JP2008243529A - Positive electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Positive electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP2008243529A
JP2008243529A JP2007081152A JP2007081152A JP2008243529A JP 2008243529 A JP2008243529 A JP 2008243529A JP 2007081152 A JP2007081152 A JP 2007081152A JP 2007081152 A JP2007081152 A JP 2007081152A JP 2008243529 A JP2008243529 A JP 2008243529A
Authority
JP
Japan
Prior art keywords
positive electrode
specific surface
carbon material
surface area
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007081152A
Other languages
Japanese (ja)
Inventor
Akira Kojima
亮 小島
Takenori Ishizu
竹規 石津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2007081152A priority Critical patent/JP2008243529A/en
Publication of JP2008243529A publication Critical patent/JP2008243529A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode exerting an excellent load factor characteristic, and a lithium ion secondary battery using the positive electrode. <P>SOLUTION: This lithium ion secondary battery has an electrode group formed by rolling a positive electrode plate and a negative electrode plate to face each other through a separator. The positive electrode plate has aluminum foil as a positive electrode collector. A positive electrode mix containing a positive electrode active material is generally uniformly applied to both surfaces of the aluminum foil. For the positive electrode active material, lithium iron phosphate represented by chemical formula Li<SB>1+x</SB>Fe<SB>1-x</SB>PO<SB>4</SB>(0<x<1), and having an olivine crystal structure is used. In the positive electrode mix, a conductive material containing three or more kinds of carbon materials different in powder properties, and a binder of polyvinylidene fluoride are mixed in addition to the positive electrode active material. Electron conduction is mediated between the lithium iron phosphate and the aluminum foil by the three or more kinds of carbon materials different in powder properties. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はリチウムイオン二次電池用正極電極およびリチウムイオン二次電池に係り、特に、化学式Li1+xFe1−xPO(0<x<1)で表されオリビン結晶構造を有する正極活物質と、導電材とを含む合剤が集電体に略均等に塗着されたリチウムイオン二次電池用正極電極および該正極電極を用いたリチウムイオン二次電池に関する。 The present invention relates to a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery, and in particular, a positive electrode active material represented by a chemical formula Li 1 + x Fe 1-x PO 4 (0 <x <1) and having an olivine crystal structure; The present invention also relates to a positive electrode for a lithium ion secondary battery in which a mixture containing a conductive material is applied to a current collector substantially evenly, and a lithium ion secondary battery using the positive electrode.

非水電解液二次電池を代表するリチウムイオン二次電池は、高エネルギー密度であるメリットを活かして、ノートパソコン等のポータブル機器の電源として広く普及しており、電気自動車等の電源としても実用化されている。一般的なリチウムイオン二次電池では、正極活物質としてリチウムイオンを可逆に吸蔵、放出できるリチウム含有金属酸化物、負極活物質として炭素材料が用いられており、数種類のカーボネート系混合有機溶媒に6フッ化リン酸リチウム(LiPF)などのリチウム塩を溶解させた非水電解液が用いられている。 Lithium ion secondary batteries, which are representative of non-aqueous electrolyte secondary batteries, are widely used as power sources for portable devices such as notebook computers, taking advantage of their high energy density, and are also practical as power sources for electric vehicles. It has become. In a general lithium ion secondary battery, a lithium-containing metal oxide capable of reversibly occluding and releasing lithium ions as a positive electrode active material and a carbon material as a negative electrode active material are used. A nonaqueous electrolytic solution in which a lithium salt such as lithium fluorophosphate (LiPF 6 ) is dissolved is used.

正極活物質のリチウム含有金属酸化物としては、従来から、層状結晶構造やスピネル結晶構造を有し、高容量、長寿命を特徴とするコバルト酸リチウムが主として用いられている。ところが、コバルト酸リチウムは、原料であるコバルトの資源量が少なくリチウムイオン二次電池のコスト高を招く。このため、近年では、安全性向上や低コスト化を目的に、オリビン(かんらん石)結晶構造を有するリン酸鉄リチウムを正極活物質として使用する研究も盛んに行われている。   Conventionally, lithium cobalt oxide having a layered crystal structure or a spinel crystal structure and having a high capacity and a long life has been mainly used as the lithium-containing metal oxide of the positive electrode active material. However, lithium cobaltate has a small amount of cobalt as a raw material, and increases the cost of the lithium ion secondary battery. For this reason, in recent years, for the purpose of improving safety and reducing the cost, research on using lithium iron phosphate having an olivine crystal structure as a positive electrode active material has been actively conducted.

オリビン結晶構造を有するリン酸鉄リチウムでは、比較的高電位で動作するため、電池容量が大きくなる利点を有している。その反面、ポリアニオンを基本骨格とすることから、局在化した電子構造が形成されるため、層状結晶構造やスピネル結晶構造を有するリチウム含有金属酸化物に比べて電子伝導性が低い、という問題がある。このため、高負荷時には、充放電特性が大きく低下することとなる。これらの問題を克服し電池として十分な性能を得るために、種々の技術が開示されている。例えば、リン酸鉄リチウムの粒径を超微細化する技術(特許文献1参照)、リン酸鉄リチウムを構成する鉄元素の一部を異種元素で置換する技術(特許文献2参照)が開示されている。   Since lithium iron phosphate having an olivine crystal structure operates at a relatively high potential, it has the advantage of increasing battery capacity. On the other hand, since a polyanion is used as a basic skeleton, a localized electronic structure is formed, and thus there is a problem that the electronic conductivity is lower than that of a lithium-containing metal oxide having a layered crystal structure or a spinel crystal structure. is there. For this reason, at the time of high load, the charge / discharge characteristics are greatly deteriorated. In order to overcome these problems and obtain sufficient performance as a battery, various techniques have been disclosed. For example, a technique for making the particle size of lithium iron phosphate ultrafine (see Patent Document 1) and a technique for substituting a part of the iron element constituting lithium iron phosphate with a different element (see Patent Document 2) are disclosed. ing.

特開2004−79276号公報JP 2004-79276 A 特開2005−50556号公報JP 2005-50556 A

しかしながら、特許文献1の技術では、リン酸鉄リチウムの粒径が超微細化されるため、電極作製時に取り扱いにくくなる、という問題がある。また、特許文献2の技術では、鉄元素を異種元素で置換するときの反応条件等の管理が煩雑となり、コスト面での問題がある。一方、リン酸鉄リチウムの電子伝導性の低さを補うために導電材を大量に添加して電極を作製すると、相対的に正極活物質の割合が低下するため、エネルギー密度の面で不利となる。   However, the technique of Patent Document 1 has a problem in that the particle size of lithium iron phosphate is made ultrafine, so that it is difficult to handle during electrode fabrication. In the technique of Patent Document 2, management of reaction conditions and the like when replacing an iron element with a different element becomes complicated, and there is a problem in cost. On the other hand, when an electrode is produced by adding a large amount of a conductive material in order to compensate for the low electronic conductivity of lithium iron phosphate, the proportion of the positive electrode active material is relatively reduced, which is disadvantageous in terms of energy density. Become.

本発明は上記事案に鑑み、優れた負荷率特性を発揮させることができる正極電極および該正極電極を用いたリチウムイオン二次電池を提供することを課題とする。   In view of the above-described case, an object of the present invention is to provide a positive electrode capable of exhibiting excellent load factor characteristics and a lithium ion secondary battery using the positive electrode.

