JP2000058066A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JP2000058066A
JP2000058066A JP10236502A JP23650298A JP2000058066A JP 2000058066 A JP2000058066 A JP 2000058066A JP 10236502 A JP10236502 A JP 10236502A JP 23650298 A JP23650298 A JP 23650298A JP 2000058066 A JP2000058066 A JP 2000058066A
Authority
JP
Japan
Prior art keywords
positive electrode
fibrous
graphite
secondary battery
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10236502A
Other languages
Japanese (ja)
Inventor
Tomohito Okamoto
朋仁 岡本
Taku Aoki
卓 青木
Kazuhiro Nakamitsu
和弘 中満
Minoru Mizutani
実 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS MERUKOTEKKU KK
Japan Storage Battery Co Ltd
Original Assignee
GS MERUKOTEKKU KK
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS MERUKOTEKKU KK, Japan Storage Battery Co Ltd filed Critical GS MERUKOTEKKU KK
Priority to JP10236502A priority Critical patent/JP2000058066A/en
Publication of JP2000058066A publication Critical patent/JP2000058066A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the conductivity of a positive electrode. SOLUTION: This secondary battery has a positive electrode, containing carbon black, nonfibrous graphite particle and fibrous carbon, is equipped with a negative electrode composed mainly of a carbon material capable of storing/ emitting, for example, lithium, the positive electrode composed mainly of a transition metal multiple oxide, and an electrolytic solution made by dissolving an electrolyte of a lithium salt in a nonaqueous solvent. The positive electrode contains acetylene black, flake graphite, vapor phase epitaxy fibrous graphite, and a binder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、その中に含有され
る導電剤に特徴を有する正極を備えた、リチウム二次電
池等の二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery such as a lithium secondary battery provided with a positive electrode characterized by a conductive agent contained therein.

【0002】[0002]

【従来の技術】一般に、特性の良い電池を作る為には、
電池を構成する電極の導電性を大きくし内部抵抗を小さ
くする必要がある。特に、正極の場合、正極活物質とし
て導電性の良くない酸化物が用いられることが多く、こ
のため正極活物質と導電剤とが混合された正極合剤によ
り正極が作製される場合が多い。
2. Description of the Related Art Generally, in order to make a battery having good characteristics,
It is necessary to increase the conductivity of the electrodes constituting the battery and reduce the internal resistance. In particular, in the case of a positive electrode, an oxide having poor conductivity is often used as a positive electrode active material, and thus, a positive electrode is often produced using a positive electrode mixture in which a positive electrode active material and a conductive agent are mixed.

【0003】例えば、リチウム二次電池の正極活物質と
して用いられるLiCoO2等の遷移金属複合酸化物は導
電性が低いために、これらを用いた正極においては、そ
の作製において導電剤としてアセチレンブラック等のカ
ーボンブラックと黒鉛粉末が混合されて用いられる(例
えば、特開平6−333558、特開平7−19271
8等参照)。この場合に、炭素系の導電剤が二種類混合
されて用いられるのは、カーボンブラック単独では十分
な導電性が得られないこと、黒鉛粉末単独では導電性は
改善されるが新たに空孔率が小さくなり十分なイオン伝
導性が得られないという問題が生じること、さらにはい
ずれも単独では十分なサイクル特性を得るのが難しいこ
と、等の理由によるものであって、このようにカーボン
ブラックと黒鉛粉末とを混合することによって、サイク
ル特性、イオン伝導性等を維持しつつ正極の導電性向上
が達成されている。
For example, since transition metal composite oxides such as LiCoO 2 used as a positive electrode active material of a lithium secondary battery have low conductivity, in a cathode using these, acetylene black or the like is used as a conductive agent in the production thereof. Are mixed and used (for example, JP-A-6-333558 and JP-A-7-19271).
8 etc.). In this case, two types of carbon-based conductive agents are used as a mixture because carbon black alone does not provide sufficient conductivity, and graphite powder alone improves conductivity but adds a new porosity. The problem is that it is not possible to obtain sufficient ion conductivity due to small size, and furthermore, it is difficult to obtain sufficient cycle characteristics by itself, and so on. By mixing with graphite powder, improvement in conductivity of the positive electrode has been achieved while maintaining cycle characteristics, ion conductivity, and the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、現在の
電池にはさらにその性能の向上が求められており、正極
に対してもさらなる導電性の向上が求められている。
However, the current batteries are required to further improve their performance, and the positive electrodes are also required to further improve the conductivity.

