JP6728724B2 - First charge method of lithium secondary battery - Google Patents
First charge method of lithium secondary battery Download PDFInfo
- Publication number
- JP6728724B2 JP6728724B2 JP2016018625A JP2016018625A JP6728724B2 JP 6728724 B2 JP6728724 B2 JP 6728724B2 JP 2016018625 A JP2016018625 A JP 2016018625A JP 2016018625 A JP2016018625 A JP 2016018625A JP 6728724 B2 JP6728724 B2 JP 6728724B2
- Authority
- JP
- Japan
- Prior art keywords
- charging
- negative electrode
- lithium secondary
- electrolytic solution
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052744 lithium Inorganic materials 0.000 title claims description 51
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 50
- 238000000034 method Methods 0.000 title claims description 18
- 238000007600 charging Methods 0.000 claims description 81
- 239000008151 electrolyte solution Substances 0.000 claims description 52
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 38
- 229910052802 copper Inorganic materials 0.000 claims description 35
- 239000010949 copper Substances 0.000 claims description 35
- 238000002347 injection Methods 0.000 claims description 24
- 239000007924 injection Substances 0.000 claims description 24
- 239000007774 positive electrode material Substances 0.000 claims description 20
- 239000007773 negative electrode material Substances 0.000 claims description 14
- 238000013461 design Methods 0.000 claims description 12
- 230000007423 decrease Effects 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 239000012466 permeate Substances 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 13
- 239000000919 ceramic Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 238000004090 dissolution Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000011888 foil Substances 0.000 description 11
- 239000003792 electrolyte Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000004804 winding Methods 0.000 description 9
- -1 lithium transition metal Chemical class 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000006258 conductive agent Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910014397 LiNi1/3Co1/3Mn1/3 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000012757 flame retardant agent Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010278 pulse charging Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Description
本発明はリチウム二次電池の初充電方法に関し、特に5Ah以上の大型リチウム二次電池の生産性及び品質向上を図ったものに関する。 The present invention relates to a method for initially charging a lithium secondary battery, and more particularly to a method for improving productivity and quality of a large lithium secondary battery of 5 Ah or more.
リチウム二次電池は、高エネルギー密度というメリットを活かし、昨今ではデジタルカメラやノートパソコン、携帯電話などのポータブル機器の電源として使用されている。また、近年では環境問題に対応すべく、電気自動車用途や電力貯蔵を目的とする大型のリチウム二次電池の研究開発が活発に行われている。 BACKGROUND ART Lithium secondary batteries have recently been used as a power source for portable devices such as digital cameras, laptop computers and mobile phones, taking advantage of their high energy density. Further, in recent years, in order to deal with environmental problems, research and development of large-sized lithium secondary batteries for use in electric vehicles and for power storage have been actively conducted.
一般にリチウム二次電池は、リチウム遷移金属複合酸化物を含む正極活物質をアルミニウム箔等の正極集電体に塗布した正極板と、炭素材料を含む負極活物質を銅箔等の負極集電体に塗布した負極板とが、絶縁材で構成される多孔質状のセパレータを介して積層または捲回された極板群を電池容器に収容し、非水電解液を注液することで作製される。積層型と比べて捲回型の方が、生産工程が容易であり生産性が高いという利点がある。 Generally, a lithium secondary battery includes a positive electrode plate in which a positive electrode active material containing a lithium transition metal composite oxide is applied to a positive electrode current collector such as an aluminum foil, and a negative electrode active material containing a carbon material is a negative electrode current collector such as a copper foil. The negative electrode plate applied to, the electrode plate group laminated or wound via a porous separator made of an insulating material is housed in a battery container and is prepared by injecting a non-aqueous electrolyte solution. It The wound type has the advantages that the production process is easier and the productivity is higher than the laminated type.
ポータブル機器などで用いられている、一般的な捲回型リチウム二次電池の寸法は、直径が18mm、高さが65mmであり、18650型電池と呼ばれている。18650型電池の電池容量は、おおむね1.0〜3.5Ahである。一方、電気自動車や電力貯蔵用途に用いられるリチウム二次電池には、高容量だけでなく、高出力、長寿命、さらには低コスト化が求められる。高容量、高出力とするためには、捲回電極群を大きくしたり、捲回電極群の巻き数を多くしたりすることが一般的である。 The dimensions of a typical wound-type lithium secondary battery used in portable equipment and the like are 18 mm in diameter and 65 mm in height, and are called 18650 type batteries. The battery capacity of the 18650 type battery is about 1.0 to 3.5 Ah. On the other hand, lithium secondary batteries used in electric vehicles and power storage applications are required to have not only high capacity but also high output, long life, and cost reduction. In order to achieve high capacity and high output, it is general to increase the size of the wound electrode group or increase the number of turns of the wound electrode group.
しかしながら、捲回電極群が大型化すると、電解液が捲回電極群内部に浸透するまでに時間を要するようになる。電解液の浸透が不十分のまま充放電を行うと、定格の電池容量が発現しないのみならず、捲回電極群内部の充放電反応が不均一となるため、実質の充電電流密度が局所的に高くなってしまい、負極上に金属リチウムが析出し、場合によってはセパレータを貫通して内部短絡に至る可能性がある。 However, when the wound electrode group becomes large, it takes time for the electrolytic solution to penetrate into the wound electrode group. If charging/discharging is performed with insufficient penetration of the electrolytic solution, not only the rated battery capacity will not develop, but the charging/discharging reaction inside the wound electrode group will be non-uniform, so the actual charging current density will be local. In some cases, metallic lithium may be deposited on the negative electrode and penetrate the separator to cause an internal short circuit.
そこで、特許文献1では、正極板及び負極板が40回以上捲回されてなる、大型の捲回型リチウム二次電池において、非水電解液を注液後は24時間以上経てから第1回目の充電を行うことを提案している。 Therefore, in Patent Document 1, in a large-sized wound-type lithium secondary battery in which a positive electrode plate and a negative electrode plate are wound 40 times or more, 24 hours or more after injection of the non-aqueous electrolyte solution, the first time It proposes to charge.
しかしながら、負極活物質が炭素材料を含み、かつ集電体が銅であると、電解液が注液された時点から銅の溶解が始まる。これは、充電を行っていない段階の負極の電位が3.4V程度あり、銅が電解液中に溶解する電位(3V程度)以上であるためである。銅が電解液中に溶解すると、セパレータに目詰まりを起こさせたり、負極集電体の集電性能が低下し、電池抵抗の増加を引き起こすのみならず、電解液中に溶解した銅が負極上に析出し、場合によっては内部短絡に至る懸念がある。なお、電池容器は一般的に金属材料によって構成されるが、電池容器が正極も負極も兼ねない電気的に中立の場合は、注液後に電解液中に溶解する懸念がある元素は銅のみである。 However, when the negative electrode active material contains a carbon material and the current collector is copper, the dissolution of copper starts at the time when the electrolytic solution is poured. This is because the potential of the negative electrode at the stage of not charging is about 3.4 V, which is higher than the potential (about 3 V) at which copper is dissolved in the electrolytic solution. When copper is dissolved in the electrolytic solution, it causes clogging of the separator and reduces the current collecting performance of the negative electrode current collector, which not only causes an increase in battery resistance, but also the copper dissolved in the electrolytic solution on the negative electrode. There is a concern that it may be deposited on the inner surface and may lead to an internal short circuit. Although the battery container is generally made of a metal material, if the battery container is electrically neutral and does not serve as a positive electrode or a negative electrode, the only element that may be dissolved in the electrolytic solution after injection is copper. is there.
