸化物とスピネル複合酸化物との混合割合は重量比で、比較例3では100:0、比較例4では50:50、比較例5では40:60にそれぞれ調整した。
(Comparative Examples 3-5)
As shown in Table 2, in Comparative Examples 3 to 5, batteries were produced in the same manner as in Example 2 except that the mixing ratio of the layered composite oxide and the spinel composite oxide was changed. That is, the mixing ratio of the layered composite oxide and the spinel composite oxide was adjusted to a weight ratio of 100: 0 in Comparative Example 3, 50:50 in Comparative Example 4, and 40:60 in Comparative Example 5, respectively.

(試験・評価1)
各実施例1〜3および比較例1〜2のリチウムイオン二次電池について、初期放電容量を確認し、出力特性を測定した。初期放電容量は、各電池を充電した後放電し、環境温度23〜27℃の常温雰囲気下で測定した。充電条件は、4.2V定電圧、制限電流5A、充電時間2.5時間とした。放電条件は、5A定電流、終止電圧2.7Vとした。初期放電容量測定後、各電池を同じ充電条件で充電し、5A定電流放電を行い、更に充電後、25A定電流放電を行い、また再度充電を行い、50A定電流放電した。各電流値での放電における10秒目電圧を測定し出力を算出した。測定は、25±2℃の常温雰囲気下、−10±2℃の低温雰囲気下でそれぞれ実施した。出力測定結果を下表3に示す。なお、表3では、比較例1のリチウムイオン二次電池の常温雰囲気下における出力を100とする相対値を示している。
(Test / Evaluation 1)
About the lithium ion secondary battery of each Examples 1-3 and Comparative Examples 1-2, the initial stage discharge capacity was confirmed and the output characteristic was measured. The initial discharge capacity was measured after charging each battery and then discharging the battery at an ambient temperature of 23 to 27 ° C. The charging conditions were a 4.2 V constant voltage, a limiting current of 5 A, and a charging time of 2.5 hours. The discharge conditions were a 5 A constant current and a final voltage of 2.7 V. After the initial discharge capacity measurement, each battery was charged under the same charging conditions, 5A constant current discharge was performed, and after charging, 25A constant current discharge was performed again, and charging was performed again to discharge 50A constant current. The voltage at the 10th second in the discharge at each current value was measured to calculate the output. The measurement was performed in a normal temperature atmosphere of 25 ± 2 ° C. and a low temperature atmosphere of −10 ± 2 ° C., respectively. The output measurement results are shown in Table 3 below. Table 3 shows relative values with the output of the lithium ion secondary battery of Comparative Example 1 in a room temperature atmosphere being 100.

Figure 2011054334
Figure 2011054334

表3に示すように、比較例1および比較例2では、常温および低温雰囲気下において出力特性が100%前後であったのに対し、実施例1〜3では、出力特性が110%以上となり大幅に向上した。これは、実施例1〜3では、リチウム以外の遷移金属元素に対するニッケルの組成比がモル比で50%以上であり、ニッケルにより層状結晶構造の層間距離が拡大され、充放電時にリチウムイオンが挿入離脱しやすくなったため、リチウムイオンの拡散性が向上し、高出力化を図ることができたためと考えられる。層状複合酸化物におけるニッケルの組成比がリチウム以外の遷移金属元素に対するモル比で80%を超える場合は、層間距離の拡大された層状結晶構造が不安定となり、却って電池性能を低下させることが予想される。このため、層状複合酸化物におけるニッケルの組成比を80%以下とすることが好ましい。   As shown in Table 3, in Comparative Example 1 and Comparative Example 2, the output characteristics were around 100% at room temperature and low temperature atmosphere, whereas in Examples 1 to 3, the output characteristics were 110% or more and greatly increased. Improved. In Examples 1 to 3, the composition ratio of nickel to the transition metal element other than lithium is 50% or more in molar ratio, the interlayer distance of the layered crystal structure is expanded by nickel, and lithium ions are inserted during charge and discharge. This is probably because the diffusibility of lithium ions was improved and the output could be increased because it became easier to detach. When the composition ratio of nickel in the layered composite oxide exceeds 80% in terms of the molar ratio with respect to the transition metal element other than lithium, the layered crystal structure with the expanded interlayer distance becomes unstable, and it is expected that the battery performance is deteriorated on the contrary. Is done. For this reason, it is preferable that the composition ratio of nickel in the layered composite oxide is 80% or less.