上記課題を解決するために、本発明の第1の態様は、化学式Li1+xFe1−xPO(0<x<1)で表されオリビン結晶構造を有する正極活物質と、導電材とを含む合剤が集電体に略均等に塗着されたリチウムイオン二次電池用正極電極において、前記導電材は、粉体性状の異なる3種類以上の炭素材料を含むことを特徴とする。 In order to solve the above problems, a first aspect of the present invention includes a positive electrode active material represented by a chemical formula Li 1 + x Fe 1-x PO 4 (0 <x <1) and having an olivine crystal structure, and a conductive material. In the positive electrode for a lithium ion secondary battery in which the containing mixture is applied to the current collector substantially uniformly, the conductive material includes three or more types of carbon materials having different powder properties.

第1の態様では、集電体に塗着された合剤に含まれる導電材が粉体性状の異なる3種類以上の炭素材料を含むため、化学式Li1+xFe1−xPO(0<x<1)で表されオリビン結晶構造を有する正極活物質と集電体との間の電子伝導が粉体性状の異なる3種類以上の炭素材料により媒介されるので、正極電極として優れた負荷率特性を発揮させることができる。 In the first aspect, since the conductive material included in the mixture applied to the current collector includes three or more types of carbon materials having different powder properties, the chemical formula Li 1 + x Fe 1-x PO 4 (0 <x <1) Since the electron conduction between the positive electrode active material represented by <1) and the current collector and the current collector is mediated by three or more kinds of carbon materials having different powder properties, the load factor characteristics are excellent as a positive electrode. Can be demonstrated.

第1の態様において、正極活物質を平均粒径D50が10μm以下、かつ、BET比表面積が5m/g以上としてもよい。また、炭素材料のBET比表面積がそれぞれ異なるようにすることが好ましい。このとき、炭素材料のBET比表面積を、正極活物資のBET比表面積に対し、少なくとも、1種類が1倍以上2倍以下、もう1種類が3倍以上5倍以下、さらにもう1種類が50倍以上100倍以下としてもよい。また、炭素材料のBET比表面積が小さいほど合剤中の含有量を大きくしてもよい。このとき、炭素材料の合剤中の含有量を、合剤中の全炭素含有量に対し、BET比表面積の最も小さい炭素材料が80%以上、BET比表面積の2番目に小さい炭素材料が20%以下、BET比表面積の最も大きい炭素材料が10%未満とすることができる。また、炭素材料のうち最も小さい粒径の炭素材料の平均粒径D50を正極活物質の平均粒径D50の2倍以上としてもよい。 In a first aspect, the positive electrode active material having an average particle diameter D 50 of 10μm or less, and, BET specific surface area may be more than 5 m 2 / g. Moreover, it is preferable that the BET specific surface areas of the carbon materials are different. At this time, the BET specific surface area of the carbon material is at least 1 type to 2 times or less, the other type is 3 times to 5 times, and the other type is 50 times the BET specific surface area of the positive electrode active material. It is good also as 100 times or less. Moreover, you may enlarge content in a mixture, so that the BET specific surface area of a carbon material is small. At this time, the content of the carbon material in the mixture is 80% or more of the carbon material having the smallest BET specific surface area and 20% of the carbon material having the second BET specific surface area of the total carbon content in the mixture. % Or less and the carbon material having the largest BET specific surface area can be less than 10%. Further, the average particle diameter D 50 of the carbon material of the smallest particle size may be more than twice the average particle diameter D 50 of the positive electrode active material of the carbon material.

また、上記課題を解決するために、本発明の第2の態様は、第1の態様の正極電極を用いたリチウムイオン二次電池である。   Moreover, in order to solve the said subject, the 2nd aspect of this invention is a lithium ion secondary battery using the positive electrode of the 1st aspect.

本発明によれば、集電体に塗着された合剤に含まれる導電材が粉体性状の異なる3種類以上の炭素材料を含むため、化学式Li1+xFe1−xPO(0<x<1)で表されオリビン結晶構造を有する正極活物質と集電体との間の電子伝導が粉体性状の異なる3種類以上の炭素材料により媒介されるので、正極電極として優れた負荷率特性を発揮させることができる、という効果を得ることができる。 According to the present invention, since the conductive material included in the mixture applied to the current collector includes three or more types of carbon materials having different powder properties, the chemical formula Li 1 + x Fe 1-x PO 4 (0 <x <1) Since the electron conduction between the positive electrode active material represented by <1) and the current collector and the current collector is mediated by three or more kinds of carbon materials having different powder properties, the load factor characteristics are excellent as a positive electrode. The effect that can be exhibited can be acquired.

以下、図面を参照して、本発明を適用した円筒型リチウムイオン二次電池の実施形態について説明する。   Embodiments of a cylindrical lithium ion secondary battery to which the present invention is applied will be described below with reference to the drawings.

(構成)
図1に示すように、本実施形態の円筒型リチウムイオン二次電池20は、正極板(正極電極)および負極板がセパレータW5を介して対向するように断面渦巻状に捲回された電極群6を有している。電極群6は、ニッケルメッキが施されたスチール製で有底円筒状の電池容器7に収容されている。
(Constitution)
As shown in FIG. 1, the cylindrical lithium ion secondary battery 20 of this embodiment includes an electrode group wound in a cross-sectional spiral shape so that a positive electrode plate (positive electrode) and a negative electrode plate face each other with a separator W5 interposed therebetween. 6. The electrode group 6 is housed in a bottomed cylindrical battery container 7 made of steel plated with nickel.

電極群6の捲回中心には、ポリプロピレン樹脂製で円筒状の軸芯1が使用されている。電極群6の上側には、軸芯1のほぼ延長線上に正極板からの電位を集電するための円環状の正極集電リング4が配置されている。正極集電リング4は、軸芯1の上端部に固定されている。正極集電リング4の周囲から一体に張り出している鍔部周縁には、正極板から導出された正極リード片2の端部が超音波溶接で接合されている。正極集電リング4の上方には、安全弁を内蔵し正極外部端子となる円盤状の電池蓋12が配置されている。正極集電リング4の上部には正極リード9の一端が接合されており、正極リード9の他端は電池蓋12の下面に接合されている。   A cylindrical shaft core 1 made of polypropylene resin is used at the winding center of the electrode group 6. On the upper side of the electrode group 6, an annular positive electrode current collecting ring 4 for collecting the electric potential from the positive electrode plate is disposed on an almost extension line of the shaft core 1. The positive electrode current collecting ring 4 is fixed to the upper end portion of the shaft core 1. The edge part of the positive electrode lead piece 2 led out from the positive electrode plate is joined by ultrasonic welding to the peripheral edge of the flange part integrally protruding from the periphery of the positive electrode current collecting ring 4. Above the positive electrode current collecting ring 4, a disc-shaped battery lid 12 is provided that incorporates a safety valve and serves as a positive electrode external terminal. One end of a positive electrode lead 9 is joined to the upper part of the positive electrode current collecting ring 4, and the other end of the positive electrode lead 9 is joined to the lower surface of the battery lid 12.

一方、電極群6の下側には負極板からの電位を集電するための円環状の負極集電リング5が配置されている。負極集電リング5の内周面には軸芯1の下端部外周面が固定されている。負極集電リング5の外周縁には、負極板から導出された負極リード片3の端部が溶接で接合されている。負極集電リング5の下部は、負極リード8を介して負極外部端子を兼ねる電池容器7の内底部に溶接で接合されている。   On the other hand, an annular negative electrode current collecting ring 5 for collecting electric potential from the negative electrode plate is disposed below the electrode group 6. The outer peripheral surface of the lower end portion of the shaft core 1 is fixed to the inner peripheral surface of the negative electrode current collecting ring 5. The end of the negative electrode lead piece 3 led out from the negative electrode plate is joined to the outer peripheral edge of the negative electrode current collecting ring 5 by welding. The lower part of the negative electrode current collection ring 5 is joined to the inner bottom part of the battery container 7 which also serves as a negative electrode external terminal via a negative electrode lead 8 by welding.

