JP2009259502A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2009259502A
JP2009259502A JP2008105303A JP2008105303A JP2009259502A JP 2009259502 A JP2009259502 A JP 2009259502A JP 2008105303 A JP2008105303 A JP 2008105303A JP 2008105303 A JP2008105303 A JP 2008105303A JP 2009259502 A JP2009259502 A JP 2009259502A
Authority
JP
Japan
Prior art keywords
density
negative electrode
mixture
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008105303A
Other languages
Japanese (ja)
Inventor
Akira Kojima
亮 小島
Takenori Ishizu
竹規 石津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2008105303A priority Critical patent/JP2009259502A/en
Publication of JP2009259502A publication Critical patent/JP2009259502A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery for aiming at improvement in energy density and input/output characteristics. <P>SOLUTION: The lithium-ion secondary battery includes a wound-around group winding around a cathode plate and an anode plate housed in a battery can. A top lid is fixed in caulking to a top part of the battery can. The cathode plate includes a cathode mixture layer containing lithium transition metal complex oxide of a cathode active material formed on either side of an aluminum foil. The anode plate includes an anode mixture layer containing graphite of an anode active material formed on either side of a copper foil. The cathode mixture layer as well as the anode mixture layer is so formed that each mixture density is changed nearly at a constant ratio in a winding direction from a winding start at a center side to a winding end at an outer periphery side of the wound-around group. With the cathode mixture layer as well as the anode mixture layer, a ratio of the active material gets larger at a part with a larger mixture density, and voids for nonaqueous electrolyte solution to infiltrate into are secured at a part with a smaller mixture density. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は非水電解液二次電池に係り、特に、活物質合剤がそれぞれ集電体に塗着された正負極板を備えた非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery including positive and negative electrode plates each coated with an active material mixture on a current collector.

非水電解液二次電池は、VTRカメラやノート型パソコン、携帯電話等のポータブル機器用の電源として広く普及しており、電気自動車用や電力貯蔵用の大型電池の研究開発も進められている。非水電解液を代表するリチウムイオン二次電池では、通常、リチウムイオンを可逆に吸蔵、放出できるリチウム含有金属酸化物を含む活物質合剤を集電体に塗着した正極板と、炭素材料を含む活物質合剤を集電体に塗着した負極板とが、数種類のカーボネート系混合有機溶媒に六フッ化リン酸リチウム(LiPF)等のリチウム塩を溶解した非水電解液に浸潤されている。活物質合剤を集電体に塗着させるために、活物質合剤には樹脂等の結着剤(バインダ)が配合されている。近年では、リチウムイオン二次電池の更なる高エネルギー密度、高入出力特性が求められている。 Non-aqueous electrolyte secondary batteries are widely used as power sources for portable devices such as VTR cameras, notebook computers, and mobile phones, and research and development of large batteries for electric vehicles and power storage are also underway. . In a lithium ion secondary battery representing a non-aqueous electrolyte, a positive electrode plate in which an active material mixture containing a lithium-containing metal oxide capable of reversibly occluding and releasing lithium ions is applied to a current collector, and a carbon material And a negative electrode plate coated with an active material mixture containing water infiltrated into a non-aqueous electrolyte solution in which a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in several types of carbonate-based mixed organic solvents Has been. In order to apply the active material mixture to the current collector, a binder (binder) such as a resin is blended in the active material mixture. In recent years, higher energy density and higher input / output characteristics of lithium ion secondary batteries have been demanded.

リチウムイオン二次電池の高エネルギー密度化を図るために活物質合剤の単位体積当たりの重量を増すと、活物質合剤中の空隙(空孔体積)が減少し、非水電解液の浸潤が十分に得られなくなる。特に大きな電流値での充放電では、活物質の重量から計算される容量より低い容量しか得られない場合が多い。一方、非水電解液の浸潤を十分に得るために活物質合剤の単位体積当たり重量を減じると、一定体積に充填できる活物質量が減少し、電池容量、エネルギー密度が低下する。これらの問題を解消するため、例えば、炭素材料で成形した負極板の厚み方向に嵩密度分布を持たせ、高嵩密度部分でエネルギー密度を稼ぎ、低嵩密度部分で入出力特性を補う技術が開示されている(特許文献1参照)。   When the weight per unit volume of the active material mixture is increased in order to increase the energy density of the lithium ion secondary battery, voids (hole volume) in the active material mixture decrease and the nonaqueous electrolyte infiltrates. Cannot be obtained sufficiently. In particular, in charge / discharge at a large current value, only a capacity lower than the capacity calculated from the weight of the active material is often obtained. On the other hand, if the weight per unit volume of the active material mixture is reduced in order to obtain sufficient infiltration of the non-aqueous electrolyte, the amount of active material that can be filled in a certain volume decreases, and the battery capacity and energy density decrease. In order to solve these problems, for example, there is a technology that has a bulk density distribution in the thickness direction of a negative electrode plate formed of a carbon material, gains energy density in a high bulk density portion, and supplements input / output characteristics in a low bulk density portion. It is disclosed (see Patent Document 1).

特開平8−138650号公報JP-A-8-138650

しかしながら、特許文献1の技術では、樹脂(バインダ)と炭素材料との含有量が異なるように、予めシート状に作製された複数枚の前駆体が準備される。これらの前駆体が厚み方向で対称な嵩密度分布となるように多重積層され、加熱圧縮成型されて負極板が作製される。このため、複雑な製造工程が必要となるうえ、コスト高となる。また、複数枚の前駆体を要するため、製造工程管理が難しくなる、という問題もある。   However, in the technique of Patent Document 1, a plurality of precursors prepared in advance in a sheet shape are prepared so that the contents of the resin (binder) and the carbon material are different. These precursors are multi-layered so as to have a symmetrical bulk density distribution in the thickness direction, and heat compression molded to produce a negative electrode plate. For this reason, a complicated manufacturing process is required and the cost is increased. In addition, since a plurality of precursors are required, there is a problem that manufacturing process management becomes difficult.

本発明は上記事案に鑑み、エネルギー密度および入出力特性の向上を図ることができる非水電解液二次電池を提供することを課題とする。   An object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of improving energy density and input / output characteristics in view of the above-mentioned cases.

上記課題を解決するために、本発明は、活物質合剤がそれぞれ集電体に塗着された正負極板を備えた非水電解液二次電池において、前記正負極板の少なくとも一方は、前記活物質合剤の密度が面方向一側から他側へ向けてほぼ一定割合で変化する密度変化部分を有していることを特徴とする。   In order to solve the above problems, the present invention provides a non-aqueous electrolyte secondary battery including a positive and negative electrode plate in which an active material mixture is applied to a current collector, and at least one of the positive and negative electrode plates includes: The active material mixture has a density changing portion in which the density of the active material mixture changes from one side in the plane direction to the other side at a substantially constant rate.

本発明では、正負極板の少なくとも一方が活物質合剤の密度が面方向一側から他側へ向けてほぼ一定割合で変化する密度変化部分を有するので、高密度の部分で活物質割合が大きくなりエネルギー密度を向上させることができると共に、低密度の部分で非水電解液の浸潤する空隙が確保され入出力特性を向上させることができる。   In the present invention, since at least one of the positive and negative electrode plates has a density changing portion in which the density of the active material mixture changes from one side in the plane direction to the other side at a substantially constant rate, the active material ratio is high in the high density portion. The energy density can be increased and the energy density can be improved. In addition, a void infiltrated with the nonaqueous electrolyte can be secured in the low density portion, and the input / output characteristics can be improved.