本発明の目的は、負極集電体である銅の電解液への溶解を抑えつつ、捲回型の電極群に電解液を十分に浸透させるようにした、リチウム二次電池の初充電方法を提案することである。 An object of the present invention is to suppress the dissolution of copper, which is a negative electrode current collector, in an electrolytic solution, and to allow the electrolytic solution to sufficiently penetrate into a wound-type electrode group, and to provide a first charging method for a lithium secondary battery. It is to propose.
本発明は、負極活物質を保持する負極集電体に銅を含む負極と正極集電体に正極活物質が保持された正極とがセパレータを介して捲回されてなる捲回型の電極群が、電気的に中立の電池容器内に収納され、電池容器内に電解液が注液された、設計容量が5Ah以上のリチウム二次電池の初充電方法を、第1回目の充電ステップと、放置ステップと、第2回目の充電ステップとから実現する。第1回目の充電ステップでは、電池容器内に電解液の注液を開始してから始まる第1の期間内において、負極の負極活物質及び正極の正極活物質の表面が電解液と全面的に触れた状態で、銅が電解液中に溶解する電位を下回るまで負極の電位が下がるように第1回目の充電を行う。なお第1回目の充電開始は電解液の注液開始と同時に行ってもよく、注液を開始して暫く経過した後に充電を開始してもよい。放置ステップでは、第1回目の充電ステップ後に、電解液が負極活物質及び正極活物質の内部に浸透する第2の期間が経過するまで充電を停止して放置する。そして第2回目の充電ステップでは、第2の期間が経過した後満充電になるまで第2回目の充電を行う。 The present invention provides a wound electrode group in which a negative electrode containing copper in a negative electrode current collector holding a negative electrode active material and a positive electrode having a positive electrode active material held in a positive electrode current collector are wound with a separator interposed therebetween. The first charging method is a first charging method for a lithium secondary battery having a design capacity of 5 Ah or more, which is housed in an electrically neutral battery container, and an electrolytic solution is injected into the battery container. It is realized by the leaving step and the second charging step. In the first charging step, the surfaces of the negative electrode active material of the negative electrode and the positive electrode active material of the positive electrode are completely covered with the electrolytic solution within the first period starting from the time of injecting the electrolytic solution into the battery container. In the state of being touched, the first charge is performed so that the potential of the negative electrode decreases until it falls below the potential at which copper dissolves in the electrolytic solution. It is to be noted that the first round of the start of charging may be carried out in the liquid injection simultaneously with the start of the electrolyte solution, it may start charging after a lapse of some time to start pouring. In the standing step, after the first charging step, the charging is stopped and left standing until a second period in which the electrolytic solution penetrates into the negative electrode active material and the positive electrode active material elapses. Then, in the second charging step, the second charging is performed until the battery is fully charged after the second period has elapsed.
本発明の基本的な考え方は、第1回目の充電ステップ(仮充電)をできるだけ早く、少しの電気量だけ入れて銅の溶出を防ぎ、十分な含浸期間を経てから通常の初充電を行うことで品質の向上を狙うことである。そこで本発明では、第1回目の充電ステップにおいて、第1の期間内において銅が電解液中に溶解する電位を下回るまで負極の電位が下がるように第1回目の充電を行うことにより、電極群内部での充放電不均一反応を最小限に抑えつつ、捲回型の電極群への電解液の浸透を促進させるとともに、浸透時間を十分に確保することができる。その結果、負極集電体に含まれる銅の溶解がほとんどない高品質な非水リチウム二次電池が製造可能であるとともに、電解液の浸透期間を短縮することができ、生産性の向上につながる。 The basic idea of the present invention is that the first charging step (temporary charging) is performed as soon as possible, a small amount of electricity is applied to prevent copper elution, and a normal initial charging is performed after a sufficient impregnation period. Is to improve quality. Therefore, in the present invention, in the first charging step, the first charging is performed so that the potential of the negative electrode decreases until the potential falls below the potential at which copper dissolves in the electrolytic solution within the first period, thereby making the electrode group It is possible to promote the permeation of the electrolytic solution into the wound-type electrode group and to sufficiently secure the permeation time while suppressing the charge-discharge non-uniform reaction inside. As a result, it is possible to manufacture a high-quality non-aqueous lithium secondary battery with almost no dissolution of copper contained in the negative electrode current collector, and it is possible to shorten the electrolyte penetration period and improve productivity. ..
本発明でリチウム二次電池の設計容量が5Ah以上に限定するのは、18650型電池のような小型リチウム二次電池は、捲回電極群の大きさに相対して、電解液の浸透速度が速いため、電解液を注液後ただちに第1回目の充電を行っても、電極群内部での充放電不均一反応は起こらず、上記のような課題は発生しないからである。 In the present invention, the design capacity of the lithium secondary battery is limited to 5 Ah or more because the small lithium secondary battery such as the 18650 type battery has a permeation rate of the electrolytic solution relative to the size of the wound electrode group. This is because, because of the high speed, even if the first charge is performed immediately after the injection of the electrolytic solution, the non-uniform charge/discharge reaction does not occur inside the electrode group, and the above problems do not occur.
設計容量5Ah以上のリチウム二次電池の正極活物質及び負極活物質の内部への電解液の浸透に最低限必要な電解液の浸透時間は、リチウム二次電池の大きさ、すなわち設計容量に比例し、必要な電解液浸透時間(時間)∝0.5×X(Ah)の関係になる。そのため電解液注液後にリチウム二次電池の設計容量の0.5%以上を充電することで、負極の電位は銅が電解液中に溶解する電位を下回り、かつ電池の自己放電を考慮し、負極の電位が再び銅が溶解する電位に戻ることを防ぐことができる。さらに、上記の充電を行うことで、電極を構成している活物質が収縮運動をするため、電解液の浸透を早める効果がある。具体的には、第1の期間を電解液注液後10時間以内とし、第1回目の充電ステップでの充電容量は、設計容量の0.5%以上とする。そして放置ステップでは、リチウム二次電池の設計容量をXAhとして表したときに、電解液注液後から0.5X時間以上放置状態になるように第2の期間を定める。 The minimum electrolyte permeation time required for permeation of the electrolyte into the positive electrode active material and the negative electrode active material of a lithium secondary battery having a design capacity of 5 Ah or more is proportional to the size of the lithium secondary battery, that is, the design capacity. However, the necessary electrolyte permeation time (hours)∝0.5×X(Ah) is satisfied. Therefore, by charging 0.5% or more of the design capacity of the lithium secondary battery after injecting the electrolytic solution, the potential of the negative electrode is below the potential at which copper dissolves in the electrolytic solution, and considering self-discharge of the battery, It is possible to prevent the potential of the negative electrode from returning to the potential at which copper is dissolved again. Furthermore, by performing the above-mentioned charging, the active material forming the electrodes performs a contracting movement, which has the effect of accelerating the permeation of the electrolytic solution. Specifically, the first period is set within 10 hours after the electrolytic solution is injected, and the charge capacity in the first charging step is 0.5% or more of the designed capacity. Then, in the leaving step, when the design capacity of the lithium secondary battery is expressed as XAh, the second period is set so that the lithium secondary battery is left in a leaving state for 0.5 X hours or more after the electrolyte is injected.