【0005】本発明は以上に鑑みなされたものであり、
導電性の改良された正極を備えた二次電池を提供するこ
とを目的とする。
The present invention has been made in view of the above,
An object of the present invention is to provide a secondary battery including a positive electrode with improved conductivity.

【0006】[0006]

【課題を解決するための手段】本発明は、カーボンブラ
ックと非繊維状黒鉛粒子とが添加された従来の正極に、
繊維状炭素を加えることによってその導電性をさらに大
きくすることができることを見出すことによりなされた
ものである。
The present invention provides a conventional positive electrode to which carbon black and non-fibrous graphite particles are added,
It was made by finding that the conductivity can be further increased by adding fibrous carbon.

【0007】すなわち、本発明は、カーボンブラックと
非繊維状黒鉛粒子と繊維状炭素とが含有された正極を備
えたことを特徴とする電池であり、特に、カーボンブラ
ックとしてはアセチレンブラックが、非繊維状黒鉛粒子
としては鱗片状黒鉛が、繊維状炭素としては繊維状の黒
鉛、中でも気相成長による繊維状黒鉛が含有されたもの
が好ましい。
That is, the present invention relates to a battery comprising a positive electrode containing carbon black, non-fibrous graphite particles and fibrous carbon. In particular, acetylene black is used as carbon black. It is preferable that the fibrous graphite particles contain flaky graphite, and the fibrous carbon contains fibrous graphite, especially fibrous graphite obtained by vapor phase growth.

【0008】[0008]

【発明の実施の形態】以下、本発明の好ましい形態であ
る非水電解質リチウム二次電池に適用した場合の実施の
形態を説明することによって、本発明について具体的に
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be specifically described by describing an embodiment applied to a nonaqueous electrolyte lithium secondary battery which is a preferred embodiment of the present invention.

【0009】本発明に係る非水電解液リチウム二次電池
は、例えば、図1の電池の構造を説明するための概略斜
視図に示されるように、正極のシート、負極のシートが
セパレータを介して巻回されて断面が長円形とされた発
電素子1と非水電解液とを角型の電池容器2に収納する
ことで作製することができる。なお、同図に示した電池
において、3は安全弁、4は正極端子であり、負極は電
池容器2が兼ねている。
In a non-aqueous electrolyte lithium secondary battery according to the present invention, for example, as shown in a schematic perspective view for explaining the structure of the battery in FIG. The non-aqueous electrolytic solution and the power generating element 1 whose cross section is formed into an elliptical shape and the nonaqueous electrolytic solution are housed in a rectangular battery container 2. In the battery shown in the figure, 3 is a safety valve, 4 is a positive electrode terminal, and the negative electrode is also used by the battery container 2.

【0010】非水電解液リチウム二次電池に用いる正極
は、例えば、Alシート、ステンレスシート等の金属集
電体上に、正極活物質とカーボンブラック、黒鉛粒子、
繊維状炭素、さらに結着剤とを混合した合剤を塗布形成
することによって作製することができるが、繊維状炭素
が加えられている点が従来と異なるのみで、通常使用さ
れている材料と方法により作製することができる。
The positive electrode used for the non-aqueous electrolyte lithium secondary battery includes, for example, a positive electrode active material, carbon black and graphite particles on a metal current collector such as an Al sheet or a stainless sheet.
It can be prepared by applying and forming a mixture of fibrous carbon and a binder, but the only difference is that fibrous carbon is added. It can be produced by a method.

【0011】正極活物質としては、例えば、LiXMO2
(Mは遷移金属)で表されるリチウムと遷移金属との複
合酸化物やLixyz2(Mは遷移金属の少なくとも
一種、Nは非遷移金属の少なくとも一種)で表されるリ
チウムと遷移金属と非遷移金属との複合酸化物、二硫化
チタン等の金属硫化物、五酸化バナジウム、三酸化モリ
ブデン等の金属酸化物等を用いることができ、特に、リ
チウムコバルト複合酸化物(LiCoO2)、リチウム含有
ニッケル・コバルト複合酸化物(LiNiXCo1-XO2)、およ
びスピネル型リチウムマンガン酸化物(LiMn2O4)が好ま
しい。
As the positive electrode active material, for example, Li X MO 2
(M is a transition metal) (at least one of M a transition metal, N is the at least one non-transition metal) complex oxide and Li x M y N z O 2 with lithium and a transition metal represented by the represented by Composite oxides of lithium, a transition metal, and a non-transition metal, metal sulfides such as titanium disulfide, and metal oxides such as vanadium pentoxide and molybdenum trioxide can be used. In particular, lithium cobalt composite oxides ( LiCoO 2 ), lithium-containing nickel-cobalt composite oxide (LiNi X Co 1 -X O 2 ), and spinel type lithium manganese oxide (LiMn 2 O 4 ) are preferable.