この場合において、正負極板の少なくとも一方の活物質合剤の密度が平均値に対して±15%の範囲で変化していることが好ましい。また、正負極板が捲回されており、正負極板の少なくとも一方が略捲回方向ないし捲回軸方向に密度変化部分を有するようにしてもよい。正負極板の少なくとも一方の活物質合剤の密度が正負極板の面方向一側から他側までほぼ一定割合で変化するようにしてもよい。このとき、正負極板の少なくとも一方を、活物質合剤の塗着厚さが面方向一側から他側までほぼ一定割合で変化するようにしてもよい。   In this case, it is preferable that the density of the active material mixture of at least one of the positive and negative electrode plates is changed within a range of ± 15% with respect to the average value. Further, the positive and negative electrode plates may be wound, and at least one of the positive and negative electrode plates may have a density changing portion in a substantially winding direction or a winding axis direction. The density of at least one active material mixture of the positive and negative electrode plates may change at a substantially constant rate from one side in the surface direction of the positive and negative electrode plates to the other side. At this time, at least one of the positive and negative electrode plates may change the coating thickness of the active material mixture at a substantially constant rate from one side in the surface direction to the other side.

本発明によれば、正負極板の少なくとも一方が活物質合剤の密度が面方向一側から他側へ向けてほぼ一定割合で変化する密度変化部分を有するので、高密度の部分で活物質割合が大きくなりエネルギー密度を向上させることができると共に、低密度の部分で非水電解液の浸潤する空隙が確保され入出力特性を向上させることができる、という効果を得ることができる。   According to the present invention, at least one of the positive and negative electrode plates has a density changing portion in which the density of the active material mixture changes from one side in the plane direction to the other side at a substantially constant rate. The ratio can be increased, the energy density can be improved, and the voids infiltrated with the non-aqueous electrolyte can be secured in the low density portion, and the input / output characteristics can be improved.

以下、図面を参照して、本発明を適用した円筒型リチウムイオン二次電池の実施の形態について説明する。   Embodiments of a cylindrical lithium ion secondary battery to which the present invention is applied will be described below with reference to the drawings.

(構成)
図1に示すように、本実施形態の円筒型リチウムイオン二次電池20は、電池容器となるニッケルメッキを施された鉄製で有底円筒状の電池缶17を有している。電池缶17には、帯状の正極板1および負極板3が捲回された捲回群15が収容されている。すなわち、電池缶17の内径は捲回群15の直径より若干大きく設定されている。
(Constitution)
As shown in FIG. 1, a cylindrical lithium ion secondary battery 20 of the present embodiment has a bottomed cylindrical battery can 17 made of iron plated with nickel and serving as a battery container. The battery can 17 accommodates a wound group 15 in which the belt-like positive electrode plate 1 and the negative electrode plate 3 are wound. That is, the inner diameter of the battery can 17 is set slightly larger than the diameter of the wound group 15.

捲回群15は、正極板1および負極板3がポリエチレン製微多孔膜のセパレータ5を介して断面渦巻状に捲回されている。セパレータ5は、本例では、厚さが25μmに設定されている。捲回群15の上側には、一端を正極板1に固定されたアルミニウム製でリボン状の正極タブ端子12が導出されている。正極タブ端子12の他端は、捲回群15の上側に配置され正極外部端子となる円盤状の上蓋16の下面に超音波溶接で接合されている。一方、捲回群15の下側には、一端を負極板3に固定された銅製でリボン状の負極タブ端子13が導出されている。負極タブ端子13の他端は、電池缶17の内底面に抵抗溶接で接合されている。正極タブ端子12および負極タブ端子13は、それぞれ捲回群15の両端面から互いに反対側に導出されている。捲回群15の上下両側には、捲回群15の直径とほぼ同径で樹脂製の図示を省略した絶縁板がそれぞれ配されている。捲回群15の外周面全周には、図示しない絶縁被覆が施されている。   In the winding group 15, the positive electrode plate 1 and the negative electrode plate 3 are wound in a spiral shape with a polyethylene microporous membrane separator 5 interposed therebetween. In this example, the thickness of the separator 5 is set to 25 μm. On the upper side of the wound group 15, a ribbon-like positive electrode tab terminal 12 made of aluminum and having one end fixed to the positive electrode plate 1 is led out. The other end of the positive electrode tab terminal 12 is disposed on the upper side of the wound group 15 and is joined to the lower surface of a disk-shaped upper lid 16 serving as a positive electrode external terminal by ultrasonic welding. On the other hand, a ribbon-shaped negative electrode tab terminal 13 made of copper and having one end fixed to the negative electrode plate 3 is led below the winding group 15. The other end of the negative electrode tab terminal 13 is joined to the inner bottom surface of the battery can 17 by resistance welding. The positive electrode tab terminal 12 and the negative electrode tab terminal 13 are led out from the both end surfaces of the wound group 15 to the opposite sides. On both the upper and lower sides of the wound group 15, resin-made insulating plates having a diameter substantially the same as the diameter of the wound group 15 are omitted. An insulation coating (not shown) is applied to the entire outer peripheral surface of the wound group 15.

電池缶17には、上端より若干缶底側にグルービングが施されている。上蓋16は、ポリプロピレン等の絶縁性の材質でグルービング部分に嵌合するように設計されたガスケット18を介して電池缶17の上部にカシメ固定されている。このため、リチウムイオン二次電池20の内部は密封されている。また、電池缶17内には、非水電解液が注液されている。非水電解液には、例えば、エチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等を混合した混合溶媒中に6フッ化リン酸リチウム(LiPF)を1モル/リットル(mol/l)の濃度で溶解させたものが使用されている。 The battery can 17 has a grooving slightly on the bottom side from the upper end. The upper lid 16 is caulked and fixed to the upper portion of the battery can 17 via a gasket 18 designed to be fitted to the grooving portion with an insulating material such as polypropylene. For this reason, the inside of the lithium ion secondary battery 20 is sealed. Further, a non-aqueous electrolyte is injected into the battery can 17. In the non-aqueous electrolyte, for example, lithium hexafluorophosphate (LiPF 6 ) is dissolved at a concentration of 1 mol / liter (mol / l) in a mixed solvent in which ethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, etc. are mixed. The ones used are used.