電池蓋12は、ガスケット10を介して電池容器7の上部にカシメ固定されている。ガスケット10には、ポリプロピレン樹脂等の絶縁性および耐熱性を有する材質が用いられている。このため、リチウムイオン二次電池20の内部は密封されている。また、電池容器7内には、非水電解液が注液されている。非水電解液には、エチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の混合溶媒中に6フッ化リン酸リチウムを1mol/Lの濃度で溶解したものが用いられている。   The battery lid 12 is caulked and fixed to the upper part of the battery container 7 via the gasket 10. The gasket 10 is made of an insulating and heat resistant material such as polypropylene resin. For this reason, the inside of the lithium ion secondary battery 20 is sealed. In addition, a non-aqueous electrolyte is injected into the battery container 7. As the non-aqueous electrolyte, a solution obtained by dissolving lithium hexafluorophosphate at a concentration of 1 mol / L in a mixed solvent such as ethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate is used.

電極群6は、正極板と負極板とが、これら両極板が直接接触しないようにポリエチレン製等の微多孔性のセパレータW5を介し、軸芯1の周囲に捲回されている。セパレータW5は、厚さが20〜50μm程度の範囲、幅(軸芯1の長手方向の長さ)が正極板および負極板の幅より大きく設定されている。正極リード片2と負極リード片3とが、それぞれ電極群6の互いに反対側の両端面に配置されている。電極群6及び正極集電リング4の鍔部周面全周には、電極群6と電池容器7との電気的接触を防止するために絶縁被覆が施されている。電極群6の最大径部が絶縁被覆存在部となるように捲き数が調整され、該最大径が電池容器7の内径より僅かに小さく設定されている。   In the electrode group 6, the positive electrode plate and the negative electrode plate are wound around the shaft core 1 through a microporous separator W5 made of polyethylene or the like so that the both electrode plates do not directly contact each other. The separator W5 is set to have a thickness in the range of about 20 to 50 μm and a width (length in the longitudinal direction of the shaft core 1) larger than the width of the positive electrode plate and the negative electrode plate. The positive electrode lead piece 2 and the negative electrode lead piece 3 are arranged on both end surfaces of the electrode group 6 opposite to each other. Insulation coating is applied to the entire circumference of the collar peripheral surface of the electrode group 6 and the positive electrode current collecting ring 4 in order to prevent electrical contact between the electrode group 6 and the battery container 7. The number of windings is adjusted so that the maximum diameter portion of the electrode group 6 becomes an insulating coating existing portion, and the maximum diameter is set slightly smaller than the inner diameter of the battery container 7.

電極群6を構成する正極板は、正極集電体としてアルミニウム箔W1を有している。アルミニウム箔W1の厚さは、本例では、20μmに設定されている。アルミニウム箔W1の両面には、正極活物質を含む正極合剤W2が略均等に塗着されている。正極合剤W2には、正極活物質以外に、粉体性状の異なる3種類以上の炭素材料を含む導電材およびポリフッ化ビニリデン(以下、PVDFと略記する。)等のバインダ(結着材)が配合されている。   The positive electrode plate constituting the electrode group 6 has an aluminum foil W1 as a positive electrode current collector. In this example, the thickness of the aluminum foil W1 is set to 20 μm. A positive electrode mixture W2 containing a positive electrode active material is applied to both surfaces of the aluminum foil W1 substantially evenly. In addition to the positive electrode active material, the positive electrode mixture W2 includes a binder (binder) such as a conductive material containing three or more types of carbon materials having different powder properties and polyvinylidene fluoride (hereinafter abbreviated as PVDF). It is blended.

正極活物質には、化学式Li1+xFe1−xPO(0<x<1)で表され、オリビン結晶構造を有するリン酸鉄リチウムの粉末が用いられている。リン酸鉄リチウム粉末は、平均粒径D50が10μm以下、かつ、BET比表面積が5m/g以上に設定されている。なお、平均粒径は、レーザー回折式粒度分布測定装置で測定した粒度分布から累積体積50%の粒径として得られた数値である。また、BET比表面積は、窒素ガス等の吸着を利用したBET法により測定した数値である。 As the positive electrode active material, lithium iron phosphate powder represented by the chemical formula Li 1 + x Fe 1-x PO 4 (0 <x <1) and having an olivine crystal structure is used. Lithium iron phosphate powder has an average particle diameter D 50 of 10μm or less, and, BET specific surface area is set to more than 5 m 2 / g. The average particle size is a numerical value obtained as a particle size having a cumulative volume of 50% from the particle size distribution measured with a laser diffraction particle size distribution measuring device. The BET specific surface area is a numerical value measured by the BET method using adsorption of nitrogen gas or the like.

導電材に用いられる3種類以上の炭素材料は、BET比表面積および平均粒径が正極活物質のリン酸鉄リチウムに対する相対値として所定範囲に定められている。すなわち、各炭素材料は、それぞれ異なるBET比表面積に設定されている。炭素材料のBET比表面積は、リン酸鉄リチウムのBET比表面積に対し、1種類が1倍以上2倍以下、もう1種類が3倍以上5倍以下、さらにもう1種類が50倍以上100倍以下に設定されている。このBET比表面積が小さい炭素材料ほど、正極合剤W2中の含有量が大きく設定されている。各炭素材料の正極合剤W2中の含有量は、正極合剤W2中の全炭素含有量(導電材全体の含有量)に対し、BET比表面積の最も小さい炭素材料が80%以上、BET比表面積の2番目に小さい炭素材料が20%以下、BET比表面積の最も大きい炭素材料が10%未満に設定されている。また、各炭素材料の粒径では、炭素材料のうち最も小さい粒径の炭素材料の平均粒径D50がリン酸鉄リチウムの平均粒径D50の2倍以上に設定されている。 Three or more types of carbon materials used for the conductive material have a BET specific surface area and an average particle diameter within a predetermined range as relative values to the positive electrode active material lithium iron phosphate. That is, each carbon material is set to have a different BET specific surface area. The BET specific surface area of carbon materials is 1 to 2 times, 1 type is 3 to 5 times, and another type is 50 to 100 times the BET specific surface area of lithium iron phosphate. It is set as follows. The carbon material having a smaller BET specific surface area has a larger content in the positive electrode mixture W2. The content of each carbon material in the positive electrode mixture W2 is 80% or more of the carbon material having the smallest BET specific surface area relative to the total carbon content (content of the entire conductive material) in the positive electrode mixture W2, and the BET ratio The carbon material having the second smallest surface area is set to 20% or less, and the carbon material having the largest BET specific surface area is set to less than 10%. Further, the particle size of each carbon material, the average particle diameter D 50 of the carbon material of the smallest particle size is set to more than twice the average particle diameter D 50 of the lithium iron phosphate of the carbon material.

アルミニウム箔W1への正極合剤W2の塗着時には、N−メチルピロリドン(以下、NMPと略記する。)等の分散溶媒で粘度調整される。正極板は、乾燥後ロールプレスで密度が調整され薄膜状に形成されている。アルミニウム箔W1の長寸方向一側の側縁には、正極合剤W2の未塗着部(無地部)が形成されている。未塗着部は櫛状に切り欠かれており、切り欠き残部で正極リード片2が形成されている。なお、正極合剤W2の密度については、各材料を上述した粉体性状に設定することから、それぞれ設定により最適値が違ってくるので、個別に検討し最適値を見出す必要がある。   When the positive electrode mixture W2 is applied to the aluminum foil W1, the viscosity is adjusted with a dispersion solvent such as N-methylpyrrolidone (hereinafter abbreviated as NMP). The positive electrode plate is formed into a thin film with a density adjusted by a roll press after drying. An uncoated portion (plain portion) of the positive electrode mixture W2 is formed on the side edge on one side in the longitudinal direction of the aluminum foil W1. The uncoated part is cut out in a comb shape, and the positive electrode lead piece 2 is formed in the notch remaining part. As for the density of the positive electrode mixture W2, since the respective materials are set to the above-described powder properties, the optimum values differ depending on the respective settings. Therefore, it is necessary to individually examine and find the optimum value.