【0012】結着剤としては、例えば、ポリテトラフル
オロエチレン、ゴム系高分子、これらとセルロース系高
分子との混合物、ポリフッ化ビニリデンを主体とするコ
ポリマー等を用いることができる。
As the binder, for example, polytetrafluoroethylene, a rubber-based polymer, a mixture of these with a cellulose-based polymer, a copolymer mainly containing polyvinylidene fluoride, and the like can be used.

【0013】カーボンブラックとしては、ファーネスブ
ラック、チャンネルブラック、サーマルブラック、ラン
プブラックいずれのものも用いることができるが、中で
もケッチェンブラックやアセチレンブラック等のサーマ
ルブラックを用いるのが好ましく、特にアセチレンブラ
ックを用いるのが好ましい。
As carbon black, any of furnace black, channel black, thermal black and lamp black can be used. Among them, thermal black such as Ketjen black and acetylene black is preferred, and acetylene black is particularly preferred. It is preferably used.

【0014】カーボンブラックは、一般にその粒径が小
さく、正極中に添加した場合にその内部の微細な部分に
まで均一に分散され得る。このため、本発明において
は、カーボンブラックは、主として電極内の細部に至る
導電経路を形成する役割を担い、大電流での放電特性を
良好にする役割を担う。また、これが添加されることに
より、非繊維状黒鉛粒子と繊維状炭素の添加量を少なく
でき、活物質としては働かないカーボンブラック、非繊
維状黒鉛粒子、繊維状炭素の総量を低減することが可能
となり、正極の容量密度を大きくする役割を果たす。従
って、その大きさは非繊維状黒鉛粒子、繊維状炭素に比
べて小さいものが良い。
[0014] Carbon black generally has a small particle size, and when added to a positive electrode, can be uniformly dispersed even in a fine portion inside. For this reason, in the present invention, carbon black mainly plays a role of forming a conductive path to details in the electrode, and plays a role of improving discharge characteristics under a large current. Also, by adding this, the addition amount of non-fibrous graphite particles and fibrous carbon can be reduced, and the total amount of carbon black, non-fibrous graphite particles, and fibrous carbon that do not work as an active material can be reduced. It becomes possible and plays a role in increasing the capacity density of the positive electrode. Therefore, the size thereof is preferably smaller than that of non-fibrous graphite particles or fibrous carbon.

【0015】非繊維状黒鉛粒子としては、鱗片状、塊
状、槌状等のものを用いることができるが、この中でも
好ましくは、鱗片状のものを用いるのが好ましい。非繊
維状黒鉛粒子は、カーボンブラックに比べて結晶性が良
好で導電性が高い為、正極に添加することで主として正
極の導電性を大きくする役割を担う。従って、その結晶
性は高いほうが良いが、完全黒鉛結晶である必要はな
く、天然黒鉛であっても人造黒鉛であっても良い。
As the non-fibrous graphite particles, scaly, massive, hammer-shaped particles and the like can be used, and among them, scaly particles are preferably used. Non-fibrous graphite particles have good crystallinity and high conductivity as compared with carbon black, and therefore play a role of mainly increasing the conductivity of the positive electrode when added to the positive electrode. Therefore, the higher the crystallinity, the better, but it does not need to be perfect graphite crystals, and may be natural graphite or artificial graphite.