第1回目の充電ステップの充電容量は、設計容量の0.5〜40%であることが好ましい。そして第1の期間は、電池容量の大きさに係らず、上限が10時間である。電解液の注液後は、銅の溶解を防ぐために極力短い時間で上記の充電を行うことが好ましいが、10時間以内程度であれば銅の溶解反応はほとんど進行しないため、問題にならない。そして発明者の研究よると、第1の期間が10時間を超えると負極に使われている銅の溶出が進むので、問題となることが判っている。第1の期間に下限はなく、短くて済めば、短いほどよい。 The charge capacity of the first charging step is preferably 0.5 to 40% of the designed capacity. The upper limit of the first period is 10 hours regardless of the battery capacity. After the injection of the electrolytic solution, it is preferable to carry out the above-mentioned charging in a time as short as possible in order to prevent the dissolution of copper, but if it is within about 10 hours, the dissolution reaction of copper hardly progresses, so there is no problem. According to the research conducted by the inventor, it is known that when the first period exceeds 10 hours, the elution of copper used for the negative electrode progresses, which is a problem. There is no lower limit to the first period, and the shorter the shorter the better.
第1回目の充電ステップの充電電流は、0.02〜1.20ItAの範囲内であることが好ましい。第1回目の充電ステップの充電電流が、0.02より小さくなると第1の期間が長くなり過ぎる。またこの充電電流が1.20ItAより大きくなると、電極群内部での充放電不均一反応が促進されてしまうため、1.20ItA以下であることが好ましい。 The charging current in the first charging step is preferably in the range of 0.02 to 1.20 ItA. When the charging current in the first charging step becomes smaller than 0.02, the first period becomes too long. Further, when the charging current is larger than 1.20 ItA, the charge/discharge non-uniform reaction inside the electrode group is promoted. Therefore, it is preferably 1.20 ItA or less.
ここで、第1回目充電の充電容量が設計容量の0.5%であったと仮定すると、自己放電を考慮した電解液浸透時間の上限は240時間である。見方を変えると、第2の期間を含む、電解液注液後から第2回目充電開始までの期間は、250時間以内である。これ以上、第2回目充電を行わずにリチウム二次電池を放置していると、自己放電によって負極の電位が銅を溶解させる電位に戻る懸念がある。 Here, assuming that the charge capacity of the first charge is 0.5% of the designed capacity, the upper limit of the electrolyte solution permeation time in consideration of self-discharge is 240 hours. From a different point of view, the period from the injection of the electrolytic solution to the start of the second charging, including the second period, is within 250 hours. If the lithium secondary battery is left without being charged for the second time more than this, there is a concern that the potential of the negative electrode may return to the potential that dissolves copper due to self-discharge.
本発明によれば、第1回目の充電を行う(具体的には、電解液注液後にリチウム二次電池の設計容量の0.5%以上の少容量の充電を行う)ことで、電極群内部での充放電不均一反応を最小限に抑えつつ、捲回電極群への電解液の浸透を促進させるとともに、浸透時間を十分に確保することができるため、集電体である銅の溶解がほとんどない高品質な非水リチウム二次電池が製造可能であるとともに、電解液の浸透期間を短縮することができるため、生産性の向上につながる。 According to the present invention, by performing the first charge (specifically, charging a small capacity of 0.5% or more of the designed capacity of the lithium secondary battery after injecting the electrolyte solution), the electrode group While minimizing the charge/discharge heterogeneous reaction inside, it is possible to promote the permeation of the electrolytic solution into the wound electrode group and to secure a sufficient permeation time. It is possible to manufacture a high-quality non-aqueous lithium secondary battery with almost no problem and to shorten the period of permeation of the electrolytic solution, which leads to an improvement in productivity.
電解液の注液後は、銅の溶解を防ぐために極力短い時間で上記の充電を行うことが好ましいが、10時間以内程度であれば銅の溶解反応はほとんど進行しないため、問題にならない。 After the injection of the electrolytic solution, it is preferable to carry out the above-mentioned charging in a time as short as possible in order to prevent the dissolution of copper, but if it is within about 10 hours, the dissolution reaction of copper hardly progresses, so there is no problem.
本発明において、第1回目充電の充電容量は、電極群内部での充放電不均一反応を最小限に抑える目的で、リチウム二次電池の設計容量の30%未満であることが好ましく、より好ましくは25%以内であり、20%以内であることが最も好ましい。また、前記第1回目充電の充電電流値が高いと、電極群内部での充放電不均一反応が促進されてしまうため、1.0ItA以下であることが好ましい。一方で、第1回目充電の電流値が低すぎると、充電が完了するまでの時間が長くなり、生産性を損なうため、第1回目充電の電流値の好ましい範囲は0.01〜1.0ItAであり、より好ましくは0.03〜0.75ItAであり、さらに好ましくは0.05〜0.5ItAである。なお、本発明における前記第1回目充電の充電方法は、本発明明細書の技術的思想の範囲内であれば特に制限はなく、任意の充電方法を実施可能である。例えば、定電流充電、定電圧充電、定電力充電、パルス充電方法などがあげられる。 In the present invention, the charge capacity of the first charge is preferably less than 30% of the designed capacity of the lithium secondary battery, and more preferably for the purpose of minimizing the charge/discharge nonuniform reaction inside the electrode group. Is within 25%, and most preferably within 20%. Further, when the charging current value of the first charging is high, the charge/discharge non-uniform reaction inside the electrode group is promoted. Therefore, it is preferably 1.0 ItA or less. On the other hand, if the current value of the first charging is too low, the time until the completion of charging is long and the productivity is impaired. Therefore, the preferable range of the current value of the first charging is 0.01 to 1.0 ItA. Is more preferable, 0.03 to 0.75 ItA is more preferable, and 0.05 to 0.5 ItA is still more preferable. The charging method of the first charging in the present invention is not particularly limited as long as it is within the technical idea of the present specification, and any charging method can be implemented. For example, constant current charging, constant voltage charging, constant power charging, pulse charging method and the like can be mentioned.
以下、本発明の実施形態について、図面等を参照して説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like. The following description shows specific examples of the content of the present invention, the present invention is not limited to these descriptions, and various modifications by those skilled in the art within the scope of the technical idea disclosed in the present specification. Changes and modifications are possible.
リチウム二次電池20は、帯状の正極集電体に正極活物質が塗工された正極板と帯状の負極集電体に負極活物質が塗工された負極が、帯状セパレータW5を介して積層されて構成された帯状の積層体が長手方向に捲回されて構成された電極群6を用いている。電極群6は電池容器5に収容され、併せて電解液が電池容器5に収容されている。正極端子に正極集電タブが接続され、負極端子には負極集電タブがされ、電池容器5を密閉する電池蓋4には安全弁10が装着されている。 In the lithium secondary battery 20, a positive electrode plate in which a positive electrode active material is applied to a belt-shaped positive electrode collector and a negative electrode in which a negative electrode active material is applied to a belt-shaped negative electrode current collector are laminated via a belt-shaped separator W5. The electrode group 6 configured by winding the strip-shaped laminated body configured as described above in the longitudinal direction is used. The electrode group 6 is housed in the battery container 5, and the electrolytic solution is also housed in the battery container 5. A positive electrode current collecting tab is connected to the positive electrode terminal, a negative electrode current collecting tab is provided to the negative electrode terminal, and a safety valve 10 is attached to the battery lid 4 that seals the battery container 5.
電池容器5は、電解液による腐食やリチウムイオンとの合金化による材料の変質が起こらないように材料の選定を行う。アルミニウム、ステンレス鋼、ニッケルメッキ鋼等の材料から選択される。電池容器5は、電気的に中立の状態に置かれる。 The material of the battery container 5 is selected so as not to be corroded by the electrolytic solution or deteriorated by alloying with lithium ions. It is selected from materials such as aluminum, stainless steel, and nickel-plated steel . The battery container 5 is placed in an electrically neutral state.