(試験・評価2)
また、各実施例4〜7、実施例2および比較例3〜5のリチウムイオン二次電池について、初期放電容量測定後に、高温寿命特性を評価した。すなわち、環境温度48〜52℃の雰囲気下で、放電容量の測定条件と同じ充放電条件による充放電を300回繰り返した。その後、環境温度23〜27℃の雰囲気下で同様にして放電容量を測定し、初期放電容量に対する300サイクル目の放電容量の割合を百分率で求め、300サイクル目の容量維持率とした。下表4に300サイクル目の容量維持率の測定結果を示す。
(Test / Evaluation 2)
Moreover, about the lithium ion secondary battery of each Example 4-7, Example 2, and Comparative Examples 3-5, the high temperature life characteristic was evaluated after the initial stage discharge capacity measurement. That is, charging and discharging under the same charging and discharging conditions as the measuring conditions of the discharging capacity were repeated 300 times in an atmosphere having an environmental temperature of 48 to 52 ° C. Thereafter, the discharge capacity was measured in the same manner in an atmosphere at an ambient temperature of 23 to 27 ° C., and the ratio of the discharge capacity at the 300th cycle to the initial discharge capacity was obtained as a percentage to obtain the capacity maintenance rate at the 300th cycle. Table 4 below shows the measurement results of the capacity retention rate at the 300th cycle.

Figure 2011054334
Figure 2011054334

表4に示すように、比較例3〜5では、容量維持率が90%以下であるのに対して、実施例4〜7および実施例2では、容量維持率は90%以上であり高温での劣化が少ないという結果が得られた。これは、実施例4〜7および実施例2では、層状複合酸化物とスピネル複合酸化物との混合割合が重量比で、60:40〜95:5の範囲であることで、正極活物質の安定性が増し、高温でもリチウムイオンの拡散性が長く確保され、電池の長寿命化を図ることができたためと考えられる。   As shown in Table 4, in Comparative Examples 3 to 5, the capacity maintenance rate is 90% or less, whereas in Examples 4 to 7 and Example 2, the capacity maintenance rate is 90% or more and at a high temperature. The result that there was little deterioration of was obtained. This is because, in Examples 4 to 7 and Example 2, the mixing ratio of the layered composite oxide and the spinel composite oxide is in the range of 60:40 to 95: 5 by weight ratio. This is considered to be because the stability was increased and the diffusibility of lithium ions was ensured for a long time even at high temperatures, and the battery life could be extended.

(作用)
次に、本実施形態のリチウムイオン二次電池25の作用等について説明する。
(Function)
Next, the operation and the like of the lithium ion secondary battery 25 of the present embodiment will be described.

本実施形態のリチウムイオン二次電池25では、正極活物質に層状複合酸化物とスピネル複合酸化物とが混合して用いられている。層状複合酸化物では、充放電時にリチウムイオンが挿入離脱することで、結晶格子が膨張や収縮を繰り返し、寿命特性を低くする傾向がある。それに対して、スピネル複合酸化物では、充放電時にリチウムイオンが挿入離脱しても、結晶格子が三次元的で安定しているため、結晶格子の膨張や収縮が少なくなる。このため、正極活物質に層状複合酸化物とスピネル複合酸化物とが混合されていることにより、正極活物質の全体として安定性が増し、層状複合酸化物の膨張や収縮が生じても正極合材層14の脱落も抑制することができる。従って、リチウムイオンの拡散性が長期間に亘り確保されるため、長寿命化を図ることができる。   In the lithium ion secondary battery 25 of this embodiment, a layered composite oxide and a spinel composite oxide are mixed and used for the positive electrode active material. In a layered complex oxide, lithium ions are inserted and released during charge and discharge, whereby the crystal lattice repeatedly expands and contracts, and the life characteristics tend to be lowered. On the other hand, in the spinel composite oxide, even when lithium ions are inserted and released during charging and discharging, the crystal lattice is three-dimensional and stable, so that the expansion and contraction of the crystal lattice is reduced. For this reason, when the layered composite oxide and the spinel composite oxide are mixed in the positive electrode active material, the stability of the positive electrode active material as a whole is increased, and the positive electrode composite is not affected even if the layered composite oxide expands or contracts. Omission of the material layer 14 can also be suppressed. Accordingly, the diffusibility of lithium ions is ensured over a long period of time, so that the lifetime can be extended.

