JP2010015852A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2010015852A
JP2010015852A JP2008175277A JP2008175277A JP2010015852A JP 2010015852 A JP2010015852 A JP 2010015852A JP 2008175277 A JP2008175277 A JP 2008175277A JP 2008175277 A JP2008175277 A JP 2008175277A JP 2010015852 A JP2010015852 A JP 2010015852A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
secondary battery
material layer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008175277A
Other languages
Japanese (ja)
Inventor
Kazuki Takimoto
一樹 瀧本
Akira Kojima
亮 小島
Mikio Oguma
幹男 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2008175277A priority Critical patent/JP2010015852A/en
Publication of JP2010015852A publication Critical patent/JP2010015852A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery for realizing each intrinsic performance a plurality of active substances it uses. <P>SOLUTION: The cylindrical lithium-ion secondary battery 10 includes a battery can 6 of a bottomed cylindrical shape. The battery can 6 houses an electrode group 11 with a cathode plate and an anode plate with a strip shape wound around via a separator 5. The cathode plate includes a cathode active material layer 2 containing a cathode active material coated on either side of a cathode collector 1. The anode plate includes an anode active material layer 4a containing graphite system carbon powder coated on one face of an anode collector 3, as well as an anode active material layer 4b containing amorphous system carbon powder coated on the other. Both anode active material layers 4a, 4b are exposed to a surface of the anode plate. Each active material exerts its intrinsic performance on the surface of the anode plate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は二次電池に係り、特に、集電体に活物質を含む活物質層が塗着された正極板および負極板がセパレータを介して配置された電極群と、電極群を浸潤する電解液と、電極群および電解液を収容する電池容器とを備えた二次電池に関する。   The present invention relates to a secondary battery, and in particular, an electrode group in which an active material layer containing an active material is applied to a current collector and an electrode group in which a negative electrode plate is disposed via a separator, and electrolysis that infiltrates the electrode group The present invention relates to a secondary battery including a liquid and a battery container that houses an electrode group and an electrolytic solution.

二次電池の中でも非水電解液が用いられたリチウム二次電池は、高エネルギー密度を
有するため、VTRカメラやノート型パソコン、携帯電話などのポータブル機器等の電源に広く使用されている。一方、昨今の地球温暖化や石油枯渇の問題から、ハイブリッド電気自動車(HEV)が普及し始めている。また、さらなる燃費の改善からプラグインハイブリッド(PHEV)や電気自動車(EV)の開発が急がれており、これらの電源としても使用されている。HEVでは発進時や加速時の動力アシストにモーターが使用され、このときに電源として使用される二次電池は高出力型、すなわち、短時間で大電流を放電可能な高放電率特性を備えていることが要求される。一方、PHEVやEVでは定常走行時にもモーターが使用されるため高容量かつ高放電率特性を備えた二次電池が求められている。更に、長期の使用期間に対応すべく電池の長寿命化も求められる。
Among secondary batteries, a lithium secondary battery using a non-aqueous electrolyte has a high energy density, and is therefore widely used as a power source for portable devices such as VTR cameras, notebook computers, and mobile phones. On the other hand, hybrid electric vehicles (HEV) are beginning to spread due to recent global warming and oil depletion problems. In addition, development of plug-in hybrids (PHEV) and electric vehicles (EV) is urgently required for further improvement in fuel consumption, and they are also used as power sources for these. In HEV, a motor is used for power assist when starting or accelerating, and the secondary battery used as a power source at this time has a high output type, that is, a high discharge rate characteristic capable of discharging a large current in a short time. It is required to be. On the other hand, in PHEV and EV, since a motor is used even during steady running, a secondary battery having a high capacity and a high discharge rate characteristic is required. Furthermore, it is required to extend the battery life in order to cope with a long use period.

従来、リチウム二次電池では、リチウムイオンを吸蔵、放出可能な活物質を含む活物質層が正負極集電体にそれぞれ塗着されている。一般に、正極活物質にはリチウム含有複酸化物が用いられており、負極活物質には天然黒鉛、人造黒鉛等の黒鉛系炭素材やフラン樹脂等を焼成した非晶質炭素材等の炭素材が用いられる。負極活物質に黒鉛系炭素材を用いた場合、不可逆容量が非晶質炭素材より小さく電圧特性が平坦なため、高容量のリチウム二次電池を得ることができる。ところが、充放電に伴う結晶の体積変化が非晶質炭素材と比べて大きいため、早期に寿命に至る。これに対し、非晶質炭素材を用いた場合、大電流密度での充放電特性が黒鉛系炭素材と比べて優れており、充放電に伴う結晶の体積変化が黒鉛系炭素材と比べて小さいため、高サイクル特性、高放電率特性を備えたリチウム二次電池を得ることができる。ところが、不可逆容量が黒鉛系炭素材より大きいため、リチウム二次電池での高容量化が難しい。   Conventionally, in a lithium secondary battery, an active material layer containing an active material capable of occluding and releasing lithium ions is applied to the positive and negative electrode current collectors. In general, a lithium-containing composite oxide is used for the positive electrode active material, and a carbon material such as a graphite-based carbon material such as natural graphite or artificial graphite or an amorphous carbon material obtained by firing a furan resin or the like as the negative electrode active material. Is used. When a graphite-based carbon material is used for the negative electrode active material, the irreversible capacity is smaller than that of the amorphous carbon material and the voltage characteristics are flat, so that a high-capacity lithium secondary battery can be obtained. However, since the volume change of the crystal accompanying charging / discharging is larger than that of the amorphous carbon material, the lifetime is reached early. In contrast, when an amorphous carbon material is used, the charge / discharge characteristics at a large current density are superior to those of a graphite-based carbon material, and the volume change of crystals accompanying charge / discharge is smaller than that of a graphite-based carbon material. Since it is small, a lithium secondary battery having high cycle characteristics and high discharge rate characteristics can be obtained. However, since the irreversible capacity is larger than that of the graphite-based carbon material, it is difficult to increase the capacity of the lithium secondary battery.

上述したように、リチウム二次電池に使用される単一の活物質で高容量、長寿命および高放電率等のすべての要求を満足することは難しいので、複数の活物質を併用する方法が考えられる。複数の活物質を用いる方法として、負極集電体に異なる活物質を含む2つの活物質層を積層塗着させる技術が開示されている(例えば、特許文献1参照)。   As described above, it is difficult to satisfy all requirements such as high capacity, long life and high discharge rate with a single active material used for lithium secondary batteries, so there is a method of using a plurality of active materials in combination. Conceivable. As a method of using a plurality of active materials, a technique of laminating and coating two active material layers containing different active materials on a negative electrode current collector is disclosed (for example, see Patent Document 1).