軸芯11は、電極群6を支持できるものであれば、公知の任意のものを用いることができる。軸芯11がなくとも、電極群の形状保持が可能であれば、軸芯11用いなくてもよい。 As the shaft core 11, any known one can be used as long as it can support the electrode group 6. If the shape of the electrode group can be maintained without the shaft core 11, the shaft core 11 may not be used.
電極群6は、図1に示した円筒形状の他に扁平形状等、捲回した形状であれば適用することができる。電池容器5の形状は、電極群6の形状に合わせ、円筒形、偏平長円形状、扁平楕円形状等の形状を選択してもよい。 The electrode group 6 can be applied as long as it has a rolled shape such as a flat shape other than the cylindrical shape shown in FIG. The shape of the battery container 5 may be selected in accordance with the shape of the electrode group 6 such as a cylindrical shape, a flat oval shape, or a flat elliptical shape.
<正極>
正極は、正極活物質、導電剤、バインダおよび集電箔から構成される。正極活物質を例示すると、LiCoO 2 、LiNiO 2 、LiMn 2 O 4 、Fe(MoO 4 ) 3 、FeF 3 、LiFePO 4 、およびLiMnPO 4 等である。ただし、本発明では、これらの活物質に限定されず他の正極活物質も用いることができる。
<Positive electrode>
The positive electrode is composed of a positive electrode active material, a conductive agent, a binder and a current collector foil. Examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Fe(MoO 4 ) 3 , FeF 3 , LiFePO 4 , and LiMnPO 4 . However, the present invention is not limited to these active materials, and other positive electrode active materials can be used.
正極活物質の粒径は、正極活物質、導電剤およびバインダにより正極集電箔上に形成される合剤層の厚さ以下になるように通常は規定される。正極活物質の粉末中に前記合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級や風流分級等により粗粒を除去し、合剤層厚さ以下の粒子に選別することが好ましい。 The particle size of the positive electrode active material is usually defined so as to be not more than the thickness of the mixture layer formed on the positive electrode current collector foil by the positive electrode active material, the conductive agent and the binder. If there are coarse particles having a size equal to or larger than the mixture layer thickness in the powder of the positive electrode active material, remove the coarse particles in advance by sieving or air flow classification, and select particles having a mixture layer thickness or less. Is preferred.
また、正極活物質は、一般に酸化物系であるために電気抵抗が高い。そこで、電気伝導性を補うために、正極活物質には炭素粉末からなる導電剤を添加する。正極活物質および導電剤はともに通常は粉末であるので、粉末にバインダを混合して、粉末同士を結合させると同時にこれを塗工した正極集電体へ接着させることができる。 In addition, since the positive electrode active material is generally an oxide type, it has a high electric resistance. Therefore, in order to supplement the electrical conductivity, a conductive agent made of carbon powder is added to the positive electrode active material. Since both the positive electrode active material and the conductive agent are usually powders, it is possible to mix the powders with a binder to bond the powders to each other and at the same time to bond them to the coated positive electrode current collector.
正極集電体には、厚さ10〜100μmのアルミニウム箔、厚さ10〜100μmで孔径0.1〜10mmのアルミニウム穿孔箔、エキスパンドメタル、又は発泡金属板等が用いられる。アルミニウムの他に、ステンレスやチタン等の材質も適用可能である。本発明では、材質、形状、製造方法等に制限されることなく、任意の集電箔を使用することができる。 For the positive electrode current collector, an aluminum foil having a thickness of 10 to 100 μm, an aluminum perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, or the like is used. In addition to aluminum, materials such as stainless steel and titanium are also applicable. In the present invention, any current collector foil can be used without being limited by the material, shape, manufacturing method, and the like.
<負極>
負極は、負極活物質、バインダおよび集電箔から構成される。必要に応じて、導電補助材が用いられる。負極活物質には炭素系材料が一般に用いられるが、酸化系材料であるチタン酸リチウム、SiやGeを含む材料等も用いることが出来る。
<Negative electrode>
The negative electrode is composed of a negative electrode active material, a binder and a collector foil. A conductive auxiliary material is used as necessary. A carbon-based material is generally used as the negative electrode active material, but an oxide-based material such as lithium titanate or a material containing Si or Ge can also be used.
バインダとしては、特に限定はないが、例えば、ポリフッ化ビニリデン、主骨格がポリアクリロニトリルであるバインダを用いるとよい。後述する熱処理における熱処理温度を低くすることができ、得られる電極の柔軟性が優れることから好ましい選択である。 The binder is not particularly limited, but for example, polyvinylidene fluoride or a binder whose main skeleton is polyacrylonitrile may be used. This is a preferable selection because the heat treatment temperature in the heat treatment described later can be lowered and the flexibility of the obtained electrode is excellent.
負極集電体には銅が含有されており、それ以外は材質および形状について特に限定されず、箔、穿孔箔、帯状のメッシュ等の形態で用いればよい。また、多孔性材料、例えば、ポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。 The negative electrode current collector contains copper, and the other materials are not particularly limited in terms of material and shape, and may be used in the form of foil, perforated foil, band-shaped mesh or the like. Further, a porous material such as porous metal (foamed metal) or carbon paper can also be used.
<電解液>
電解液は、電解質、非水溶媒および添加剤から構成される。電解質の代表例としては、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2、LiN(SO2F)2、LiN(C2F5SO2)2があり、特に、LiPF6、LiBF4またはLiN(CF3SO2)2、LiN(SO2F)2、が好ましい。これらの電解質は、1種を単独で用いてもよく、2種類以上を任意の組み合わせおよび比率で併用してもよい。
<Electrolyte>
The electrolytic solution is composed of an electrolyte, a non-aqueous solvent and an additive. Representative examples of the electrolyte include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 , LiN(SO 2 F) 2 , and LiN(C 2 F 5 SO 2 ) 2 , and in particular, LiPF 6 , LiBF 4 or LiN(CF 3 SO 2 ) 2 , LiN(SO 2 F) 2 are preferred. These electrolytes may be used alone or in any combination of two or more in any ratio.
非水溶媒としては、鎖状および環状カーボネート、鎖状および環状カルボン酸エステル、鎖状および環状エーテル、含リン有機溶媒、含硫黄有機溶媒、含ホウ素有機溶媒等が挙げられる。本発明のリチウムイオン電池で用いる非水系電解液は、本発明の効果を著しく損なわない範囲において、各種の添加剤を含有していてもよい。 Examples of the non-aqueous solvent include chain and cyclic carbonates, chain and cyclic carboxylic acid esters, chain and cyclic ethers, phosphorus-containing organic solvents, sulfur-containing organic solvents and boron-containing organic solvents. The non-aqueous electrolyte solution used in the lithium ion battery of the present invention may contain various additives as long as the effects of the present invention are not significantly impaired.
上記添加剤は、従来公知のものを任意に用いることができる。添加剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。添加剤としては、過充電防止剤や、高温保存後の容量維持特性やサイクル特性を改善するための助剤、電解液に難燃性を付与する難燃剤等が挙げられる。 Any conventionally known additives can be used as the above-mentioned additive. As the additive, one kind may be used alone, and two kinds or more may be used in optional combination and ratio. Examples of the additive include an overcharge inhibitor, an auxiliary agent for improving capacity retention characteristics and cycle characteristics after high temperature storage, and a flame retardant agent for imparting flame retardancy to an electrolytic solution.
これらの中でも、高温保存後の容量維持特性やサイクル特性を改善するための助剤として、不飽和結合およびハロゲン原子のうち少なくとも一方を有するカーボネートを加えることが好ましい。 Among these, it is preferable to add a carbonate having at least one of an unsaturated bond and a halogen atom as an auxiliary agent for improving the capacity retention characteristics after high temperature storage and the cycle characteristics.