【0016】繊維状炭素は、非繊維状黒鉛粒子と同様、
カーボンブラックに比べて結晶性が良好で導電性が高
く、正極に添加されることで主として正極の導電性を大
きくする役割を担うが、上記非繊維状黒鉛粒子に加えて
さらにこれを添加することによって正極の導電性をさら
に大きくする役割を担う。また、繊維状黒鉛は、その繊
維の長さが例えば300μmと大きく、一つの繊維で長
距離に亘る電子伝導性を担うことができ、充放電にとも
なう活物質の移動により粒子間の導電経路が切断される
と言うような影響を受けることが少なく、充放電の繰り
返しに拘わらず常に一定の導電性を保持するよう作用す
る。そして、さらに、この繊維状炭素は、二次電池の充
放電の繰り返しに伴う正極の膨潤を抑制する役割をも果
たし、二次電池の繰り返し使用特性の向上に寄与する。
その結晶性としては、非繊維状黒鉛粒子と同じく、高い
ものが良く、好ましくは繊維状黒鉛が良い。この場合も
また、繊維状黒鉛は完全な黒鉛結晶である必要はない。
また、天然には繊維状黒鉛が手に入らない為、繊維状黒
鉛は例えば、2400℃以上で熱処理された繊維状の人
造黒鉛を用いるのが良く、さらに、気相成長による繊維
状黒鉛が好ましい。
The fibrous carbon is, like the non-fibrous graphite particles,
It has good crystallinity and high conductivity compared to carbon black, and plays a role of mainly increasing the conductivity of the positive electrode by being added to the positive electrode. However, in addition to the above non-fibrous graphite particles, it is necessary to further add this. This serves to further increase the conductivity of the positive electrode. In addition, fibrous graphite has a large fiber length of, for example, 300 μm, and one fiber can carry electronic conductivity over a long distance, and a conductive path between particles is formed by movement of an active material due to charge and discharge. It is less affected by being cut off, and acts to always maintain a constant conductivity regardless of repetition of charging and discharging. Further, the fibrous carbon also plays a role of suppressing the swelling of the positive electrode due to repeated charging and discharging of the secondary battery, and contributes to the improvement of the repetitive use characteristics of the secondary battery.
As for the crystallinity, as in the case of the non-fibrous graphite particles, high crystallinity is preferable, and fibrous graphite is preferable. Again, the fibrous graphite need not be perfect graphite crystals.
In addition, since fibrous graphite is not naturally available, it is preferable to use, for example, fibrous graphite heat-treated at 2400 ° C. or higher, and more preferably fibrous graphite obtained by vapor-phase growth. .

【0017】負極、セパレータ、電解液等は、特に従来
用いられているものと異なるところはなく、通常用いら
れているものを使用することができる。
The negative electrode, the separator, the electrolyte and the like are not particularly different from those conventionally used, and those usually used can be used.

【0018】例えば、負極としては、リチウム金属、
Li−Al合金等のリチウム合金、リチウムを吸蔵・放
出可能な炭素材料、金属酸化物等を用いることができ
る。
For example, as the negative electrode, lithium metal,
A lithium alloy such as a Li-Al alloy, a carbon material capable of inserting and extracting lithium, and a metal oxide can be used.

【0019】電解液としては、非水溶媒にリチウム塩で
ある電解質を溶解したものを用いることができ、例え
ば、溶媒としてプロピレンカーボネート、エチレンカー
ボネート、γ−ブチロラクトン、スルホランなどの高誘
電率溶媒に1,2−ジメトキシエタン、ジメチルカーボ
ネート、エチルメチルカーボネート、ジエチルカーボネ
ート、酢酸メチル、酢酸エチル、プロピオン酸メチル、
プロピオン酸エチルなどの低粘度溶媒を混合したものを
用い、電解質として、LiClO4、LiBF4、LiP
6、LiCF3SO3、LiN(CF3SO22、LiN
(CnF2n+1SO22(但し、nは各独立して1,2,3また
は4)等を用いることができる。
As the electrolytic solution, a solution obtained by dissolving an electrolyte which is a lithium salt in a non-aqueous solvent can be used. For example, a solvent having a high dielectric constant such as propylene carbonate, ethylene carbonate, γ-butyrolactone, or sulfolane can be used. , 2-dimethoxyethane, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl acetate, ethyl acetate, methyl propionate,
Use a mixture of low-viscosity solvents such as ethyl propionate, and use LiClO 4 , LiBF 4 , LiP
F 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN
(CnF 2n + 1 SO 2 ) 2 (where n is 1, 2, 3, or 4 independently) can be used.