一方、負極板は、負極集電体として銅箔W3を有している。銅箔W3の厚さは、本例では、10μmに設定されている。銅箔W3の両面には、負極活物質としてリチウムイオンを可逆に吸蔵、放出可能な黒鉛等の炭素材料の粉末を含む負極合剤W4が略均等に塗着されている。負極合剤W4には、負極活物質以外に、アセチレンブラック等の導電材およびPVDF等のバインダが配合されている。銅箔W3への負極合剤W4の塗着時には、NMP等の分散溶媒で粘度調整される。負極板は、乾燥後ロールプレスで密度が調整され薄膜状に形成されている。銅箔W3の長寸方向一側の側縁には、正極板と同様に負極合剤W4の未塗着部が形成されており、負極リード片3が形成されている。なお、負極板の長さは、正極板及び負極板を捲回したときに、捲回最内周及び最外周で捲回方向に正極板が負極板からはみ出すことがないように、正極板の長さより長く設定されている。また、負極合剤W4塗着部の幅は、軸芯1の長手方向において正極合剤W2塗着部が負極合剤W4塗着部からはみ出すことがないように、正極合剤W2塗着部の幅より長く設定されている。   On the other hand, the negative electrode plate has a copper foil W3 as a negative electrode current collector. In this example, the thickness of the copper foil W3 is set to 10 μm. On both surfaces of the copper foil W3, a negative electrode mixture W4 containing a powder of carbon material such as graphite capable of reversibly occluding and releasing lithium ions as a negative electrode active material is applied substantially evenly. In addition to the negative electrode active material, the negative electrode mixture W4 contains a conductive material such as acetylene black and a binder such as PVDF. When the negative electrode mixture W4 is applied to the copper foil W3, the viscosity is adjusted with a dispersion solvent such as NMP. The negative electrode plate is formed into a thin film with a density adjusted by a roll press after drying. An uncoated portion of the negative electrode mixture W4 is formed on the side edge on one side in the longitudinal direction of the copper foil W3 as in the case of the positive electrode plate, and the negative electrode lead piece 3 is formed. The length of the negative electrode plate is such that when the positive electrode plate and the negative electrode plate are wound, the positive electrode plate does not protrude from the negative electrode plate in the winding direction at the innermost winding and outermost winding. It is set longer than the length. Further, the width of the negative electrode mixture W4 coating portion is such that the positive electrode mixture W2 coating portion does not protrude from the negative electrode mixture W4 coating portion in the longitudinal direction of the shaft core 1. It is set longer than the width of.

(電池組立)
リチウムイオン二次電池20の組立では、まず、作製した正負極板をセパレータを介して軸芯1の周囲に捲回し電極群6を作製する。軸芯1にセパレータW5をテープ等で固定する。捲き始めにセパレータW5のみを2〜3周程度捲回した後、正極板、負極板を正極合剤W2塗着面と負極合剤W4塗着面とが適切に対向し、かつ、正極リード片2と負極リード片3とが互いに反対方向に位置するように捲回する。正極板、負極板を全て捲回した後、最外周で電極が露出しないように、捲き終わりにセパレータW5を2〜3周程度捲回する。
(Battery assembly)
In the assembly of the lithium ion secondary battery 20, first, the produced positive and negative electrode plates are wound around the shaft core 1 through a separator to produce the electrode group 6. A separator W5 is fixed to the shaft core 1 with a tape or the like. At the beginning of winding, only the separator W5 is wound about 2-3 times, and then the positive electrode plate and the negative electrode plate are appropriately opposed to the positive electrode mixture W2 application surface and the negative electrode mixture W4 application surface, and the positive electrode lead piece 2 and the negative electrode lead piece 3 are wound so that they are positioned in opposite directions. After all of the positive electrode plate and the negative electrode plate are wound, the separator W5 is wound about 2-3 times at the end of winding so that the electrode is not exposed at the outermost periphery.

作製した電極群6の両端部に電極群6の直径と同じ径の樹脂製絶縁板を配し、電極群6の両端面にそれぞれ導出されている正極リード片2及び負極リード片3を正極集電リング4及び負極集電リング5にそれぞれ溶接した後、負極集電リング5を底側に向けて電池容器7内に電極群6を挿入する。軸芯1に形成された中空部分に溶接棒を挿入し、負極集電リング5に予め溶接しておいた負極リード8を電池容器7の内底部に抵抗溶接で接合する。電池容器7の開口部より若干底側にグルービングを施し、正極集電リング4に予め一端を溶接しておいた正極リード9の他端を電池蓋12の下面に溶接で接合する。電極群6や電池容器7等の電池内部の付着水分を除くため、グルービングを施した部分の上側にガスケット10を装着した状態で60℃で20時間の真空乾燥を施す。真空乾燥後、電池容器7内に非水電解液を注液する。非水電解液の注液は、水分の再付着を防ぐためにアルゴン置換されたグローブボックス中などで行う。非水電解液注液後、電池蓋12を電池容器7の上部にかしめ固定することで、リチウムイオン二次電池20の組立を完成させる。   A resin insulating plate having the same diameter as that of the electrode group 6 is disposed at both ends of the produced electrode group 6, and the positive electrode lead piece 2 and the negative electrode lead piece 3 respectively led to the both end surfaces of the electrode group 6 are collected into the positive electrode. After welding to the current ring 4 and the negative current collector ring 5, the electrode group 6 is inserted into the battery container 7 with the negative current collector ring 5 facing the bottom. A welding rod is inserted into the hollow portion formed on the shaft core 1, and the negative electrode lead 8 previously welded to the negative electrode current collecting ring 5 is joined to the inner bottom portion of the battery container 7 by resistance welding. Grooving is performed slightly on the bottom side from the opening of the battery container 7, and the other end of the positive electrode lead 9 whose one end is previously welded to the positive electrode current collecting ring 4 is joined to the lower surface of the battery lid 12 by welding. In order to remove moisture adhering to the inside of the battery such as the electrode group 6 and the battery container 7, vacuum drying is performed at 60 ° C. for 20 hours with the gasket 10 mounted on the upper side of the grooved portion. After vacuum drying, a non-aqueous electrolyte is poured into the battery container 7. The non-aqueous electrolyte is injected in a glove box substituted with argon in order to prevent reattachment of moisture. After injecting the non-aqueous electrolyte, the battery lid 12 is caulked and fixed to the top of the battery container 7 to complete the assembly of the lithium ion secondary battery 20.

(作用等)
次に、本実施形態の円筒型リチウムイオン二次電池20の作用等について説明する。
(Action etc.)
Next, the operation and the like of the cylindrical lithium ion secondary battery 20 of the present embodiment will be described.

