JP5216973B2 - Non-aqueous secondary battery and non-aqueous secondary battery system - Google Patents

Non-aqueous secondary battery and non-aqueous secondary battery system Download PDF

Info

Publication number
JP5216973B2
JP5216973B2 JP2008166780A JP2008166780A JP5216973B2 JP 5216973 B2 JP5216973 B2 JP 5216973B2 JP 2008166780 A JP2008166780 A JP 2008166780A JP 2008166780 A JP2008166780 A JP 2008166780A JP 5216973 B2 JP5216973 B2 JP 5216973B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
positive electrode
active material
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008166780A
Other languages
Japanese (ja)
Other versions
JP2010009898A (en
Inventor
直人 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2008166780A priority Critical patent/JP5216973B2/en
Publication of JP2010009898A publication Critical patent/JP2010009898A/en
Application granted granted Critical
Publication of JP5216973B2 publication Critical patent/JP5216973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水二次電池、および前記非水二次電池とその充電回路とを備えた非水二次電池システムに関するものである。   The present invention relates to a non-aqueous secondary battery and a non-aqueous secondary battery system including the non-aqueous secondary battery and a charging circuit thereof.

非水二次電池は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピュータなどの携帯機器の電源として広く用いられている。携帯機器の高性能化に伴って、非水二次電池の更なる高出力化・長寿命化が望まれており、安全性の確保も重要な課題となっている。また、電動工具などの電源に用いられる非水二次電池では、特に大電流での充放電が行われることから、電池の温度が上昇しやすく、充電の終止時期を正確に検出し過充電による劣化を防止する必要が生じている。   Non-aqueous secondary batteries are widely used as power sources for portable devices such as mobile phones and notebook personal computers because of their high energy density. As mobile devices become more sophisticated, non-aqueous secondary batteries are required to have higher output and longer life, and ensuring safety is also an important issue. In addition, non-aqueous secondary batteries used for power supplies such as power tools are charged and discharged with a large current, so the temperature of the battery tends to rise. There is a need to prevent degradation.

電池の長寿命化などの観点から、負極にリチウムチタン酸化物を用いることが検討されており、対する正極に、リチウムコバルト酸化物、リチウムニッケル酸化物またはリチウムマンガン酸化物を用いた電池(特許文献1)、層構造を有し実質的に同比率のニッケルとコバルトとを含むリチウム酸化物を用いた電池(特許文献2)、スピネル構造のリチウムマンガン酸化物を用いた電池(特許文献3)などが提案されている。   From the viewpoint of extending the life of the battery, the use of lithium titanium oxide for the negative electrode has been studied, and a battery using lithium cobalt oxide, lithium nickel oxide or lithium manganese oxide for the positive electrode (Patent Document) 1) a battery using a lithium oxide having a layer structure and containing substantially the same ratio of nickel and cobalt (Patent Document 2), a battery using a spinel structure lithium manganese oxide (Patent Document 3), etc. Has been proposed.

特開平10−27626号公報JP 10-27626 A 特開2005−142047号公報Japanese Patent Laid-Open No. 2005-142047 特開平10−27609号公報JP-A-10-27609

しかし、特許文献1に記載の非水二次電池では、正極活物質の実容量に対する負極活物質の実用量の比率を0.5以下としており、正極側の電位が上昇する前に負極側の電位が降下するよう正極と負極の容量比が設定されている。このため、充電末期でも正極の電位はほとんど変化せず、電池の電圧変化で充電の終止を判断する場合は、実質的に負極の電位変化のみで判断することになる。このような電池では、正極の電位上昇による電解液の分解などの問題を解決することができるが、負極活物質の割合を低く設定する必要があるため、高出力化に適する電池を構成することができない。   However, in the nonaqueous secondary battery described in Patent Document 1, the ratio of the practical amount of the negative electrode active material to the actual capacity of the positive electrode active material is 0.5 or less, and before the potential on the positive electrode side increases, The capacity ratio between the positive electrode and the negative electrode is set so that the potential drops. For this reason, the potential of the positive electrode hardly changes even at the end of charging, and when the end of charging is determined by a change in the voltage of the battery, the determination is made substantially only by a change in the potential of the negative electrode. Such a battery can solve problems such as decomposition of the electrolytic solution due to the potential increase of the positive electrode, but it is necessary to set the ratio of the negative electrode active material low, so that a battery suitable for high output should be configured. I can't.

また、特許文献2に記載の非水二次電池では、自動車のアイドリングストップ用に使用するために、負極の充放電カーブの形状が全領域で完全に平坦となり、正極の充放電カーブの形状がそのまま電池の電圧に相当するよう電池設計がなされている。60%充電状態から100%充電状態までは、正極の電位は充電の進行とともに直線的に緩やかに上昇し、充電末期での正極の電位変化は小さく、正極が一定以上の電位に保持される時間が長くなるため、充電過程における電解液の分解などの問題が生じやすくなる。   In addition, in the non-aqueous secondary battery described in Patent Document 2, the shape of the charge / discharge curve of the negative electrode becomes completely flat in all regions, and the shape of the charge / discharge curve of the positive electrode is The battery is designed to correspond to the voltage of the battery as it is. From the 60% charged state to the 100% charged state, the potential of the positive electrode rises linearly and slowly with the progress of charging, the change in the positive electrode potential at the end of charging is small, and the time during which the positive electrode is held at a certain level or higher. Therefore, problems such as decomposition of the electrolyte during the charging process are likely to occur.

また、特許文献3に記載の非水二次電池では、充電時の電極の電位変化については考慮されておらず、必ずしも満足のいく充放電サイクル特性が得られていない。   Further, in the non-aqueous secondary battery described in Patent Document 3, a change in the potential of the electrode during charging is not considered, and satisfactory charge / discharge cycle characteristics are not necessarily obtained.

本発明は上記事情に鑑みてなされたものであり、安全性に優れ、高出力、長寿命の非水二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-aqueous secondary battery having excellent safety, high output, and long life.

上記目的を達成し得た本発明の非水二次電池は、スピネル構造またはラムスデライト構造を有するリチウムチタン複合酸化物を活物質とし、導電助剤を含む負極と、スピネル構造を有するリチウム含有複合酸化物を活物質とする正極と、非水電解質とを有する非水二次電池であって、前記負極の活物質は、一次粒子の平均粒子径が1μm以下であり、前記負極の導電助剤は、粒子径が0.1μm以下である炭素粒子と、繊維長が1μm以上である繊維状炭素および粒子径が1μm以上である鱗片状炭素の少なくとも1種を含み、前記正極の活物質は、一次粒子の平均粒子径が3μm以下であり、前記正極の容量に対する前記負極の容量比を、0.92〜1.2としたことを特徴とする。   The non-aqueous secondary battery of the present invention that has achieved the above object is a lithium-titanium composite oxide having a spinel structure or a ramsdellite structure as an active material, a negative electrode containing a conductive additive, and a lithium-containing composite having a spinel structure. A nonaqueous secondary battery having a positive electrode using an oxide as an active material and a nonaqueous electrolyte, wherein the negative electrode active material has an average particle size of primary particles of 1 μm or less, and the negative electrode conductive additive. Includes at least one of carbon particles having a particle diameter of 0.1 μm or less, fibrous carbon having a fiber length of 1 μm or more, and flaky carbon having a particle diameter of 1 μm or more, and the positive electrode active material comprises: The average particle size of the primary particles is 3 μm or less, and the capacity ratio of the negative electrode to the capacity of the positive electrode is set to 0.92 to 1.2.

また、本発明の非水二次電池システムは、前記本発明の非水二次電池と充放電回路とを備え、前記非水二次電池の充電における電流値を、電池の定格容量に対し1C以上で維持することを特徴とする。   The non-aqueous secondary battery system of the present invention includes the non-aqueous secondary battery of the present invention and a charge / discharge circuit, and the current value in charging of the non-aqueous secondary battery is 1 C with respect to the rated capacity of the battery. The above is maintained.

本発明によれば、安全性に優れ、高出力、長寿命の非水二次電池および前記非水二次電池の特徴を生かすことのできる非水二次電池システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the non-aqueous secondary battery system which can utilize the characteristic of the non-aqueous secondary battery excellent in safety | security, a high output and a long lifetime, and the said non-aqueous secondary battery can be provided.