<セパレータ>
セパレータは、膜厚が1〜300μm、気孔率が20〜90%、100℃の環境下に1時間曝されたときの熱収縮率が20%以下であり、例えば、ポリプロピレンやポリエチレンなどよりなるオレフィン系樹脂の多孔質膜、ポリテトラフルオロエチレンなどからなるフッ素系樹脂の多孔質膜、セルロース製多孔質膜、アラミド製多孔質膜であり、これらの2種以上の多孔質膜を積層した構造としてもよく、或いはこれらの多孔質膜の表面にセラミック、バインダの混合物やアクリル系粘着剤などを塗布しても良い。
<Separator>
The separator has a film thickness of 1 to 300 μm, a porosity of 20 to 90%, and a heat shrinkage rate of 20% or less when exposed to an environment of 100° C. for 1 hour. For example, an olefin made of polypropylene or polyethylene. A porous film made of a series resin, a porous film made of a fluororesin such as polytetrafluoroethylene, a porous film made of cellulose, and a porous film made of aramid. As a structure in which two or more kinds of these porous films are laminated. Alternatively, the surface of these porous membranes may be coated with a mixture of ceramics and binders, an acrylic adhesive, or the like.
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
試験に用いた実施例1のリチウムイオン電池を下記のように製造した。 The lithium-ion battery of Example 1 used in the test was manufactured as follows.
負極活物質は、平均粒子径10μmの易黒鉛化炭素、ポリフッ化ビニリデンバインダを固体質量比で93:7になるように配合し、70L混練機にて混合し、粘度調整のためNMPを適宜添加してスラリを調製した。なお、平均粒子径は、例えば界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製SALD−3000J)で測定することができ、平均粒子径はメジアン径(d50)として算出される。このスラリを塗工機にて厚さ10μmの圧延銅箔(リチウム電池グレード)の両面に実質的に均等かつ均質になるよう塗工した。塗工量は80g/m2とした。この際、圧延銅箔には50mmの活物質未塗布部を残し、該未塗布部を20mm間隔で幅10mmに切り欠きを入れ、負極板のリード片とした。その後、乾燥処理を実施し、電極密度が1.0g/cm3になるようにプレスして負極板を作製し、捲回される負極板の寸法を幅195mm、長さ8450mmとした。 As the negative electrode active material, graphitizable carbon having an average particle diameter of 10 μm and polyvinylidene fluoride binder were mixed in a solid mass ratio of 93:7, mixed in a 70 L kneader, and NMP was appropriately added for viscosity adjustment. Then, a slurry was prepared. The average particle diameter can be measured, for example, by dispersing the sample in purified water containing a surfactant and measuring with a laser diffraction particle size distribution analyzer (for example, SALD-3000J manufactured by Shimadzu Corporation). The diameter is calculated as the median diameter (d50). This slurry was applied by a coating machine to both sides of a rolled copper foil (lithium battery grade) having a thickness of 10 μm so as to be substantially even and homogeneous. The coating amount was 80 g/m 2 . At this time, 50 mm of the active material uncoated portion was left on the rolled copper foil, and the uncoated portion was cut into a width of 10 mm at intervals of 20 mm to obtain a lead piece of the negative electrode plate. After that, a drying process was performed, and a negative electrode plate was produced by pressing so that the electrode density was 1.0 g/cm 3 , and the wound negative electrode plate had a width of 195 mm and a length of 8450 mm.
正極活物質として平均粒子径25μmのLiMn2O4と、平均粒子径7μmのLiNi1/3Co1/3Mn1/3、デンカブラック(電気化学工業製HS−100)、黒鉛粉末(日本黒鉛製J−SP−H)、ポリフッ化ビニリデンバインダを固体質量比で65:25:4:1:5になるように配合し、70L混練機にて混合し、粘度調整のためNMPを適宜添加してスラリを調製した。このスラリを塗工機にて厚さ20μmのアルミニウム箔(リチウム電池グレード)の両面に実質的に均等かつ均質になるよう塗布した。この際、アルミニウム箔には50mmの活物質未塗布部を残し、該未塗布部を20mm間隔で幅10mmに切り欠きを入れ、正極のリード片とした。その後、乾燥処理を実施し、電極密度を2.5g/cm3になるようにプレスして正極を作製し、捲回される正極の寸法を幅190mm、長さ9570mmとした。 LiMn 2 O 4 having an average particle diameter of 25 μm as a positive electrode active material, LiNi 1/3 Co 1/3 Mn 1/3 having an average particle diameter of 7 μm, Denka Black (HS-100 manufactured by Denki Kagaku Kogyo), graphite powder (Nippon Graphite) J-SP-H), polyvinylidene fluoride binder are mixed in a solid mass ratio of 65:25:4:1:5, mixed in a 70 L kneader, and NMP is appropriately added for viscosity adjustment. To prepare a slurry. This slurry was applied by a coating machine to both sides of an aluminum foil (lithium battery grade) having a thickness of 20 μm so as to be substantially even and homogeneous. At this time, a 50 mm active material uncoated portion was left on the aluminum foil, and the uncoated portion was cut into a width of 10 mm at intervals of 20 mm to obtain a positive electrode lead piece. After that, a drying treatment was performed, and a positive electrode was manufactured by pressing so that the electrode density was 2.5 g/cm 3 , and the wound positive electrode had a width of 190 mm and a length of 9570 mm.
図1にリチウムイ二次電池の断面図を示す。上記正極と上記負極とを、これらが直接接触しないように厚さ30μmのポリエチレン製のセパレータW5を挟んで捲回した。このとき、正極のリード片と負極のリード片とが、それぞれ捲回群の互いに反対側の両端に位置するようにした。また、正極、負極、セパレータの長さを調整し、捲回群径は65±0.1mmとした。 FIG. 1 shows a cross-sectional view of the lithium secondary battery. The positive electrode and the negative electrode were wound with a polyethylene separator W5 having a thickness of 30 μm interposed therebetween so that they would not come into direct contact with each other. At this time, the lead piece of the positive electrode and the lead piece of the negative electrode were respectively positioned at opposite ends of the winding group. The length of the positive electrode, the negative electrode, and the separator was adjusted so that the winding group diameter was 65±0.1 mm.
次いで、図1に示すように、正極から導出されているリード片を変形させ、その全てを正極側の鍔部7の底部付近に集めて接触させた。正極側の鍔部7は、捲回群6の軸芯のほぼ延長線上にある極柱(正極外部端子1)の周囲から張り出すよう一体成形されており、底部と側部とを有する。その後、超音波溶接によりリード片を鍔部7の底部に接続し固定した。負極から導出されているリード片と負極側の鍔部7の底部も同様に接続し固定した。この負極側の鍔部7は、捲回群6の軸芯のほぼ延長線上にある極柱(負極外部端子1’)周囲から張り出すように一体成形されており、底部と側部とを有する。捲回群6の最大径部がステンレス製の電池容器5内径よりも僅かに小さくなるように絶縁被覆の厚さ(粘着テープの巻き数)を調整し、捲回群6を電池容器5内に挿入した。なお、電池容器5の外径は67mm、内径は66mmのものを用いた。 Next, as shown in FIG. 1, the lead pieces led out from the positive electrode were deformed, and all of them were collected and brought into contact with the vicinity of the bottom of the flange portion 7 on the positive electrode side. The positive electrode-side collar portion 7 is integrally formed so as to project from the periphery of the pole (the positive electrode external terminal 1) that is substantially on the extension line of the axis of the winding group 6, and has a bottom portion and side portions. After that, the lead piece was connected and fixed to the bottom portion of the collar portion 7 by ultrasonic welding. The lead piece led out from the negative electrode and the bottom of the negative electrode-side collar portion 7 were similarly connected and fixed. The collar portion 7 on the negative electrode side is integrally molded so as to project from the periphery of the pole (negative electrode external terminal 1′) which is substantially on the extension line of the axis of the winding group 6, and has a bottom portion and side portions. .. The thickness of the insulating coating (the number of windings of the adhesive tape) is adjusted so that the maximum diameter part of the winding group 6 is slightly smaller than the inner diameter of the battery container 5 made of stainless steel, and the winding group 6 is placed in the battery container 5. Inserted. The battery container 5 had an outer diameter of 67 mm and an inner diameter of 66 mm.