特開平8−138671号公報JP-A-8-138671

しかしながら、特許文献1の技術では、負極集電体の下層に塗着された活物質層に含まれる活物質は上層に塗着された活物質層に含まれる活物質と比較して反応速度が遅くなり、十分に性能が発揮されない。一方、複数の活物質が混合された混合活物質を含む活物質層を正負極集電体に塗着した場合には、異なる性質を持つ活物質が活物質層内でランダムに存在するため、それぞれの活物質の性能が発揮されにくい。   However, in the technique of Patent Document 1, the active material contained in the active material layer applied to the lower layer of the negative electrode current collector has a reaction rate higher than that of the active material contained in the active material layer applied to the upper layer. It will be slow and not fully perform. On the other hand, when an active material layer containing a mixed active material in which a plurality of active materials are mixed is applied to the positive and negative electrode current collectors, active materials having different properties are present randomly in the active material layer. The performance of each active material is difficult to demonstrate.

本発明は上記事案に鑑み、複数の活物質を用いてそれぞれの活物質本来の性能を発揮することができ、高出力、高容量特性をともに向上させることができる二次電池を提供することを課題とする。   In view of the above circumstances, the present invention provides a secondary battery that can exhibit the original performance of each active material using a plurality of active materials and can improve both high output and high capacity characteristics. Let it be an issue.

上記課題を解決するために、本発明は、集電体に活物質を含む活物質層が塗着された正極板および負極板がセパレータを介して配置された電極群と、前記電極群を浸潤する電解液と、前記電極群および前記電解液を収容する電池容器とを備え、少なくとも前記正負極板の一方の集電体には異なる活物質をそれぞれ含む複数の活物質層が塗着されており、前記複数の活物質層はいずれも前記正極板ないし負極板の表面に露出していることを特徴とする。   In order to solve the above problems, the present invention provides an electrode group in which an active material layer containing an active material is applied to a current collector and an electrode group in which a negative electrode plate is disposed via a separator, and infiltrates the electrode group A plurality of active material layers each including a different active material is applied to at least one current collector of the positive and negative electrode plates. The plurality of active material layers are all exposed on the surface of the positive electrode plate or the negative electrode plate.

本発明では、少なくとも正負極板の一方の集電体には異なる活物質をそれぞれ含む複数の活物質層が塗着されており、いずれの活物質層も正極板ないし負極板の表面に露出しているので、それぞれの活物質本来の性能を発揮することができ、高出力、高容量特性を向上させることができる。   In the present invention, at least one current collector of the positive and negative electrode plates is coated with a plurality of active material layers each containing a different active material, and any active material layer is exposed on the surface of the positive electrode plate or the negative electrode plate. Therefore, the original performance of each active material can be exhibited, and high output and high capacity characteristics can be improved.

この場合において、複数の活物質層は、少なくとも正負極板の一方の集電体の両面にそれぞれ異なる活物質を含む活物質層が塗着されていてもよく、少なくとも正負極板の一方の集電体の少なくとも一面にストライプ状に塗着されていてもよい。また、少なくとも正負極板の一方は正極板であり、異なる活物質は同一の作動電位範囲内にあることが望ましい。   In this case, the plurality of active material layers may be coated with active material layers containing different active materials on both surfaces of at least one current collector of the positive and negative electrode plates, and at least one current collector of the positive and negative electrode plates. It may be applied in stripes on at least one surface of the electric body. Moreover, it is desirable that at least one of the positive and negative electrode plates is a positive electrode plate, and different active materials are in the same operating potential range.

本発明によれば、少なくとも正負極板の一方の集電体には異なる活物質をそれぞれ含む複数の活物質層が塗着されており、いずれの活物質層も正極板ないし負極板の表面に露出しているので、それぞれの活物質本来の性能を発揮することができ、高出力、高容量特性を向上させることができる、という効果を得ることができる。   According to the present invention, at least one of the current collectors of the positive and negative electrode plates is coated with a plurality of active material layers each containing different active materials, and any active material layer is applied to the surface of the positive electrode plate or the negative electrode plate. Since it is exposed, the original performance of each active material can be exhibited, and the effect that high output and a high capacity | capacitance characteristic can be improved can be acquired.

(第1実施形態)
以下、図面を参照して、本発明を適用した円柱状リチウムイオン二次電池の第1の実施の形態について説明する。
(First embodiment)
Hereinafter, a first embodiment of a cylindrical lithium ion secondary battery to which the present invention is applied will be described with reference to the drawings.

(構成)
本実施形態の円柱状リチウムイオン二次電池10は、図1に示すように、電池容器となるニッケルメッキを施された鉄製で有底円筒状の電池缶6を有している。電池缶6には、帯状の正極板および負極板がセパレータ5を介して断面渦巻状に捲回された電極群11が収容されている。電極群11の外周面全周には、図示を省略した絶縁被覆が施されている。本例では、セパレータ5には厚さが25μm、長手方向と交差する幅(以下、単に幅と記載する。)が58mmのポリエチレン多孔膜が用いられている。なお、リチウムイオン二次電池10の定格電圧は4Vに設定されている。
(Constitution)
As shown in FIG. 1, the columnar lithium ion secondary battery 10 according to the present embodiment includes a nickel-plated iron-made bottomed cylindrical battery can 6 serving as a battery container. The battery can 6 accommodates an electrode group 11 in which a belt-like positive electrode plate and a negative electrode plate are wound in a spiral shape through a separator 5. An insulation coating (not shown) is applied to the entire outer peripheral surface of the electrode group 11. In this example, the separator 5 is a polyethylene porous film having a thickness of 25 μm and a width that intersects the longitudinal direction (hereinafter simply referred to as a width) of 58 mm. The rated voltage of the lithium ion secondary battery 10 is set to 4V.