本発明の非水二次電池では、スピネル構造またはラムスデライト構造を有するリチウムチタン複合酸化物を活物質とし、導電助剤を含む負極と、スピネル構造を有するリチウム含有複合酸化物を活物質とする正極とを組み合わせ、前記負極活物質の一次粒子の平均粒子径を1μm以下とし、前記負極の導電助剤として、粒子径が0.1μm以下である炭素粒子と、繊維長が1μm以上である繊維状炭素および粒子径が1μm以上である鱗片状炭素の少なくとも1種とを含有させ、前記正極活物質の一次粒子の平均粒子径を3μm以下とし、前記正極の容量に対する前記負極の容量比を、0.92〜1.2としたことを特徴とする。   In the non-aqueous secondary battery of the present invention, a lithium titanium composite oxide having a spinel structure or a ramsdellite structure is used as an active material, and a negative electrode containing a conductive assistant and a lithium-containing composite oxide having a spinel structure are used as an active material. Combined with a positive electrode, the average particle diameter of primary particles of the negative electrode active material is 1 μm or less, carbon particles having a particle diameter of 0.1 μm or less, and fibers having a fiber length of 1 μm or more as a conductive aid for the negative electrode At least one kind of scaly carbon having a particle diameter of 1 μm or more, an average particle diameter of primary particles of the positive electrode active material of 3 μm or less, and a capacity ratio of the negative electrode to a capacity of the positive electrode, It is characterized by being 0.92-1.2.

本発明では、負極活物質として、スピネル型結晶構造またはラムスデライト型結晶構造を有するリチウムチタン複合酸化物を使用する。前記のリチウムチタン複合酸化物は熱的安定性が高く、また、このような負極活物質を用いた負極を有する電池では、リチウムデンドライトが生じにくい。そのため、充電電流値を大きくしても電池の信頼性および安全性を確保することが可能となる。   In the present invention, a lithium titanium composite oxide having a spinel crystal structure or a ramsdellite crystal structure is used as the negative electrode active material. The lithium titanium composite oxide has high thermal stability, and lithium dendrite hardly occurs in a battery having a negative electrode using such a negative electrode active material. Therefore, it is possible to ensure the reliability and safety of the battery even if the charging current value is increased.

スピネル型結晶構造を有するリチウムチタン複合酸化物としては、LiTi12、LiTiなどの組成で代表される酸化物を用いることができ、特に、LiTi12に代表される欠陥スピネル構造を有するものが好ましく用いられる。 As the lithium-titanium composite oxide having a spinel crystal structure, an oxide represented by a composition such as Li 4 Ti 5 O 12 or LiTi 2 O 4 can be used, and in particular, Li 4 Ti 5 O 12 is representative. Those having a defective spinel structure are preferably used.

また、ラムスデライト型結晶構造を有するリチウムチタン複合酸化物としては、LiTi、LiTi12などの組成で代表される酸化物を用いることができ、特に、LiTiで表されるものが好ましく用いられる。このLiTiの場合、CuをターゲットとしたX線回折法による主たるピークのd値が、0.445nm、0.269nm、0.224nm、0.177nm(それぞれ±0.0002nm)にあることが好ましい。 In addition, as the lithium titanium composite oxide having a ramsdellite type crystal structure, oxides typified by compositions such as Li 2 Ti 3 O 7 and Li 4 Ti 5 O 12 can be used, and in particular, Li 2 Ti What is represented by 3 O 7 is preferably used. In the case of this Li 2 Ti 3 O 7 , the d value of the main peak by the X-ray diffraction method using Cu as a target is 0.445 nm, 0.269 nm, 0.224 nm, and 0.177 nm (each ± 0.0002 nm). Preferably there is.

前記いずれのリチウムチタン複合酸化物も、その構成元素の一部が他の元素で置換されていてもよく、Ca、Mg、Sr、Sc、Zr、V、Nb、W、Cr、Mo、Mn、Fe、Co、Ni、Cu、Zn、Al、Si、Ga、Ge、Snなどの元素を置換元素とすることができる。置換量は、置換される元素の10mol%以下とするのがよい。   In any of the lithium titanium composite oxides, some of the constituent elements may be substituted with other elements, such as Ca, Mg, Sr, Sc, Zr, V, Nb, W, Cr, Mo, Mn, Elements such as Fe, Co, Ni, Cu, Zn, Al, Si, Ga, Ge, and Sn can be substituted elements. The amount of substitution is preferably 10 mol% or less of the element to be substituted.

負極活物質は、前記の結晶構造を有するリチウムチタン複合酸化物のみで構成するのが望ましいが、該リチウムチタン複合酸化物以外の負極活物質を共存させることもできる。このような負極活物質としては、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの炭素系材料;Si、Sn、Ge,Bi、Sb、Inなどのリチウムと合金可能な元素の単体、その合金あるいはその酸化物;などが挙げられる。なお、全負極活物質中、前記の結晶構造を有するリチウムチタン複合酸化物は、80質量%以上であることが好ましい。   The negative electrode active material is preferably composed only of the lithium titanium composite oxide having the above-described crystal structure, but a negative electrode active material other than the lithium titanium composite oxide can coexist. Examples of such a negative electrode active material include carbon-based materials such as graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, mesocarbon microbeads (MCMB), and carbon fibers; And a simple element of an element that can be alloyed with lithium, such as Si, Sn, Ge, Bi, Sb, and In, an alloy thereof, or an oxide thereof. In addition, it is preferable that lithium lithium complex oxide which has the said crystal structure is 80 mass% or more in all the negative electrode active materials.

本発明では、負極活物質の一次粒子の平均粒子径を1μm以下とする。負極活物質の一次粒子径が大きすぎると、電池の急速充放電特性が低下し、高出力の電池を構成しにくくなるからである。急速充放電特性の点からは、負極活物質の一次粒子の平均粒子径は、0.5μm以下であることが好ましい。ただし、負極活物質の一次粒子径が小さすぎると、負極合剤層中での負極活物質の分散が困難となり、また、負極合剤層の密度の低下や負極の導電性の低下をまねくおそれがあることから、平均粒子径は、0.01μm以上とすることが好ましく、0.05μm以上とすることがより好ましい。   In the present invention, the average particle diameter of the primary particles of the negative electrode active material is 1 μm or less. This is because if the primary particle size of the negative electrode active material is too large, the rapid charge / discharge characteristics of the battery are lowered, making it difficult to construct a high output battery. From the viewpoint of rapid charge / discharge characteristics, the average particle diameter of the primary particles of the negative electrode active material is preferably 0.5 μm or less. However, if the primary particle diameter of the negative electrode active material is too small, it may be difficult to disperse the negative electrode active material in the negative electrode mixture layer, and the density of the negative electrode mixture layer may be reduced or the conductivity of the negative electrode may be reduced. Therefore, the average particle diameter is preferably 0.01 μm or more, and more preferably 0.05 μm or more.

前記負極活物質の一次粒子は、互いに凝集して二次粒子を形成していてもよく、負極活物質は、一次粒子と二次粒子の混合物であってもよい。   The primary particles of the negative electrode active material may be aggregated to form secondary particles, and the negative electrode active material may be a mixture of primary particles and secondary particles.

本発明において、前記負極の導電助剤としては、粒子径が0.1μm以下である炭素粒子と、繊維長が1μm以上である繊維状炭素および粒子径が1μm以上である鱗片状炭素の少なくとも1種とを用いる。0.1μm以下の粒子径を有する炭素粒子を用いることで、負極活物質の粒子表面と導電助剤との接触面積を増加させ、集電効果を高め、高出力の電池を構成することができる。また、繊維長が1μm以上である繊維状炭素および粒子径が1μm以上である鱗片状炭素の少なくとも1種を用いることで、電極内部の全体にわたって導電性を高めることができ、高速充電時の電極内部抵抗を低減させ、電池の長寿命化を可能にする。   In the present invention, the conductive aid for the negative electrode is at least one of carbon particles having a particle diameter of 0.1 μm or less, fibrous carbon having a fiber length of 1 μm or more, and flaky carbon having a particle diameter of 1 μm or more. Use seeds. By using carbon particles having a particle size of 0.1 μm or less, the contact area between the particle surface of the negative electrode active material and the conductive additive can be increased, the current collection effect can be enhanced, and a high output battery can be configured. . Further, by using at least one kind of fibrous carbon having a fiber length of 1 μm or more and scale-like carbon having a particle diameter of 1 μm or more, the conductivity can be enhanced over the entire inside of the electrode, and the electrode at high-speed charging The internal resistance is reduced, and the battery life can be extended.