捲回群15を構成する正極板1は、正極集電体としてアルミニウム箔を有している。アルミニウム箔の厚さは本例では20μmに設定されている。アルミニウム箔の長手方向略中央部には、正極タブ端子12の一端が超音波溶接で接合されている。アルミニウム箔の両面には、正極合剤が塗着されており、正極合剤層2が形成されている。正極合剤には、正極活物質として化学式Li1+x1−x(Mは1種または複数種の遷移金属元素、xは0<x<1の範囲を満たす実数)で表される金属酸化物(リチウム遷移金属複酸化物)粉末と、導電剤の炭素材料と、結着剤(バインダ)のポリフッ化ビニリデン樹脂(以下、PVDFと略記する。)と、が配合されている。本例では、金属酸化物粉末/炭素材料/PVDFの固形分比が85/10/5となるように調製されている。正極合剤層2は、捲回群15の中心側に位置する捲回始端から外周側に位置する捲回終端まで(捲回方向に)ほぼ一定割合で合剤密度が変化するように形成されている。換言すれば、図2のパターンAに示すように、正極合剤層2は、正極板1の長手方向の位置に対する合剤密度が捲回始端から捲回終端までほぼ一定の勾配で変化している。このため、正極板1の密度変化部分は捲回方向の全体にわたる。 The positive electrode plate 1 constituting the wound group 15 has an aluminum foil as a positive electrode current collector. The thickness of the aluminum foil is set to 20 μm in this example. One end of the positive electrode tab terminal 12 is joined to the substantially central portion in the longitudinal direction of the aluminum foil by ultrasonic welding. A positive electrode mixture is applied to both surfaces of the aluminum foil, and a positive electrode mixture layer 2 is formed. In the positive electrode mixture, a metal represented by the chemical formula Li 1 + x M 1-x O 2 (M is one or more transition metal elements, x is a real number satisfying a range of 0 <x <1) as a positive electrode active material. An oxide (lithium transition metal double oxide) powder, a carbon material as a conductive agent, and a polyvinylidene fluoride resin (hereinafter abbreviated as PVDF) as a binder (binder) are blended. In this example, the solid content ratio of metal oxide powder / carbon material / PVDF is adjusted to 85/10/5. The positive electrode mixture layer 2 is formed such that the mixture density changes at a substantially constant rate (in the winding direction) from the winding start end positioned on the center side of the winding group 15 to the winding end positioned on the outer peripheral side. ing. In other words, as shown in the pattern A in FIG. 2, the positive electrode mixture layer 2 has a mixture density with respect to a position in the longitudinal direction of the positive electrode plate 1 that changes with a substantially constant gradient from the winding start end to the winding end. Yes. For this reason, the density change part of the positive electrode plate 1 covers the whole winding direction.

正極合剤層2の合剤密度を変化させた正極板1は次のようにして作製されたものである。すなわち、正極合剤を、粘度調整溶媒のN−メチルピロリドン(以下、NMPと略記する。)に略均一に混練した正極合剤スラリを調製した。得られた正極合剤スラリを、電池1個分に必要な長さのアルミニウム箔に均一な厚み(単位面積当たりの合剤塗布量が同じ)となるように間欠塗布し、乾燥させてプレス前正極板を作製した。これを塗工パターンごとにロールプレスでプレス成型して合剤密度を変化させるが、このとき、ロールプレスのクリアランスや線圧を漸減または漸増させることで、捲回始端から捲回終端まで(捲回方向に)ほぼ一定割合で厚みを変化させた(厚み勾配を有する)正極板1(プレス後)を得た。合剤密度は、厚みの大きい部分で小さくなり、小さい部分で大きくなる。本例では、最も厚い部分の合剤密度が2.6g/cm、最も薄い部分の合剤密度が3.0g/cmとなるように設計した。この場合、捲回方向に厚み勾配を有しているので、合剤密度の平均値(中央値)は最大値と最小値との中間である2.8g/cmとなる。従って、正極板1の合剤密度は、平均値に対しておよそ±7.1%の範囲で変化している。 The positive electrode plate 1 in which the mixture density of the positive electrode mixture layer 2 is changed is produced as follows. That is, a positive electrode mixture slurry in which the positive electrode mixture was kneaded substantially uniformly with a viscosity adjusting solvent N-methylpyrrolidone (hereinafter abbreviated as NMP) was prepared. The obtained positive electrode mixture slurry is intermittently applied to an aluminum foil of a length necessary for one battery so as to have a uniform thickness (the same amount of mixture is applied per unit area), dried, and pressed. A positive electrode plate was produced. The mixture density is changed by press molding with a roll press for each coating pattern. At this time, the clearance and linear pressure of the roll press are gradually reduced or gradually increased from the winding start end to the winding end (捲A positive electrode plate 1 (after pressing) was obtained in which the thickness was changed at a substantially constant rate (in the rotational direction) (having a thickness gradient). The density of the mixture decreases at a portion where the thickness is large, and increases at a portion where the thickness is small. In this example, mixture density of the thickest portion 2.6 g / cm 3, mixture density of the thinnest portion was designed to be 3.0 g / cm 3. In this case, since there is a thickness gradient in the winding direction, the average value (median value) of the mixture density is 2.8 g / cm 3 , which is the middle between the maximum value and the minimum value. Therefore, the mixture density of the positive electrode plate 1 changes in a range of about ± 7.1% with respect to the average value.

一方、負極板3は、負極集電体として銅箔を有している。銅箔の厚さは本例では10μmに設定されている。銅箔の両面には、負極合剤が塗着されており、負極合剤層4が形成されている。負極合剤には、例えば、負極活物質の黒鉛と、導電剤のアセチレンブラックと、バインダのPVDFと、が配合されている。本例では、黒鉛/アセチレンブラック/PVDFの固形分重量比が90/5/5となるように調製されている。負極板3の捲回終端側には、負極タブ端子13が超音波溶接で接合されている。負極合剤層4は、正極板1における正極合剤層2と同様に、捲回群15の中心側に位置する捲回始端から外周側に位置する捲回終端までほぼ一定割合で合剤密度が変化するように形成されている。すなわち、負極合剤層4は、負極板3の長手方向の位置に対する合剤密度が捲回始端から捲回終端までほぼ一定の勾配で変化している(図2のパターンA参照)。このため、負極板3の密度変化部分は捲回方向の全体にわたる。   On the other hand, the negative electrode plate 3 has a copper foil as a negative electrode current collector. The thickness of the copper foil is set to 10 μm in this example. A negative electrode mixture is applied to both surfaces of the copper foil, and a negative electrode mixture layer 4 is formed. In the negative electrode mixture, for example, graphite as a negative electrode active material, acetylene black as a conductive agent, and PVDF as a binder are blended. In this example, the solid content weight ratio of graphite / acetylene black / PVDF is adjusted to 90/5/5. A negative electrode tab terminal 13 is joined to the winding terminal side of the negative electrode plate 3 by ultrasonic welding. Similarly to the positive electrode mixture layer 2 in the positive electrode plate 1, the negative electrode mixture layer 4 is a mixture density at a substantially constant rate from the winding start end positioned on the center side of the winding group 15 to the winding end positioned on the outer peripheral side. Is formed to change. That is, in the negative electrode mixture layer 4, the mixture density with respect to the position in the longitudinal direction of the negative electrode plate 3 changes with a substantially constant gradient from the winding start end to the winding end (see pattern A in FIG. 2). For this reason, the density change part of the negative electrode plate 3 covers the whole winding direction.

負極合剤層4の合剤密度を変化させた負極板3は次のようにして作製されたものである。すなわち、負極合剤を、NMPに略均一に混練した負極合剤スラリを調製した。得られた負極合剤スラリを、電池1個分に必要な長さの銅箔に単位面積当たりの合剤塗布量が同じとなるように間欠塗布し、乾燥させてプレス前負極板を作製した。これを、正極板1の作製と同様にして、捲回始端から捲回終端まで(捲回方向に)ほぼ一定割合で厚みが変化する負極板3(プレス後)を得た。合剤密度は、本例では、厚みの最も厚い部分が1.2g/cm、最も薄い部分が1.5g/cmとなるように設計した。この場合、合剤密度の平均値は1.35g/cmとなり、負極板3の合剤密度は平均値に対しておよそ±11.1%の範囲で変化している。 The negative electrode plate 3 in which the mixture density of the negative electrode mixture layer 4 was changed was produced as follows. That is, a negative electrode mixture slurry in which the negative electrode mixture was kneaded substantially uniformly with NMP was prepared. The obtained negative electrode mixture slurry was intermittently applied to a copper foil having a length required for one battery so that the amount of the mixture applied per unit area was the same, and dried to prepare a negative electrode plate before pressing. . In the same manner as in the production of the positive electrode plate 1, a negative electrode plate 3 (after pressing) whose thickness changes at a substantially constant rate from the winding start end to the winding end (in the winding direction) is obtained. In this example, the mixture density was designed so that the thickest portion was 1.2 g / cm 3 and the thinnest portion was 1.5 g / cm 3 . In this case, the average value of the mixture density is 1.35 g / cm 3 , and the mixture density of the negative electrode plate 3 changes in a range of about ± 11.1% with respect to the average value.