また、本実施形態のリチウムイオン二次電池25では正極活物質に層状複合酸化物とスピネル複合酸化物とが混合して用いられている。層状複合酸化物では、リチウムイオンの拡散経路が二次元的であるため、常温下でリチウムイオンの拡散性に優れ、本来出力特性に優れる。ところが、低温下では、結晶格子の収縮に起因して、リチウムイオンの拡散性が低下するため、出力特性が低くなる。それに対して、スピネル複合酸化物では、結晶格子が三次元的で安定性が優れており、温度の影響を受けにくく、低温下の出力特性に優れている。このため、本実施形態では、常温下では層状複合酸化物のリチウムイオンの拡散性が作用し、低温下ではスピネル複合酸化物のリチウムイオンの拡散性が機能することで、常温下だけでなく低温下においても電池出力を確保することができる。   In the lithium ion secondary battery 25 of the present embodiment, a layered composite oxide and a spinel composite oxide are mixed and used as the positive electrode active material. In the layered complex oxide, the lithium ion diffusion path is two-dimensional, so that it is excellent in lithium ion diffusibility at room temperature and inherently excellent in output characteristics. However, at low temperatures, the diffusibility of lithium ions is reduced due to the shrinkage of the crystal lattice, resulting in lower output characteristics. In contrast, the spinel composite oxide has a three-dimensional crystal lattice and excellent stability, is hardly affected by temperature, and has excellent output characteristics at low temperatures. Therefore, in this embodiment, the lithium ion diffusibility of the layered composite oxide acts at room temperature, and the spinel composite oxide lithium ion diffusivity functions at a low temperature. Battery output can be ensured even underneath.

更に、本実施形態のリチウムイオン二次電池25では、正極活物質の層状複合酸化物におけるリチウム以外の遷移金属元素に対するニッケルの組成比が50〜80%の範囲である。ニッケルは、層状複合酸化物を構成する遷移金属元素として多用されるマンガンよりも原子半径が大きいため、ニッケルにより層状結晶構造の層間距離が拡大され、充放電時にリチウムイオンが挿入離脱しやすくなる。そのため、層状複合酸化物のニッケルの組成比を50%以上とすることで、リチウムイオンの拡散性が向上し、高出力化を図ることができる。層状複合酸化物のニッケルの組成比が80%を超えると、結晶構造的な不安定性が増し、リチウムの拡散が阻害されるため、却って出力特性は低下する。   Furthermore, in the lithium ion secondary battery 25 of the present embodiment, the composition ratio of nickel to the transition metal element other than lithium in the layered composite oxide of the positive electrode active material is in the range of 50 to 80%. Nickel has a larger atomic radius than manganese, which is frequently used as a transition metal element constituting the layered composite oxide. Therefore, the interlayer distance of the layered crystal structure is increased by nickel, and lithium ions are easily inserted and removed during charge and discharge. Therefore, when the composition ratio of nickel in the layered composite oxide is 50% or more, the diffusibility of lithium ions is improved, and high output can be achieved. If the composition ratio of nickel in the layered composite oxide exceeds 80%, the crystal structure instability increases and the diffusion of lithium is inhibited, so that the output characteristics deteriorate.