粒子径が0.1μm以下である炭素粒子としては、アセチレンブラックやケッチェンブラックなどのカーボンブラックや、粉砕した黒鉛などを用いることができる。また、繊維長が1μm以上である繊維状炭素としては、気相成長炭素繊維やカーボンナノチューブなどを用いることができる。さらに、粒子径が1μm以上である鱗片状炭素としては、導電性の点から黒鉛粒子であるのが望ましく、鱗片状黒鉛粒子が好ましく用いられる。   As the carbon particles having a particle diameter of 0.1 μm or less, carbon black such as acetylene black and ketjen black, pulverized graphite, and the like can be used. In addition, as the fibrous carbon having a fiber length of 1 μm or more, vapor grown carbon fiber, carbon nanotube, or the like can be used. Furthermore, the scaly carbon having a particle diameter of 1 μm or more is desirably graphite particles from the viewpoint of conductivity, and scaly graphite particles are preferably used.

前記負極の導電助剤のうち、繊維長が1μm以上である繊維状炭素および粒子径が1μm以上である鱗片状炭素としては、負極合剤層の厚みよりも短い(小さい)ものが好ましく、繊維長および粒子径が20μm程度までのものがより好ましい。   Among the conductive assistants for the negative electrode, the fibrous carbon having a fiber length of 1 μm or more and the scaly carbon having a particle diameter of 1 μm or more are preferably those shorter (smaller) than the thickness of the negative electrode mixture layer. More preferably, the length and particle size are up to about 20 μm.

前記負極の含有量として、負極の容量を確保するために、活物質との合計を100とした場合、30wt%以下とするのが好ましく、導電性を確保するために5wt%とするのが好ましい。導電助剤のうち、粒子径が0.1μm以下である炭素粒子の含有量は、4〜20wt%とするのが好ましく、繊維長が1μm以上である繊維状炭素および粒子径が1μm以上である鱗片状炭素の含有量は、1〜10wt%とするのが好ましい。   The content of the negative electrode is preferably 30 wt% or less when the total with the active material is 100 in order to ensure the capacity of the negative electrode, and is preferably 5 wt% in order to ensure conductivity. . Among the conductive assistants, the content of carbon particles having a particle diameter of 0.1 μm or less is preferably 4 to 20 wt%, fibrous carbon having a fiber length of 1 μm or more, and a particle diameter of 1 μm or more. The scaly carbon content is preferably 1 to 10 wt%.

一方、本発明では、正極活物質として、スピネル構造を有するリチウム含有複合酸化物を使用する。前記のリチウム含有複合酸化物は熱的安定性が高く、充電電流値を大きくしても電池の信頼性および安全性を確保することが可能となる。また、充電末期の電位変化が大きく、満充電に近い状態になるまでは活物質の電位を低い電位に保ちながら充電を進行させることができるため、充電期間中、活物質が高電位となる時間を短縮することができ、正極活物質による電解液の分解などの反応を抑制することができる。   On the other hand, in the present invention, a lithium-containing composite oxide having a spinel structure is used as the positive electrode active material. The lithium-containing composite oxide has high thermal stability, and it is possible to ensure the reliability and safety of the battery even when the charging current value is increased. In addition, since the potential change at the end of charging is large and charging can proceed while maintaining the potential of the active material at a low potential until the state is close to full charging, the time during which the active material is at a high potential during the charging period And the reaction such as decomposition of the electrolytic solution by the positive electrode active material can be suppressed.

前記スピネル構造を有するリチウム含有複合酸化物としては、LiMn、LiNi0.5Mn1.5などの組成で代表されるスピネルマンガン複合酸化物やその元素の一部を他の元素、例えばCa、Mg、Sr、Sc、Zr、V、Nb、W、Cr、Mo、Fe、Co、Ni、Cu、Zn、Al、Si、Ga、Ge、Snなどの元素で置換したスピネル構造のリチウムマンガン複合酸化物を用いることができる。これらの正極活物質は、充電の末期に大幅な電圧の変化を示すという特徴を有する。 Examples of the lithium-containing composite oxide having the spinel structure include spinel manganese composite oxides represented by compositions such as LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4 , and some of the elements thereof as other elements. For example, a spinel structure substituted with an element such as Ca, Mg, Sr, Sc, Zr, V, Nb, W, Cr, Mo, Fe, Co, Ni, Cu, Zn, Al, Si, Ga, Ge, or Sn. Lithium manganese composite oxide can be used. These positive electrode active materials have a feature that they show a significant voltage change at the end of charging.

正極活物質は、前記のスピネル構造を有するリチウム含有複合酸化物のみで構成するのが望ましいが、該リチウム含有複合酸化物以外の正極活物質を共存させることもできる。このような正極活物質としては、Li1+xMO(−0.1<x<0.1、M:Co、Ni、Mn、Al、Mg、Zr、Tiなど)で表される層状構造のリチウム含有遷移金属酸化物、LiMPO(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などが挙げられる。前記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoOやLiNi1−xCox−yAl(0.1≦x≦0.3、0.01≦y≦0.2)などの他、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6、LiNi3/5Mn1/5Co1/5など)などを例示することができる。なお、全正極活物質中、前記のスピネル構造を有するリチウム含有複合酸化物は、80質量%以上であることが好ましい。 The positive electrode active material is preferably composed only of the lithium-containing composite oxide having the above spinel structure, but a positive electrode active material other than the lithium-containing composite oxide can also coexist. As such a positive electrode active material, lithium having a layered structure represented by Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, Al, Mg, Zr, Ti, etc.) Examples thereof include transition metal oxides and olivine type compounds represented by LiMPO 4 (M: Co, Ni, Mn, Fe, etc.). Specific examples of the lithium-containing transition metal oxide having a layered structure include LiCoO 2 and LiNi 1-x Co xy Al y O 2 (0.1 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3 / 5 Mn 1/5 Co 1/5 O 2 etc.). In addition, it is preferable that the lithium containing complex oxide which has the said spinel structure in all the positive electrode active materials is 80 mass% or more.

急速充放電特性を向上させ、高出力の電池を構成するためには、正極活物質の一次粒子の平均粒子径は、3μm以下であることが好ましく、1μm以下であることがより好ましく、0.8μm以下であることが特に好ましい。ただし、正極活物質の一次粒子径が小さすぎると、正極合剤層中での正極活物質の分散が困難となり、また、正極合剤層の密度の低下や正極の導電性の低下をまねくおそれがあることから、平均粒子径は、0.01μm以上とすることが好ましく、0.05μm以上とすることがより好ましい。   In order to improve rapid charge / discharge characteristics and constitute a high-power battery, the average particle diameter of primary particles of the positive electrode active material is preferably 3 μm or less, more preferably 1 μm or less, and Particularly preferably, it is 8 μm or less. However, if the primary particle size of the positive electrode active material is too small, it is difficult to disperse the positive electrode active material in the positive electrode mixture layer, and the density of the positive electrode mixture layer and the conductivity of the positive electrode may decrease. Therefore, the average particle diameter is preferably 0.01 μm or more, and more preferably 0.05 μm or more.

前記正極活物質の一次粒子は、互いに凝集して二次粒子を形成していてもよく、正極活物質は、一次粒子と二次粒子の混合物であってもよい。   The primary particles of the positive electrode active material may be aggregated to form secondary particles, and the positive electrode active material may be a mixture of primary particles and secondary particles.