【0020】なお、電解液に代えて高分子固体電解質、
あるいはゲル状電解質を用いることもでき、例えば、フ
ッ素ゴム系の高分子材料に上記混合溶媒又は溶液を含ま
せた高分子固体電解質、あるいは上記溶媒又は溶液にア
クリルモノマーを添加して重合させたゲル状電解質など
を用いることができる。この場合、セパレータを省略す
ることも可能である。
Incidentally, a solid polymer electrolyte is used in place of the electrolyte,
Alternatively, a gel electrolyte can be used.For example, a polymer solid electrolyte obtained by adding the above-mentioned mixed solvent or solution to a fluororubber-based polymer material, or a gel obtained by adding an acrylic monomer to the above-mentioned solvent or solution and polymerizing the same Electrolyte and the like can be used. In this case, the separator can be omitted.

【0021】[0021]

【実施例】以下、本発明のより好ましい形態である、リ
チウムを吸蔵・放出可能な炭素材料を主体とする負極、
遷移金属複合酸化物を主体とする正極、非水溶媒にリチ
ウム塩である電解質が溶解されてなる電解液とを備えて
なり、上記正極に、アセチレンブラックと鱗片状黒鉛と
気相成長繊維状黒鉛と結着剤とが含有された構成を有す
る二次電池、についての実施例を示すことにより、さら
に本発明について詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium, which is a more preferred embodiment of the present invention,
A positive electrode mainly composed of a transition metal composite oxide, and an electrolytic solution in which an electrolyte that is a lithium salt is dissolved in a non-aqueous solvent; and the positive electrode includes acetylene black, flaky graphite, and vapor-grown fibrous graphite. The present invention will be described in more detail by showing examples of a secondary battery having a configuration containing a binder and a binder.

【0022】正極活物質としてLiCoO2を用い、L
iCoO289重量%に対しカーボンブラックを2重量
%、燐片状グラファイトを2重量%、気相成長繊維状黒
鉛1重量%、ポリフッ化ビニリデン(PVdF)6重量
%を混合し、溶媒としてN−メチル−2−ピロリドン
(NMP)を適宜添加して、スラリー(ペースト)を得
た。次に、厚さ20μmの帯状アルミニウム箔にこの正
極合剤スラリーを均一に塗布し、乾燥させた後にロール
プレスして帯状の正極を作製した。この正極を実施例正
極とする。
Using LiCoO 2 as a positive electrode active material,
89% by weight of iCoO 2 were mixed with 2 % by weight of carbon black, 2% by weight of flaky graphite, 1% by weight of vapor-grown fibrous graphite, and 6% by weight of polyvinylidene fluoride (PVdF). Methyl-2-pyrrolidone (NMP) was appropriately added to obtain a slurry (paste). Next, this positive electrode mixture slurry was uniformly applied to a 20-μm-thick strip-shaped aluminum foil, dried, and roll-pressed to prepare a strip-shaped positive electrode. This positive electrode is used as a positive electrode of the example.

【0023】比較の為、実施例正極の合剤組成中の気相
成長繊維状黒鉛を0とし、燐片状グラファイトを3重量
%としたものを作製し、これを比較例正極とした。
For comparison, a positive electrode was prepared in which the vapor-grown fibrous graphite in the mixture composition of the positive electrode of Example 1 was 0 and the flaky graphite was 3% by weight.

【0024】これら正極について、その表面抵抗を測定
した結果、実施例正極では、35Ωcm、比較例正極で
は75オームcmであり、気相成長繊維状黒鉛の添加に
よりその表面抵抗が小さくなったことが確認された。な
お、鱗片状黒鉛粒子を塊状黒鉛粒子に替えると、その表
面抵抗は鱗片状黒鉛粒子の場合に比べ大きくなるため、
非繊維状黒鉛としては、鱗片状黒鉛粒子が好ましい。
As a result of measuring the surface resistance of these positive electrodes, it was 35 Ωcm for the positive electrode of the example and 75 ohm cm for the positive electrode of the comparative example, indicating that the surface resistance was reduced by the addition of the vapor-grown fibrous graphite. confirmed. In addition, if the scale-like graphite particles are replaced with massive graphite particles, since the surface resistance becomes larger than in the case of the scale-like graphite particles,
As the non-fibrous graphite, flaky graphite particles are preferable.

【0025】次に、これら正極について単極試験を行っ
た。試験条件は以下の通りである。
Next, a monopolar test was performed on these positive electrodes. The test conditions are as follows.