次いで、図1に示すように、セラミックワッシャ3’を、先端が正極外部端子1を構成する極柱および先端が負極外部端子1’を構成する極柱にそれぞれ嵌め込む。セラミックワッシャ3’は、アルミナ製であり、電池蓋4の裏面と当接する部分の厚さが2mm、内径16mm、外径25mmである。次いで、セラミックワッシャ3を電池蓋4に載置した状態で、正極外部端子1をセラミックワッシャ3に通し、また、他のセラミックワッシャ3を他の電池蓋4に載置した状態で、負極外部端子1’を他のセラミックワッシャ3に通す。セラミックワッシャ3は、アルミナ製であり、厚さ2mm、内径16mm、外径28mmの平板状である。 Next, as shown in FIG. 1, the ceramic washer 3'is fitted into the pole column whose tip constitutes the positive electrode external terminal 1 and the pole column whose tip constitutes the negative electrode external terminal 1', respectively. The ceramic washer 3'is made of alumina, and has a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 25 mm, which is in contact with the back surface of the battery lid 4. Next, with the ceramic washer 3 placed on the battery lid 4, the positive electrode external terminal 1 is passed through the ceramic washer 3, and the other ceramic washer 3 is placed on the other battery lid 4, with the negative electrode external terminal Thread 1'through another ceramic washer 3. The ceramic washer 3 is made of alumina and has a flat plate shape with a thickness of 2 mm, an inner diameter of 16 mm and an outer diameter of 28 mm.
その後、電池蓋4の周囲の端面を電池容器5の開口部に嵌合し、双方の接触部の全域をレーザー溶接する。このとき、正極外部端子1および負極外部端子1’は、それぞれ電池蓋4の中心にある穴(孔)を貫通して電池蓋4の外部に突出している。電池蓋4には、電池の内圧上昇に応じて開裂する開裂弁10が設けられている。なお、開裂弁10の開裂圧は、1.3〜1.8MPaとした。 After that, the end face around the battery lid 4 is fitted into the opening of the battery container 5, and the entire area of both contact portions is laser-welded. At this time, the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ respectively penetrate the hole (hole) in the center of the battery lid 4 and project to the outside of the battery lid 4. The battery lid 4 is provided with a cleaving valve 10 that cleaves in response to an increase in internal pressure of the battery. The cleavage pressure of the cleavage valve 10 was 1.3 to 1.8 MPa.
次いで、金属製のナット2を正極外部端子1および負極外部端子1’にそれぞれ螺着し、セラミックワッシャ3、セラミックワッシャ3’を介して電池蓋4を鍔部7とナット2間で締め付けることにより固定する。このときの締め付けトルク値は7N・mとした。この状態では、電池蓋4の裏面と鍔部7との間に介在させたゴム(EPDM)製のOリングの圧縮により電池容器5の内部の発電要素は外気から遮断されている。 Then, the metal nut 2 is screwed to the positive electrode external terminal 1 and the negative electrode external terminal 1', respectively, and the battery cover 4 is tightened between the collar portion 7 and the nut 2 through the ceramic washer 3 and the ceramic washer 3'. Fix it. The tightening torque value at this time was 7 N·m. In this state, the power generation element inside the battery container 5 is shielded from the outside air by the compression of the rubber (EPDM) O-ring interposed between the back surface of the battery lid 4 and the collar portion 7.
その後、電池蓋4に設けられた注液口15から電池容器5の内部を減圧し、電解液を350g電池容器5内に注入し、その後、注液口15を封止することにより円筒形リチウムイオン電池20を完成させた。 After that, the inside of the battery container 5 is decompressed through the liquid injection port 15 provided in the battery lid 4, 350 g of the electrolytic solution is injected into the battery container 5, and then the liquid injection port 15 is sealed to form a cylindrical lithium The ion battery 20 was completed.
電解液としては、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートを、それぞれの体積比2:3:2で混合した混合溶液中へ、6フッ化リン酸リチウム(LiPF6)を1.2mol/L溶解したものを用いた。なお、本実施例で作製した円筒形リチウム二次電池20には、電池容器5の内圧の上昇に応じて電流を遮断するように作動する電流遮断機構は設けられていない。 As an electrolytic solution, 1.2 mol/L of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solution in which ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate were mixed at a volume ratio of 2:3:2. What was done was used. It should be noted that the cylindrical lithium secondary battery 20 manufactured in this example is not provided with a current interruption mechanism that operates so as to interrupt the current in response to an increase in the internal pressure of the battery container 5.
全ての工程をドライルーム内(露点温度:−60℃以下)で行い、正極と負極の充電容量比率を負極/正極=1.1、電池の放電容量を40Ahとなるように設計した。 All the steps were performed in a dry room (dew point temperature: -60°C or lower), and the charge capacity ratio of the positive electrode and the negative electrode was designed to be negative electrode/positive electrode = 1.1 and the discharge capacity of the battery was 40 Ah.
(実施例1)
電解液を注液した円筒型リチウム二次電池20を、注液から10時間後に0.1ItAの充電電流で、リチウム二次電池の設計容量に対して0.5%の容量まで充電し(第1回目充電)、注液から20時間(放置ステップにおける第2の期間を含む期間)後に1.0ItAの充電電流で4.2Vまで3時間の定電流定電圧充電を行い、リチウム二次電池を満充電とした(第2回目充電)。第2回目充電が終了したリチウム二次電池を1.0ItAの放電電流にて、リチウム二次電池の電圧が2.7Vとなるまで定電流放電し、電流値を積算することで放電容量を測定した。例えば、定電流放電の場合、放電容量(Ah)は以下の式によって得られる。
(Example 1)
The cylindrical lithium secondary battery 20 into which the electrolytic solution was injected was charged to a capacity of 0.5% with respect to the designed capacity of the lithium secondary battery with a charging current of 0.1 ItA 10 hours after the injection (first (1st charge), 20 hours after the liquid injection (a period including the second period in the standing step), a constant current constant voltage charge of 4.2 hours was performed at a charge current of 1.0 ItA for 3 hours to charge a lithium secondary battery. Fully charged (second charge). The lithium secondary battery, which has been charged for the second time, is discharged with a constant current at a discharge current of 1.0 ItA until the voltage of the lithium secondary battery reaches 2.7 V, and the discharge capacity is measured by integrating the current value. did. For example, in the case of constant current discharge, the discharge capacity (Ah) is obtained by the following formula.
放電容量(Ah)=放電電流(A)×放電時間(時間)
(実施例2)
注液から第2回目充電までの時間(放置ステップにおける第2の期間を含む期間)を250時間とした以外は実施例1と同様とした。
Discharge capacity (Ah) = discharge current (A) x discharge time (hours)
(Example 2)
Example 1 was the same as Example 1 except that the time from the liquid injection to the second charging (the period including the second period in the standing step) was 250 hours.