電極群11の上側には、一端が正極集電体1に接合されたアルミニウム製でリボン状の正極タブ端子8が導出されている。正極タブ端子8の他端は、電極群11の上側に配置され正極外部端子となる円盤状の上蓋7の下面に接合されている。上蓋7には、電池内圧の上昇に応じて作動する図示しない電流遮断スイッチおよび電流遮断スイッチが作動する圧力よりも高い圧力で作動する安全弁機構(不図示)が組み込まれている。一方、電極群11の下側には、一端を負極集電体3に接合された銅製でリボン状の負極タブ端子が導出されている。負極タブ端子の他端は、電池缶6の内底面に接合されている。従って、負極板と電池缶6が電気的に接続され電池缶6が負極外部端子を兼ねている。   On the upper side of the electrode group 11, a ribbon-like positive electrode tab terminal 8 made of aluminum and having one end joined to the positive electrode current collector 1 is led out. The other end of the positive electrode tab terminal 8 is joined to the lower surface of the disc-shaped upper lid 7 which is disposed on the upper side of the electrode group 11 and serves as a positive electrode external terminal. The upper lid 7 incorporates a current cutoff switch (not shown) that operates in response to an increase in battery internal pressure and a safety valve mechanism (not shown) that operates at a pressure higher than the pressure at which the current cutoff switch operates. On the other hand, a ribbon-like negative electrode tab terminal made of copper having one end bonded to the negative electrode current collector 3 is led out below the electrode group 11. The other end of the negative electrode tab terminal is joined to the inner bottom surface of the battery can 6. Therefore, the negative electrode plate and the battery can 6 are electrically connected, and the battery can 6 also serves as a negative electrode external terminal.

上蓋7は、絶縁性のガスケット9を介して電池缶6の上部にカシメ固定されている。このため、リチウムイオン二次電池10の内部は密封されている。また、電池缶6内には、図示を省略した非水電解液が注液されている。非水電解液には、炭酸エチレン、炭酸ジメチルおよび炭酸ジエチルが体積比30:50:20の割合で混合された混合溶媒中に、6フッ化リン酸リチウム(LiPF)が1モル/リットル溶解されたものが用いられている。本例では、非水電解液は電池缶6に5ml注液されている。 The upper lid 7 is caulked and fixed to the upper part of the battery can 6 via an insulating gasket 9. For this reason, the inside of the lithium ion secondary battery 10 is sealed. In addition, a non-aqueous electrolyte (not shown) is injected into the battery can 6. In the non-aqueous electrolyte, 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solvent in which ethylene carbonate, dimethyl carbonate and diethyl carbonate are mixed at a volume ratio of 30:50:20. Is used. In this example, 5 ml of the non-aqueous electrolyte is injected into the battery can 6.

(正極板)
正極板は、単一の活物質を用いて作製されている。正極活物質としてリチウム−マンガン−コバルト−ニッケル複合酸化物(LiMn0.33Co0.33Ni0.33)と、導電材として平均粒子径が0.5μmの黒鉛粉末と、結着剤としてポリフッ化ビニリデン(呉羽化学工業(株)製 KF#1120)とが80:10:10の重量比率で混合され、溶媒であるN−メチル−2−ピロリドン(以下、NMPと略記する。)に略均一に分散させて合剤スラリーが作製される。本例では、正極集電体1として厚さ20μmのアルミニウム箔が用いられ、正極集電体1の両面に合剤スラリーが略均一にロール・ツー・ロール法転写により塗布される。このとき、正極集電体1の長手方向両端部には正極タブ端子8を接合するための合剤スラリーの未塗布部が形成されている。乾燥後、プレス一体化され、正極集電体1の両面に正極活物質層2がそれぞれ塗着される。プレス圧力を上げることで正極活物質層2の密度、すなわち、正極活物質の密度が高くなり電池性能が向上するが、プレス圧力が高すぎると正極集電体1が伸びて寸法変化が生じるため、寸法変化しない圧力範囲でプレスされる。本例では、正極板の厚さが160〜165μm、正極活物質層2の密度が3.5g/cmに設定される。その後、切断することで、幅が54mm、長さが450mmの帯状の正極板が作製される。
(Positive electrode plate)
The positive electrode plate is produced using a single active material. Lithium-manganese-cobalt-nickel composite oxide (LiMn 0.33 Co 0.33 Ni 0.33 O 2 ) as a positive electrode active material, graphite powder having an average particle diameter of 0.5 μm as a conductive material, and a binder Polyvinylidene fluoride (KF # 1120 manufactured by Kureha Chemical Co., Ltd.) is mixed at a weight ratio of 80:10:10, and the solvent is N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP). A mixture slurry is produced by dispersing the mixture almost uniformly. In this example, an aluminum foil having a thickness of 20 μm is used as the positive electrode current collector 1, and the mixture slurry is applied on both surfaces of the positive electrode current collector 1 approximately uniformly by a roll-to-roll method transfer. At this time, uncoated portions of the mixture slurry for joining the positive electrode tab terminals 8 are formed at both longitudinal ends of the positive electrode current collector 1. After drying, it is press-integrated and the positive electrode active material layers 2 are applied to both surfaces of the positive electrode current collector 1. Increasing the press pressure increases the density of the positive electrode active material layer 2, that is, the density of the positive electrode active material, and improves battery performance. However, if the press pressure is too high, the positive electrode current collector 1 is stretched and changes in dimensions. , Pressed in a pressure range that does not change dimensions. In this example, the thickness of the positive electrode plate is set to 160 to 165 μm, and the density of the positive electrode active material layer 2 is set to 3.5 g / cm 3 . Thereafter, by cutting, a belt-like positive electrode plate having a width of 54 mm and a length of 450 mm is produced.

(負極板)
負極板は、高容量特性を有する黒鉛系炭素粉末および高放電率特性を有する非晶質系炭素粉末の2種類の活物質を用いて作製されている。黒鉛系炭素粉末および非晶質系炭素粉末が、結着剤のポリフッ化ビニリデン(呉羽化学工業(株)製 KF#9130)にそれぞれ90:10の重量比率で混合され、溶媒であるNMPにそれぞれ略均一に分散させて2種類の合剤スラリーが作製される。負極集電体3として厚さ10μmの銅箔を用い、負極集電体3の一面に黒鉛系炭素粉末を含む合剤スラリーが、他面に非晶質系炭素粉末を含む合剤スラリーが略均一にロール・ツー・ロール法転写によりそれぞれ塗布される。正極板と同様に、負極集電体3の長手方向両端部には負極タブ端子を接合するための合剤スラリーの未塗布部が形成されている。乾燥後、プレス一体化され負極集電体3の両面にそれぞれ異なる活物質を含む2つの負極活物質層4が塗着される。すなわち、負極集電体3の一面に黒鉛系炭素粉末を含む負極活物質層4aが、他面に非晶質系炭素粉末を含む負極活物質層4bがそれぞれ塗着されている。正極板と同様に、負極集電体3が伸びて寸法変化しない圧力範囲でプレスされる。本例では、負極板の厚さが160〜165μm、負極活物質層4の密度が1.1〜1.7g/cmに設定される。その後、切断することで、幅が56mm、長さが500mmの帯状の負極板が作製される。
(Negative electrode plate)
The negative electrode plate is produced using two types of active materials, graphite-based carbon powder having high capacity characteristics and amorphous-based carbon powder having high discharge rate characteristics. Graphite-based carbon powder and amorphous carbon powder are mixed with a binder of polyvinylidene fluoride (KF # 9130, manufactured by Kureha Chemical Industry Co., Ltd.) at a weight ratio of 90:10, respectively, and each of them is mixed with NMP as a solvent. Two kinds of mixture slurry are produced by dispersing the mixture almost uniformly. A copper foil having a thickness of 10 μm is used as the negative electrode current collector 3. Each is uniformly applied by roll-to-roll transfer. Similarly to the positive electrode plate, uncoated portions of the mixture slurry for joining the negative electrode tab terminals are formed at both ends in the longitudinal direction of the negative electrode current collector 3. After drying, two negative electrode active material layers 4 that are press-integrated and that contain different active materials on both sides of the negative electrode current collector 3 are applied. That is, a negative electrode active material layer 4a containing graphite-based carbon powder is coated on one surface of the negative electrode current collector 3, and a negative electrode active material layer 4b containing amorphous carbon powder is coated on the other surface. Similar to the positive electrode plate, the negative electrode current collector 3 is pressed in a pressure range in which the dimension does not change due to elongation. In this example, the thickness of the negative electrode plate is set to 160 to 165 μm, and the density of the negative electrode active material layer 4 is set to 1.1 to 1.7 g / cm 3 . Thereafter, by cutting, a strip-shaped negative electrode plate having a width of 56 mm and a length of 500 mm is produced.

(第2実施形態)
次に、本発明を適用した円柱状リチウムイオン二次電池10の第2の実施の形態について説明する。本実施形態は、第1実施形態で示した負極板に代えて、それぞれ異なる活物質を含む負極活物質層4がストライプ状に塗着された負極板を用いたものである。なお、本実施形態において第1実施形態と同一の構成要素には同一の符号を付してその説明を省略し、異なる箇所のみ説明する。
(Second Embodiment)
Next, a second embodiment of the cylindrical lithium ion secondary battery 10 to which the present invention is applied will be described. In this embodiment, instead of the negative electrode plate shown in the first embodiment, a negative electrode plate in which negative electrode active material layers 4 containing different active materials are applied in a stripe shape is used. In addition, in this embodiment, the same code | symbol is attached | subjected to the component same as 1st Embodiment, the description is abbreviate | omitted, and only a different location is demonstrated.

(負極板)
本実施形態の負極板は、第1実施形態と同様に黒鉛系炭素粉末および非晶質系炭素粉末をそれぞれ含む合剤スラリーを用いて作製される。図2に示すように、負極集電体3の両面に、負極集電体3の長手方向に沿うストライプ状に、非晶質系炭素粉末、黒鉛系炭素粉末、非晶質系炭素粉末をそれぞれ含む合剤スラリーが略均一に、かつ、略均等な幅で塗布される。負極集電体3の長手方向両側の側縁には合剤スラリーの未塗布部が形成されている。乾燥後、プレス一体化され負極集電体3の両面にそれぞれ3つの負極活物質層4が塗着される。すなわち、負極集電体3の幅方向中央部に黒鉛系炭素粉末を含む負極活物質層4aが、幅方向両端部に非晶質系炭素粉末を含む負極活物質層4bがそれぞれ略均等な幅で塗着されている。
(Negative electrode plate)
The negative electrode plate of this embodiment is produced using a mixture slurry containing graphite-based carbon powder and amorphous carbon powder, respectively, as in the first embodiment. As shown in FIG. 2, amorphous carbon powder, graphite carbon powder, and amorphous carbon powder are respectively formed on both sides of the negative electrode current collector 3 in a stripe shape along the longitudinal direction of the negative electrode current collector 3. The mixed slurry containing is applied substantially uniformly and with a substantially uniform width. Uncoated portions of the mixture slurry are formed on the side edges on both sides in the longitudinal direction of the negative electrode current collector 3. After drying, it is press-integrated and three negative electrode active material layers 4 are applied to both surfaces of the negative electrode current collector 3. That is, the negative electrode active material layer 4a containing graphite-based carbon powder at the center in the width direction of the negative electrode current collector 3 and the negative electrode active material layer 4b containing amorphous carbon powder at both ends in the width direction are approximately equal in width. It is painted with.

次に、上記実施形態に従い作製したリチウムイオン二次電池10の実施例について説明する。なお、比較のために作製した比較例のリチウムイオン二次電池についても併記する。   Next, examples of the lithium ion secondary battery 10 manufactured according to the above embodiment will be described. In addition, it describes together about the lithium ion secondary battery of the comparative example produced for the comparison.

(実施例1)
実施例1では、第1実施形態に従い、負極集電体3の一面に黒鉛系炭素粉末を含む負極活物質層4aが、他面に非晶質系炭素粉末を含む負極活物質層4bがそれぞれ塗着された負極板を用いてリチウムイオン二次電池10を作製した。
Example 1
In Example 1, according to the first embodiment, the negative electrode active material layer 4a containing graphite-based carbon powder on one surface of the negative electrode current collector 3 and the negative electrode active material layer 4b containing amorphous carbon powder on the other surface are respectively provided. The lithium ion secondary battery 10 was produced using the coated negative electrode plate.

(実施例2)
実施例2では、第2実施形態に従い、負極集電体3の幅方向中央部に黒鉛系炭素粉末を含む負極活物質層4aが、幅方向両端部に非晶質系炭素粉末を含む2つの負極活物質層4bがそれぞれ略均等な幅で塗着された負極板を用いてリチウムイオン二次電池10を作製した(図2参照)。
(Example 2)
In Example 2, in accordance with the second embodiment, the negative electrode active material layer 4a including the graphite-based carbon powder in the central portion in the width direction of the negative electrode current collector 3 includes two pieces including the amorphous carbon powder in the both ends in the width direction. The lithium ion secondary battery 10 was produced using the negative electrode plate by which the negative electrode active material layer 4b was apply | coated with the substantially equal width | variety, respectively (refer FIG. 2).