【0026】充放電電流密度:0.6mA/cm2、充
電電位3.0V−4.3V、対極:Li金属、電解液:
1MLiClO4、EC:DEC=1:1、温度:25
℃ この結果、53サイクル目の容量保持率は実施例正極、
比較例正極ともに同じで、実施例正極と比較例正極とで
容量保持率に差はなかった。なお、アセチレンブラック
のみのものでも容量保持率は同じであったが、鱗片状黒
鉛のみのものは50%と、容量保持率が低かった。
Charge / discharge current density: 0.6 mA / cm 2 , charge potential: 3.0 V-4.3 V, counter electrode: Li metal, electrolyte:
1M LiClO 4 , EC: DEC = 1: 1, temperature: 25
° C As a result, the capacity retention at the 53rd cycle was
The comparative example positive electrode was the same, and there was no difference in the capacity retention between the example positive electrode and the comparative example positive electrode. The capacity retention was the same even with acetylene black alone, but the capacity retention was low at 50% with flake graphite only.

【0027】また、サイクル試験後の正極の厚さ方向の
膨張率を測定した結果、実施例正極では、1.5%であ
ったのに対し、比較例正極では5.5%と大きく、気相
成長繊維状黒鉛の添加により繰り返し使用に伴う正極の
膨張が低減されることが分かった。
Also, the expansion coefficient in the thickness direction of the positive electrode after the cycle test was measured. As a result, the positive electrode of the example was 1.5%, whereas the positive electrode of the comparative example was 5.5%, which was large. It was found that the addition of the phase-grown fibrous graphite reduced the expansion of the positive electrode due to repeated use.

【0028】さらに、上記正極を用いて、上記図1に示
したのと同様の構造の電池を作製した。負極としては、
ピッチの炭素化過程で生ずるメソフェーズ小球体を原料
としたメソカーボンマイクロビーズと鱗片状人造黒鉛と
を80:20重量比で混合したものを負極活物質とし、
スチレンブタジエンゴムをバインダーとしてN−メチル
ピロリドンを適宜加えペースト状にしたものを、20μ
m厚さの銅箔基体に塗布・乾燥させたものを用い、厚さ
25μm、空孔率40%、平均貫通孔径0.01μm、
10mm幅の破断強度が0.7Kgであるポリエチレン
微多孔膜をセパレータとして用いた。電解液としては、
エチレンカーボネートとジエチルカーボネートとの体積
比1:1の混合溶媒に、LiPF6 を1モル/リットル
溶かしたものを用いた。
Further, a battery having the same structure as that shown in FIG. 1 was manufactured using the above positive electrode. As the negative electrode,
As a negative electrode active material, a mixture of mesocarbon microbeads made of mesophase microspheres generated in the carbonization process of pitch and flaky artificial graphite at a weight ratio of 80:20 is used.
A paste obtained by appropriately adding N-methylpyrrolidone using styrene-butadiene rubber as a binder, and forming a paste
Using a copper foil substrate having a thickness of m and dried and dried, a thickness of 25 μm, a porosity of 40%, an average through-hole diameter of 0.01 μm,
A polyethylene microporous membrane having a 10 mm width and a breaking strength of 0.7 kg was used as a separator. As the electrolyte,
A mixture of 1 mol / liter of LiPF 6 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 was used.

【0029】本電池について、45℃での充放電サイク
ル試験を行い、300サイクル後の電池の容量保持率と
電池の内部抵抗の測定を行った。この結果、実施例正極
と比較例正極を用いたものとで容量保持率に差は生じな
かったが、内部抵抗には差が生じ、実施例正極を用いた
もので70mΩ、比較例正極を用いたもので110mΩ
であった。
The battery was subjected to a charge / discharge cycle test at 45 ° C., and the capacity retention and internal resistance of the battery after 300 cycles were measured. As a result, there was no difference in the capacity retention between the positive electrode of the example and the positive electrode using the comparative example, but there was a difference in the internal resistance, and 70 mΩ was obtained using the positive electrode of the example and using the positive electrode of the comparative example. 110mΩ
Met.