負極活物質の一次粒子径および正極活物質の一次粒子径は、数平均粒子径を用いればよく、レーザー回折式粒度分布測定装置などを用い、水に分散させた試料を測定することにより求められる。ただし、粒子径が非常に小さい場合や、二次粒子を形成している場合には、電子顕微鏡により観察される粒子径から平均値を求めるのであってもよい。   The primary particle diameter of the negative electrode active material and the primary particle diameter of the positive electrode active material may be obtained by measuring the number of particles dispersed in water using a laser diffraction particle size distribution analyzer or the like. . However, when the particle size is very small or when secondary particles are formed, the average value may be obtained from the particle size observed with an electron microscope.

負極は、前記の負極活物質および導電助剤の他に、バインダーなどを含有する負極合剤層を集電体上に形成することにより作製される。バインダーとしては、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂などが用いられる。   The negative electrode is produced by forming a negative electrode mixture layer containing a binder or the like on the current collector in addition to the negative electrode active material and the conductive additive. As the binder, a fluorine resin such as polyvinylidene fluoride (PVDF) is used.

負極合剤層の厚み(負極の両面に負極合剤層が形成されている場合には、片面あたりの厚み。負極合剤層の厚みに関して、以下同じ。)は、急速充放電特性を向上させるためには、50μm以下とするのが好ましく、40μm以下とするのがより好ましい。ただし、負極合剤層が薄すぎると、活物質量が減少して電池容量が低下するおそれがあることから、負極合剤層の厚みは、15μm以上であることが好ましく、20μm以上であることがより好ましい。   The thickness of the negative electrode mixture layer (when the negative electrode mixture layer is formed on both sides of the negative electrode, the thickness per one surface. The same applies to the thickness of the negative electrode mixture layer). For this purpose, it is preferably 50 μm or less, and more preferably 40 μm or less. However, if the negative electrode mixture layer is too thin, the amount of the active material may decrease and the battery capacity may be reduced. Therefore, the thickness of the negative electrode mixture layer is preferably 15 μm or more, and preferably 20 μm or more. Is more preferable.

負極は、前記負極合剤層のみで構成することもできるが、集電体を用いる場合には、銅、ニッケルあるいはそれらの合金などの金属で構成された箔、パンチングメタル、網、エキスパンドメタルなどを用いればよい。負極活物質が、前記の結晶構造を有するリチウムチタン複合酸化物のみで構成され、負極の電位が1.0V以上となる範囲で充放電を行う場合には、アルミニウムまたはその合金で構成された集電体を用いることもできる。負極集電体の厚みは30μm以下であることが好ましく、5μm以上であることが好ましい。   The negative electrode can be composed only of the negative electrode mixture layer, but when a current collector is used, a foil composed of a metal such as copper, nickel, or an alloy thereof, punching metal, net, expanded metal, etc. May be used. In the case where the negative electrode active material is composed of only the lithium titanium composite oxide having the above-described crystal structure, and charging / discharging is performed in a range where the potential of the negative electrode is 1.0 V or higher, a collector composed of aluminum or an alloy thereof is used. An electric body can also be used. The thickness of the negative electrode current collector is preferably 30 μm or less, and more preferably 5 μm or more.

正極は、例えば、前記の正極活物質の他に、バインダーや、必要に応じて添加される導電助剤を含有する正極合剤層を集電体上に形成することにより作製される。導電助剤としては、カーボンブラックなど負極の導電助剤と同様の炭素材料を用いることができ、また、バインダーとしては、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂などが用いられる。   The positive electrode is produced, for example, by forming, on the current collector, a positive electrode mixture layer containing a binder and a conductive additive added as necessary in addition to the positive electrode active material. As the conductive auxiliary agent, a carbon material similar to the negative electrode conductive auxiliary agent such as carbon black can be used, and as the binder, a fluorine resin such as polyvinylidene fluoride (PVDF) is used.

正極合剤層の厚み(正極の両面に正極合剤層が形成されている場合には、片面あたりの厚み。正極合剤層の厚みに関して、以下同じ。)は、急速充放電特性を向上させるためには、50μm以下とするのが好ましく、40μm以下とするのがより好ましい。ただし、正極合剤層が薄すぎると、活物質量が減少して電池容量が低下するおそれがあることから、正極合剤層の厚みは、15μm以上であることが好ましく、20μm以上であることがより好ましい。   The thickness of the positive electrode mixture layer (when the positive electrode mixture layer is formed on both surfaces of the positive electrode, the thickness per one surface. The same applies to the thickness of the positive electrode mixture layer). For this purpose, it is preferably 50 μm or less, and more preferably 40 μm or less. However, if the positive electrode mixture layer is too thin, the amount of active material may decrease and the battery capacity may be reduced. Therefore, the thickness of the positive electrode mixture layer is preferably 15 μm or more, and more preferably 20 μm or more. Is more preferable.

正極は、前記正極合剤層のみで構成することもできるが、集電体を用いる場合には、アルミニウムやアルミニウム合金などの金属で構成された箔、パンチングメタル、網、エキスパンドメタルなどを用いればよい。正極集電体の厚みは30μm以下であることが好ましく、10μm以上であることが好ましい。   The positive electrode can be composed only of the positive electrode mixture layer, but when using a current collector, a foil, punching metal, net, expanded metal, or the like made of a metal such as aluminum or aluminum alloy is used. Good. The thickness of the positive electrode current collector is preferably 30 μm or less, and more preferably 10 μm or more.

前記負極と前記正極とを組み合わせることにより本発明の非水二次電池が構成されるが、前記正極の容量に対する前記負極の容量の比(負極容量/正極容量)が、0.92〜1.2となるようそれぞれの電極の容量が調整される。正極と負極の容量比を前記範囲とすることにより、充電末期に大幅な電位変化を示す前記正極活物質の特徴が、電池の充電に反映され、充電末期に大きく電圧が上昇する非水二次電池を構成することができる。例えば、電池の定格容量に対し、100%充電状態(定格容量分の電気量で充電された状態)での正極の電位が、90%充電状態(定格容量の90%の電気量で充電された状態)での電位に対し、0.2V以上高くなるような電池を構成することができる。これにより、充電が終了近くに進行するまでは、正極の電位が低く抑えられるので、電解液の分解などの反応を抑制することができる。さらに、正極の電位変化によって、充電末期に電池の電圧が大きく上昇するため、充電の完了時期を正確に検出することが可能となり、過充電などによる電池の特性低下を抑制することができる。   The non-aqueous secondary battery of the present invention is configured by combining the negative electrode and the positive electrode, and the ratio of the negative electrode capacity to the positive electrode capacity (negative electrode capacity / positive electrode capacity) is 0.92-1. The capacity of each electrode is adjusted to be 2. By making the capacity ratio of the positive electrode and the negative electrode within the above range, the characteristics of the positive electrode active material exhibiting a significant potential change at the end of charging are reflected in the charging of the battery, and the non-aqueous secondary whose voltage increases greatly at the end of charging. A battery can be constructed. For example, with respect to the rated capacity of the battery, the potential of the positive electrode in the 100% charged state (charged with the amount of electricity corresponding to the rated capacity) is charged with 90% charged state (90% of the rated capacity). The battery can be configured so as to be 0.2 V or more higher than the potential in the (state). Thus, the potential of the positive electrode is kept low until the charging proceeds near the end, so that a reaction such as decomposition of the electrolytic solution can be suppressed. Furthermore, since the voltage of the battery greatly increases at the end of charging due to the potential change of the positive electrode, it is possible to accurately detect the completion time of charging, and it is possible to suppress deterioration in battery characteristics due to overcharging.

なお、負極活物質である前記スピネル型結晶構造またはラムスデライト型結晶構造を有するリチウムチタン複合酸化物も、前記正極活物質と同様に、充電末期に大幅な電位変化を示す(電位が大きく低下する)活物質であることから、前記容量比を1近傍の値に調整することにより、充電末期の電池の電圧変化は、正極の電位変化に加え負極の電位変化も反映されることになり、より大きな電圧上昇を示す電池を構成することができる。このため、前記容量比は、1.15以下であることが好ましく、1.1以下であることがより好ましく、一方、0.97以上であることが好ましく、0.985以上であることがより好ましい。   Note that the lithium-titanium composite oxide having the spinel crystal structure or the ramsdellite crystal structure, which is a negative electrode active material, also shows a significant potential change at the end of charging, similar to the positive electrode active material (the potential greatly decreases). ) Because it is an active material, by adjusting the capacity ratio to a value close to 1, the voltage change of the battery at the end of charging reflects the potential change of the negative electrode in addition to the potential change of the positive electrode. A battery that exhibits a large voltage rise can be constructed. For this reason, the capacity ratio is preferably 1.15 or less, more preferably 1.1 or less, on the other hand, preferably 0.97 or more, more preferably 0.985 or more. preferable.