また更に、本実施形態のリチウムイオン二次電池25では、正極活物質に含まれる層状複合酸化物とスピネル複合酸化物の混合割合が重量比で、60:40〜95:5の範囲である。スピネル複合酸化物の割合が5%以下のときは、スピネル複合酸化物の量が少なく正極活物質全体の安定化が不十分となるため、リチウムイオン挿入離脱における合材脱落が生じやすく寿命は短くなる(比較例3も参照)。また、スピネル複合酸化物の割合が40%以上のときは、スピネル複合酸化物の結晶格子は三次元的で安定しているものの、常温環境下においてリチウムイオンの拡散性に劣るため充放電を繰り返し使用することで容量維持率は低下しやすくなる(比較例4、5も参照)。そのため、層状複合酸化物とスピネル複合酸化物との混合割合が60:40〜95:5の範囲のとき、正極活物質の安定性が増し、温度の影響を受けにくくなり、リチウムイオンの拡散性が長く確保されるため、電池の長寿命化を図ることができる。   Furthermore, in the lithium ion secondary battery 25 of this embodiment, the mixing ratio of the layered composite oxide and the spinel composite oxide contained in the positive electrode active material is in the range of 60:40 to 95: 5. When the proportion of the spinel composite oxide is 5% or less, the amount of the spinel composite oxide is small and the entire positive electrode active material is not sufficiently stabilized. (See also Comparative Example 3). When the spinel composite oxide ratio is 40% or higher, the crystal lattice of the spinel composite oxide is three-dimensional and stable. When used, the capacity retention rate tends to decrease (see also Comparative Examples 4 and 5). Therefore, when the mixing ratio of the layered composite oxide and the spinel composite oxide is in the range of 60:40 to 95: 5, the stability of the positive electrode active material is increased, and the lithium ion diffusibility is less affected by temperature. Therefore, the battery life can be extended.

なお、本実施形態では、層状複合酸化物として層状岩塩型結晶構造を有する複合酸化物を例示したが、本発明はこれに限定されるものではなく、予め十分な量のリチウムが挿入された層状結晶構造を有していれば適用可能である。   In the present embodiment, the composite oxide having a layered rock salt type crystal structure is exemplified as the layered composite oxide. However, the present invention is not limited to this, and a layered structure in which a sufficient amount of lithium is inserted in advance. Any crystal structure can be applied.

また、本実施形態では、層状複合酸化物、スピネル複合酸化物に含有される遷移金属元素の一部を他の遷移金属元素(陽イオン)で置換またはドープして用いてもよい。層状複合酸化物では、リチウム、ニッケルおよびマンガン以外の陽イオンとして、コバルト、アルミニウム、鉄、クロム、マグネシウム、チタン、スズ、インジウム等を挙げることができ、複数の陽イオンを含むようにしてもよい。また、スピネル複合酸化物では、リチウムおよびマンガン以外の陽イオンとして、アルミニウム、コバルト、ニッケル、クロム、マグネシウム等を挙げることができる。更に、層状複合酸化物またはスピネル複合酸化物の結晶中の酸素の一部を硫黄、リン等で置換またはドープした材料を用いてもよい。   In the present embodiment, a part of the transition metal element contained in the layered complex oxide or the spinel complex oxide may be substituted or doped with another transition metal element (cation). In the layered composite oxide, examples of cations other than lithium, nickel and manganese include cobalt, aluminum, iron, chromium, magnesium, titanium, tin, and indium, and may include a plurality of cations. Moreover, in spinel complex oxide, aluminum, cobalt, nickel, chromium, magnesium etc. can be mentioned as cations other than lithium and manganese. Furthermore, a material in which part of oxygen in the crystal of the layered complex oxide or the spinel complex oxide is substituted or doped with sulfur, phosphorus, or the like may be used.