【0030】なお、上記実施例では、正極中のカーボン
ブラック、燐片状黒鉛、気相成長繊維状黒鉛の総量を5
重量%としたが、これらの総量は正極の容量密度を大き
くするという目的からはさらに少なくするのが好まし
く、総量が3.5重量%以下、2重量%以上とするのが
好ましく、さらには約3重量%とするのが良い。このよ
うに、炭素材料の総量を減らした場合、3種類の炭素材
料を添加する効果は、正極の抵抗、膨張率、さらに電池
のハイレート特性により顕著に現れる。
In the above embodiment, the total amount of carbon black, flaky graphite and vapor-grown fibrous graphite in the positive electrode was 5%.
However, the total amount thereof is preferably further reduced for the purpose of increasing the capacity density of the positive electrode, and the total amount is preferably 3.5% by weight or less, 2% by weight or more, and more preferably about 3.5% by weight or more. The content is preferably 3% by weight. As described above, when the total amount of the carbon materials is reduced, the effect of adding the three types of carbon materials is remarkably exhibited by the resistance, the expansion coefficient of the positive electrode, and the high-rate characteristics of the battery.

【0031】[0031]

【発明の効果】本発明によれば、導電性の改良された正
極を備えた二次電池を作製することが可能となり、ハイ
レート特性に優れた二次電池を製造することができる。
さらに、繰り返し使用に伴う正極の膨張が少ない二次電
池を作製することが可能となり、繰り返し使用に伴う電
池性能、安全性の低下の少ない二次電池の製造が可能と
なる。
According to the present invention, a secondary battery having a positive electrode with improved conductivity can be manufactured, and a secondary battery excellent in high-rate characteristics can be manufactured.
Furthermore, it becomes possible to manufacture a secondary battery in which the positive electrode expands little with repeated use, and it is possible to manufacture a secondary battery with little decrease in battery performance and safety due to repeated use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 電池の構造を説明するための概略斜視図であ
る。
FIG. 1 is a schematic perspective view for explaining the structure of a battery.

【符号の説明】[Explanation of symbols]

1:発電素子 2:電池容器 1: Power generation element 2: Battery container

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中満 和弘 京都市南区吉祥院新田壱ノ段町5番地 ジ −エス・メルコテック株式会社内 (72)発明者 水谷 実 京都市南区吉祥院西ノ庄猪之馬場町1番地 日本電池株式会社内 Fターム(参考) 5H003 AA01 AA02 BB01 BB02 BB05 BB11 BB15 BC01 BC02 5H014 AA02 EE07 EE08 EE10 5H029 AJ00 AJ03 AJ12 AK03 AL02 AL06 AL12 AM01 AM02 AM03 AM04 AM05 AM07 AM11 AM16 BJ02 DJ08 DJ15 EJ04 EJ12 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhiro Nakamitsu 5 Kichijoin Nitta Ichidantancho, Minami-ku, Kyoto City Inside S-Melcotec Co., Ltd. (72) Inventor Minoru Mizutani Minami-ku, Kyoto No. 1 Ino Babacho, No. 1 F-term in Nippon Battery Co., Ltd. (reference) DJ08 DJ15 EJ04 EJ12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カーボンブラックと非繊維状黒鉛粒子と
繊維状炭素とが含有された正極を備えたことを特徴とす
る二次電池。
1. A secondary battery comprising a positive electrode containing carbon black, non-fibrous graphite particles, and fibrous carbon.
【請求項2】 リチウムを吸蔵・放出可能な炭素材料を
主体とする負極、遷移金属複合酸化物を主体とする正
極、非水溶媒にリチウム塩である電解質が溶解されてな
る電解液とを備えてなり、上記正極に、アセチレンブラ
ックと鱗片状黒鉛と気相成長繊維状黒鉛と結着剤とが含
有されていることを特徴とする二次電池。
2. A negative electrode mainly composed of a carbon material capable of occluding and releasing lithium, a positive electrode mainly composed of a transition metal composite oxide, and an electrolytic solution in which a lithium salt electrolyte is dissolved in a non-aqueous solvent. A secondary battery, wherein the positive electrode contains acetylene black, flaky graphite, vapor-grown fibrous graphite, and a binder.
JP10236502A 1998-08-06 1998-08-06 Secondary battery Pending JP2000058066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10236502A JP2000058066A (en) 1998-08-06 1998-08-06 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10236502A JP2000058066A (en) 1998-08-06 1998-08-06 Secondary battery

Publications (1)

Publication Number Publication Date
JP2000058066A true JP2000058066A (en) 2000-02-25

Family

ID=17001688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10236502A Pending JP2000058066A (en) 1998-08-06 1998-08-06 Secondary battery

Country Status (1)