前記容量比が0.92より小さい場合は、完全な負極規制の電池となり、正極活物質の前記特徴が電池の電圧に反映されなくなる。また、電池の電圧で充電制御を行う場合には、満充電時に負極の電位が低下しすぎるため、負極にリチウムが析出するなどの副反応が生じるおそれがある。一方、前記容量比が1.2より大きい場合は、電極の容積あたりの容量が低下し、高出力の電池を構成しにくくなる。   When the capacity ratio is smaller than 0.92, the battery is completely negative electrode regulated, and the characteristics of the positive electrode active material are not reflected in the battery voltage. In addition, when charge control is performed using battery voltage, the potential of the negative electrode is too low when fully charged, which may cause side reactions such as lithium deposition on the negative electrode. On the other hand, when the capacity ratio is larger than 1.2, the capacity per volume of the electrode is reduced, and it becomes difficult to construct a high-power battery.

なお、前記正極の容量は、Liに対する電位が3.0Vから4.5Vまでの間の容量であり、前記負極の容量は、Liに対する電位が2.5Vから1.0Vまでの間の容量であり、それぞれ負荷逆容量を除いた電池内で実際に充放電可能な容量を意味する。   The capacity of the positive electrode is a capacity between 3.0V and 4.5V with respect to Li, and the capacity of the negative electrode is a capacity between 2.5V and 1.0V with respect to Li. Each means a capacity that can be actually charged and discharged within the battery excluding the reverse load capacity.

本発明の非水二次電池は、例えば前記の負極および正極と、電解液とを、常法に従い外装体内に封入して構成される。電池の形態としては、従来公知の非水二次電池と同様に、筒形(円筒形や角筒形)の外装缶を使用した筒形電池や、扁平形(平面視で円形や角形の扁平形)の外装缶を使用した扁平形電池、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池などとすることができる。また、外装缶には、スチール製やアルミニウム製のものが使用できる。   The non-aqueous secondary battery of the present invention is configured, for example, by enclosing the above-described negative electrode and positive electrode and an electrolytic solution in an outer package according to a conventional method. As for the form of the battery, similarly to a conventionally known non-aqueous secondary battery, a cylindrical battery using a cylindrical (cylindrical or rectangular) outer can, or a flat (round or square flat in a plan view) A flat battery using a shape) outer can, and a soft package battery using a metal-deposited laminated film as an outer package. The outer can can be made of steel or aluminum.

前記電解液(非水電解液)としては、例えば、リチウム塩を有機溶媒に溶解した溶液が用いられる。リチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限は無い。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF などの無機リチウム塩、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などの有機リチウム塩などを用いることができる。 As the electrolytic solution (nonaqueous electrolytic solution), for example, a solution in which a lithium salt is dissolved in an organic solvent is used. The lithium salt is not particularly limited as long as it dissociates in a solvent to form Li + ions and hardly causes side reactions such as decomposition in a voltage range used as a battery. For example, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 and other inorganic lithium salts, LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] and the like can be used. .

前記有機溶媒としては、前記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート、プロピオン酸メチルなどの鎖状エステル、γ−ブチロラクトンなどの環状エステル、ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル、ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル、アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類、エチレングリコールサルファイトなどの亜硫酸エステル類などが挙げられ、これらは2種以上混合して用いることもできる。なお、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。また、これらの電解液に安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤を適宜加えることもできる。   The organic solvent is not particularly limited as long as it dissolves the lithium salt and does not cause a side reaction such as decomposition in a voltage range used as a battery. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, chain esters such as methyl propionate, cyclic esters such as γ-butyrolactone, Chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme, cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran, nitriles such as acetonitrile, propionitrile and methoxypropionitrile And sulfites such as ethylene glycol sulfite. These may be used as a mixture of two or more. Kill. In order to obtain a battery with better characteristics, it is desirable to use a combination that can obtain high conductivity, such as a mixed solvent of ethylene carbonate and chain carbonate. In addition, vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, cyclohexyl benzene, biphenyl, fluorobenzene, t are used for the purpose of improving safety, charge / discharge cycleability, and high-temperature storage properties of these electrolytes. -Additives such as butylbenzene can be added as appropriate.

電解液中のリチウム塩の濃度としては、0.5〜1.5mol/lとすることが好ましく、0.9〜1.25mol/lとすることがより好ましい。   The concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 1.5 mol / l, and more preferably 0.9 to 1.25 mol / l.

本発明の非水二次電池は、充放電回路と組み合わせることにより、非水二次電池システムを構成することができる。前記充放電回路は、非水二次電池に一般に用いられる回路を使用することができ、充電は、定電流充電、定電流−定電圧充電,パルス充電などを行うことのできる回路とし、放電は、定電流放電、パルス放電などを行うことのできる回路とすればよい。本発明の非水二次電池の特徴を生かすためには、充電における電流値を、電池の定格容量に対し1C以上で維持することができるよう充電条件を設定することが望ましい。すなわち、充電開始から終了まで、充電電流が1C以上に保たれることにより、充電時間の短縮化が図れると共に、正極の電位が高電位となる時間を短くすることができ、電解液の分解などの反応を抑制することができる。一方、充電末期に電池の電圧が大きく上昇するため、充電の終止制御を正確に行うことができ、充電電流を大きくした場合に問題となりやすい過充電による特性低下を防ぐことができる。充電時間の短縮化のためには、充電中、少なくとも一部の期間は充電電流値が5C以上となるよう充電条件を設定することが望ましい。また、回路の簡略化のためには、定電流充電とすることが望ましいが、本発明の非水二次電池では、5C以上の電流値で定電流充電を行っても、高い安全性と優れたサイクル寿命を維持することができる。   The non-aqueous secondary battery of this invention can comprise a non-aqueous secondary battery system by combining with a charging / discharging circuit. As the charge / discharge circuit, a circuit generally used for a non-aqueous secondary battery can be used. Charging is a circuit capable of performing constant current charging, constant current-constant voltage charging, pulse charging, and discharging. A circuit capable of performing constant current discharge, pulse discharge, or the like may be used. In order to take advantage of the characteristics of the non-aqueous secondary battery of the present invention, it is desirable to set the charging conditions so that the current value in charging can be maintained at 1 C or more with respect to the rated capacity of the battery. That is, from the start to the end of charging, the charging current is maintained at 1 C or more, so that the charging time can be shortened and the time for the positive electrode potential to be high can be shortened, and the electrolytic solution is decomposed. This reaction can be suppressed. On the other hand, since the voltage of the battery greatly increases at the end of charging, it is possible to accurately control the termination of charging, and it is possible to prevent deterioration in characteristics due to overcharging, which is problematic when the charging current is increased. In order to shorten the charging time, it is desirable to set the charging conditions so that the charging current value is 5 C or more during at least a part of the charging. In order to simplify the circuit, it is desirable to use constant current charging. However, in the non-aqueous secondary battery of the present invention, even if constant current charging is performed at a current value of 5 C or more, high safety and excellent performance are achieved. Cycle life can be maintained.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

(実施例1)
〔負極の作製〕
一次粒子の平均粒子径が0.1μmであり、スピネル型結晶構造を有するLiTi12:75重量部と、導電助剤として平均粒子径が0.05μmのアセチレンブラック:10重量部と、粒子径が約10μmの鱗片状黒鉛:5重量部と、バインダーであるPVDF:10重量部とを、N−メチルピロリドンを溶剤として均一になるように混合し、負極合剤含有ペーストを調製した。この負極合剤含有ペーストを、集電体となる厚さ15μmのアルミニウム箔の両面に、塗布重量が乾燥後の重量で片面5mg/cmとなるように両面塗布し、乾燥した後、カレンダー処理を行って全厚が75μmになるように負極合剤層の厚みを調整し、幅45mmになるように切断して、長さ72mm、幅45mmの負極を作製した。さらに、この負極のアルミニウム箔の露出部にタブを溶接してリード部を形成した。
Example 1
(Production of negative electrode)
The average particle diameter of primary particles is 0.1 μm, Li 4 Ti 5 O 12 having a spinel crystal structure: 75 parts by weight, and acetylene black having an average particle diameter of 0.05 μm as a conductive auxiliary agent: 10 parts by weight Then, flaky graphite having a particle diameter of about 10 μm: 5 parts by weight and PVDF as a binder: 10 parts by weight were mixed so as to be uniform using N-methylpyrrolidone as a solvent to prepare a negative electrode mixture-containing paste. . This negative electrode mixture-containing paste was applied on both sides of a 15 μm-thick aluminum foil serving as a current collector so that the coating weight was 5 mg / cm 2 on one side in terms of the weight after drying. Then, the thickness of the negative electrode mixture layer was adjusted so that the total thickness was 75 μm, and was cut so as to have a width of 45 mm, thereby preparing a negative electrode having a length of 72 mm and a width of 45 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the negative electrode to form a lead portion.