本実施形態のリチウムイオン二次電池20では、正極活物質として化学式Li1+xFe1−xPO(0<x<1)で表されオリビン結晶構造を有するリン酸鉄リチウムが用いられており、正極集電体のアルミニウム箔W1に塗着された正極合剤W2には導電材として比表面積や粒径の異なる3種類の炭素材料が配合されている。オリビン結晶構造を有するリン酸鉄リチウムでは、局在化した電子構造が形成されるため、層状結晶構造やスピネル結晶構造を有する化合物と比較して電子伝導性が小さいことが知られている。リチウムイオン二次電池20では、正極合剤W2に3種類の炭素材料が含まれているため、これらの炭素材料によりリン酸鉄リチウムおよびアルミニウム箔W1間の電子伝導が媒介される。これにより、リン酸鉄リチウムの電子伝導性の低さが緩和されるので、電池性能、特に、負荷率特性を向上させることができる。 In the lithium ion secondary battery 20 of the present embodiment, lithium iron phosphate having the olivine crystal structure represented by the chemical formula Li 1 + x Fe 1-x PO 4 (0 <x <1) is used as the positive electrode active material, The positive electrode mixture W2 applied to the aluminum foil W1 of the positive electrode current collector is blended with three types of carbon materials having different specific surface areas and particle sizes as conductive materials. Lithium iron phosphate having an olivine crystal structure is known to have a lower electronic conductivity than a compound having a layered crystal structure or a spinel crystal structure because a localized electronic structure is formed. In the lithium ion secondary battery 20, since the positive electrode mixture W2 includes three types of carbon materials, electronic conduction between the lithium iron phosphate and the aluminum foil W1 is mediated by these carbon materials. Thereby, since the low electronic conductivity of lithium iron phosphate is relieved, battery performance, in particular, load factor characteristics can be improved.

また、本実施形態では、導電材として用いた各炭素材料がそれぞれ異なる比表面積を有しており、各炭素材料の比表面積が正極活物質のリン酸鉄リチウムの比表面積に対して所定範囲に設定されている。すなわち、3種類の炭素材料のうち、1種類の比表面積がリン酸鉄リチウムの比表面積の1倍以上2倍以下、もう1種類が3倍以上5倍以下、さらにもう1種類が50倍以上100倍以下に設定されている。さらに、本実施形態では、各炭素材料の正極合剤W2中の配合量は、比表面積が小さいほど大きく設定されている。すなわち、各炭素材料の配合量は、正極合剤W2中の全炭素含有量に対して、比表面積の最も小さい炭素材料が80%以上、比表面積の2番目に小さい炭素材料が20%以下、比表面積の最も大きい炭素材料が10%未満に設定されている。リン酸鉄リチウムとの関係で所定範囲に設定した比表面積により各炭素材料の正極合剤W2中の配合量を定めたため、正極合剤W2が塗着された正極板では、正極合剤W2中のリン酸鉄リチウムと各炭素材料との配置が最適化され、良好な電子導電パスが形成される。これにより、リン酸鉄リチウムが有する高容量性能を発揮させることができるので、高負荷時の放電性能の低下を抑制することができる。   Moreover, in this embodiment, each carbon material used as the conductive material has a different specific surface area, and the specific surface area of each carbon material is within a predetermined range with respect to the specific surface area of lithium iron phosphate as the positive electrode active material. Is set. That is, among the three types of carbon materials, one specific surface area is 1 to 2 times the specific surface area of lithium iron phosphate, the other is 3 to 5 times, and the other is 50 times or more. It is set to 100 times or less. Furthermore, in this embodiment, the compounding quantity in the positive electrode mixture W2 of each carbon material is set so large that a specific surface area is small. That is, the blending amount of each carbon material is 80% or more of the carbon material having the smallest specific surface area and 20% or less of the carbon material having the second smallest specific surface area with respect to the total carbon content in the positive electrode mixture W2. The carbon material having the largest specific surface area is set to less than 10%. Since the blending amount of each carbon material in the positive electrode mixture W2 is determined by the specific surface area set in a predetermined range in relation to lithium iron phosphate, in the positive electrode plate coated with the positive electrode mixture W2, the positive electrode mixture W2 The arrangement of the lithium iron phosphate and each carbon material is optimized, and a good electronic conduction path is formed. Thereby, since the high capacity | capacitance performance which lithium iron phosphate has can be exhibited, the fall of the discharge performance at the time of high load can be suppressed.

さらに、本実施形態では、各炭素材料のうち最も小さい粒径の炭素材料の平均粒径D50がリン酸鉄リチウムの平均粒径D50の2倍以上に設定されている。このため、各炭素材料がいずれもリン酸鉄リチウムより大きい平均粒径を有するので、高容量性能を有するリン酸鉄リチウムの電子伝導を確実に媒介することができる。 Furthermore, in the present embodiment, the average particle diameter D 50 of the carbon material of the smallest particle size is set to more than twice the average particle diameter D 50 of the lithium iron phosphate of the carbon material. For this reason, since each carbon material has an average particle size larger than that of lithium iron phosphate, it is possible to reliably mediate electronic conduction of lithium iron phosphate having high capacity performance.

なお、本実施形態では、正極合剤W2に含ませた3種類の炭素材料の含有量を正極合剤W2中の全炭素含有量に対してそれぞれ定める例を示し、全炭素含有量については言及していないが、全炭素含有量については特に制限されるものではなく、通常リチウムイオン二次電池で用いられる含有量に設定すればよい。正極活物質に用いたリン酸鉄リチウムの電子伝導性の低さを補うために導電材の含有量を増加させると、相対的に正極活物質の割合が低下するため、体積エネルギー密度を低下させることとなる。反対に導電材の含有量が少なすぎると、本実施形態で示したように3種類以上の炭素材を用いたとしても、十分な電子伝導性を得ることが難しくなる。このため、導電材の含有量としては、0.01重量%以上50重量%以下程度の範囲に設定することが好ましい。上述したように、オリビン結晶構造では電子伝導性が小さくなることを考慮すれば、導電材の含有量を5重量%以上程度に設定することがより好ましい。   In addition, in this embodiment, the example which each determines content of the three types of carbon material contained in the positive electrode mixture W2 with respect to the total carbon content in the positive electrode mixture W2 is shown, and it mentions about total carbon content However, the total carbon content is not particularly limited, and may be set to a content that is usually used in a lithium ion secondary battery. When the content of the conductive material is increased to compensate for the low electronic conductivity of lithium iron phosphate used for the positive electrode active material, the proportion of the positive electrode active material is relatively decreased, so the volume energy density is decreased. It will be. On the other hand, if the content of the conductive material is too small, it becomes difficult to obtain sufficient electronic conductivity even if three or more types of carbon materials are used as shown in the present embodiment. For this reason, it is preferable to set the content of the conductive material in a range of about 0.01% by weight to 50% by weight. As described above, considering that the electron conductivity is reduced in the olivine crystal structure, it is more preferable to set the content of the conductive material to about 5% by weight or more.

また、本実施形態では、負極活物質として黒鉛を例示したが、本発明はこれに限定されるものではなく、リチウムイオン二次電池に通常用いられる炭素材を用いることができる。本実施形態以外の負極活物質としては、例えば、非晶質炭素や、各種の黒鉛材、コークス等を挙げることができ、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。また、負極板の導電材としてアセチレンブラックを例示したが、本発明はこれに限定されるものではない。例えば、負極板に導電材を配合しなくてもよく、配合する場合には、通常、リチウムイオン二次電池に使用される材料を用いてもよい。   In the present embodiment, graphite is exemplified as the negative electrode active material. However, the present invention is not limited to this, and a carbon material normally used for a lithium ion secondary battery can be used. Examples of the negative electrode active material other than the present embodiment include amorphous carbon, various graphite materials, coke and the like, and the particle shape also includes scaly, spherical, fibrous, massive, etc. It is not limited. Moreover, although acetylene black was illustrated as a electrically conductive material of a negative electrode plate, this invention is not limited to this. For example, it is not necessary to mix a conductive material in the negative electrode plate, and in the case of mixing, a material usually used for a lithium ion secondary battery may be used.