(電池組立)
リチウムイオン二次電池20の組立では、まず、作製した正極板1、負極板3をセパレータ5を介して中空状の軸芯の周囲に捲回し捲回群15を作製する。このとき、正極合剤層2と負極合剤層4とが合剤密度の大きな部分同士が対向し、かつ、正極タブ端子12と負極タブ端子13とが互いに反対方向に導出されるように捲回する。作製した捲回群15を、電池缶17に負極タブ端子13を缶底側に向けて挿入する。軸芯の中空部分(捲回機軸芯に装着するための空間)に溶接棒を挿入し、負極タブ端子13の導出端部を電池缶17の内底面に抵抗溶接する。正極タブ端子12の導出端部を上蓋16の下面に溶接した後、電池缶17の上部のグルービング部分にガスケット18を装着した状態で、捲回群15や電池缶17等の電池内部の付着水分を除くために60℃で20時間の真空乾燥を施した。真空乾燥後、電池缶17内に非水電解液を注液する。非水電解液の注液は、水分の再付着を防ぐためにアルゴン置換されたグローブボックス中などで行う。非水電解液注液後、上蓋16を電池缶17の上部にカシメ固定することで、リチウムイオン二次電池20の組立を完成させる。
(Battery assembly)
In assembling the lithium ion secondary battery 20, first, the produced positive electrode plate 1 and negative electrode plate 3 are wound around a hollow shaft core via a separator 5 to produce a wound group 15. At this time, the positive electrode mixture layer 2 and the negative electrode mixture layer 4 are arranged so that the portions having a high mixture density face each other, and the positive electrode tab terminal 12 and the negative electrode tab terminal 13 are led out in opposite directions. Turn. The produced wound group 15 is inserted into the battery can 17 with the negative electrode tab terminal 13 facing the bottom of the can. A welding rod is inserted into a hollow portion of the shaft core (a space for mounting on the winding machine shaft core), and the lead-out end portion of the negative electrode tab terminal 13 is resistance-welded to the inner bottom surface of the battery can 17. After the lead-out end portion of the positive electrode tab terminal 12 is welded to the lower surface of the upper lid 16, the moisture adhering to the inside of the battery such as the wound group 15 or the battery can 17 with the gasket 18 attached to the grooving portion of the upper portion of the battery can 17. In order to remove, vacuum drying was performed at 60 ° C. for 20 hours. After vacuum drying, a non-aqueous electrolyte is poured into the battery can 17. The nonaqueous electrolyte solution is injected in a glove box substituted with argon in order to prevent reattachment of moisture. After injecting the non-aqueous electrolyte, the upper lid 16 is caulked and fixed to the top of the battery can 17 to complete the assembly of the lithium ion secondary battery 20.

(作用等)
次に、本実施形態のリチウムイオン二次電池20の作用等について説明する。
(Action etc.)
Next, the operation and the like of the lithium ion secondary battery 20 of the present embodiment will be described.

本実施形態のリチウムイオン二次電池20では、正極板1、負極板3ともに、正極合剤層2、負極合剤層4が捲回始端から捲回終端まで(捲回方向に)ほぼ一定割合で合剤密度が変化するように形成されている。合剤密度の大きな部分では、正極合剤層2に占める正極活物質の割合(活物質割合)、負極合剤層4に占める負極活物質の割合がいずれも大きくなるので、リチウムイオン二次電池20のエネルギー密度を向上させることができる。一方、合剤密度の小さな部分では、正極合剤層2、負極合剤層4のいずれも非水電解液の浸潤する空隙が確保されるので、リチウムイオン二次電池20の入出力特性を向上させることができる。従って、高エネルギー密度と高入出力特性との両立を図ることができる。   In the lithium ion secondary battery 20 of the present embodiment, the positive electrode mixture layer 2 and the negative electrode mixture layer 4 both in the positive electrode plate 1 and the negative electrode plate 3 are substantially constant from the winding start end to the winding end (in the winding direction). The mixture density is changed. In the portion where the mixture density is large, the ratio of the positive electrode active material (active material ratio) in the positive electrode mixture layer 2 and the ratio of the negative electrode active material in the negative electrode mixture layer 4 are both large, so that the lithium ion secondary battery An energy density of 20 can be improved. On the other hand, in the portion where the mixture density is small, the positive electrode mixture layer 2 and the negative electrode mixture layer 4 both have voids infiltrated with the non-aqueous electrolyte, thereby improving the input / output characteristics of the lithium ion secondary battery 20. Can be made. Therefore, both high energy density and high input / output characteristics can be achieved.

また、合剤密度を大きくしすぎると、正極合剤層2、負極合剤層4の空隙(空孔体積)が減少し、非水電解液の浸潤が十分に得られなくなるため、却って出力低下を招く。反対に、合剤密度を小さくしすぎると、活物質割合が減少するため、却って電池容量やエネルギー密度の低下を招く。本実施形態のリチウムイオン二次電池20では、活物質合剤の密度が正極板1、負極板3ともに平均値に対して±15%の範囲で変化するように調整されている。このため、合剤密度の大きな部分でも非水電解液の浸潤を確保し、合剤密度の小さな部分でも活物質割合を確保することができる。これにより、エネルギー密度と入出力特性とを同時に向上させることができる。   Further, if the mixture density is increased too much, voids (pore volume) of the positive electrode mixture layer 2 and the negative electrode mixture layer 4 are reduced, and infiltration of the non-aqueous electrolyte cannot be sufficiently obtained. Invite. On the other hand, if the mixture density is too small, the active material ratio is decreased, which causes a decrease in battery capacity and energy density. In the lithium ion secondary battery 20 of the present embodiment, the density of the active material mixture is adjusted so that both the positive electrode plate 1 and the negative electrode plate 3 change within a range of ± 15% with respect to the average value. For this reason, the infiltration of the non-aqueous electrolyte can be ensured even in a portion where the mixture density is large, and the active material ratio can be secured even in a portion where the mixture density is small. Thereby, energy density and input / output characteristics can be improved simultaneously.

更に、本実施形態のリチウムイオン二次電池20では、活物質合剤を集電体に塗着させた後、ロールプレスのクリアランスや線圧を連続的に変化させることにより合剤密度を変化させた正極板1、負極板3が作製され電池組立に用いられる。このため、従来一般的なリチウムイオン二次電池の製造に用いられる工程や材料を使用することができる。これにより、新たな工程や材料を導入することなく、高エネルギー密度と高入出力特性の両立を図ることができる。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, after the active material mixture is applied to the current collector, the mixture density is changed by continuously changing the clearance and linear pressure of the roll press. The positive electrode plate 1 and the negative electrode plate 3 were produced and used for battery assembly. For this reason, the process and material used for manufacture of a conventional general lithium ion secondary battery can be used. Thereby, it is possible to achieve both high energy density and high input / output characteristics without introducing new processes and materials.