〔正極の作製〕
一次粒子の平均粒子径が0.05μmであり、スピネル型結晶構造を有するLiMn:75重量部と、導電助剤として平均粒子径が0.05μmのアセチレンブラック:10重量部、粒子径が約7μmの鱗片状黒鉛:5重量部と、バインダーであるPVDF:10重量部とを、N−メチルピロリドンを溶剤として均一になるように混合し、正極合剤含有ペーストを調製した。この正極合剤含有ペーストを、集電体となる厚さ15μmのアルミニウム箔の両面に、塗布重量が乾燥後の重量で片面7mg/cmとなるように両面塗布し、乾燥した後、カレンダー処理を行って全厚が75μmになるように正極合剤層の厚みを調整し、幅43mmになるように切断して、長さ70mm、幅43mmの正極を作製した。さらに、この正極のアルミニウム箔の露出部にタブを溶接してリード部を形成した。
[Production of positive electrode]
The average particle diameter of primary particles is 0.05 μm, LiMn 2 O 4 having a spinel crystal structure: 75 parts by weight, and acetylene black having an average particle diameter of 0.05 μm as a conductive assistant: 10 parts by weight, particle diameter Was mixed with 5 parts by weight of scaly graphite having a particle size of about 7 μm and 10 parts by weight of PVDF as a binder, using N-methylpyrrolidone as a solvent, to prepare a positive electrode mixture-containing paste. This positive electrode mixture-containing paste was applied on both sides of a 15 μm-thick aluminum foil serving as a current collector so that the coating weight was 7 mg / cm 2 on one side in terms of the weight after drying. The thickness of the positive electrode mixture layer was adjusted so that the total thickness became 75 μm, and the positive electrode mixture layer was cut to a width of 43 mm to produce a positive electrode having a length of 70 mm and a width of 43 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.

〔電池の組み立て〕
前記のようにして得た負極および正極を、厚みが30μmのPET製不織布セパレータを介して積層し、積層電極体を作製した。また、エチレンカーボネートとエチルメチルカーボネートを体積比で1対2に混合した溶媒に、LiPFを濃度1.0mol/lで溶解し、非水電解液を作製した。前記積層電極体を前記非水電解液と共に、アルミニウムラミネートフィルムよりなる外装体の内部に封入し、非水二次電池を作製した。
[Assembling the battery]
The negative electrode and the positive electrode obtained as described above were laminated through a PET nonwoven fabric separator having a thickness of 30 μm to produce a laminated electrode body. In addition, LiPF 6 was dissolved at a concentration of 1.0 mol / l in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 2 to prepare a non-aqueous electrolyte. The laminated electrode body was sealed together with the non-aqueous electrolyte in an exterior body made of an aluminum laminate film to produce a non-aqueous secondary battery.

〔電極容量の測定〕
以下の方法により、負極および正極の容量を求めた。集電体の片面のみに負極合剤含有ペーストを塗布した以外は、実施例1の負極と同じ条件で負極を作製し、Li金属を対極として前記電解液を用いてセルを構成した。このセルの負極に対し、Liに対する電位が1.0Vになるまで、負極活物質1gあたり20mAの電流密度で充電を行い、その後2.5Vになるまで、同じ電流密度で放電を行ったときの容量を測定した。また、実施例1の正極についても同様にしてセルを構成し、Liに対する電位が4.5Vになるまで、正極活物質1gあたり20mAの電流密度で充電を行い、その後3.0Vになるまで、同じ電流密度で放電を行ったときの容量を測定した。上記測定により、実施例1の負極および正極の容量は、電極の片面あたりで負極:18.7mAh、正極:18.2mAhであり、正極の容量に対する負極の容量比は1.03と求まった。
(Measurement of electrode capacity)
The capacity | capacitance of the negative electrode and the positive electrode was calculated | required with the following method. A negative electrode was produced under the same conditions as the negative electrode of Example 1 except that the negative electrode mixture-containing paste was applied only to one side of the current collector, and a cell was constructed using the above electrolyte with Li metal as a counter electrode. The negative electrode of this cell was charged at a current density of 20 mA per gram of the negative electrode active material until the potential with respect to Li was 1.0 V, and then discharged at the same current density until 2.5 V. The capacity was measured. In addition, the cell was configured in the same manner for the positive electrode of Example 1, and charged at a current density of 20 mA per 1 g of the positive electrode active material until the potential with respect to Li was 4.5 V, and thereafter, 3.0 V. The capacity when discharging at the same current density was measured. From the above measurement, the capacity of the negative electrode and the positive electrode of Example 1 was 18.7 mAh for the negative electrode and 18.2 mAh for the positive electrode on one side of the electrode, and the capacity ratio of the negative electrode to the positive electrode capacity was 1.03.

(実施例2)
正極活物質として、一次粒子の平均粒子径が0.5μmのLiMnを用いた以外は、実施例1と同様にして非水二次電池を作製した。この電池の正極の容量に対する負極の容量比は、0.99であった。
(Example 2)
A nonaqueous secondary battery was produced in the same manner as in Example 1 except that LiMn 2 O 4 having an average primary particle size of 0.5 μm was used as the positive electrode active material. The capacity ratio of the negative electrode to the capacity of the positive electrode of this battery was 0.99.

(実施例3)
負極活物質として、一次粒子の平均粒子径が0.4μmのLiTi12を用いた以外は、実施例1と同様にして非水二次電池を作製した。この電池の正極の容量に対する負極の容量比は、1.05であった。
(Example 3)
A nonaqueous secondary battery was produced in the same manner as in Example 1 except that Li 4 Ti 5 O 12 having an average primary particle diameter of 0.4 μm was used as the negative electrode active material. The capacity ratio of the negative electrode to the capacity of the positive electrode of this battery was 1.05.

(実施例4)
セパレータとして、厚みが20μmのポリエチレン製微多孔膜を用いた以外は、実施例1と同様にして非水二次電池を作製した。この電池の正極の容量に対する負極の容量比は、1.03であった。
Example 4
A non-aqueous secondary battery was produced in the same manner as in Example 1 except that a polyethylene microporous film having a thickness of 20 μm was used as the separator. The capacity ratio of the negative electrode to the capacity of the positive electrode of this battery was 1.03.

(実施例5)
負極および正極の導電助剤を、平均粒子径が0.04μmのケッチェンブラック:10重量部と、繊維長が約3μmのカーボンナノチューブ:5重量部の2種に代えた以外は、実施例1と同様にして非水二次電池を作製した。
(Example 5)
Example 1 except that the conductive auxiliary for the negative electrode and the positive electrode was replaced with two types of Ketjen black having an average particle diameter of 0.04 μm: 10 parts by weight and carbon nanotubes having a fiber length of about 3 μm: 5 parts by weight. A non-aqueous secondary battery was produced in the same manner as described above.

(実施例6)
負極および正極の導電助剤を、平均粒子径が0.04μmのケッチェンブラック:10重量部と、繊維長が約15μmのVGCF(気相成長炭素繊維):5重量部の2種に代えた以外は、実施例1と同様にして非水二次電池を作製した。
(Example 6)
The conductive aid for the negative electrode and the positive electrode was replaced with two types: Ketjen black having an average particle size of 0.04 μm: 10 parts by weight and VGCF (vapor-grown carbon fiber) having a fiber length of about 15 μm: 5 parts by weight. A nonaqueous secondary battery was produced in the same manner as in Example 1 except for the above.