更に、本実施形態では、非水電解液にエチレンカーボネート、ジメチルカーボネート等の混合有機溶媒中へ6フッ化リン酸リチウムを1モル/リットルで溶解したものを例示したが、本発明は特に制限されるものではなく、リチウムイオン二次電池に通常用いられるいずれのものも使用可能である。本実施形態以外の非水電解液としては、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解させた非水電解液を使用することができ、リチウム塩や有機溶媒にも特に制限されない。   Furthermore, in this embodiment, the non-aqueous electrolyte was prepared by dissolving lithium hexafluorophosphate at 1 mol / liter in a mixed organic solvent such as ethylene carbonate and dimethyl carbonate, but the present invention is particularly limited. Any of those commonly used in lithium ion secondary batteries can be used. As the non-aqueous electrolyte other than the present embodiment, a non-aqueous electrolyte in which a general lithium salt is used as an electrolyte and dissolved in an organic solvent can be used, and the lithium salt and the organic solvent are not particularly limited. .

また更に、本実施形態では、正負極板を捲回し作製した電極群6を有底円筒状の電池容器7に収容した円筒型リチウムイオン二次電池20を例示したが、本発明は電池の形状や構造に限定されるものではなく、例えば、角形、その他の多角形状の電池や正負極板を積層した積層タイプの電池にも適用可能である。また、本発明の適用可能な電池の構造としては、例えば、正負極外部端子が電池蓋を貫通し電池容器内で軸芯を介して押し合っている構造の電池を挙げることができる。   Furthermore, in the present embodiment, the cylindrical lithium ion secondary battery 20 in which the electrode group 6 produced by winding the positive and negative electrode plates is housed in the bottomed cylindrical battery container 7 is illustrated, but the present invention is a battery shape. However, the present invention is not limited to the structure, and can be applied to, for example, a rectangular or other polygonal battery or a stacked battery in which positive and negative electrode plates are stacked. Moreover, as a battery structure to which the present invention can be applied, for example, a battery having a structure in which positive and negative external terminals penetrate through a battery lid and are pressed through a shaft core in a battery container can be exemplified.

次に、本実施形態に従い作製したリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例のリチウムイオン二次電池についても併記する。   Next, examples of the lithium ion secondary battery 20 manufactured according to the present embodiment will be described. In addition, it describes together about the lithium ion secondary battery of the comparative example produced for the comparison.

(実施例1)
実施例1では、正極活物質として平均粒径D50が3μm、BET比表面積が8m/gのリン酸鉄リチウムを用いた。導電材として、次のような3種類の炭素材料を用いた。すなわち、炭素材1として平均粒径D50が12μm、BET比表面積が8m/gの黒鉛、炭素材2として平均粒径D50が9μm、BET比表面積が35m/gのアセチレンブラック、炭素材3として平均粒径D50が10μm、BET比表面積が650m/gのカーボンブラックを用いた。バインダにはPVDFを用いた。正極活物質、3種類の炭素材料、バインダを固形分比が80/8/1.5/0.5/10wt%となるように混合した正極合剤W2を用いて正極板を作製した。一方、負極活物質として黒鉛、導電材としてアセチレンブラック、バインダとしてPVDFをそれぞれ用いた。負極活物質、導電材、バインダを固形分比が90/5/5wt%となるように混合した負極合剤W4を用いて負極板を作製した。
Example 1
In Example 1, lithium iron phosphate having an average particle diameter D 50 of 3 μm and a BET specific surface area of 8 m 2 / g was used as the positive electrode active material. The following three types of carbon materials were used as the conductive material. That is, graphite having an average particle diameter D 50 of 12 μm and a BET specific surface area of 8 m 2 / g as the carbon material 1, and acetylene black, carbon having an average particle diameter D 50 of 9 μm and a BET specific surface area of 35 m 2 / g as the carbon material 2. As the material 3, carbon black having an average particle diameter D 50 of 10 μm and a BET specific surface area of 650 m 2 / g was used. PVDF was used for the binder. A positive electrode plate was prepared using a positive electrode mixture W2 in which a positive electrode active material, three types of carbon materials, and a binder were mixed so that the solid content ratio was 80/8 / 1.5 / 0.5 / 10 wt%. On the other hand, graphite was used as the negative electrode active material, acetylene black was used as the conductive material, and PVDF was used as the binder. A negative electrode plate was prepared using a negative electrode mixture W4 in which a negative electrode active material, a conductive material, and a binder were mixed so that the solid content ratio was 90/5/5 wt%.

正極板の導電材に用いた3種類の炭素材料について、BET比表面積をリン酸鉄リチウムと比較すると、炭素材1では1倍、炭素材2では4.375倍、炭素材3では81.25倍となる。各炭素材料の正極合剤中の含有量は、BET比表面積が小さい炭素材料ほど大きく設定されており、炭素材1>炭素材2>炭素材3の順に小さく設定されている。また、各炭素材料について、正極合剤W2中の全炭素含有量に対する含有量を比較すると、BET比表面積の最も小さい炭素材1が80%、BET比表面積の2番目に小さい炭素材2が15%、BET比表面積の最も大きい炭素材3が5%となる。また、各炭素材料の粒径では、炭素材料のうち最も小さい粒径の炭素材2の平均粒径D50が9μmであり、リン酸鉄リチウムの平均粒径D50(3μm)の3倍となる。 As for the three types of carbon materials used for the conductive material of the positive electrode plate, the BET specific surface area is 1 time for the carbon material 1, 4375 times for the carbon material 2, and 81.25 for the carbon material 3. Doubled. The content of each carbon material in the positive electrode mixture is set to be larger as the carbon material has a smaller BET specific surface area, and is set smaller in the order of carbon material 1> carbon material 2> carbon material 3. Further, regarding the carbon materials, when the content relative to the total carbon content in the positive electrode mixture W2 is compared, the carbon material 1 having the smallest BET specific surface area is 80%, and the carbon material 2 having the second smallest BET specific surface area is 15%. %, The carbon material 3 having the largest BET specific surface area is 5%. Further, the particle size of each carbon material, and the smallest particle size mean particle diameter D 50 of the carbon material 2 is 9μm of the carbon material, and 3 times the average particle diameter D 50 of the lithium iron phosphate (3 [mu] m) Become.

(比較例1、比較例2)
比較例1、比較例2では、実施例1で用いた3種類の炭素材料のうち含有量が最も多い炭素材1を含むことが正極板作製時に適切なスラリ性状を得るために必要なため、炭素材1を含む2種類を組み合わせて用いた。すなわち、比較例1では、炭素材1および炭素材2を組み合わせて用い、正極活物質、2種類の炭素材料、バインダを固形分比が80/8/2/10wt%となるように混合した正極合剤を用いて正極板を作製した。また、比較例2では、炭素材1および炭素材3を組み合わせて用い、正極活物質、2種類の炭素材料、バインダを固形分比が80/8/2/10wt%となるように混合した正極合剤を用いて正極板を作製した。なお、評価試験での効果確認を確実に行うために、正極板では、合剤組成以外のパラメータである単位面積当たりの正極合剤量、正極合剤密度、プレス後の電極厚みは実施例1と同じに設定した。また、負極板は実施例1と同様にして作製した。
(Comparative Example 1 and Comparative Example 2)
In Comparative Example 1 and Comparative Example 2, it is necessary to obtain an appropriate slurry property at the time of producing the positive electrode plate, including the carbon material 1 having the largest content among the three types of carbon materials used in Example 1. Two types including the carbon material 1 were used in combination. That is, in Comparative Example 1, a positive electrode in which carbon material 1 and carbon material 2 are used in combination, and a positive electrode active material, two types of carbon materials, and a binder are mixed so that the solid content ratio is 80/8/2/10 wt%. A positive electrode plate was produced using the mixture. In Comparative Example 2, a positive electrode in which carbon material 1 and carbon material 3 are used in combination, and a positive electrode active material, two types of carbon materials, and a binder are mixed so that the solid content ratio is 80/8/2/10 wt%. A positive electrode plate was produced using the mixture. In order to surely confirm the effect in the evaluation test, in the positive electrode plate, the positive electrode mixture amount per unit area, the positive electrode mixture density, and the electrode thickness after pressing, which are parameters other than the mixture composition, are as in Example 1. Set the same. The negative electrode plate was produced in the same manner as in Example 1.