更に、本実施形態では、正極の導電材として黒鉛とアセチレンブラック粉末との混合物を例示したが、本発明はこれに限定されるものではない。例えば、炭素材料等の導電性を有するものであればよい。また、本実施形態では、正負極のスラリの混合に回転翼のような攪拌手段を具備した混合機を用いる例を示したが、本発明はこれに限定されるものではなく、スラリが均一に混合される手段を用いればよい。   Furthermore, in the present embodiment, a mixture of graphite and acetylene black powder is exemplified as the conductive material of the positive electrode, but the present invention is not limited to this. For example, what is necessary is just to have electroconductivity, such as a carbon material. In the present embodiment, an example in which a mixer equipped with a stirring means such as a rotary blade is used for mixing positive and negative electrode slurries is shown, but the present invention is not limited to this, and the slurry is uniform. What is necessary is just to use the means mixed.

また更に、本実施形態では、負極活物質として非晶質炭素を例示したが、本発明はこれに限定されるものではない。負極活物質としては、リチウムイオンを挿入離脱可能な物質であればよく、通常リチウム二次電池に用いられる物質を用いることができる。本実施形態以外で用いられる負極活物質としては、黒鉛等の炭素材が挙げられ、黒鉛と非晶質炭素とを混合して用いてもよいことはもちろんである。   Furthermore, in this embodiment, although amorphous carbon was illustrated as a negative electrode active material, this invention is not limited to this. As the negative electrode active material, any material capable of inserting and releasing lithium ions may be used, and materials usually used for lithium secondary batteries can be used. Examples of the negative electrode active material used in other than the present embodiment include carbon materials such as graphite. Of course, graphite and amorphous carbon may be mixed and used.

更にまた、本実施形態では、円筒型電池について例示したが、本発明は電池の形状についても限定されず、角形、その他の多角形の電池にも適用可能である。また、本実施形態では、電気自動車等の移動体用の電源として用いられる大型のリチウム二次電池を例示したが、本発明は、電池の容量、サイズ、形状等に制限されるものではない。   Furthermore, in the present embodiment, the cylindrical battery is exemplified, but the present invention is not limited to the shape of the battery, and can be applied to a rectangular battery or other polygonal batteries. Moreover, in this embodiment, although the large sized lithium secondary battery used as a power supply for moving bodies, such as an electric vehicle, was illustrated, this invention is not restrict | limited to the capacity | capacitance, size, shape, etc. of a battery.

また、本実施形態では、帯状の正負極板が捲回されている捲回式電池について例示したが、本発明はこれに限定されるものではない。例えば、セパレータに袋状のものを用いてこの中に電極を収容しこれらを順次重ねた積層式電池としてもよい。更に、本発明の適用可能な構造としては、上述した電池缶17に電池蓋18がカシメによって封口されている構造の電池以外であっても構わない。このような構造の一例として、正負極タブ端子が電池蓋を貫通し電池容器内で軸芯を介して押し合っている状態の電池を挙げることができる。   Further, in the present embodiment, the winding type battery in which the strip-like positive and negative electrode plates are wound is illustrated, but the present invention is not limited to this. For example, a stacked battery may be used in which a bag-like separator is used, electrodes are accommodated therein, and these are sequentially stacked. Furthermore, the structure to which the present invention can be applied may be other than a battery having a structure in which the battery lid 18 is sealed with the battery can 17 described above. As an example of such a structure, a battery in a state where positive and negative electrode tab terminals penetrate through the battery lid and are pressed through the shaft core in the battery container can be mentioned.

更に、本実施形態では、セパレータ15として微多孔性ポリエチレンフィルムを例示したが、本発明はこれに限定されるものではなく、材質にポリプロピレン等を用いてもよく、複数のフィルムを積層してもよい。また、本実施形態では、EC、DEC、DMCの混合溶媒中に1Mの濃度のLiPFを溶解した非水電解液を例示したが、一般的なリチウム塩を電解質として、これを有機溶媒に溶解した非水電解液を用いてもよく、本発明は用いられるリチウム塩や有機溶媒には特に制限されない。 Furthermore, although the microporous polyethylene film was illustrated as the separator 15 in this embodiment, this invention is not limited to this, A polypropylene etc. may be used for a material and even if it laminates | stacks a some film Good. In this embodiment, a non-aqueous electrolyte solution in which LiPF 6 having a concentration of 1M is dissolved in a mixed solvent of EC, DEC, and DMC is exemplified. However, a general lithium salt is used as an electrolyte, and this is dissolved in an organic solvent. The nonaqueous electrolyte solution may be used, and the present invention is not particularly limited to the lithium salt or organic solvent used.