(比較例1)
正極活物質として、一次粒子の平均粒子径が0.5μmのLiCoOを用い、合剤層の片面の塗布重量が、乾燥後に6mg/cmとなるようにした以外は、実施例2と同様にして非水二次電池を作製した。この電池の正極の容量に対する負極の容量比は、0.98であった。
(Comparative Example 1)
The same as in Example 2 except that LiCoO 2 having an average primary particle size of 0.5 μm was used as the positive electrode active material, and the coating weight on one side of the mixture layer was 6 mg / cm 2 after drying. Thus, a non-aqueous secondary battery was produced. The capacity ratio of the negative electrode to the capacity of the positive electrode of this battery was 0.98.

(比較例2)
負極活物質として、一次粒子の平均粒子径が4.0μmのLiTi12を用いた以外は、実施例2と同様にして非水二次電池を作製した。この電池の正極の容量に対する負極の容量比は、0.99であった。
(Comparative Example 2)
A nonaqueous secondary battery was produced in the same manner as in Example 2 except that Li 4 Ti 5 O 12 having an average primary particle size of 4.0 μm was used as the negative electrode active material. The capacity ratio of the negative electrode to the capacity of the positive electrode of this battery was 0.99.

(比較例3)
正極活物質として、一次粒子の平均粒子径が4.0μmのLiMnを用いた以外は、実施例1と同様にして非水二次電池を作製した。この電池の正極の容量に対する負極の容量比は、0.94であった。
(Comparative Example 3)
A nonaqueous secondary battery was produced in the same manner as in Example 1 except that LiMn 2 O 4 having an average primary particle size of 4.0 μm was used as the positive electrode active material. The capacity ratio of the negative electrode to the capacity of the positive electrode of this battery was 0.94.

(比較例4)
正極の容量に対する負極の容量比が、0.9となるように負極の合剤層の塗布量を減らした以外は、実施例2と同様にして非水二次電池を作製した。
(Comparative Example 4)
A nonaqueous secondary battery was produced in the same manner as in Example 2, except that the coating amount of the negative electrode mixture layer was reduced so that the negative electrode capacity ratio to the positive electrode capacity was 0.9.

(比較例5)
正極の容量に対する負極の容量比が、1.3となるように負極の合剤層の塗布量を増やした以外は、実施例2と同様にして非水二次電池を作製した。
(Comparative Example 5)
A nonaqueous secondary battery was produced in the same manner as in Example 2 except that the coating amount of the negative electrode mixture layer was increased so that the negative electrode capacity ratio to the positive electrode capacity was 1.3.

(比較例6)
負極および正極に用いた導電助剤として、平均粒子径が0.04μmのケッチェンブラック:15重量部とした以外は実施例1と同様にして非水二次電池を作製した。
(Comparative Example 6)
A nonaqueous secondary battery was produced in the same manner as in Example 1 except that the conductive aid used for the negative electrode and the positive electrode was changed to 15 parts by weight of ketjen black having an average particle size of 0.04 μm.

(比較例7)
負極および正極に用いた導電助剤として、平均繊維長が15μmのVGCF(気相成長炭素繊維):15重量部とした以外は実施例1と同様にして非水二次電池を作製した。
(Comparative Example 7)
A non-aqueous secondary battery was produced in the same manner as in Example 1 except that VGCF (vapor-grown carbon fiber) having an average fiber length of 15 μm: 15 parts by weight was used as the conductive additive used for the negative electrode and the positive electrode.

実施例1〜7および比較例1〜6の非水二次電池について、セルの容量を6分で充電出来る電流値(10C)で2.9Vまで定電流充電で充電を行い、同じ電流値で1.0Vまで放電を行うサイクルを1000サイクル繰り返し、1000サイクル目の放電容量と1サイクル目の放電容量との比率(容量維持率)を測定した。電極の構成を表1に、測定の結果を表2にそれぞれ示す。   About the non-aqueous secondary battery of Examples 1-7 and Comparative Examples 1-6, it charges by constant current charge to 2.9V by the electric current value (10C) which can charge the capacity | capacitance of a cell in 6 minutes, and with the same electric current value The cycle for discharging to 1.0 V was repeated 1000 times, and the ratio (capacity maintenance ratio) between the discharge capacity at the 1000th cycle and the discharge capacity at the 1st cycle was measured. Table 1 shows the configuration of the electrodes, and Table 2 shows the measurement results.

Figure 0005216973
Figure 0005216973

Figure 0005216973
Figure 0005216973

本発明の非水二次電池では、スピネル構造またはラムスデライト構造を有するリチウムチタン複合酸化物を活物質とする負極と、スピネル構造を有するリチウム含有複合酸化物を活物質とする正極とを組み合わせ、前記負極活物質の一次粒子の平均粒子径を1μm以下とし、前記負極の導電助剤として、粒子径が0.1μm以下である炭素粒子と、繊維長が1μm以上である繊維状炭素および粒子径が1μm以上である鱗片状炭素の少なくとも1種とを含有させ、前記正極活物質の一次粒子の平均粒子径を3μm以下とし、前記正極の容量に対する前記負極の容量比を、0.92〜1.2としたことにより、10Cという高出力での充放電のサイクルにおいても、サイクルに伴う容量劣化を抑制することができた。また、不織布セパレータのように、孔径が大きくリチウムデンドライトが形成されやすいセパレータを用いても、安全性の低下につながる挙動は見られなかった。   In the nonaqueous secondary battery of the present invention, a negative electrode using a lithium titanium composite oxide having a spinel structure or a ramsdellite structure as an active material and a positive electrode using a lithium-containing composite oxide having a spinel structure as an active material are combined, An average particle diameter of primary particles of the negative electrode active material is 1 μm or less, and carbon particles having a particle diameter of 0.1 μm or less, fibrous carbon having a fiber length of 1 μm or more, and a particle diameter as a conductive auxiliary for the negative electrode At least one type of scaly carbon having a particle size of 1 μm or more, the average particle diameter of primary particles of the positive electrode active material is 3 μm or less, and the capacity ratio of the negative electrode to the capacity of the positive electrode is 0.92-1. As a result, it was possible to suppress the capacity deterioration accompanying the cycle even in the charge / discharge cycle at a high output of 10C. In addition, even when a separator having a large pore diameter and easily forming lithium dendrites, such as a nonwoven fabric separator, was used, no behavior leading to a decrease in safety was observed.

一方、正極活物質をLiCoOとした比較例1では、充電の終了近くで正極が高電位になる時間が本発明の電池よりも長くなるため、電解液の分解などの反応が進行し、サイクルとともに容量が大幅に低下した。 On the other hand, in Comparative Example 1 in which the positive electrode active material is LiCoO 2 , since the time during which the positive electrode is at a high potential near the end of charging is longer than that of the battery of the present invention, a reaction such as decomposition of the electrolyte proceeds, and the cycle At the same time, the capacity dropped significantly.

また、負極活物質の一次粒子の平均粒子径が1μmを超えた比較例2では、負極が急速充放電に対応できなくなり、サイクルとともに容量が低下した。   Further, in Comparative Example 2 in which the average particle diameter of the primary particles of the negative electrode active material exceeded 1 μm, the negative electrode could not cope with rapid charge / discharge, and the capacity decreased with the cycle.

また、正極活物質の一次粒子の平均粒子径が3μmを超えた比較例3では、正極が急速充放電に対応できなくなり、サイクルとともに容量が低下した。   Further, in Comparative Example 3 in which the average particle diameter of the primary particles of the positive electrode active material exceeded 3 μm, the positive electrode could not cope with rapid charge / discharge, and the capacity decreased with the cycle.