Country Link
JP (1) JP2000058066A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1089366A1 (en) * 1999-09-30 2001-04-04 Sony Corporation Nonaqueous electrolyte secondary battery
JP2001126733A (en) * 1999-10-27 2001-05-11 Sony Corp Nonaqueous electrolytic material
JP2002083601A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
JP2008243529A (en) * 2007-03-27 2008-10-09 Hitachi Vehicle Energy Ltd Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US7871728B2 (en) 2007-11-30 2011-01-18 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JPWO2011090113A1 (en) * 2010-01-21 2013-05-23 株式会社Gsユアサ Negative electrode plate for lead acid battery, method for producing the same, and lead acid battery
JP2015005528A (en) * 2014-09-05 2015-01-08 株式会社Gsユアサ Lead storage battery
WO2017099272A1 (en) * 2015-12-09 2017-06-15 주식회사 엘지화학 Lithium secondary battery positive electrode material slurry comprising at least two types of conductive materials, and lithium secondary battery using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498101B2 (en) 1999-09-30 2009-03-03 Sony Corporation Non-aqueous electrolyte secondary battery having a negative electrode containing carbon fibers and carbon flakes
US6806003B1 (en) 1999-09-30 2004-10-19 Sony Corporation Nonaqueous electrolyte secondary battery having a negative electrode containing carbon fibers and carbon flakes
US7172837B2 (en) 1999-09-30 2007-02-06 Sony Corporation Nonaqueous electrolyte secondary battery having a negative electrode containing carbon fibers and carbon flakes
EP1089366A1 (en) * 1999-09-30 2001-04-04 Sony Corporation Nonaqueous electrolyte secondary battery
JP2001126733A (en) * 1999-10-27 2001-05-11 Sony Corp Nonaqueous electrolytic material
JP2002083601A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
JP2008243529A (en) * 2007-03-27 2008-10-09 Hitachi Vehicle Energy Ltd Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US7871728B2 (en) 2007-11-30 2011-01-18 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JPWO2011090113A1 (en) * 2010-01-21 2013-05-23 株式会社Gsユアサ Negative electrode plate for lead acid battery, method for producing the same, and lead acid battery
JP2015005528A (en) * 2014-09-05 2015-01-08 株式会社Gsユアサ Lead storage battery
WO2017099272A1 (en) * 2015-12-09 2017-06-15 주식회사 엘지화학 Lithium secondary battery positive electrode material slurry comprising at least two types of conductive materials, and lithium secondary battery using same
JP2018501602A (en) * 2015-12-09 2018-01-18 エルジー・ケム・リミテッド Positive electrode slurry for a lithium secondary battery containing at least two kinds of conductive materials, and a lithium secondary battery using the same
US10128508B2 (en) 2015-12-09 2018-11-13 Lg Chem, Ltd. Positive electrode material slurry for lithium secondary battery including at least two conductive materials and lithium secondary battery using the same

Similar Documents

Publication Publication Date Title
US5612155A (en) Lithium ion secondary battery
JP5101692B2 (en) Anode material with excellent conductivity and high-power secondary battery using the same
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
KR101023354B1 (en) Lithium titanate with increased electronic conductivity
WO2011162169A1 (en) Lithium ion secondary battery
KR20040018154A (en) Nonaqueous electrolyte secondary battery
WO2016121585A1 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013110134A (en) Nonaqueous electrolyte battery
WO2010035681A1 (en) Nonaqueous electrolyte secondary battery
JP2008181850A (en) Nonaqueous electrolyte secondary battery
KR20190092283A (en) Lithium secondary battery with improved high temperature storage property
JPWO2017217408A1 (en) Lithium ion secondary battery
CN107660316B (en) Positive electrode of lithium electrochemical power generation device
US20220255060A1 (en) Negative electrode, method of producing the same, and secondary battery comprising the same
JP3244389B2 (en) Lithium secondary battery
JP5216973B2 (en) Non-aqueous secondary battery and non-aqueous secondary battery system
JP5078330B2 (en) Negative electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using this negative electrode plate
KR101093242B1 (en) Mixed Cathode Material for Lithium Secondary Battery and High Power Lithium Secondary Battery Employed with the Same
KR102053313B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2000058066A (en) Secondary battery
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
US9466837B1 (en) Battery having negative electrode including amorphous carbon
JP2000195518A (en) Nonaqueous electrolyte secondary battery
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP4795509B2 (en) Non-aqueous electrolyte battery