本発明は、高出力および長寿命を両立することができるリチウム二次電池を提供するため、リチウム二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   The present invention contributes to the manufacture and sale of lithium secondary batteries in order to provide a lithium secondary battery that can achieve both high output and long life, and thus has industrial applicability.

12 負極合材層
14 正極合材層
16 捲回群
25 円筒型リチウムイオン二次電池(リチウム二次電池)
12 Negative electrode mixture layer 14 Positive electrode mixture layer 16 Winding group 25 Cylindrical lithium ion secondary battery (lithium secondary battery)

Claims (3)

リチウムイオンを挿入離脱可能で、マンガン、ニッケルを含有する層状結晶構造のリチウム遷移金属複合酸化物と、マンガンを含有するスピネル結晶構造のリチウム遷移金属複合酸化物とを含む正極活物質が塗工された正極板と、
リチウムイオンを挿入離脱可能な負極活物質が塗工された負極板と、
を備え、
前記正極活物質は、前記層状結晶構造のリチウム遷移金属複合酸化物におけるリチウム以外の遷移金属元素に対するニッケルの組成比がモル比で50%以上であることを特徴とするリチウム二次電池。
A positive electrode active material capable of inserting and releasing lithium ions and including a lithium transition metal composite oxide having a layered crystal structure containing manganese and nickel and a lithium transition metal composite oxide having a spinel crystal structure containing manganese is applied. Positive electrode plate,
A negative electrode plate coated with a negative electrode active material capable of inserting and removing lithium ions;
With
The lithium secondary battery, wherein the positive electrode active material has a molar ratio of nickel to a transition metal element other than lithium in the layered crystal structure lithium transition metal composite oxide in a molar ratio of 50% or more.
前記層状結晶構造のリチウム遷移金属複合酸化物と前記スピネル結晶構造のリチウム遷移金属複合酸化物との混合割合が重量比で、60:40〜95:5の範囲であることを特徴とする請求項1に記載のリチウム二次電池。   The mixing ratio of the lithium transition metal composite oxide having the layered crystal structure and the lithium transition metal composite oxide having the spinel crystal structure is in a range of 60:40 to 95: 5 by weight. 2. The lithium secondary battery according to 1. 前記層状結晶構造のリチウム遷移金属複合酸化物におけるリチウム以外の遷移金属元素に対するニッケルの組成比がモル比で80%以下であることを特徴とする請求項2に記載のリチウム二次電池。   3. The lithium secondary battery according to claim 2, wherein a composition ratio of nickel to a transition metal element other than lithium in the lithium transition metal composite oxide having a layered crystal structure is 80% or less in terms of molar ratio.
JP2009200434A 2009-08-31 2009-08-31 Lithium secondary battery Pending JP2011054334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009200434A JP2011054334A (en) 2009-08-31 2009-08-31 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009200434A JP2011054334A (en) 2009-08-31 2009-08-31 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2011054334A true JP2011054334A (en) 2011-03-17