さらに、正極の容量に対する負極の容量比が、0.92〜1.2の範囲からはずれた比較例4および5では、充電末期の電池の電圧変化が、本発明の電池よりも小さくなり、本発明の電池よりも正極あるいは負極の充電が深くまで進行しため、電極の劣化が促進され容量が低下した。   Furthermore, in Comparative Examples 4 and 5 in which the capacity ratio of the negative electrode to the positive electrode capacity deviated from the range of 0.92 to 1.2, the voltage change of the battery at the end of charging was smaller than that of the battery of the present invention. Since the charging of the positive electrode or the negative electrode proceeds deeper than the battery of the invention, the deterioration of the electrode was promoted and the capacity was reduced.

また、繊維長が1μm以上である繊維状炭素および粒子径が1μm以上である鱗片状炭素のいずれも負極の導電助剤として含まない比較例6、および、粒子径が0.1μm以下である炭素粒子を負極の導電助剤として含まない比較例7では、集電性に劣り負極内での充放電反応が不均一になるなどの理由により、サイクルとともに容量が低下した。   Further, Comparative Example 6 in which neither fibrous carbon having a fiber length of 1 μm or more and flaky carbon having a particle diameter of 1 μm or more is included as a conductive additive for the negative electrode, and carbon having a particle diameter of 0.1 μm or less. In Comparative Example 7 in which particles were not included as a conductive additive for the negative electrode, the capacity decreased with the cycle because of poor current collection and non-uniform charge / discharge reaction in the negative electrode.

Claims (5)

スピネル構造またはラムスデライト構造を有するリチウムチタン複合酸化物を活物質とし、導電助剤を含む負極と、スピネル構造を有するリチウム含有複合酸化物を活物質とする正極と、非水電解質とを有する非水二次電池であって、
前記負極の活物質は、一次粒子の平均粒子径が1μm以下であり、
前記負極の導電助剤は、粒子径が0.1μm以下である炭素粒子と、繊維長が1μm以上である繊維状炭素および粒子径が1μm以上である鱗片状炭素の少なくとも1種を含み、
前記正極の活物質は、一次粒子の平均粒子径が3μm以下であり、
前記正極の容量に対する前記負極の容量比を、0.92〜1.2としたことを特徴とする非水二次電池。
A non-aqueous electrolyte comprising a lithium titanium composite oxide having a spinel structure or a ramsdellite structure as an active material, a negative electrode containing a conductive additive, a positive electrode using a lithium-containing composite oxide having a spinel structure as an active material, and a non-aqueous electrolyte. A water secondary battery,
The negative electrode active material has an average primary particle size of 1 μm or less,
The conductive auxiliary agent for the negative electrode includes at least one of carbon particles having a particle diameter of 0.1 μm or less, fibrous carbon having a fiber length of 1 μm or more, and flaky carbon having a particle diameter of 1 μm or more,
The positive electrode active material has an average primary particle size of 3 μm or less,
The nonaqueous secondary battery, wherein a capacity ratio of the negative electrode to a capacity of the positive electrode is set to 0.92 to 1.2.
前記粒子径が0.1μm以下である炭素粒子はケッチェンブラックまたはアセチレンブラックである請求項1に記載の非水二次電池。   The non-aqueous secondary battery according to claim 1, wherein the carbon particles having a particle diameter of 0.1 μm or less are ketjen black or acetylene black. 請求項1または2に記載の非水二次電池と充放電回路とを備え、前記非水二次電池の充電における電流値を、電池の定格容量に対し1C以上で維持することを特徴とする非水二次電池システム。   The non-aqueous secondary battery according to claim 1 and a charge / discharge circuit are provided, and a current value in charging of the non-aqueous secondary battery is maintained at 1 C or more with respect to a rated capacity of the battery. Non-aqueous secondary battery system. 電流値が、少なくとも5C以上となる充電条件を含む請求項3に記載の非水二次電池システム。   The nonaqueous secondary battery system according to claim 3, wherein the nonaqueous secondary battery system includes a charging condition in which the current value is at least 5 C or more. 前記充電が、定電流充電である請求項3または4に記載の非水二次電池システム。   The non-aqueous secondary battery system according to claim 3 or 4, wherein the charging is constant current charging.
JP2008166780A 2008-06-26 2008-06-26 Non-aqueous secondary battery and non-aqueous secondary battery system Active JP5216973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008166780A JP5216973B2 (en) 2008-06-26 2008-06-26 Non-aqueous secondary battery and non-aqueous secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008166780A JP5216973B2 (en) 2008-06-26 2008-06-26 Non-aqueous secondary battery and non-aqueous secondary battery system

Publications (2)

Publication Number Publication Date
JP2010009898A JP2010009898A (en) 2010-01-14
JP5216973B2 true JP5216973B2 (en) 2013-06-19

Family

ID=41590143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008166780A Active JP5216973B2 (en) 2008-06-26 2008-06-26 Non-aqueous secondary battery and non-aqueous secondary battery system

Country Status (1)

Country Link
JP (1) JP5216973B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5232631B2 (en) * 2008-12-25 2013-07-10 株式会社東芝 Non-aqueous electrolyte battery
WO2010090224A1 (en) * 2009-02-03 2010-08-12 株式会社 東芝 Nonaqueous electrolyte secondary battery, battery pack, and automobile
JP5674357B2 (en) * 2010-07-01 2015-02-25 エナックス株式会社 Lithium ion secondary battery
CN104205463A (en) * 2012-04-18 2014-12-10 株式会社Lg化学 Electrode assembly and lithium secondary battery including same
WO2015190481A1 (en) * 2014-06-10 2015-12-17 新神戸電機株式会社 Lithium ion secondary cell
WO2016132436A1 (en) * 2015-02-16 2016-08-25 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
JP7516301B2 (en) 2021-03-22 2024-07-16 株式会社東芝 Electrode, secondary battery, battery pack, and vehicle
JP7574250B2 (en) 2022-07-13 2024-10-28 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822841A (en) * 1994-04-21 1996-01-23 Haibaru:Kk Secondary battery
JP4595145B2 (en) * 1999-10-27 2010-12-08 ソニー株式会社 Non-aqueous electrolyte battery
JP4644895B2 (en) * 2000-01-24 2011-03-09 株式会社豊田中央研究所 Lithium secondary battery
JP4635599B2 (en) * 2004-12-17 2011-02-23 日産自動車株式会社 Lithium polymer battery manufacture and battery obtained thereby
JP4655721B2 (en) * 2005-03-31 2011-03-23 株式会社日立製作所 Lithium ion secondary battery and positive electrode active material
JP4625744B2 (en) * 2005-09-29 2011-02-02 株式会社東芝 Nonaqueous electrolyte battery and battery pack
JP5061497B2 (en) * 2006-04-24 2012-10-31 株式会社Gsユアサ Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2010009898A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP4837614B2 (en) Lithium secondary battery
KR100570051B1 (en) Lithium ion secondary cell
JP6279233B2 (en) Lithium secondary battery
CN111640975B (en) Electrolyte composition for lithium ion electrochemical cells
JP5216973B2 (en) Non-aqueous secondary battery and non-aqueous secondary battery system
WO2010016475A1 (en) Nonaqueous electrolyte and lithium cell using the same
JPWO2011162169A1 (en) Lithium ion secondary battery
JP7172015B2 (en) Additive for non-aqueous electrolyte, electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP2009238663A (en) Nonaqueous secondary battery
JP2009277395A (en) Nonaqueous secondary battery, and nonaqueous secondary battery system
JP7036701B2 (en) Positive electrode material for lithium-ion secondary batteries, positive electrode for lithium-ion secondary batteries, and lithium-ion secondary batteries
US10840508B2 (en) Lithium ion secondary battery
JP2014007010A (en) Lithium secondary battery
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
US9831526B2 (en) Lithium secondary battery
WO2014141932A1 (en) Lithium secondary battery
JP2002151144A (en) Lithium secondary battery
JP5933252B2 (en) Non-aqueous secondary battery
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
CN111886744A (en) Electrolyte composition for lithium-ion electrochemical cells
KR20220108013A (en) Negative electrode
KR20060107925A (en) Lithium ion secondary battery
JP5666561B2 (en) Nonaqueous electrolyte secondary battery
US8741480B2 (en) Non-aqueous secondary battery comprising a polyvalent organic lithium salt
JP7199157B2 (en) Electrolyte solution containing lithium iodide, and lithium ion battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5216973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250