(実施例3〜4)
第1回目充電の充電電流を変更した以外は実施例1と同様とした。実施例3では0.02ItA、実施例4では1.2ItAとした。
(Examples 3 to 4)
The same procedure was performed as in Example 1 except that the charging current for the first charging was changed. In Example 3, it was 0.02 ItA, and in Example 4, it was 1.2 ItA.
(実施例5)
第1回目充電の充電容量を設計容量に対して40%とし、注液から第2回目充電までの時間(放置ステップにおける第2の期間を含む期間)を160時間とした以外は、実施例1と同様とした。
(Example 5)
Example 1 except that the charge capacity of the first charge was 40% of the design capacity, and the time from liquid injection to the second charge (the period including the second period in the standing step) was 160 hours. Same as.
(実施例6)
注液から第2回目充電までの時間(放置ステップにおける第2の期間を含む期間)を250時間とし、第1回目充電の充電電流を1.2ItAとした以外は実施例1と同様とした。
(Example 6)
Example 1 was the same as Example 1 except that the time from the liquid injection to the second charge (the period including the second period in the standing step) was 250 hours, and the charge current for the first charge was 1.2 ItA.
(実施例7)
注液から第2回目充電までの時間(放置ステップにおける第2の期間を含む期間)を250時間とし、第1回目充電の充電電流を1.2ItAとし、第1回目充電の充電容量を設計容量に対して40%とした以外は、実施例1と同様とした。
(Example 7)
The time from the injection to the second charge (the period including the second period in the leaving step) is 250 hours, the charge current for the first charge is 1.2 ItA, and the charge capacity for the first charge is the design capacity. The same procedure as in Example 1 was carried out except that 40% was used.
(実施例8)
設計容量を80Ahとし、注液から第2回目充電までの時間(放置ステップにおける第2の期間を含む期間)を40時間とした以外は実施例1と同様である。
(Example 8)
Example 1 is the same as Example 1 except that the designed capacity was 80 Ah and the time from the liquid injection to the second charge (the period including the second period in the standing step) was 40 hours.
(比較例1)
第1回目充電を実施しない以外は実施例1と同様とした。
(Comparative Example 1)
The same procedure as in Example 1 was performed except that the first charging was not performed.
(比較例2)
第1回目充電の充電容量を設計容量に対して0.4%とした以外は実施例1と同様とした。
(Comparative example 2)
Example 1 was the same as Example 1 except that the charge capacity of the first charge was 0.4% of the design capacity.
(比較例3)
注液から第2回目充電までの時間(放置ステップにおける第2の期間を含む期間)を15時間とした以外は実施例1と同様とした。
(Comparative example 3)
Example 1 was the same as Example 1 except that the time from the injection of liquid to the second charging (the period including the second period in the leaving step) was 15 hours.
(比較例4)
注液から第1回目充電までの時間(第1の期間)を15時間とした以外は実施例1と同様とした。
(Comparative Example 4)
The same procedure as in Example 1 was performed except that the time from the liquid injection to the first charging (first period) was 15 hours.
(比較例5)
第1回回目充電の充電電流を1.5ItAとした以外は実施例1と同様とした。
(Comparative example 5)
The same procedure was performed as in Example 1 except that the charging current for the first charging was 1.5 ItA.
(比較例6)
注液から第2回目充電までの時間(放置ステップにおける第2の期間を含む期間)を300時間とした以外は、実施例1と同様とした。
(Comparative example 6)
Example 1 was the same as Example 1 except that the time from the injection of liquid to the second charge (the period including the second period in the standing step) was 300 hours.
(銅の溶解量判定)
実施例1〜8、比較例1〜6の電池に対し、誘導結合プラズマ発光分光分析装置(例えば、サーモフィッシャーサイエンティフィック製iCAP6300)によって、第1回目充電の直前と第2回目充電の直前の電解液を採取し、電解液中に含まれる銅濃度を測定した。第1回目充電直前の電解液と第2回目充電直前の電解液が共に銅濃度0.5ppm未満であった場合を「○」、いずれかの電解液が銅濃度0.5ppm以上1.0ppm未満であった場合を「△」、いずれかの電解液が銅濃度1.0ppm以上であった場合を「×」と判定した。
(Copper dissolution amount determination)
The batteries of Examples 1 to 8 and Comparative Examples 1 to 6 were measured by an inductively coupled plasma emission spectroscopic analyzer (for example, iCAP6300 manufactured by Thermo Fisher Scientific) immediately before the first charging and immediately before the second charging. The electrolytic solution was sampled, and the concentration of copper contained in the electrolytic solution was measured. When the electrolytic solution immediately before the first charging and the electrolytic solution immediately before the second charging both had a copper concentration of less than 0.5 ppm, the result was “◯”, and one of the electrolytic solutions had a copper concentration of 0.5 ppm or more and less than 1.0 ppm. It was judged to be “Δ” when it was, and it was judged to be “x” when either of the electrolytic solutions had a copper concentration of 1.0 ppm or more.
(放電容量の判定)
実施例1〜8、比較例1〜6の電池の放電容量において、設計容量の100%以上の容量が得られた場合を「○」、95%以上100%未満の容量が得られた場合を「△」、95%未満の容量が得られた場合を「×」と判定した。
(Judgment of discharge capacity)
Regarding the discharge capacities of the batteries of Examples 1 to 8 and Comparative Examples 1 to 6, when the capacity of 100% or more of the designed capacity was obtained, “◯” was given, and when the capacity of 95% or more and less than 100% was obtained. The case where “Δ” and a capacity of less than 95% were obtained was judged as “x”.
各実施例において、銅の溶解量判定あるいは放電容量の判定が「△」となっている実施例があるが、リチウム二次電池の実用上は問題ない。なお、実施例2、6、7では、注液から第2回目充電までの時間が比較的長かったため、自己放電によって負極電位が元の電位付近に戻り、第2回目充電前には銅の溶解が若干見られ始めていた。実施例4、6、7では第1回目充電の充電電流が比較的大きく、また、実施例5、7では、第1回目充電の充電容量が比較的大きかったため、電極群内部で充放電不均一反応が起き、金属リチウムの析出反応などにより、本来充放電で用いられるリチウムイオンが不足したため、放電容量が若干不足した。 In each of the examples, there is an example in which the determination of the amount of copper dissolved or the determination of the discharge capacity is “Δ”, but there is no problem in practical use of the lithium secondary battery. In addition, in Examples 2, 6, and 7, since the time from the liquid injection to the second charging was relatively long, the negative electrode potential returned to near the original potential by self-discharging, and the copper was dissolved before the second charging. Was beginning to be seen. In Examples 4, 6 and 7, the charging current of the first charging was relatively large, and in Examples 5 and 7, the charging capacity of the first charging was relatively large, so the charge and discharge were non-uniform within the electrode group. The reaction occurred, and the lithium ion originally used for charging and discharging was insufficient due to the precipitation reaction of metallic lithium and the like, so that the discharge capacity was slightly insufficient.