Family

ID=43943139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009200434A Pending JP2011054334A (en) 2009-08-31 2009-08-31 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2011054334A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128674A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
JP2013218843A (en) * 2012-04-06 2013-10-24 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery, and secondary battery system using the same
WO2014050114A1 (en) * 2012-09-28 2014-04-03 三洋電機株式会社 Non-aqueous electrolyte secondary battery
KR20160130829A (en) 2014-04-11 2016-11-14 닛산 지도우샤 가부시키가이샤 Nonaqueous electrolyte secondary battery
US9660262B2 (en) 2012-09-11 2017-05-23 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery
US10199680B2 (en) 2014-04-11 2019-02-05 Nissan Motor Co., Ltd. Electric device
CN112204776A (en) * 2018-06-20 2021-01-08 株式会社Lg化学 Positive electrode active material for lithium secondary battery and lithium secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168430A (en) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2003346798A (en) * 2002-05-24 2003-12-05 Nec Corp Secondary battery and battery pack using the same and method of use of secondary battery
JP2004259511A (en) * 2003-02-25 2004-09-16 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
WO2004105162A1 (en) * 2003-05-26 2004-12-02 Nec Corporation Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
JP2006236830A (en) * 2005-02-25 2006-09-07 Ngk Insulators Ltd Lithium secondary battery
JP2006236762A (en) * 2005-02-24 2006-09-07 Ngk Insulators Ltd Lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168430A (en) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2003346798A (en) * 2002-05-24 2003-12-05 Nec Corp Secondary battery and battery pack using the same and method of use of secondary battery
JP2004259511A (en) * 2003-02-25 2004-09-16 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
WO2004105162A1 (en) * 2003-05-26 2004-12-02 Nec Corporation Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
JP2006236762A (en) * 2005-02-24 2006-09-07 Ngk Insulators Ltd Lithium secondary battery
JP2006236830A (en) * 2005-02-25 2006-09-07 Ngk Insulators Ltd Lithium secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128674A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
JP5626473B2 (en) * 2012-02-29 2014-11-19 新神戸電機株式会社 Lithium ion battery
JP2013218843A (en) * 2012-04-06 2013-10-24 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery, and secondary battery system using the same
US9660262B2 (en) 2012-09-11 2017-05-23 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery
WO2014050114A1 (en) * 2012-09-28 2014-04-03 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JPWO2014050114A1 (en) * 2012-09-28 2016-08-22 三洋電機株式会社 Nonaqueous electrolyte secondary battery
KR20160130829A (en) 2014-04-11 2016-11-14 닛산 지도우샤 가부시키가이샤 Nonaqueous electrolyte secondary battery
US10096870B2 (en) 2014-04-11 2018-10-09 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery
US10199680B2 (en) 2014-04-11 2019-02-05 Nissan Motor Co., Ltd. Electric device
CN112204776A (en) * 2018-06-20 2021-01-08 株式会社Lg化学 Positive electrode active material for lithium secondary battery and lithium secondary battery

Similar Documents

Publication Publication Date Title
JP5286200B2 (en) Lithium ion secondary battery
JP5084802B2 (en) Lithium ion secondary battery
JP5476246B2 (en) Nonaqueous electrolyte secondary battery and method for producing positive electrode mixture
JP5171283B2 (en) Non-aqueous electrolyte secondary battery
JP5753672B2 (en) Non-aqueous electrolyte secondary battery
WO2012033036A1 (en) Lithium ion secondary battery
JP2011054334A (en) Lithium secondary battery
JP5753671B2 (en) Non-aqueous electrolyte secondary battery
JP2004006264A (en) Lithium secondary battery
JP2009259502A (en) Nonaqueous electrolyte secondary battery
WO2011016113A1 (en) Lithium ion nonaqueous electrolyte secondary battery
WO2011016112A1 (en) Lithium ion nonaqueous electrolyte secondary battery
JP2008243529A (en) Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004259511A (en) Lithium secondary battery
KR101520166B1 (en) Positive-electrode active material with improved output and lithium secondary battery including the same
JP2005158623A (en) Nonaqueous electrolyte secondary battery
JP2010015852A (en) Secondary battery
KR20210102469A (en) Abuse-Tolerant Lithium Ion Battery Cathode Mixtures With Symbiotic Power Performance Benefits
JP4534559B2 (en) Lithium secondary battery and positive electrode material for lithium secondary battery
JP2007220455A (en) Nonaqueous electrolyte secondary battery
JP2005116321A (en) Lithium secondary battery and its low-temperature characteristic evaluation method
CN114402459A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2006338977A (en) Lithium secondary battery
JP4396316B2 (en) Lithium ion secondary battery
JP4876380B2 (en) Method for manufacturing lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924