(電池評価試験)
作製した各実施例および比較例のリチウムイオン二次電池について、放電時間率を変えて放電容量を測定し負荷率特性を評価した。すなわち、各電池を室温(25℃)で3.7Vまで充電し、5時間率、2時間率、1時間率で2.5Vを終止電圧として放電したときの各電池の放電容量を測定した。
(Battery evaluation test)
About the produced lithium ion secondary battery of each Example and a comparative example, the discharge time rate was changed and the discharge capacity was measured and the load factor characteristic was evaluated. That is, each battery was charged to 3.7 V at room temperature (25 ° C.), and the discharge capacity of each battery was measured when discharged at 2.5 hours at a 5-hour rate, 2-hour rate, and 1-hour rate with a final voltage.

図2に示すように、正極板の導電材として2種類の炭素材料を用いた比較例1、比較例2のリチウムイオン二次電池では、時間率が小さくなる(放電電流値が大きくなる)に従い、放電容量が大きく低下している。これに対して、正極板の導電材として3種類の炭素材料を用いた実施例1のリチウムイオン二次電池20では、時間率を小さくしても放電容量の低下が抑制されることが明らかとなった。従って、正極活物質として化学式Li1+xFe1−xPO(0<x<1)で表されオリビン結晶構造を有するリン酸鉄リチウムを用いた場合、導電材として3種類の炭素材料を配合することで負荷率特性を改善させることができ、特に、高負荷時の電池性能を確保することができることが確認された。 As shown in FIG. 2, in the lithium ion secondary batteries of Comparative Example 1 and Comparative Example 2 using two types of carbon materials as the conductive material of the positive electrode plate, the time rate decreases (the discharge current value increases). The discharge capacity is greatly reduced. On the other hand, in the lithium ion secondary battery 20 of Example 1 using three kinds of carbon materials as the conductive material of the positive electrode plate, it is clear that the decrease in discharge capacity is suppressed even when the time rate is reduced. became. Therefore, when the lithium iron phosphate having the olivine crystal structure represented by the chemical formula Li 1 + x Fe 1-x PO 4 (0 <x <1) is used as the positive electrode active material, three types of carbon materials are blended as the conductive material. Thus, it was confirmed that the load factor characteristics can be improved, and in particular, the battery performance at the time of high load can be secured.

本発明は優れた負荷率特性を発揮させることができる正極電極および該正極電極を用いたリチウムイオン二次電池を提供するため、リチウムイオン二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   The present invention contributes to the manufacture and sale of lithium ion secondary batteries in order to provide a positive electrode capable of exhibiting excellent load factor characteristics and a lithium ion secondary battery using the positive electrode. Have availability.

本発明を適用した実施形態の円筒型リチウムイオン二次電池を示す断面図である。It is sectional drawing which shows the cylindrical lithium ion secondary battery of embodiment to which this invention is applied. 実施例および比較例のリチウムイオン二次電池について、放電時間率に対する放電容量を測定したときの高率放電特性を示すグラフである。It is a graph which shows the high rate discharge characteristic when the discharge capacity with respect to a discharge time rate is measured about the lithium ion secondary battery of an Example and a comparative example.

符号の説明Explanation of symbols

6 電極群
20 円筒型リチウムイオン二次電池(リチウムイオン二次電池)
W1 アルミニウム箔(集電体)
W2 正極合剤(合剤)
6 Electrode group 20 Cylindrical lithium ion secondary battery (lithium ion secondary battery)
W1 Aluminum foil (current collector)
W2 cathode mix (mixture)

Claims (8)

化学式Li1+xFe1−xPO(0<x<1)で表されオリビン結晶構造を有する正極活物質と、導電材とを含む合剤が集電体に略均等に塗着されたリチウムイオン二次電池用正極電極において、前記導電材は、粉体性状の異なる3種類以上の炭素材料を含むことを特徴とする正極電極。 Lithium ion in which a mixture containing a positive electrode active material represented by the chemical formula Li 1 + x Fe 1-x PO 4 (0 <x <1) and having an olivine crystal structure and a conductive material is applied to the current collector almost evenly. The positive electrode for secondary batteries WHEREIN: The said electrically conductive material contains the 3 or more types of carbon material from which powder properties differ, The positive electrode characterized by the above-mentioned. 前記正極活物質は、平均粒径D50が10μm以下であり、かつ、BET比表面積が5m/g以上であることを特徴とする請求項1に記載の正極電極。 2. The positive electrode according to claim 1, wherein the positive electrode active material has an average particle diameter D 50 of 10 μm or less and a BET specific surface area of 5 m 2 / g or more. 前記炭素材料は、BET比表面積がそれぞれ異なることを特徴とする請求項1に記載の正極電極。   The positive electrode according to claim 1, wherein the carbon materials have different BET specific surface areas. 前記炭素材料のBET比表面積は、前記正極活物資のBET比表面積に対し、少なくとも、1種類が1倍以上2倍以下であり、もう1種類が3倍以上5倍以下であり、さらにもう1種類が50倍以上100倍以下であることを特徴とする請求項3に記載の正極電極。   The carbon material has a BET specific surface area of at least one type of 1 to 2 times, another type of 3 to 5 times the BET specific surface area of the positive electrode active material, and another one. The positive electrode according to claim 3, wherein the type is 50 times or more and 100 times or less. 前記炭素材料は、BET比表面積が小さいほど前記合剤中の含有量が大きいことを特徴とする請求項3または請求項4に記載の正極電極。   5. The positive electrode according to claim 3, wherein the carbon material has a larger content in the mixture as a BET specific surface area is smaller. 前記炭素材料の前記合剤中の含有量は、前記合剤中の全炭素含有量に対し、BET比表面積の最も小さい炭素材料が80%以上であり、BET比表面積の2番目に小さい炭素材料が20%以下であり、BET比表面積の最も大きい炭素材料が10%未満であることを特徴とする請求項5に記載の正極電極。   The content of the carbon material in the mixture is 80% or more of the carbon material having the smallest BET specific surface area with respect to the total carbon content in the mixture, and the carbon material having the second smallest BET specific surface area. The positive electrode according to claim 5, wherein the carbon material having a BET specific surface area of less than 10% is less than 10%. 前記炭素材料のうち最も小さい粒径の炭素材料は、平均粒径D50が前記正極活物質の平均粒径D50の2倍以上であることを特徴とする請求項1乃至請求項6のいずれか1項に記載の正極電極。 Carbon material of the smallest particle size of the carbon material, one having an average particle diameter D 50 of the claims 1 to 6, characterized in that at least 2 times the average particle diameter D 50 of the positive electrode active material 2. The positive electrode according to item 1. 請求項1乃至請求項7のいずれか1項に記載の正極電極を用いたリチウムイオン二次電池。   The lithium ion secondary battery using the positive electrode of any one of Claim 1 thru | or 7.
JP2007081152A 2007-03-27 2007-03-27 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery Pending JP2008243529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081152A JP2008243529A (en) 2007-03-27 2007-03-27 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081152A JP2008243529A (en) 2007-03-27 2007-03-27 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2008243529A true JP2008243529A (en) 2008-10-09