(比較例1、比較例2)
比較例1および比較例2では、実施例1、実施例2で用いた負極板とは異なる負極板を用いる以外は上記実施形態と同様にリチウムイオン二次電池を作製した。比較例1では、負極集電体の両面に、非晶質系炭素粉末および黒鉛系炭素粉末が重量比50:50で混合された混合活物質を含む負極活物質層が塗着された負極板を用いてリチウムイオン二次電池を作製した。また、比較例2では、負極集電体の両面に、黒鉛系炭素粉末を含む負極活物質層の上に非晶質系炭素粉末を含む負極活物質層が積層塗着された負極板を用いてリチウムイオン二次電池を作製した。すなわち、比較例2のリチウムイオン二次電池では、負極板の表面に非晶質系炭素粉末を含む負極活物質層のみが露出している。
(Comparative Example 1 and Comparative Example 2)
In Comparative Example 1 and Comparative Example 2, lithium ion secondary batteries were produced in the same manner as in the above embodiment except that a negative electrode plate different from the negative electrode plate used in Example 1 and Example 2 was used. In Comparative Example 1, a negative electrode plate in which a negative electrode active material layer containing a mixed active material in which an amorphous carbon powder and a graphite carbon powder were mixed at a weight ratio of 50:50 was coated on both surfaces of a negative electrode current collector A lithium ion secondary battery was fabricated using In Comparative Example 2, a negative electrode plate in which a negative electrode active material layer containing an amorphous carbon powder is laminated and coated on both sides of a negative electrode current collector on a negative electrode active material layer containing a graphite carbon powder is used. Thus, a lithium ion secondary battery was produced. That is, in the lithium ion secondary battery of Comparative Example 2, only the negative electrode active material layer containing amorphous carbon powder is exposed on the surface of the negative electrode plate.

(電池評価試験)
作製した各実施例および比較例のリチウムイオン二次電池について、放電容量、負荷率特性を評価した。放電容量の評価では、不可逆容量を考慮し充放電を繰り返した5サイクル目の各リチウムイオン二次電池の放電容量をそれぞれ測定した。比較例1のリチウムイオン二次電池の放電容量を100%としたときの各実施例および比較例のリチウムイオン二次電池の放電容量の割合を下表1に示す。また、負荷率特性の評価では、5時間率(放電レート0.2C)で充電した各リチウムイオン二次電池を、1時間率(1C)、0.5時間率(2C)、0.3時間率(3C)、0.2時間率(5C)、0.1時間率(10C)で終止電圧まで放電したときの各リチウムイオン二次電池の放電容量をそれぞれ測定した。評価試験はいずれも充電終止電圧を4.1V、放電終止電圧を3.0Vとし、室温(25℃)で行った。比較例1のリチウムイオン二次電池の1Cでの放電容量を100%としたときの各実施例および比較例のリチウムイオン二次電池の放電容量の割合を放電容量維持率とし、放電容量維持率を放電レートに対してプロットした負荷率特性を示すグラフを図3に示す。
(Battery evaluation test)
About the produced lithium ion secondary battery of each Example and a comparative example, discharge capacity and a load factor characteristic were evaluated. In the evaluation of the discharge capacity, the discharge capacity of each lithium ion secondary battery in the fifth cycle in which charge and discharge were repeated in consideration of the irreversible capacity was measured. The ratio of the discharge capacity of each example and the lithium ion secondary battery of the comparative example when the discharge capacity of the lithium ion secondary battery of the comparative example 1 is 100% is shown in Table 1 below. Further, in the evaluation of the load factor characteristics, each lithium ion secondary battery charged at a 5-hour rate (discharge rate 0.2C) is 1 hour rate (1C), 0.5 hour rate (2C), 0.3 hour. The discharge capacity of each lithium ion secondary battery was measured when discharged to the final voltage at a rate (3C), a 0.2 hour rate (5C), and a 0.1 hour rate (10C). All the evaluation tests were performed at room temperature (25 ° C.) with a charge end voltage of 4.1 V and a discharge end voltage of 3.0 V. When the discharge capacity at 1C of the lithium ion secondary battery of Comparative Example 1 is 100%, the ratio of the discharge capacity of each Example and Comparative Example lithium ion secondary battery is defined as the discharge capacity maintenance rate, and the discharge capacity maintenance rate FIG. 3 is a graph showing the load factor characteristics plotted with respect to the discharge rate.

Figure 2010015852
Figure 2010015852

表1に示すように、実施例1、実施例2のリチウムイオン二次電池10は、いずれも比較例1、比較例2のリチウムイオン二次電池より高い放電容量を有していることが明らかになった。また、図3に示すように、比較例1、比較例2のリチウムイオン二次電池では、放電レートが大きくなり、放電電流が高くなるに従い、放電容量が大きく低下した。これに対して、実施例1、実施例2のリチウムイオン二次電池10では、放電レートを大きくしても放電容量の低下が抑制されることが明らかとなった。従って、実施例1および実施例2のリチウムイオン二次電池10は、各比較例のリチウムイオン二次電池に比べて、高容量特性および高放電率特性(負荷率特性)をともに備えていることが確認された。   As shown in Table 1, it is clear that the lithium ion secondary batteries 10 of Example 1 and Example 2 have higher discharge capacities than the lithium ion secondary batteries of Comparative Example 1 and Comparative Example 2. Became. Further, as shown in FIG. 3, in the lithium ion secondary batteries of Comparative Examples 1 and 2, the discharge capacity greatly decreased as the discharge rate increased and the discharge current increased. On the other hand, in the lithium ion secondary battery 10 of Example 1 and Example 2, it became clear that even if the discharge rate was increased, the decrease in the discharge capacity was suppressed. Therefore, the lithium ion secondary battery 10 of Example 1 and Example 2 has both a high capacity characteristic and a high discharge rate characteristic (load factor characteristic) as compared with the lithium ion secondary battery of each comparative example. Was confirmed.

(作用等)
次に、上記実施形態のリチウムイオン二次電池10の作用等について説明する。
(Action etc.)
Next, the operation and the like of the lithium ion secondary battery 10 of the above embodiment will be described.

第1実施形態では、負極集電体3の一面に黒鉛系炭素粉末を含む負極活物質層4aが、他面に非晶質系炭素粉末を含む負極活物質層4bが塗着されている。換言すれば、負極集電体には異なる活物質をそれぞれ含む複数の活物質層が塗着されており、活物質層はいずれも負極板の表面に露出している。このため、活物質層に含まれる活物質がそれぞれの活物質層の表面、すなわち、負極板の表面でリチウムイオン等の授受を迅速に行うことができる。また、各活物質層内にはそれぞれ1種類の活物質が略均一に含まれているため、1つの活物質層内に異なる活物質がランダムに存在したときのような活物質同士の干渉による性能低下を防止することができる。従って、複数の活物質を用いて、それぞれの活物質本来の性能を発揮させることができる。   In the first embodiment, the negative electrode active material layer 4a containing graphite-based carbon powder is coated on one surface of the negative electrode current collector 3, and the negative electrode active material layer 4b containing amorphous carbon powder is coated on the other surface. In other words, the negative electrode current collector is coated with a plurality of active material layers each containing a different active material, and all of the active material layers are exposed on the surface of the negative electrode plate. For this reason, the active material contained in the active material layer can quickly exchange lithium ions and the like on the surface of each active material layer, that is, on the surface of the negative electrode plate. In addition, since each active material layer contains one type of active material substantially uniformly, interference between active materials such as when different active materials randomly exist in one active material layer. Performance degradation can be prevented. Therefore, the original performance of each active material can be exhibited using a plurality of active materials.

また、第2実施形態では、負極集電体3の幅方向中央部に黒鉛系炭素粉末を含む負極活物質層4aが、幅方向両端部に非晶質系炭素粉末を含む負極活物質層4bがそれぞれ略均等な幅で塗着されている。すなわち、2つ以上の活物質層が負極集電体の両面にそれぞれストライプ状に塗着されている。このため、異なる特性を備えた活物質が含まれる活物質層の割合を任意に調整することができる。従って、上述したように、それぞれの活物質本来の性能を発揮させることができるとともに、活物質の特性を発揮させる活物質層の割合を調整することで、それぞれの活物質による特性を所望のバランスで発揮させることができる。   In the second embodiment, the negative electrode active material layer 4a containing graphite-based carbon powder at the center in the width direction of the negative electrode current collector 3 and the negative electrode active material layer 4b containing amorphous carbon powder at both ends in the width direction. Are each applied with a substantially uniform width. That is, two or more active material layers are respectively applied in stripes on both sides of the negative electrode current collector. For this reason, the ratio of the active material layer in which active materials having different characteristics are included can be arbitrarily adjusted. Therefore, as described above, the original performance of each active material can be exhibited, and by adjusting the ratio of the active material layer that exhibits the characteristics of the active material, the characteristics of each active material can be balanced as desired. It can be demonstrated with.

更に、上記実施形態では、負極集電体3に高容量特性を備えた黒鉛系炭素粉末を含む負極活物質層4aおよび高放電率特性を備えた非晶質系炭素粉末を含む負極活物質層4bが塗着されている。このため、単一種類の活物質では両立することが難しい高出力(高放電率)、高容量特性をともに向上させることができる。   Furthermore, in the above embodiment, the negative electrode active material layer 4a including the graphite-based carbon powder having high capacity characteristics in the negative electrode current collector 3 and the negative-electrode active material layer including the amorphous carbon powder having high discharge rate characteristics. 4b is applied. For this reason, it is possible to improve both high output (high discharge rate) and high capacity characteristics that are difficult to achieve with a single type of active material.

なお、上記実施形態では、異なる活物質として2種類の負極活物質、すなわち、黒鉛系炭素粉末および非晶質系炭素粉末を例示したが、本発明はこれに限定されるものではない。例えば、易黒鉛化炭素等の炭素材を用いることができ、通常、二次電池に使用される負極活物質を2種類に限らず複数用いることができる。例えば、3種類の活物質を用いることで、高容量、高出力および長寿命を備えるようにすることも可能である。   In the above embodiment, two types of negative electrode active materials, ie, graphite-based carbon powder and amorphous carbon powder, are exemplified as different active materials, but the present invention is not limited to this. For example, a carbon material such as graphitizable carbon can be used, and usually, a plurality of negative electrode active materials used for the secondary battery can be used without being limited to two types. For example, by using three kinds of active materials, it is possible to provide high capacity, high output, and long life.

また、第2実施形態では、負極集電体3の両面にそれぞれ3つの負極活物質層4が、負極集電体3の長手方向に沿うストライプ状に塗着される例を示したが、本発明はこれに制限されるものではない。例えば、負極集電体3の長手方向と交差する方向や斜め方向にストライプ状となるように負極活物質層4が塗着されていてもよい。更に、負極活物質層4に含まれる活物質の種類、負極活物質層4の幅や数などを任意に設定してもよいことはもちろんである。また、負極集電体3の両面に異なるストライプ状の負極活物質層4をそれぞれ塗着してもよく、一面のみにストライプ状の負極活物質層4を塗着してもよい。   In the second embodiment, an example in which three negative electrode active material layers 4 are applied to both surfaces of the negative electrode current collector 3 in a stripe shape along the longitudinal direction of the negative electrode current collector 3 has been described. The invention is not limited to this. For example, the negative electrode active material layer 4 may be applied so as to be striped in a direction crossing the longitudinal direction of the negative electrode current collector 3 or in an oblique direction. Furthermore, it goes without saying that the type of active material contained in the negative electrode active material layer 4 and the width and number of the negative electrode active material layers 4 may be arbitrarily set. Further, different striped negative electrode active material layers 4 may be applied to both surfaces of the negative electrode current collector 3, or the striped negative electrode active material layers 4 may be applied to only one surface.

更に、上記実施形態では、負極集電体に異なる活物質をそれぞれ含む複数の活物質層が塗着される例を示したが、本発明はこれに限定されるものではなく、正極板を負極板と同様に作製してもよい。すなわち、正極集電体に異なる活物質をそれぞれ含む複数の活物質層が塗着され、活物質層がいずれも表面に露出している正極板を用いてもよい。また、上記実施形態では作動電位(範囲)、すなわち、定格電圧が4Vのものを例示したが、作動電位(範囲)が、例えば、3V等のものも適用可能である。ところが、異なる活物質で作動電位範囲が大きく異なる場合は、電池の作動電位範囲が使用する活物質に共通の電位範囲に限定されてしまうため、それぞれの活物質本来の性能が十分に発揮されない可能性がある。従って、正極板の場合は、同一の作動電位範囲内にある活物質を用いることが好ましい。また、正極板および負極板ともに複数の活物質層を塗着するようにしてもよい。   Further, in the above-described embodiment, an example in which a plurality of active material layers each including different active materials is applied to the negative electrode current collector is shown, but the present invention is not limited to this, and the positive electrode plate is used as the negative electrode. You may produce similarly to a board. That is, a positive electrode plate in which a plurality of active material layers each containing a different active material is applied to the positive electrode current collector and all of the active material layers are exposed on the surface may be used. In the above embodiment, the operating potential (range), that is, the rated voltage is 4 V is exemplified, but the operating potential (range) is 3 V, for example, is also applicable. However, if the operating potential range differs greatly between different active materials, the operating potential range of the battery is limited to the common potential range for the active material used, so the original performance of each active material may not be fully demonstrated. There is sex. Therefore, in the case of the positive electrode plate, it is preferable to use an active material within the same operating potential range. Further, a plurality of active material layers may be applied to both the positive electrode plate and the negative electrode plate.

また更に、上記実施形態では、正極活物質にリチウム−マンガン−コバルト−ニッケル複合酸化物(LiMn0.33Co0.33Ni0.33)を例示したが、本発明はこれに限らず、例えば、リチウム−マンガン−ニッケル複合酸化物(LiMn0.5Ni0.5)や、マンガン酸リチウム(LiMn)、コバルト酸リチウム(LiCoO)といったリチウムと遷移金属との複合酸化物を使用することができる。 Furthermore, in the above embodiment, lithium-manganese-cobalt-nickel composite oxide (LiMn 0.33 Co 0.33 Ni 0.33 O 2 ) is exemplified as the positive electrode active material, but the present invention is not limited to this. For example, a composite of lithium and a transition metal such as lithium-manganese-nickel composite oxide (LiMn 0.5 Ni 0.5 O 2 ), lithium manganate (LiMn 2 O 4 ), or lithium cobaltate (LiCoO 2 ) Oxides can be used.

更にまた、上記実施形態では、非水電解液に炭酸エチレン、炭酸ジメチルおよび炭酸ジエチルの混合溶媒に6フッ化リン酸リチウムを1モル/リットルで溶解したものを例示したが、本発明はこれに制限されるものではなく、二次電池に通常用いられるものをいずれも使用可能である。上記実施形態以外の電解液としては、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解させた非水電解液を使用することができ、リチウム塩や有機溶媒にも特に制限されない。また、有機溶媒の混合比やリチウム塩の含有量にも特に制限されるものではない。   Furthermore, in the above-described embodiment, the non-aqueous electrolyte was prepared by dissolving 1 mol / liter of lithium hexafluorophosphate in a mixed solvent of ethylene carbonate, dimethyl carbonate and diethyl carbonate. It is not limited, and any of those normally used for secondary batteries can be used. As an electrolytic solution other than the above-described embodiment, a non-aqueous electrolytic solution in which a general lithium salt is used as an electrolyte and dissolved in an organic solvent can be used, and the lithium salt and the organic solvent are not particularly limited. Further, the mixing ratio of the organic solvent and the content of the lithium salt are not particularly limited.

また、上記実施形態では、二次電池として捲回式の円柱状リチウムイオン二次電池10を例示したが、本発明はこれに限定されるものではなく、電解液を用いたいずれの二次電池にも適用可能である。換言すれば、電池の種類、電池容量、サイズ、形状等が制限されるものではない。本発明の適用可能な捲回式以外の電池としては、集電体に活物質層が塗着された正負極板がセパレータを介して積層された構造の電池を挙げることができる。また、本発明の適用可能な電池の構造としては、上述した電池缶に上蓋がカシメ固定されて封口されている構造の電池以外であっても構わない。このような構造の一例として正負極外部端子が電池蓋を貫通し電池容器内で軸芯を介して押し合っている状態の電池を挙げることができる。   Moreover, in the said embodiment, although the winding type cylindrical lithium ion secondary battery 10 was illustrated as a secondary battery, this invention is not limited to this, Any secondary battery using electrolyte solution It is also applicable to. In other words, the battery type, battery capacity, size, shape and the like are not limited. Examples of batteries other than the winding type to which the present invention can be applied include batteries having a structure in which a positive and negative electrode plate in which an active material layer is coated on a current collector is laminated via a separator. Further, the battery structure to which the present invention can be applied may be other than a battery having a structure in which the upper lid is caulked and sealed to the battery can described above. As an example of such a structure, a battery in a state where positive and negative external terminals penetrate through the battery lid and are pressed through the shaft core in the battery container can be mentioned.

本発明は、複数の活物質を用いてそれぞれの活物質本来の性能を発揮することができ、高出力、高容量特性をともに向上させることができる二次電池を提供するため、二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   The present invention provides a secondary battery that can exhibit the inherent performance of each active material using a plurality of active materials and can improve both high output and high capacity characteristics. Since it contributes to manufacturing and sales, it has industrial applicability.

本発明を適用した実施形態の円柱状リチウムイオン二次電池を示す断面図である。It is sectional drawing which shows the cylindrical lithium ion secondary battery of embodiment to which this invention is applied. 第2実施形態の円柱状リチウムイオン二次電池を構成し、異なる活物質層がストライプ状に塗着された負極板を模式的に示す平面図である。It is a top view which shows typically the negative electrode plate which comprises the cylindrical lithium ion secondary battery of 2nd Embodiment, and was coated with the different active material layer in stripe form. 実施例および比較例のリチウムイオン二次電池における放電レートに対する放電容量維持率の変化を示す負荷率特性(高放電率特性)のグラフである。る。It is a graph of the load factor characteristic (high discharge rate characteristic) which shows the change of the discharge capacity maintenance factor with respect to the discharge rate in the lithium ion secondary battery of an Example and a comparative example. The

符号の説明Explanation of symbols

1 正極集電体
2 正極活物質層
3 負極集電体
4 負極活物質層
4a 黒鉛系炭素粉末を含む負極活物質層
4b 非晶質系炭素粉末を含む負極活物質層
5 セパレータ
6 電池缶(電池容器)
10 円柱状リチウムイオン二次電池(二次電池)
11 電極群
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode active material layer 3 Negative electrode collector 4 Negative electrode active material layer 4a Negative electrode active material layer containing graphite type carbon powder 4b Negative electrode active material layer containing amorphous type carbon powder 5 Separator 6 Battery can ( Battery container)
10 Cylindrical lithium ion secondary battery (secondary battery)
11 Electrode group

Claims (4)