また更に、本実施形態のリチウムイオン二次電池20では、合剤密度が捲回方向にそってほぼ一定割合で変化する密度勾配を有しており、捲回軸に平行な方向(捲回方向と交差する方向)ではほぼ同じ合剤密度に形成されている。このため、捲回軸と平行な方向では正極板1、負極板3の厚みがほぼ同じとなり、巻きズレや、セパレータ5と正極板1、負極板3との間に不均一な隙間が生じることなく捲回群15を得ることができる。これにより、大電流充放電時にも電流集中等を抑制することができ、発熱による短絡等を回避して安全性を確保することができる。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, the mixture density has a density gradient that changes at a substantially constant rate along the winding direction, and the direction parallel to the winding axis (winding direction). In the direction intersecting with the same). For this reason, in the direction parallel to the winding axis, the thicknesses of the positive electrode plate 1 and the negative electrode plate 3 are substantially the same, and a winding gap or a non-uniform gap occurs between the separator 5 and the positive electrode plate 1 or the negative electrode plate 3. And the wound group 15 can be obtained. Thereby, current concentration or the like can be suppressed even during large current charging / discharging, and safety can be ensured by avoiding a short circuit due to heat generation.

なお、本実施形態では、正極合剤層2、負極合剤層4がいずれも捲回方向にほぼ一定割合で合剤密度を変化させる例を示したが、本発明はこれに制限されるものではない。例えば、図2に示すように、合剤密度がパターンAのごとく一定割合で変化させることに代えて、パターンB、パターンC、パターンDのごとく変化させるようにしてもよい。すなわち、パターンBでは、合剤密度を、捲回始端側および捲回終端側で一定割合で増加させ、中央部で一定とする。パターンCでは、捲回終端側における合剤密度の増加割合を、捲回始端側および中央部における合剤密度の増加割合より大きくする。また、パターンDでは、合剤密度を、捲回始端側で一定割合で増加させ、中央部で一定とし、捲回終端側で一定割合で減少させる。また、合剤密度の変化を捲回始端側と捲回終端側とで反対、すなわち、捲回始端側から捲回終端側まで一定割合で減少するようにしてもよいことはもちろんである。   In the present embodiment, the positive electrode mixture layer 2 and the negative electrode mixture layer 4 both show an example in which the mixture density is changed at a substantially constant rate in the winding direction, but the present invention is limited to this. is not. For example, as shown in FIG. 2, the mixture density may be changed as in patterns B, C, and D instead of being changed at a constant rate as in pattern A. That is, in the pattern B, the mixture density is increased at a constant rate on the winding start end side and the winding end side, and is constant in the center portion. In the pattern C, the increase rate of the mixture density on the winding end side is set to be larger than the increase rate of the mixture density on the winding start end side and the central portion. In pattern D, the mixture density is increased at a constant rate on the winding start end side, is constant at the center, and is decreased at a constant rate on the winding end side. Of course, the change in the mixture density may be opposite between the winding start end side and the winding end side, that is, may be decreased at a constant rate from the winding start end side to the winding end side.

また、合剤密度を捲回方向に変化させることに代えて、捲回軸方向に変化させるようにしてもよい。合剤密度を複数の方向、例えば、捲回方向および捲回軸方向の両方向で変化させてもよく、この場合には正負極板間の隙間等が実用上問題のないレベルに収まるように設計することで上述した効果を得ることができることはいうまでもない。   Further, the mixture density may be changed in the winding axis direction instead of changing in the winding direction. The mixture density may be changed in a plurality of directions, for example, both the winding direction and the winding axis direction, and in this case, the gap between the positive and negative electrode plates is designed to be within a level where there is no practical problem. Needless to say, the above-described effects can be obtained.

更に、本実施形態では、合剤密度を捲回始端から捲回終端までの全体にわたって変化させる例を示したが、本発明はこれに限定されるものではない。合剤密度をほぼ一定割合で変化させる部分を有していればよく、合剤密度の大きな部分と小さな部分とが形成されていればよい。また、本実施形態では、正極合剤層2、負極合剤層4のいずれも合剤密度を変化させる例を示したが、本発明はこれに制限されるものではなく、少なくとも正極板、負極板の一方が合剤密度を変化させた部分を有していればよい。   Furthermore, in this embodiment, although the example which changes the mixture density over the whole from the winding start end to the winding end end was shown, this invention is not limited to this. It is only necessary to have a portion that changes the mixture density at a substantially constant rate, and it is sufficient that a portion with a large mixture density and a portion with a small mixture density are formed. In the present embodiment, both the positive electrode mixture layer 2 and the negative electrode mixture layer 4 show examples in which the mixture density is changed, but the present invention is not limited to this, and at least the positive electrode plate, the negative electrode layer It is only necessary that one of the plates has a portion where the mixture density is changed.

また更に、本実施形態では、アルミニウム箔、銅箔にそれぞれの合剤スラリを均一な厚みとなるように間欠塗布し乾燥させた後、ロールプレスのクリアランスや線圧を変化させることで、正極合剤層2、負極合剤層4の厚みを変化させて合剤密度を変化させる例を示したが、本発明はこれに制限されるものではない。例えば、単位面積あたりの合剤重量を変化(漸増または漸減)させることで塗布量がほぼ一定割合で変化するようにし、これを厚みが均一となるようにプレス(圧延)加工することで合剤密度を変化させてもよい。このようにしても合剤密度が一定割合で変化する部分を有する正負極板を作製することができる。この方法では、合剤塗工時と圧延時との両方で塗工クリアランスやプレス線圧を変化させる機構を組み込む必要があることから、作製方法としては煩雑となるが、正負極板の厚みをほぼ一定にすることができるので、捲回以降の工程での取扱いを容易にすることができる。   Furthermore, in this embodiment, each mixture slurry is intermittently applied to an aluminum foil and a copper foil so as to have a uniform thickness and dried, and then the roll press clearance and linear pressure are changed to change the positive electrode composite. Although the example which changes the mixture density by changing the thickness of the agent layer 2 and the negative electrode mixture layer 4 was shown, this invention is not restrict | limited to this. For example, by changing (gradually increasing or decreasing) the weight of the mixture per unit area, the coating amount changes at a substantially constant rate, and the mixture is pressed (rolled) so that the thickness becomes uniform. The density may be changed. In this way, a positive and negative electrode plate having a portion where the mixture density changes at a constant rate can be produced. In this method, since it is necessary to incorporate a mechanism for changing the coating clearance and the press line pressure both during coating of the mixture and during rolling, the manufacturing method becomes complicated, but the thickness of the positive and negative electrode plates is reduced. Since it can be made substantially constant, handling in the steps after winding can be facilitated.

更にまた、本実施形態では、正極活物質としてリチウム遷移金属複酸化物、負極活物質として黒鉛をそれぞれ例示したが、本発明はこれらに限定されるものではない。通常、リチウムイオン二次電池に使用される正極活物質、負極活物質を用いてもよい。また、正極合剤、負極合剤に配合する導電剤や結着剤についても制限はなく、配合割合に制限のないことはもちろんである。非水電解液についても特に制限されるものではない。   Furthermore, in this embodiment, lithium transition metal double oxide was exemplified as the positive electrode active material and graphite was exemplified as the negative electrode active material, but the present invention is not limited to these. Usually, you may use the positive electrode active material and negative electrode active material which are used for a lithium ion secondary battery. Moreover, there is no restriction | limiting also about the electrically conductive agent and binder mix | blended with a positive mix, and a negative mix, and, of course, there is no restriction | limiting in a mixture ratio. The non-aqueous electrolyte is not particularly limited.

また、本実施形態では、円筒型リチウムイオン二次電池20を例示したが、本発明は電池形状や電池の内部構造に制限されるものではない。例えば、角型の電池形状としてもよく、正負極外部端子が電池蓋を貫通し電池容器内で軸芯を介して正負極外部端子が押し合っている内部構造としてもよい。また、本発明は、リチウムイオン二次電池以外に、非水電解液を用いる二次電池においてその有用性を否定するものではない。   In the present embodiment, the cylindrical lithium ion secondary battery 20 is exemplified, but the present invention is not limited to the battery shape or the internal structure of the battery. For example, it may have a rectangular battery shape, or may have an internal structure in which the positive and negative external terminals penetrate through the battery lid and the positive and negative external terminals are pressed against each other via the shaft core in the battery container. In addition to the lithium ion secondary battery, the present invention does not deny its usefulness in a secondary battery using a non-aqueous electrolyte.

次に、本実施形態に従い作製したリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例についても併記する。   Next, examples of the lithium ion secondary battery 20 manufactured according to the present embodiment will be described. A comparative example prepared for comparison is also shown.

(実施例1)
実施例1では、捲回始端から捲回終端までほぼ一定割合で合剤密度を変化させた正極板1、負極板3を用いてリチウムイオン二次電池20を作製した。正極合剤層2の合剤密度は、最も小さな部分で2.6g/cm、最も大きな部分で3.0g/cmとなるように設計した。負極合剤層4の合剤密度は、最も小さな部分で1.2g/cm、最も大きな部分で1.5g/cmとなるように設計した。
(Example 1)
In Example 1, the lithium ion secondary battery 20 was produced using the positive electrode plate 1 and the negative electrode plate 3 in which the mixture density was changed at a substantially constant rate from the winding start end to the winding end. Mixture density of the positive electrode mixture layer 2 is the smallest part 2.6 g / cm 3, was designed to be 3.0 g / cm 3 at the largest portion. Mixture density of the negative electrode mixture layer 4 is the smallest part 1.2 g / cm 3, was designed to be 1.5 g / cm 3 at the largest portion.

(比較例1、比較例2)
比較例1、比較例2では、正極合剤層、負極合剤層ともに、略均一な厚みの正負極板を用いる以外は実施例1と同様にしてリチウムイオン二次電池を作製した。比較例1では、正極合剤層、負極合剤層の厚みを、実施例1の正極合剤層2、負極合剤層4で最も厚みが小さい部分の厚みにそれぞれ設定した。すなわち、比較例1では、正極合剤層の合剤密度が3.0g/cm、負極合剤層の合剤密度が1.5g/cmである。比較例2では、正極合剤層、負極合剤層の厚みを、実施例1の正極合剤層2、負極合剤層4で最も厚みが大きい部分の厚みにそれぞれ設定した。すなわち、比較例2では、正極合剤層の合剤密度が2.6g/cm、負極合剤層の合剤密度が1.2g/cmである。
(Comparative Example 1 and Comparative Example 2)
In Comparative Example 1 and Comparative Example 2, a lithium ion secondary battery was fabricated in the same manner as in Example 1 except that positive and negative electrode plates having a substantially uniform thickness were used for both the positive electrode mixture layer and the negative electrode mixture layer. In Comparative Example 1, the thicknesses of the positive electrode mixture layer and the negative electrode mixture layer were set to the thicknesses of the smallest portions of the positive electrode mixture layer 2 and the negative electrode mixture layer 4 in Example 1, respectively. That is, in Comparative Example 1, the mixture density of the positive electrode mixture layer is 3.0 g / cm 3 , and the mixture density of the negative electrode mixture layer is 1.5 g / cm 3 . In Comparative Example 2, the thicknesses of the positive electrode mixture layer and the negative electrode mixture layer were set to the thicknesses of the thickest portions of the positive electrode mixture layer 2 and the negative electrode mixture layer 4 in Example 1, respectively. That is, in Comparative Example 2, the mixture density of the positive electrode mixture layer is 2.6 g / cm 3 , and the mixture density of the negative electrode mixture layer is 1.2 g / cm 3 .

(評価)
各実施例および比較例のリチウムイオン二次電池について、放電率依存特性を評価した。すなわち、各リチウムイオン二次電池を室温(25℃)で4.2Vまで充電した後、5時間率(0.2C)、1時間率(1C)、1/3時間率(3C)、1/5時間率(5C)の各時間率で3Vを終止電圧として放電したときの放電容量を測定した。
(Evaluation)
The discharge rate dependent characteristics were evaluated for the lithium ion secondary batteries of the examples and comparative examples. That is, after charging each lithium ion secondary battery to 4.2 V at room temperature (25 ° C.), 5 hour rate (0.2 C), 1 hour rate (1 C), 1/3 hour rate (3 C), 1 / The discharge capacity was measured when 3V was discharged as the final voltage at each time rate of 5 hours (5C).

図3に示すように、5時間率での放電容量は、実施例1が6.7Ah、比較例1が7.1Ah、比較例2が6.3Ahを示した。同じ活物質塗工量において正負極ともに合剤密度の平均値が最も高いものが比較例1、最も低いものが比較例2、その中間が実施例1となるため、正負極の厚みの関係から捲回群径が同じとなるように電池設計するとエネルギー密度は高い順に比較例1、実施例1、比較例2となることから、この結果は妥当である。一方、1/5時間率の高い放電率においては正負極の合剤密度が低い方が非水電解液の浸潤に優れるので、放電容量が高くなる。従って、放電率を高くすることによる放電容量の低下率は低い順に比較例2、実施例1、比較例1となった。このような連続放電では合剤密度の影響がほぼ線形に現れるので合剤密度の平均値の順に従って序列が現れた。   As shown in FIG. 3, the discharge capacity at a 5-hour rate was 6.7 Ah in Example 1, 7.1 Ah in Comparative Example 1, and 6.3 Ah in Comparative Example 2. In the same active material coating amount, both the positive and negative electrodes have the highest mixture density in Comparative Example 1, the lowest one in Comparative Example 2, and the middle in Example 1. Therefore, from the relationship between the positive and negative electrode thicknesses. If the batteries are designed to have the same wound group diameter, the energy density becomes Comparative Example 1, Example 1, and Comparative Example 2 in descending order, so this result is reasonable. On the other hand, at a discharge rate with a high 1/5 hour rate, the lower the mixture density of the positive and negative electrodes, the better the infiltration of the non-aqueous electrolyte, and the higher the discharge capacity. Therefore, the decrease rate of the discharge capacity by increasing the discharge rate was Comparative Example 2, Example 1, and Comparative Example 1 in ascending order. In such a continuous discharge, the influence of the mixture density appears almost linearly, so that an order appears in the order of the average value of the mixture density.

また、各実施例および比較例のリチウムイオン二次電池について、入出力特性を評価した。すなわち、各リチウムイオン二次電池を室温(25℃)で定格容量の10%〜90%となるように容量規制で充電した後、各充電状態(SOC)において1時間率(1C)、1/3時間率(3C)、1/5時間率(5C)で10秒間放電し(10秒間の放電の後には1時間率で同じ電気量を充電してSOCがずれないように補正した。)、このときの10秒目電圧を測定した。10秒目電圧を放電電流値に対してプロットし、この近似直線を放電終止電圧に外挿したときの交点における電流と電圧との積をその電池の出力値とした。同様に、各SOCにおいて1時間率(1C)、1/3時間率(3C)、1/5時間率(5C)で10秒間充電し、このときの10秒目電圧を測定した。10秒目電圧を放電電流値に対してプロットし、この近似直線を充電終止電圧に外挿したときの交点における電流と電圧との積をその電池の入力値とした。求めた出力値、入力値を電池重量で除した値をそれぞれ出力密度、入力密度とし、SOCに対してプロットした。   The input / output characteristics of the lithium ion secondary batteries of the examples and comparative examples were evaluated. That is, after charging each lithium ion secondary battery with capacity regulation so that it becomes 10% to 90% of the rated capacity at room temperature (25 ° C.), 1 hour rate (1C), 1 / It was discharged for 10 seconds at a 3 hour rate (3C) and a 1/5 hour rate (5C) (after discharging for 10 seconds, the same amount of electricity was charged at an hour rate to correct the SOC so that it does not shift). The voltage at 10 seconds at this time was measured. The voltage at the 10th second was plotted against the discharge current value, and the product of the current and voltage at the intersection when this approximate line was extrapolated to the discharge end voltage was taken as the output value of the battery. Similarly, each SOC was charged at 1 hour rate (1C), 1/3 hour rate (3C), and 1/5 hour rate (5C) for 10 seconds, and the voltage at 10 seconds at this time was measured. The voltage at 10 seconds was plotted against the discharge current value, and the product of the current and voltage at the intersection when this approximate line was extrapolated to the end-of-charge voltage was taken as the input value of the battery. Values obtained by dividing the obtained output value and input value by the weight of the battery were taken as output density and input density, respectively, and plotted against the SOC.

図4に示すように、入出力密度は、おおよそ上述した放電率依存特性と同様に、合剤密度の平均値の小さな比較例2が最も優れており、ついで実施例1、比較例1となった。ところが、実施例1の入出力特性は比較例2により近い性能を示した。これは、この計測方法のように大電流値で短時間の放電が求められる場合には、非水電解液の浸潤が十分得られている正負極板の低密度部分が優先的に放電または充電に寄与するためと考えられる。以上説明した放電率依存特性および入出力特性の評価結果から、実施例1のような合剤密度の変化する部分を有する正負極板を用いることで低負荷時の電気容量を確保しながら、短時間であれば高負荷にも対応できる電池とすることができることが判明した。   As shown in FIG. 4, as for the input / output density, the comparative example 2 having a small average value of the mixture density is the most excellent, as in the discharge rate dependence characteristics described above, and then the examples 1 and 1 are obtained. It was. However, the input / output characteristics of Example 1 were close to those of Comparative Example 2. This is because when the discharge is required for a short time with a large current value as in this measurement method, the low-density part of the positive and negative electrode plates where the nonaqueous electrolyte is sufficiently infiltrated is preferentially discharged or charged. It is thought that it contributes to. From the evaluation results of the discharge rate dependency characteristics and the input / output characteristics described above, while using the positive and negative electrode plates having the portion where the mixture density changes as in Example 1, the electric capacity at the time of low load is secured, while the short It has been found that a battery capable of handling a high load can be obtained with time.

本発明はエネルギー密度および入出力特性の向上を図ることができる非水電解液二次電池を提供するため、非水電解液二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   INDUSTRIAL APPLICABILITY Since the present invention provides a non-aqueous electrolyte secondary battery capable of improving energy density and input / output characteristics, it contributes to the manufacture and sale of non-aqueous electrolyte secondary batteries. Have

本発明を適用した実施形態の円筒型リチウムイオン二次電池の断面図である。It is sectional drawing of the cylindrical lithium ion secondary battery of embodiment to which this invention is applied. 実施形態の円筒型リチウムイオン二次電池に用いた正極板、負極板の捲回始端から捲回終端までの位置に対する合剤密度の変化のパターンを模式的に示すグラフである。It is a graph which shows typically the pattern of the change of the mixture density with respect to the position from the winding start end of the positive electrode plate used for the cylindrical lithium ion secondary battery of embodiment, and a negative electrode plate to the winding termination | terminus. 実施例1、比較例1、比較例2の円筒型リチウムイオン二次電池の放電率依存特性を示し、放電率に対する放電容量を示すグラフである。It is a graph which shows the discharge rate dependence characteristic of the cylindrical lithium ion secondary battery of Example 1, Comparative Example 1, and Comparative Example 2, and shows the discharge capacity with respect to the discharge rate. 実施例1、比較例1、比較例2の円筒型リチウムイオン二次電池の入出力特性を示し、充電状態に対する入出力密度を示すグラフである。It is a graph which shows the input-output characteristic of the cylindrical lithium ion secondary battery of Example 1, Comparative example 1, and Comparative example 2, and shows the input-output density with respect to a charge state.

符号の説明Explanation of symbols

1 正極板
2 正極合剤層
3 負極板
4 負極合剤層
15 捲回群
20 円筒型リチウムイオン二次電池(非水電解液二次電池)
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Positive electrode mixture layer 3 Negative electrode plate 4 Negative electrode mixture layer 15 Winding group 20 Cylindrical lithium ion secondary battery (nonaqueous electrolyte secondary battery)

Claims (5)

活物質合剤がそれぞれ集電体に塗着された正負極板を備えた非水電解液二次電池において、前記正負極板の少なくとも一方は、前記活物質合剤の密度が面方向一側から他側へ向けてほぼ一定割合で変化する密度変化部分を有していることを特徴とする非水電解液二次電池。   In the non-aqueous electrolyte secondary battery including positive and negative electrode plates each coated with an active material mixture on a current collector, at least one of the positive and negative electrode plates has a density of the active material mixture on one side in the plane direction A non-aqueous electrolyte secondary battery having a density changing portion that changes at a substantially constant rate from one side to the other side. 前記正負極板の少なくとも一方は、前記活物質合剤の密度が平均値に対して±15%の範囲で変化していることを特徴とする請求項1に記載の非水電解液二次電池。   2. The non-aqueous electrolyte secondary battery according to claim 1, wherein at least one of the positive and negative electrode plates has a density of the active material mixture changing in a range of ± 15% with respect to an average value. . 前記正負極板が捲回されており、前記正負極板の少なくとも一方が略捲回方向ないし捲回軸方向に前記密度変化部分を有していることを特徴とする請求項1または請求項2に記載の非水電解液二次電池。   3. The positive and negative electrode plates are wound, and at least one of the positive and negative electrode plates has the density changing portion in a substantially winding direction or a winding axis direction. A nonaqueous electrolyte secondary battery according to 1. 前記正負極板の少なくとも一方は、前記活物質合剤の密度が前記面方向一側から前記他側までほぼ一定割合で変化していることを特徴とする請求項1に記載の非水電解液二次電池。   2. The non-aqueous electrolyte according to claim 1, wherein at least one of the positive and negative electrode plates, the density of the active material mixture changes from the one side in the plane direction to the other side at a substantially constant rate. Secondary battery. 前記正負極板の少なくとも一方は、前記活物質合剤の塗着厚さが前記面方向一側から前記他側までほぼ一定割合で変化していることを特徴とする請求項4に記載の非水電解液二次電池。   5. The non-positive electrode according to claim 4, wherein at least one of the positive and negative electrode plates has a coating thickness of the active material mixture changing at a substantially constant rate from one side in the plane direction to the other side. Water electrolyte secondary battery.
JP2008105303A 2008-04-15 2008-04-15 Nonaqueous electrolyte secondary battery Pending JP2009259502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105303A JP2009259502A (en) 2008-04-15 2008-04-15 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105303A JP2009259502A (en) 2008-04-15 2008-04-15 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2009259502A true JP2009259502A (en) 2009-11-05

Family

ID=41386689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105303A Pending JP2009259502A (en) 2008-04-15 2008-04-15 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2009259502A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138729A (en) * 2010-01-04 2011-07-14 Hitachi Ltd Nonaqueous secondary battery
WO2012025963A1 (en) * 2010-08-26 2012-03-01 日立ビークルエナジー株式会社 Nonaqueous-electrolyte battery
JP2012048955A (en) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing negative electrode for lithium ion secondary battery
JP2013020802A (en) * 2011-07-11 2013-01-31 Hitachi Ltd Storage battery, battery pack, battery pack installing method, electrode group, and electrode group manufacturing method
CN104466261A (en) * 2013-09-24 2015-03-25 株式会社东芝 Nonaqueous electrolyte secondary battery and battery pack
KR20150049635A (en) * 2013-10-30 2015-05-08 삼성에스디아이 주식회사 Rechargeable Battery
WO2016116971A1 (en) * 2015-01-20 2016-07-28 パナソニック株式会社 Positive plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20180081228A (en) * 2017-01-06 2018-07-16 주식회사 엘지화학 Electrode Assembly Comprising Electrode Having Different Porosity Depending on Position of Unit-cell
JP2020155233A (en) * 2019-03-18 2020-09-24 トヨタ自動車株式会社 Manufacturing method of wound electrode body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195556A (en) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002124252A (en) * 2000-10-12 2002-04-26 Yuasa Corp Manufacturing method of electrode for storage battery
JP2003077482A (en) * 2001-08-31 2003-03-14 Sanyo Electric Co Ltd Battery
JP2004031217A (en) * 2002-06-27 2004-01-29 Sony Corp Battery
JP2007087231A (en) * 2005-09-22 2007-04-05 Yushin Precision Equipment Co Ltd Controller for production facility
JP2007172878A (en) * 2005-12-19 2007-07-05 Gs Yuasa Corporation:Kk Battery and its manufacturing method
JP2009252349A (en) * 2008-04-01 2009-10-29 Panasonic Corp Electrode plate for nonaqueous electrolyte secondary battery, and manufacturing method of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195556A (en) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002124252A (en) * 2000-10-12 2002-04-26 Yuasa Corp Manufacturing method of electrode for storage battery
JP2003077482A (en) * 2001-08-31 2003-03-14 Sanyo Electric Co Ltd Battery
JP2004031217A (en) * 2002-06-27 2004-01-29 Sony Corp Battery
JP2007087231A (en) * 2005-09-22 2007-04-05 Yushin Precision Equipment Co Ltd Controller for production facility
JP2007172878A (en) * 2005-12-19 2007-07-05 Gs Yuasa Corporation:Kk Battery and its manufacturing method
JP2009252349A (en) * 2008-04-01 2009-10-29 Panasonic Corp Electrode plate for nonaqueous electrolyte secondary battery, and manufacturing method of the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138729A (en) * 2010-01-04 2011-07-14 Hitachi Ltd Nonaqueous secondary battery
US9123938B2 (en) 2010-08-26 2015-09-01 Hitachi Automotive Systems, Ltd. Nonaqueous-electrolyte battery
JP5620499B2 (en) * 2010-08-26 2014-11-05 日立オートモティブシステムズ株式会社 Non-aqueous electrolyte battery
JP2012048955A (en) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing negative electrode for lithium ion secondary battery
WO2012025963A1 (en) * 2010-08-26 2012-03-01 日立ビークルエナジー株式会社 Nonaqueous-electrolyte battery
JP2013020802A (en) * 2011-07-11 2013-01-31 Hitachi Ltd Storage battery, battery pack, battery pack installing method, electrode group, and electrode group manufacturing method
KR101522449B1 (en) * 2011-07-11 2015-05-21 가부시키가이샤 히타치세이사쿠쇼 Secondary battery, assembled battery, assembled battery settings, electrodes, and production method of electrodes
US9774030B2 (en) 2013-09-24 2017-09-26 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery pack
CN104466261A (en) * 2013-09-24 2015-03-25 株式会社东芝 Nonaqueous electrolyte secondary battery and battery pack
KR20150049635A (en) * 2013-10-30 2015-05-08 삼성에스디아이 주식회사 Rechargeable Battery
KR102211366B1 (en) * 2013-10-30 2021-02-03 삼성에스디아이 주식회사 Rechargeable Battery
JPWO2016116971A1 (en) * 2015-01-20 2017-10-26 パナソニック株式会社 Positive electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20180013173A1 (en) * 2015-01-20 2018-01-11 Panasonic Corporation Positive electrode plates for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary batteries
US10483594B2 (en) 2015-01-20 2019-11-19 Panasonic Corporation Positive electrode plates for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary batteries
WO2016116971A1 (en) * 2015-01-20 2016-07-28 パナソニック株式会社 Positive plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20180081228A (en) * 2017-01-06 2018-07-16 주식회사 엘지화학 Electrode Assembly Comprising Electrode Having Different Porosity Depending on Position of Unit-cell
KR102261649B1 (en) 2017-01-06 2021-06-08 주식회사 엘지에너지솔루션 Electrode Assembly Comprising Electrode Having Different Porosity Depending on Position of Unit-cell
JP7116895B2 (en) 2019-03-18 2022-08-12 トヨタ自動車株式会社 Manufacturing method of wound electrode body
JP2020155233A (en) * 2019-03-18 2020-09-24 トヨタ自動車株式会社 Manufacturing method of wound electrode body

Similar Documents

Publication Publication Date Title
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
JP5286200B2 (en) Lithium ion secondary battery
JP2009259502A (en) Nonaqueous electrolyte secondary battery
JP5171283B2 (en) Non-aqueous electrolyte secondary battery
JP2013065453A (en) Lithium secondary battery
JP3589021B2 (en) Lithium ion secondary battery
JP6728724B2 (en) First charge method of lithium secondary battery
JP2008243529A (en) Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5433164B2 (en) Lithium ion secondary battery
JP2019160782A (en) Negative electrode and lithium ion secondary battery
RU2644590C1 (en) Auxiliary battery with non-aqueous electrolyte and method of manufacturing the auxiliary battery with non-aqueous electrolyte
JP2009123424A (en) Nonaqueous electrolyte secondary battery
JP2011054334A (en) Lithium secondary battery
JP2017139107A5 (en)
KR20110100301A (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP2005158623A (en) Nonaqueous electrolyte secondary battery
JP2006012703A (en) Secondary battery
JP2007149441A (en) Rolled power storage device
JP5742402B2 (en) Lithium secondary battery and manufacturing method thereof
JP2010015852A (en) Secondary battery
JP6709991B2 (en) Lithium ion secondary battery
US20190067729A1 (en) Lithium ion electrochemical devices having excess electrolyte capacity to improve lifetime
JP2002373655A (en) Lithium secondary battery
JP6106774B2 (en) Prismatic lithium-ion battery
JP2013115033A (en) Square lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423