Family

ID=39914626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081152A Pending JP2008243529A (en) 2007-03-27 2007-03-27 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2008243529A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165507A (en) * 2009-01-14 2010-07-29 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
JP2010205430A (en) * 2009-02-27 2010-09-16 Hitachi Vehicle Energy Ltd Positive electrode for lithium secondary battery and lithium secondary battery
WO2011016574A1 (en) * 2009-08-04 2011-02-10 住友化学株式会社 Powder material and positive electrode mix
WO2011052533A1 (en) * 2009-10-30 2011-05-05 第一工業製薬株式会社 Lithium secondary battery
JP2012028225A (en) * 2010-07-26 2012-02-09 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery and method for manufacturing positive electrode mixture
WO2012044133A3 (en) * 2010-09-30 2012-06-14 주식회사 엘지화학 Cathode for lithium secondary battery and lithium secondary battery including same
CN102569751A (en) * 2010-12-08 2012-07-11 比亚迪股份有限公司 Alkaline manganese battery positive electrode material and alkaline manganese battery
CN103606647A (en) * 2013-10-22 2014-02-26 溧阳市东大技术转移中心有限公司 Carbon nanotube bonded lithium iron phosphate electrode material
CN104218217A (en) * 2014-07-29 2014-12-17 江西世纪长河新电源有限公司 Power battery lithium ion secondary battery pole piece

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176446A (en) * 1997-12-15 1999-07-02 Hitachi Ltd Lithium secondary battery
JP2000058066A (en) * 1998-08-06 2000-02-25 Japan Storage Battery Co Ltd Secondary battery
JP2000208147A (en) * 1999-01-11 2000-07-28 Toyota Motor Corp Lithium ion secondary battery
JP2000277095A (en) * 1999-03-26 2000-10-06 Shin Kobe Electric Mach Co Ltd Lithium ion battery
JP2005293931A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2006018514A1 (en) * 2004-07-26 2006-02-23 Commissariat A L'energie Atomique Electrode for a lithium battery method for production of such an electrode and lithium battery comprising said electrode
JP2006196404A (en) * 2005-01-17 2006-07-27 Sharp Corp Lithium secondary battery
JP2007080652A (en) * 2005-09-14 2007-03-29 Sumitomo Osaka Cement Co Ltd Slurry for forming lithium ion battery electrode and lithium ion battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176446A (en) * 1997-12-15 1999-07-02 Hitachi Ltd Lithium secondary battery
JP2000058066A (en) * 1998-08-06 2000-02-25 Japan Storage Battery Co Ltd Secondary battery
JP2000208147A (en) * 1999-01-11 2000-07-28 Toyota Motor Corp Lithium ion secondary battery
JP2000277095A (en) * 1999-03-26 2000-10-06 Shin Kobe Electric Mach Co Ltd Lithium ion battery
JP2005293931A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2006018514A1 (en) * 2004-07-26 2006-02-23 Commissariat A L'energie Atomique Electrode for a lithium battery method for production of such an electrode and lithium battery comprising said electrode
JP2006196404A (en) * 2005-01-17 2006-07-27 Sharp Corp Lithium secondary battery
JP2007080652A (en) * 2005-09-14 2007-03-29 Sumitomo Osaka Cement Co Ltd Slurry for forming lithium ion battery electrode and lithium ion battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165507A (en) * 2009-01-14 2010-07-29 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
JP2010205430A (en) * 2009-02-27 2010-09-16 Hitachi Vehicle Energy Ltd Positive electrode for lithium secondary battery and lithium secondary battery
WO2011016574A1 (en) * 2009-08-04 2011-02-10 住友化学株式会社 Powder material and positive electrode mix
TWI458154B (en) * 2009-10-30 2014-10-21 Dai Ichi Kogyo Seiyaku Co Ltd Lithium secondary battery
CN102598388A (en) * 2009-10-30 2012-07-18 第一工业制药株式会社 Lithium secondary battery
WO2011052533A1 (en) * 2009-10-30 2011-05-05 第一工業製薬株式会社 Lithium secondary battery
JP2012028225A (en) * 2010-07-26 2012-02-09 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery and method for manufacturing positive electrode mixture
WO2012044133A3 (en) * 2010-09-30 2012-06-14 주식회사 엘지화학 Cathode for lithium secondary battery and lithium secondary battery including same
WO2012044132A3 (en) * 2010-09-30 2012-06-14 주식회사 엘지화학 Positive electrode for lithium secondary battery and lithium secondary battery including same
CN102742050A (en) * 2010-09-30 2012-10-17 株式会社Lg化学 Positive electrode for lithium secondary battery and lithium secondary battery including same
CN102792491A (en) * 2010-09-30 2012-11-21 株式会社Lg化学 Cathode for lithium secondary battery and lithium secondary battery including same
US9178209B2 (en) 2010-09-30 2015-11-03 Lg Chem, Ltd. Cathode for lithium secondary battery and lithium secondary battery comprising the same
US9379377B2 (en) 2010-09-30 2016-06-28 Lg Chem, Ltd. Cathode for lithium secondary battery and lithium secondary battery comprising the same
CN102569751A (en) * 2010-12-08 2012-07-11 比亚迪股份有限公司 Alkaline manganese battery positive electrode material and alkaline manganese battery
CN103606647A (en) * 2013-10-22 2014-02-26 溧阳市东大技术转移中心有限公司 Carbon nanotube bonded lithium iron phosphate electrode material
CN104218217A (en) * 2014-07-29 2014-12-17 江西世纪长河新电源有限公司 Power battery lithium ion secondary battery pole piece

Similar Documents

Publication Publication Date Title
JP5319947B2 (en) Non-aqueous electrolyte battery
JP4956511B2 (en) Nonaqueous electrolyte secondary battery and battery pack
JP4213687B2 (en) Nonaqueous electrolyte battery and battery pack
JP6320809B2 (en) Positive electrode active material, non-aqueous electrolyte battery and battery pack
KR101241571B1 (en) Cathode material for lithium ion secondary battery and lithium ion secondary battery using it
JP6305263B2 (en) Non-aqueous electrolyte battery, battery pack, battery pack and car
JP6193285B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack and car
JP5476246B2 (en) Nonaqueous electrolyte secondary battery and method for producing positive electrode mixture
JP2009021134A (en) Nonaqueous electrolyte battery and battery pack
JP2008243529A (en) Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2006066341A (en) Nonaqueous electrolyte secondary cell
JP4237785B2 (en) Nonaqueous electrolyte secondary battery and battery pack
JP2009123464A (en) Positive electrode active material for lithium-ion secondary battery, positive electrode, method of manufacturing the same, and lithium-ion secondary battery
JP2006066330A (en) Cathode active material for nonaqueous electrolyte solution secondary battery, nonaqueous electrolyte solution secondary battery, and manufacturing method of cathode active material
KR20130035911A (en) Positive electrode material, lithium ion secondary battery using thereof, and manufacturing method of positive electrode material
JP6121697B2 (en) Non-aqueous electrolyte battery
JP6096985B1 (en) Nonaqueous electrolyte battery and battery pack
JP2018045819A (en) Electrode and nonaqueous electrolyte battery
JP2013084449A (en) Positive electrode active material, lithium ion secondary battery including the same, and method for producing positive electrode active material
JP2011054334A (en) Lithium secondary battery
JP5865951B2 (en) Nonaqueous electrolyte battery and battery pack
JP6554725B2 (en) Non-aqueous electrolyte battery
JP5908551B2 (en) Nonaqueous electrolyte battery separator
JP2014049372A (en) Lithium ion secondary battery
JP2012204291A (en) Lithium ion secondary battery, and positive electrode material therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724