集電体に活物質を含む活物質層が塗着された正極板および負極板がセパレータを介して配置された電極群と、
前記電極群を浸潤する電解液と、
前記電極群および前記電解液を収容する電池容器と、
を備え、
少なくとも前記正負極板の一方の集電体には異なる活物質をそれぞれ含む複数の活物質層が塗着されており、前記複数の活物質層はいずれも前記正極板ないし負極板の表面に露出していることを特徴とする二次電池。
An electrode group in which a positive electrode plate and a negative electrode plate on which an active material layer containing an active material is applied to a current collector are disposed via a separator;
An electrolyte solution infiltrating the electrode group;
A battery container containing the electrode group and the electrolyte;
With
At least one current collector of the positive and negative electrode plates is coated with a plurality of active material layers each containing a different active material, and each of the plurality of active material layers is exposed on the surface of the positive electrode plate or the negative electrode plate. A secondary battery characterized by that.
前記複数の活物質層は、前記少なくとも正負極板の一方の集電体の両面にそれぞれ異なる活物質を含む活物質層が塗着されていることを特徴とする請求項1に記載の二次電池。   The secondary material according to claim 1, wherein the plurality of active material layers are coated with active material layers containing different active materials on both surfaces of at least one current collector of the positive and negative electrode plates. battery. 前記複数の活物質層は、前記少なくとも正負極板の一方の集電体の少なくとも一面にストライプ状に塗着されていることを特徴とする請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein the plurality of active material layers are applied in a stripe pattern on at least one surface of one of the current collectors of the positive and negative electrode plates. 前記少なくとも正負極板の一方は正極板であり、前記異なる活物質は同一の作動電位範囲内にあることを特徴とする請求項1に記載の二次電池   The secondary battery according to claim 1, wherein at least one of the positive and negative plates is a positive plate, and the different active materials are in the same operating potential range.
JP2008175277A 2008-07-04 2008-07-04 Secondary battery Pending JP2010015852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008175277A JP2010015852A (en) 2008-07-04 2008-07-04 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008175277A JP2010015852A (en) 2008-07-04 2008-07-04 Secondary battery

Publications (1)

Publication Number Publication Date
JP2010015852A true JP2010015852A (en) 2010-01-21

Family

ID=41701780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008175277A Pending JP2010015852A (en) 2008-07-04 2008-07-04 Secondary battery

Country Status (1)

Country Link
JP (1) JP2010015852A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195061A (en) * 2011-03-15 2012-10-11 Dainippon Screen Mfg Co Ltd Device and method of forming active material layer, and method of manufacturing battery
JP2014229479A (en) * 2013-05-22 2014-12-08 凸版印刷株式会社 Electrode member for battery and manufacturing method therefor
WO2015041091A1 (en) * 2013-09-19 2015-03-26 株式会社 東芝 Secondary cell degradation diagnosis system, and degradation diagnosis method
US9017859B2 (en) 2011-04-19 2015-04-28 Industrial Technology Research Institute Secondary battery structure
US9088023B2 (en) 2011-03-29 2015-07-21 Industrial Technology Research Institute End cover assembly of battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180759A (en) * 1995-12-25 1997-07-11 Toray Ind Inc Battery
JPH1021897A (en) * 1996-06-27 1998-01-23 Sanyo Electric Co Ltd Secondary battery electrode
JPH1064515A (en) * 1996-08-20 1998-03-06 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JP2001210316A (en) * 2000-01-27 2001-08-03 Samsung Yokohama Research Institute Co Ltd Lithium ion secondary battery and its charge/discharge circuit
WO2003026054A1 (en) * 2001-09-19 2003-03-27 Kawasaki Jukogyo Kabushiki Kaisha Hybrid cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180759A (en) * 1995-12-25 1997-07-11 Toray Ind Inc Battery
JPH1021897A (en) * 1996-06-27 1998-01-23 Sanyo Electric Co Ltd Secondary battery electrode
JPH1064515A (en) * 1996-08-20 1998-03-06 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JP2001210316A (en) * 2000-01-27 2001-08-03 Samsung Yokohama Research Institute Co Ltd Lithium ion secondary battery and its charge/discharge circuit
WO2003026054A1 (en) * 2001-09-19 2003-03-27 Kawasaki Jukogyo Kabushiki Kaisha Hybrid cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195061A (en) * 2011-03-15 2012-10-11 Dainippon Screen Mfg Co Ltd Device and method of forming active material layer, and method of manufacturing battery
US9088023B2 (en) 2011-03-29 2015-07-21 Industrial Technology Research Institute End cover assembly of battery
US9017859B2 (en) 2011-04-19 2015-04-28 Industrial Technology Research Institute Secondary battery structure
JP2014229479A (en) * 2013-05-22 2014-12-08 凸版印刷株式会社 Electrode member for battery and manufacturing method therefor
WO2015041091A1 (en) * 2013-09-19 2015-03-26 株式会社 東芝 Secondary cell degradation diagnosis system, and degradation diagnosis method
JP2015060761A (en) * 2013-09-19 2015-03-30 株式会社東芝 Deterioration diagnostic system and deterioration diagnostic method of secondary battery

Similar Documents

Publication Publication Date Title
JP4337875B2 (en) Positive electrode mixture, non-aqueous electrolyte secondary battery, and manufacturing method thereof
JP4905267B2 (en) Positive electrode mixture and non-aqueous electrolyte battery
JP5541957B2 (en) Multilayer secondary battery
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
JP5171283B2 (en) Non-aqueous electrolyte secondary battery
WO2012033036A1 (en) Lithium ion secondary battery
JP2003229172A (en) Nonaqueous electrolyte battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP2011054334A (en) Lithium secondary battery
US20140370379A1 (en) Secondary battery and manufacturing method thereof
JP2011040179A (en) Nonaqueous lithium secondary battery
JP2010015852A (en) Secondary battery
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JP2014127333A (en) Positive electrode collector foil of lithium ion secondary battery, and lithium ion secondary battery
JP2009054469A (en) Nonaqueous secondary battery
JP2011222128A (en) Secondary battery
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JP2007242348A (en) Lithium-ion secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
US20190067729A1 (en) Lithium ion electrochemical devices having excess electrolyte capacity to improve lifetime
CN112447941A (en) Nonaqueous electrolyte secondary battery
JP2020149867A (en) All-solid-state lithium secondary battery and manufacturing method therefor
JP5072122B2 (en) Flat non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423