本発明によれば、負極集電体に含まれる銅の溶解がほとんどない高品質なリチウム二次電池が製造可能であるとともに、電解液の浸透期間を短縮することができ、生産性の向上につながる。 According to the present invention, it is possible to manufacture a high-quality lithium secondary battery with almost no dissolution of copper contained in the negative electrode current collector, and it is possible to shorten the electrolyte permeation period and improve productivity. Connect
1 正極外部端子
1’ 負極外部端子
2 金属ナット
3 セラミックワッシャ
3’ セラミックワッシャ
4 電池蓋(電池容器の一部)
5 電池容器
6 捲回群
7 外部端子鍔部
10 開裂弁
11 軸芯
15 注液口
20 円筒型リチウム二次電池
W1 正極集電体(正極の一部)
W2 正極活物質層(正極の一部)
W3 負極集電体(負極の一部)
W4 負極活物質層(負極の一部)
W5 セパレータ
1 Positive External Terminal 1'Negative External Terminal 2 Metal Nut 3 Ceramic Washer 3'Ceramic Washer 4 Battery Lid (Part of Battery Container)
5 Battery Container 6 Winding Group 7 External Terminal Collar 10 Cleavage Valve 11 Shaft Core 15 Injection Port 20 Cylindrical Lithium Secondary Battery W1 Positive Electrode Current Collector (Part of Positive Electrode)
W2 Positive electrode active material layer (part of positive electrode)
W3 Negative electrode current collector (part of negative electrode)
W4 Negative electrode active material layer (a part of negative electrode)
W5 separator
Claims (4)
前記電池容器内に前記電解液の注液を開始してから始まる第1の期間内において、前記負極の前記負極活物質及び前記正極の前記正極活物質の表面が前記電解液と全面的に触れた状態で、前記銅が前記電解液中に溶解する電位を下回るまで前記負極の電位が下がるように第1回目の充電を行う第1回目の充電ステップと、
その後前記電解液が前記負極活物質及び前記正極活物質の内部に浸透する第2の期間が経過するまで充電を停止して放置する放置ステップと、
前記第2の期間が経過した後満充電になるまで第2回目の充電を行う第2回目の充電ステップとを行い、
前記第1の期間を前記電解液注液後10時間以内とし、
前記第1回目の充電ステップでの充電容量は、前記設計容量の0.5%以上であり、
前記放置ステップでは、前記リチウム二次電池の前記設計容量をXAhとして表したときに、前記電解液注液後から0.5X時間以上放置状態になるように前記第2の期間を定めることを特徴とするリチウム二次電池の初充電方法。 A wound electrode group in which a negative electrode containing copper in a negative electrode current collector that holds a negative electrode active material and a positive electrode in which a positive electrode active material is held on a positive electrode current collector are wound via a separator is electrically A method of initially charging a lithium secondary battery having a design capacity of 5 Ah or more, which is housed in a neutral battery container and in which an electrolytic solution is injected into the battery container,
During the first period starting after injecting the electrolytic solution into the battery container, the surfaces of the negative electrode active material of the negative electrode and the positive electrode active material of the positive electrode are entirely in contact with the electrolytic solution. A first charging step in which the first charging is performed so that the potential of the negative electrode decreases until the potential of the negative electrode decreases below the potential at which the copper dissolves in the electrolytic solution,
And a step of leaving charging and stopping the charging until a second period in which the electrolytic solution permeates into the negative electrode active material and the positive electrode active material elapses.
A second charging step of performing a second charging until the battery is fully charged after the second period has passed ,
The first period is within 10 hours after injecting the electrolytic solution,
The charge capacity in the first charging step is 0.5% or more of the design capacity,
In the leaving step, when the design capacity of the lithium secondary battery is expressed as XAh, the second period is determined such that the lithium secondary battery is left for 0.5X hours or more after the electrolyte solution is injected. The first charging method for a lithium secondary battery.
The lithium secondary according to any one of claims 1 to 3 , wherein a period from the injection of the electrolytic solution to the start of the second charging is within 250 hours including the second period. How to charge the battery for the first time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016018625A JP6728724B2 (en) | 2016-02-03 | 2016-02-03 | First charge method of lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016018625A JP6728724B2 (en) | 2016-02-03 | 2016-02-03 | First charge method of lithium secondary battery |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2017139107A JP2017139107A (en) | 2017-08-10 |
JP2017139107A5 JP2017139107A5 (en) | 2019-01-31 |
JP6728724B2 true JP6728724B2 (en) | 2020-07-22 |
Family
ID=59566085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016018625A Expired - Fee Related JP6728724B2 (en) | 2016-02-03 | 2016-02-03 | First charge method of lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6728724B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019179667A (en) * | 2018-03-30 | 2019-10-17 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
KR20210060825A (en) * | 2019-11-19 | 2021-05-27 | 주식회사 엘지에너지솔루션 | Methods of activation for secondary battery |
KR20210079084A (en) * | 2019-12-19 | 2021-06-29 | 주식회사 엘지에너지솔루션 | Secondary battery and method for manufacturing the same |
JP7182590B2 (en) * | 2020-11-26 | 2022-12-02 | プライムプラネットエナジー&ソリューションズ株式会社 | Manufacturing method of lithium ion battery |
CN116802827A (en) * | 2021-01-29 | 2023-09-22 | 松下新能源株式会社 | Nonaqueous electrolyte secondary battery |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3336672B2 (en) * | 1993-03-30 | 2002-10-21 | ソニー株式会社 | Manufacturing method of non-aqueous electrolyte secondary battery |
JP4352654B2 (en) * | 2002-04-17 | 2009-10-28 | 新神戸電機株式会社 | Non-aqueous electrolyte secondary battery |
US10128547B2 (en) * | 2012-02-16 | 2018-11-13 | Toyota Jidosha Kabushiki Kaisha | Method for producing secondary battery |
JP2014238961A (en) * | 2013-06-07 | 2014-12-18 | トヨタ自動車株式会社 | Method for manufacturing nonaqueous electrolyte secondary battery |
US20150004474A1 (en) * | 2013-07-01 | 2015-01-01 | Samsung Sdl Co., Ltd. | Secondary battery |
-
2016
- 2016-02-03 JP JP2016018625A patent/JP6728724B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2017139107A (en) | 2017-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6728724B2 (en) | First charge method of lithium secondary battery | |
JP2010225291A (en) | Lithium-ion secondary battery and method of manufacturing the same | |
JP2001325988A (en) | Charging method of non-aqueous electrolyte secondary battery | |
JP2007273183A (en) | Negative electrode and secondary battery | |
JP2007265668A (en) | Cathode for nonaqueous electrolyte secondary battery and its manufacturing method | |
JP5053044B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2017139107A5 (en) | ||
JP2009259502A (en) | Nonaqueous electrolyte secondary battery | |
JP3821434B2 (en) | Battery electrode group and non-aqueous electrolyte secondary battery using the same | |
JP2003208924A (en) | Lithium secondary battery | |
JP2009064715A (en) | Positive electrode and lithium secondary battery using the same | |
JP6051038B2 (en) | Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery | |
JP5260857B2 (en) | Square non-aqueous electrolyte secondary battery and manufacturing method thereof | |
RU2644590C1 (en) | Auxiliary battery with non-aqueous electrolyte and method of manufacturing the auxiliary battery with non-aqueous electrolyte | |
JP2011222128A (en) | Secondary battery | |
JP2010140737A (en) | Nonaqueous electrolyte secondary battery | |
JP2013098022A (en) | Battery electrode plate and battery using the same | |
JP2010015852A (en) | Secondary battery | |
JP6668876B2 (en) | Manufacturing method of lithium ion secondary battery | |
JP2008243704A (en) | Cylindrical type nonaqueous electrolyte battery | |
CN111183542B (en) | Nonaqueous electrolyte secondary battery | |
JP2016072119A (en) | Lithium secondary battery | |
JP2016126953A (en) | Method for reducing unevenness in charging secondary battery, and method for manufacturing secondary battery | |
WO2021100272A1 (en) | Secondary battery and method for producing same | |
JP2008243441A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181205 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200615 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6728724 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |