JP2009218112A - Nonaqueous electrolyte secondary battery and manufacturing method therefor - Google Patents

Nonaqueous electrolyte secondary battery and manufacturing method therefor Download PDF

Info

Publication number
JP2009218112A
JP2009218112A JP2008061397A JP2008061397A JP2009218112A JP 2009218112 A JP2009218112 A JP 2009218112A JP 2008061397 A JP2008061397 A JP 2008061397A JP 2008061397 A JP2008061397 A JP 2008061397A JP 2009218112 A JP2009218112 A JP 2009218112A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
secondary battery
active material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008061397A
Other languages
Japanese (ja)
Inventor
Chihiro Yada
千宏 矢田
Fumiharu Niina
史治 新名
Hiroshi Nakagawa
弘 中川
Hiroyuki Fujimoto
洋行 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008061397A priority Critical patent/JP2009218112A/en
Publication of JP2009218112A publication Critical patent/JP2009218112A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To secure that a nonaqueous electrolyte secondary battery that employs a transition metal oxide containing low-cost lithium for a positive electrode active material has superior electrical discharge properties. <P>SOLUTION: The nonaqueous electrolyte secondary battery, comprising a positive electrode containing a transition metal oxide which contains lithium, expressed by a general expression Li<SB>1+x</SB>Ni<SB>a</SB>Mn<SB>b</SB>M<SB>c</SB>O<SB>2+d</SB>as a positive electrode active material; a negative electrode, containing a negative electrode active material other than metal lithium; and a nonaqueous electrolyte, having lithium ion conductivity is activated, by performing charging, such that the potential of the positive electrode will be in the range of 4.4 to 4.6 V (vs. Li/Li<SP>+</SP>) relative to metallic lithium. In the expression, M is at least one kind of element selected from among a group of Na, K, B, F, Mg, Al, Ti, Cr, V, Fe, Cu, Zn, Nb, Mo, Zr, Sn and W, and satisfies the condition of x+a+b+c=1, 0<x≤0.1, 0.7≤a/b≤1.3, 0≤c≤0.05, -0.1≤d≤0.1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウム含有遷移金属酸化物を正極活物質として含む正極と、金属リチウム以外の負極活物質を含む負極と、リチウムイオン伝導性を有する非水電解質とを備えた非水電解質二次電池及びその製造方法に係り、特に、正極活物質に遷移金属の主成分がニッケルとマンガンの2元素から構成されるリチウム含有遷移金属酸化物を用い、正極活物質のコストを低減させると共に、このような正極活物質を用いた場合においても、高率放電特性に優れた非水電解質二次電池が得られるようにした点に特徴を有するものである。   The present invention relates to a nonaqueous electrolyte secondary battery comprising a positive electrode including a lithium-containing transition metal oxide as a positive electrode active material, a negative electrode including a negative electrode active material other than metallic lithium, and a nonaqueous electrolyte having lithium ion conductivity. In particular, the lithium-containing transition metal oxide in which the main component of the transition metal is composed of two elements of nickel and manganese is used as the positive electrode active material, and the cost of the positive electrode active material is reduced. Even when a positive electrode active material is used, it is characterized in that a non-aqueous electrolyte secondary battery excellent in high rate discharge characteristics can be obtained.

近年、携帯電話、カムコーダ、ノート型パソコンなどの移動情報端末の小型・軽量化が急速に進展しており、その駆動電源として用いる電池の高容量化が要求されている。   In recent years, mobile information terminals such as mobile phones, camcorders, notebook personal computers and the like have been rapidly reduced in size and weight, and there is a demand for higher capacity of batteries used as a driving power source.

そして、このような要求に対応するため、近年においては、高出力,高エネルギー密度の新型二次電池として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて充放電を行うようにした非水電解質二次電池が広く利用されるようになった。   In order to meet such demands, in recent years, as a new secondary battery with high output and high energy density, a non-aqueous electrolyte is used, and lithium ions are moved between the positive electrode and the negative electrode to charge and discharge. Non-aqueous electrolyte secondary batteries designed to perform the above have come to be widely used.

また、近年においては、非水電解質二次電池を、工具用電源やハイブリッド自動車用電源等の高出力用電源として用いることが検討されており、非水電解質二次電池の高率放電時における放電容量を向上させることが要望されている。   In recent years, the use of non-aqueous electrolyte secondary batteries as high-output power supplies such as power supplies for tools and hybrid automobiles has been studied. Discharge during high-rate discharge of non-aqueous electrolyte secondary batteries. There is a need to increase capacity.

ここで、上記のような非水電解質二次電池においては、その正極の正極活物質として、コバルト酸リチウムLiCoO2等のコバルトを主成分とするリチウム含有遷移金属酸化物が主に用いられている。 Here, in the non-aqueous electrolyte secondary battery as described above, a lithium-containing transition metal oxide mainly composed of cobalt such as lithium cobaltate LiCoO 2 is mainly used as the positive electrode active material of the positive electrode. .

しかし、上記の正極活物質に使用されるコバルトは希少な資源であり、コストが高くつくと共に、安定した供給が困難になる等の問題があり、特に、電気自動車の電源として使用する場合には、多くの量のコバルトが必要になって、電源としてもコストが非常に高くなるという問題があった。   However, cobalt used in the above positive electrode active material is a scarce resource, and there are problems such as high cost and difficulty in stable supply, especially when used as a power source for electric vehicles. However, since a large amount of cobalt is required, there is a problem that the cost of the power source becomes very high.

このため、近年においては、安価で安定した供給が行える正極活物質として、コバルトに代えてニッケルやマンガンを主原料とする正極活物質の検討が行われている。   For this reason, in recent years, as a positive electrode active material that can be supplied inexpensively and stably, a positive electrode active material using nickel or manganese as a main material instead of cobalt has been studied.

例えば、層状構造を有するニッケル酸リチウムLiNiO2は、大きな放電容量が得られる材料として期待されているが、熱安定性が悪くて安全性に劣ると共に、過電圧が大きいという欠点があった。 For example, lithium nickelate LiNiO 2 having a layered structure is expected as a material capable of obtaining a large discharge capacity, but has the drawbacks of poor thermal stability and poor safety and a large overvoltage.

また、スピネル型構造を有するマンガン酸リチウムLiMn24は、資源が豊富で安価であるという利点があるが、エネルギー密度が小さく、また高温環境下でマンガンが非水電解液中に溶出するという欠点があった。 Further, lithium manganate LiMn 2 O 4 having a spinel structure has the advantage of being rich in resources and inexpensive, but has a low energy density and that manganese elutes in a non-aqueous electrolyte under a high temperature environment. There were drawbacks.

このため、近年においては、コストが低く、かつ熱安定性に優れるという観点から、遷移金属の主成分がニッケルとマンガンとの2元素から構成されて層状構造を有するリチウム含有遷移金属酸化物が注目されている。   Therefore, in recent years, lithium-containing transition metal oxides having a layered structure in which the main component of the transition metal is composed of two elements of nickel and manganese have attracted attention from the viewpoint of low cost and excellent thermal stability. Has been.

例えば、特許文献1においては、コバルト酸リチウムとほぼ同等のエネルギー密度を有し、ニッケル酸リチウムのように安全性が低下したり、マンガン酸リチウムのように高温環境下でマンガンが非水電解液中に溶出したりすることのない正極活物質として、層状構造を有しニッケルとマンガンとを含み、ニッケルとマンガンとの原子比率の誤差が10原子%以内である菱面体構造を有するリチウム複合酸化物が提案されている。   For example, in Patent Document 1, the energy density is almost the same as that of lithium cobaltate, and safety is lowered like lithium nickelate, or manganese is a non-aqueous electrolyte in a high temperature environment like lithium manganate. Lithium composite oxide having a rhombohedral structure that contains nickel and manganese as a positive electrode active material that does not elute in, and has an atomic ratio error of nickel and manganese within 10 atomic% Things have been proposed.

しかし、この特許文献1に示されるリチウム含有遷移金属酸化物の場合、コバルト酸リチウムに比べて、高率充放電特性が著しく劣り、電気自動車等の高出力が要求される電源として使用することは困難であるという問題があった。   However, in the case of the lithium-containing transition metal oxide shown in Patent Document 1, the high rate charge / discharge characteristics are remarkably inferior to lithium cobaltate, and it is used as a power source that requires high output such as an electric vehicle. There was a problem that it was difficult.

また、特許文献2においては、少なくともニッケル及びマンガンを含有する層状構造を有するリチウム含有遷移金属酸化物において、上記のニッケル及びマンガンの一部をコバルトで置換した単相カソード材料が提案されている。   Patent Document 2 proposes a single-phase cathode material in which a part of the nickel and manganese is replaced with cobalt in a lithium-containing transition metal oxide having a layered structure containing at least nickel and manganese.

しかし、この特許文献2に示される単相カソード材料の場合、ニッケル及びマンガンの一部を置換させるコバルトの量が多くなると、前記のようにコストが高くつくという問題が生じ、一方、置換させるコバルトの量を少なくすると、高率充放電特性が大きく低下するという問題があった。   However, in the case of the single-phase cathode material disclosed in Patent Document 2, when the amount of cobalt that substitutes a part of nickel and manganese increases, there arises a problem that the cost increases as described above, while the cobalt that is substituted. When the amount is reduced, there is a problem that the high rate charge / discharge characteristics are greatly deteriorated.

また、特許文献3においては、非水電解質二次電池の内部抵抗を低減させて、高率充放電特性を向上させるために、リチウムとニッケルとマンガンとを含む遷移金属とからなる層状構造を有する複合酸化物に、Al,Mg,Sn,Ti,Zn,Zr等の金属化合物(金属のステアリン酸塩)を表面修飾させた正極活物質が提案されている。   Moreover, in patent document 3, in order to reduce the internal resistance of a nonaqueous electrolyte secondary battery and to improve a high rate charge / discharge characteristic, it has a layered structure which consists of a transition metal containing lithium, nickel, and manganese. A positive electrode active material has been proposed in which a metal compound (metal stearate) such as Al, Mg, Sn, Ti, Zn, and Zr is surface-modified on a composite oxide.

しかし、この特許文献3に示される正極活物質を用いた場合においても、依然として、高率充放電特性を十分に改善することができないという問題があった。
特開2007−12629号公報 特許第3571671号公報 特開2005−346956号公報
However, even when the positive electrode active material disclosed in Patent Document 3 is used, there is still a problem that the high rate charge / discharge characteristics cannot be sufficiently improved.
JP 2007-12629 A Japanese Patent No. 3571671 JP-A-2005-346955

本発明は、リチウム含有遷移金属酸化物を正極活物質として含む正極と、金属リチウム以外の負極活物質を含む負極と、リチウムイオン伝導性を有する非水電解質とを備えた非水電解質二次電池における上記のような問題を解決することを課題とするものであり、特に、上記の正極活物質に、遷移金属の主成分がニッケルとマンガンとの2元素から構成される層状構造を有するリチウム含有遷移金属酸化物を用いて、正極活物質のコストを低減させると共に、このように正極活物質におけるコストを低減させた場合においても、高率放電特性に優れた非水電解質二次電池が得られるようにすることを課題とものである。   The present invention relates to a nonaqueous electrolyte secondary battery comprising a positive electrode including a lithium-containing transition metal oxide as a positive electrode active material, a negative electrode including a negative electrode active material other than metallic lithium, and a nonaqueous electrolyte having lithium ion conductivity. In particular, the above-described positive electrode active material contains lithium having a layered structure in which the main component of the transition metal is composed of two elements of nickel and manganese. Using a transition metal oxide, the cost of the positive electrode active material is reduced, and even when the cost of the positive electrode active material is reduced in this way, a nonaqueous electrolyte secondary battery excellent in high rate discharge characteristics can be obtained. Doing so is a challenge.

本発明においては、上記のような課題を解決するため、一般式Li1+xNiaMnbc2+d(式中、MはNa,K,B,F,Mg,Al,Ti,Cr,V,Fe,Cu,Zn,Nb,Mo,Zr,Sn,Wの群から選択される少なくとも一種の元素であり、x+a+b+c=1,0<x≦0.1,0.7≦a/b≦1.3,0≦c≦0.05,−0.1≦d≦0.1の条件を満たす。)で表されるリチウム含有遷移金属酸化物を正極活物質として含む正極と、金属リチウム以外の負極活物質を含む負極と、リチウムイオン伝導性を有する非水電解質とを備えた非水電解質二次電池を、上記の正極の電位が金属リチウム基準で4.4〜4.6V(vs.Li/Li+)の範囲になるように充電させて活性化させた。 In the present invention, in order to solve the above-described problems, the general formula Li 1 + x Ni a Mn b M c O 2 + d (where M is Na, K, B, F, Mg, Al, Ti). , Cr, V, Fe, Cu, Zn, Nb, Mo, Zr, Sn, and W, x + a + b + c = 1, 0 <x ≦ 0.1, 0.7 ≦ a /B≦1.3, 0 ≦ c ≦ 0.05, −0.1 ≦ d ≦ 0.1.), And a positive electrode containing a lithium-containing transition metal oxide represented by A non-aqueous electrolyte secondary battery including a negative electrode containing a negative electrode active material other than metallic lithium and a non-aqueous electrolyte having lithium ion conductivity is used. The positive electrode has a potential of 4.4 to 4.6 V based on metallic lithium. The battery was activated by being charged so as to be in the range of (vs. Li / Li + ).

ここで、上記のリチウム含有遷移金属酸化物において、ニッケルNiの組成比aと、マンガンMnの組成比bとが0.7≦a/b≦1.3の条件を満たすものを用いるのは、a/bの値が1.3を超えた場合には、Niの割合が多くなって熱安定性が低下する一方、a/bの値が0.7未満になると、Mnの割合が多くなり、不純物層が生じて容量が低下するためであり、特に、熱安定性を高めると共に容量の低下を抑制するためには、0.9≦a/b≦1.1の条件を満たすものを用いることがより好ましい。   Here, in the above lithium-containing transition metal oxide, the one in which the composition ratio a of nickel Ni and the composition ratio b of manganese Mn satisfy the condition of 0.7 ≦ a / b ≦ 1.3 is used. When the value of a / b exceeds 1.3, the proportion of Ni increases and the thermal stability decreases. On the other hand, when the value of a / b becomes less than 0.7, the proportion of Mn increases. This is because the impurity layer is generated and the capacity is reduced. Particularly, in order to improve the thermal stability and suppress the capacity reduction, a material satisfying the condition of 0.9 ≦ a / b ≦ 1.1 is used. It is more preferable.

また、上記のリチウム含有遷移金属酸化物において、リチウムLiの組成比(1+x)におけるxが、0<x≦0.1の条件を満たすものを用いるのは、0<xになると、出力特性が向上される一方、x>0.1になると、このリチウム含有遷移金属酸化物の表面に残留するアルカリが多くなって、電池を作製する工程においてスラリーにゲル化が生じると共に、酸化還元反応を行う遷移金属量が低下して容量が低下するためであり、より好ましくは、0.05≦x≦0.1の条件を満たすものを用いるようにする。   In addition, in the above lithium-containing transition metal oxide, a material in which x in the composition ratio (1 + x) of lithium Li satisfies the condition of 0 <x ≦ 0.1 is used when the output characteristic is 0 <x. On the other hand, when x> 0.1, the alkali remaining on the surface of the lithium-containing transition metal oxide increases, and gelation occurs in the slurry and a redox reaction occurs in the process of manufacturing the battery. This is because the amount of transition metal decreases and the capacity decreases, and more preferably, a metal that satisfies the condition of 0.05 ≦ x ≦ 0.1 is used.

また、上記のリチウム含有遷移金属酸化物において、酸素Oの組成比(2+d)におけるdが−0.1≦d≦0.1の条件を満たすようにするのは、上記のリチウム含有遷移金属酸化物が酸素欠損状態や酸素過剰状態になって、その結晶構造が損なわれるのを防止するためである。   In the above lithium-containing transition metal oxide, d in the composition ratio (2 + d) of oxygen O satisfies the condition of −0.1 ≦ d ≦ 0.1. This is to prevent the metal oxide from being in an oxygen deficient state or an oxygen-excess state and damaging its crystal structure.

また、上記のように非水電解質二次電池を活性化させるにあたり、正極の電位が金属リチウム基準で4.4〜4.6V(vs.Li/Li+)の範囲で充電させるようにしたのは、正極の電位が金属リチウム基準で4.4V以上になるように充電させると、上記リチウム含有遷移金属酸化物中におけるニッケルだけでなくマンガンも酸化されて正極活物質が改善され、高率放電特性が向上すると考えられる。一方、正極の電位が金属リチウム基準で4.6Vを越えるまで充電させると、上記の非水電解質の酸化分解反応が顕著になり、電池の性能劣化が生じるためである。 In addition, when the non-aqueous electrolyte secondary battery is activated as described above, the positive electrode is charged in the range of 4.4 to 4.6 V (vs. Li / Li + ) with respect to metal lithium. When the positive electrode is charged so that the potential of the positive electrode is 4.4 V or higher with respect to the metal lithium, not only nickel but also manganese in the lithium-containing transition metal oxide is oxidized, and the positive electrode active material is improved. It is thought that the characteristics are improved. On the other hand, if charging is performed until the potential of the positive electrode exceeds 4.6 V on the basis of metallic lithium, the above-described oxidative decomposition reaction of the nonaqueous electrolyte becomes remarkable, and the performance of the battery deteriorates.

また、本発明の非水電解質二次電池を充放電させる場合、一般に正極の充電電位が金属リチウム基準で4.2〜4.3V(vs.Li/Li+)の範囲で充放電が行われるが、この非水電解質二次電池を活性化させるにあたり、上記のように正極の電位が金属リチウム基準で4.4〜4.6V(vs.Li/Li+)になる高い電位まで充電させた場合、負極の負極活物質に金属リチウム以外のものを用いても、負極に金属リチウムが析出して電池が劣化するおそれがある。 In addition, when charging and discharging the nonaqueous electrolyte secondary battery of the present invention, charging and discharging are generally performed in a range where the charging potential of the positive electrode is 4.2 to 4.3 V (vs. Li / Li + ) based on metallic lithium. However, in activating the non-aqueous electrolyte secondary battery, as described above, the positive electrode was charged to a high potential that was 4.4 to 4.6 V (vs. Li / Li + ) with respect to the metallic lithium. In such a case, even if a negative electrode active material other than metallic lithium is used, metallic lithium may be deposited on the negative electrode and the battery may be deteriorated.

このため、本発明の非水電解質二次電池においては、正極における正極活物質と負極における負極活物質との割合を、正極の電位が金属リチウム基準で4.4V(vs.Li/Li+)になるまで充電した時の正極の充電容量に対する負極の充電容量の比が1〜1.35の範囲、正極の電位が金属リチウム基準で4.5V(vs.Li/Li+)になるまで充電した時の正極の充電容量に対する負極の充電容量の比が1〜1.20の範囲、正極の電位が金属リチウム基準で4.6V(vs.Li/Li+)になるまで充電した時の正極の充電容量に対する負極の充電容量の比が1〜1.10の範囲にすることが好ましい。なお、負極の充電容量とは、負極活物質の構造を破壊せずに受け入れられる最大の充電容量である。 For this reason, in the non-aqueous electrolyte secondary battery of the present invention, the ratio of the positive electrode active material in the positive electrode to the negative electrode active material in the negative electrode is such that the potential of the positive electrode is 4.4 V (vs. Li / Li + ) based on metallic lithium. Charging until the ratio of the negative electrode charging capacity to the positive electrode charging capacity in the range of 1 to 1.35 in the range of 1 to 1.35 and the positive electrode potential is 4.5 V (vs. Li / Li + ) with respect to metallic lithium. The ratio of the charge capacity of the negative electrode to the charge capacity of the positive electrode in the range of 1-1.20, and the positive electrode when charged until the potential of the positive electrode is 4.6 V (vs. Li / Li + ) with respect to metallic lithium The ratio of the negative electrode charge capacity to the charge capacity is preferably in the range of 1 to 1.10. Note that the negative electrode charge capacity is the maximum charge capacity that can be accepted without destroying the structure of the negative electrode active material.

また、本発明において、正極活物質に用いる前記のリチウム含有遷移金属酸化物の粒径が大きくなりすぎると、放電性能が低下する一方、粒径が小さくなりすぎると、非水電解液との反応性が高くなって保存特性等が低下するため、一次粒子の平均粒径が0.5μm以上、2μm以下であり、二次粒子の平均粒径が5μm以上、15μm以下のものを用いることが好ましい。   In the present invention, when the particle size of the lithium-containing transition metal oxide used for the positive electrode active material is too large, the discharge performance is deteriorated. On the other hand, when the particle size is too small, the reaction with the non-aqueous electrolyte is performed. Therefore, it is preferable to use a primary particle having an average particle size of 0.5 μm or more and 2 μm or less, and a secondary particle having an average particle size of 5 μm or more and 15 μm or less. .

また、本発明に係る非水電解質二次電池の正極活物質としては、上記のリチウム含有遷移金属酸化物を主成分としていれば特に限定されるものではなく、例えば上記リチウム含有遷移金属酸化物の表面に、他の酸化物粒子を付着させたり、被覆させたりしたものを用いることもできる。さらに、上記のリチウム含有遷移金属酸化物と他の正極活物質とを混合して使用することも可能であり、混合する他の正極活物質としては、可逆的にリチウムを挿入・脱離可能な化合物であれば特に限定されず、例えば、安定した結晶構造を維持したままリチウムの挿入脱離が可能である層状構造や、スピネル型構造や、オリビン型構造を有するものを用いることが好ましい。   In addition, the positive electrode active material of the nonaqueous electrolyte secondary battery according to the present invention is not particularly limited as long as the above-described lithium-containing transition metal oxide is a main component. It is also possible to use a material in which other oxide particles are attached or coated on the surface. Furthermore, the above lithium-containing transition metal oxide and other positive electrode active materials can be mixed and used. As the other positive electrode active material to be mixed, lithium can be reversibly inserted and desorbed. It is not particularly limited as long as it is a compound. For example, it is preferable to use a layered structure capable of inserting and extracting lithium while maintaining a stable crystal structure, a spinel structure, or an olivine structure.

また、本発明の非水電解質二次電池において、その負極に用いる負極活物質は、金属リチウム以外であって、リチウムを可逆的に吸蔵・放出できるものでれば特に限定されず、例えば、炭素材料や、リチウムと合金化する金属或いは合金材料や、金属酸化物等を用いることができる。なお、材料コストの観点からは、負極活物質に炭素材料を用いることが好ましく、例えば、天然黒鉛、人造黒鉛、メソフェーズピッチ系炭素繊維(MCF)、メソカーボンマイクロビーズ(MCMB)、コークス、ハードカーボン、フラーレン、カーボンナノチューブ等を用いることができ、特に、高率充放電特性を向上させる観点からは、黒鉛材料を低結晶性炭素で被覆した炭素材料を用いることが好ましい。   Further, in the nonaqueous electrolyte secondary battery of the present invention, the negative electrode active material used for the negative electrode is not particularly limited as long as it is capable of reversibly occluding and releasing lithium other than metallic lithium. A material, a metal alloyed with lithium, an alloy material, a metal oxide, or the like can be used. From the viewpoint of material cost, it is preferable to use a carbon material for the negative electrode active material. For example, natural graphite, artificial graphite, mesophase pitch-based carbon fiber (MCF), mesocarbon microbeads (MCMB), coke, hard carbon Fullerenes, carbon nanotubes, and the like can be used. In particular, from the viewpoint of improving the high rate charge / discharge characteristics, it is preferable to use a carbon material obtained by coating a graphite material with low crystalline carbon.

また、本発明の非水電解質二次電池において、非水電解質に用いる非水系溶媒としては、従来から非水電解質二次電池において一般に使用されている公知の非水系溶媒を用いることができ、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネートを用いることができる。特に、低粘度、低融点でリチウムイオン伝導度の高い非水系溶媒として、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましく、この混合溶媒における環状カーボネートと鎖状カーボネートとの体積比を2/8〜5/5の範囲にすることが好ましい。   In the non-aqueous electrolyte secondary battery of the present invention, as the non-aqueous solvent used for the non-aqueous electrolyte, a known non-aqueous solvent that has been conventionally used in non-aqueous electrolyte secondary batteries can be used, for example, In addition, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate can be used. In particular, it is preferable to use a mixed solvent of a cyclic carbonate and a chain carbonate as a non-aqueous solvent having a low viscosity, a low melting point and a high lithium ion conductivity, and the volume ratio of the cyclic carbonate and the chain carbonate in the mixed solvent is A range of 2/8 to 5/5 is preferable.

また、非水電解質の非水系溶媒としてイオン性液体を用いることもでき、この場合、カチオン種、アニオン種については特に限定されるものではないが、低粘度、電気化学的安定性、疎水性の観点から、カチオンとしては、ピリジニウムカチオン、イミダゾリウムカチオン、4級アンモニウムカチオンを、アニオンとしては、フッ素含有イミド系アニオンを用いた組合せが特に好ましい。   An ionic liquid can also be used as the non-aqueous solvent of the non-aqueous electrolyte. In this case, the cation species and the anion species are not particularly limited, but low viscosity, electrochemical stability, hydrophobic properties are not limited. From the viewpoint, a combination using a pyridinium cation, an imidazolium cation, or a quaternary ammonium cation as the cation and a fluorine-containing imide anion as the anion is particularly preferable.

また、上記の非水電解液に用いる溶質としても、従来から非水電解質二次電池において一般に使用されている公知のリチウム塩を用いることができる。そして、このようなリチウム塩としては、P、B、F、O、S、N、Clの中の一種類以上の元素を含むリチウム塩を用いることができ、具体的には、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(C25SO23、LiAsF6、LiClO4等のリチウム塩及びこれらの混合物を用いることができる。特に、非水電解質二次電池における高率充放電特性や耐久性を高めるためには、LiPF6を用いることが好ましい。 Moreover, as a solute used for the non-aqueous electrolyte, a known lithium salt that is conventionally used in a non-aqueous electrolyte secondary battery can be used. As such a lithium salt, a lithium salt containing one or more elements among P, B, F, O, S, N, and Cl can be used. Specifically, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (C 2 F 5 SO 2 ) Lithium salts such as 3 , LiAsF 6 , LiClO 4 and mixtures thereof can be used. In particular, LiPF 6 is preferably used in order to enhance the high rate charge / discharge characteristics and durability of the nonaqueous electrolyte secondary battery.

また、本発明の非水電解質二次電池において、上記の正極と負極との間に介在させるセパレータとしては、正極と負極との接触による短絡を防ぎ、かつ非水電解液を含浸して、リチウムイオン伝導性が得られる材料であれば特に限定されるものではなく、例えば、ポリプロピレン製やポリエチレン製のセパレータ、ポリプロピレン−ポリエチレンの多層セパレータ等を用いることができる。   Further, in the non-aqueous electrolyte secondary battery of the present invention, the separator interposed between the positive electrode and the negative electrode prevents a short circuit due to contact between the positive electrode and the negative electrode and impregnates the non-aqueous electrolyte, The material is not particularly limited as long as the material can obtain ion conductivity. For example, a polypropylene or polyethylene separator, a polypropylene-polyethylene multilayer separator, or the like can be used.

本発明においては、正極における正極活物質に、前記の一般式Li1+xNiaMnbc2+dで表される遷移金属の主成分がニッケルとマンガンとからなるリチウム含有遷移金属酸化物を用い、この非水電解質二次電池を正極の電位が金属リチウム基準で4.4〜4.6Vの範囲で充電させて活性化させるようにしたため、この充電によって上記のリチウム含有遷移金属酸化物中におけるニッケルだけでなくマンガンも酸化されて正極活物質が改善され、非水電解質二次電池における高率放電特性が向上した。 In the present invention, the positive electrode active material in the positive electrode includes a lithium-containing transition metal in which the main component of the transition metal represented by the general formula Li 1 + x Ni a Mn b M c O 2 + d is composed of nickel and manganese. Since this non-aqueous electrolyte secondary battery is activated by charging the non-aqueous electrolyte secondary battery with a positive electrode potential in the range of 4.4 to 4.6 V based on metallic lithium, the above lithium-containing transition metal is activated by this charging. Not only nickel in the oxide but also manganese was oxidized to improve the positive electrode active material, and the high rate discharge characteristics in the nonaqueous electrolyte secondary battery were improved.

以下、この発明に係る非水電解質二次電池について実施例を挙げて具体的に説明すると共に、この実施例における非水電解質二次電池においては、正極活物質に遷移金属の主成分がニッケルとマンガンとの2元素から構成されるリチウム含有遷移金属酸化物を用いた場合において、高率放電特性が向上されることを、比較例を挙げて明らかにする。なお、本発明の非水電解質二次電池は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the non-aqueous electrolyte secondary battery according to the present invention will be specifically described with reference to examples. In the non-aqueous electrolyte secondary battery according to this example, the main component of the transition metal is nickel and the positive electrode active material. By using a comparative example, it will be clarified that high-rate discharge characteristics are improved when a lithium-containing transition metal oxide composed of two elements with manganese is used. The nonaqueous electrolyte secondary battery of the present invention is not limited to those shown in the following examples, and can be implemented with appropriate modifications within the scope not changing the gist thereof.

(実施例1)
実施例1においては、正極活物質を作製するにあたり、Li2CO3と共沈法によって得たNi0.50Mn0.50(OH)2とを所定の割合で混合し、これらを空気中において1000℃で焼成させ、前記の一般式に示されるリチウム含有遷移金属酸化物として、遷移金属元素がNiとMnとからなる層状構造を有するLi0.6Ni0.47Mn0.472を得た。なお、このようにして得たLi1.06Ni0.47Mn0.472の一次粒子の平均粒径は約1μmであり、また二次粒子の平均粒径は約7μmであった。
Example 1
In Example 1, in preparing the positive electrode active material, Li 2 CO 3 and Ni 0.50 Mn 0.50 (OH) 2 obtained by the coprecipitation method were mixed at a predetermined ratio, and these were mixed at 1000 ° C. in the air. As a lithium-containing transition metal oxide represented by the above general formula, Li 0.6 Ni 0.47 Mn 0.47 O 2 having a layered structure in which the transition metal element is composed of Ni and Mn was obtained. The average particle size of the primary particles of Li 1.06 Ni 0.47 Mn 0.47 O 2 thus obtained was about 1 μm, and the average particle size of the secondary particles was about 7 μm.

そして、上記のLi1.06Ni0.47Mn0.472からなる正極活物質と、導電剤の気相成長炭素繊維(VGCF)と、結着剤のポリフッ化ビニリデンを溶かしたN−メチル−2−ピロリドン溶液とを、正極活物質と導電剤と結着剤の質量比が92:5:3になるように調整し、これらを混練させて正極合剤のスラリーを作製し、このスラリーをアルミニウム箔からなる正極集電体の上に塗布し、これを乾燥させた後、圧延ローラーにより圧延し、これにアルミニウムの集電タブを取り付けて正極を作製した。 Then, the positive electrode active material and a vapor grown carbon fiber as a conductive agent (VGCF), N-methyl-2-pyrrolidone solution of polyvinylidene fluoride as a binder consisting of the above Li 1.06 Ni 0.47 Mn 0.47 O 2 Are adjusted so that the mass ratio of the positive electrode active material, the conductive agent and the binder is 92: 5: 3, and these are kneaded to prepare a positive electrode mixture slurry, which is made of an aluminum foil. It was applied onto a positive electrode current collector, dried, and then rolled with a rolling roller, and an aluminum current collecting tab was attached thereto to produce a positive electrode.

そして、図2に示すように、上記のようにして作製した正極を作用極11として用いる一方、負極となる対極12及び参照極13にそれぞれ金属リチウムを用い、また非水電解液14として、エチレンカーボネートとメチルエチルカーボネートとジメチルカーボネートとを3:3:4の体積比で混合させた混合溶媒にLiPF6 を1mol/lの濃度になるように溶解させ、さらにビニレンカーボネートを1質量%溶解させたものを用い、三電極式試験用セルを作製した。 As shown in FIG. 2, the positive electrode produced as described above is used as the working electrode 11, while metallic lithium is used for the counter electrode 12 and the reference electrode 13 serving as the negative electrode, and ethylene is used as the non-aqueous electrolyte 14. LiPF 6 was dissolved to a concentration of 1 mol / l in a mixed solvent in which carbonate, methyl ethyl carbonate, and dimethyl carbonate were mixed at a volume ratio of 3: 3: 4, and 1% by mass of vinylene carbonate was further dissolved. A three-electrode test cell was prepared using the above.

そして、この実施例1においては、上記の三電極式試験用セルを0.2mA/cm2の電流密度で、作用極となる正極の電位が金属リチウムを用いた参照極に対して4.4V(vs.Li/Li+)になるまで充電させ、さらにこの4.4Vの定電圧で電流値が0.04mAになるまで定電圧充電させて活性化させた。 In Example 1, the above-described three-electrode test cell was subjected to a current density of 0.2 mA / cm 2 , and the potential of the positive electrode serving as the working electrode was 4.4 V with respect to the reference electrode using metallic lithium. The battery was charged until it became (vs. Li / Li + ), and further activated by charging at a constant voltage of 0.04 mA at a constant voltage of 4.4 V.

(実施例2)
実施例2においては、上記の実施例1と同様にして作製した三電極式試験用セルを用い、上記の三電極式試験用セルを0.2mA/cm2の電流密度で、作用極となる正極の電位が金属リチウムを用いた参照極に対して4.5V(vs.Li/Li+)になるまで充電させ、さらにこの4.5Vの定電圧で電流値が0.04mAになるまで定電圧充電させて活性化させた。
(Example 2)
In Example 2, a three-electrode test cell produced in the same manner as in Example 1 above was used, and the above-mentioned three-electrode test cell became a working electrode at a current density of 0.2 mA / cm 2. The battery is charged until the potential of the positive electrode becomes 4.5 V (vs. Li / Li + ) with respect to the reference electrode using metallic lithium, and further constant at this constant voltage of 4.5 V until the current value becomes 0.04 mA. It was activated by voltage charging.

(実施例3)
実施例3においては、上記の実施例1と同様にして作製した三電極式試験用セルを用い、上記の三電極式試験用セルを0.2mA/cm2の電流密度で、作用極となる正極の電位が金属リチウムを用いた参照極に対して4.6V(vs.Li/Li+)になるまで充電させ、さらにこの4.6Vの定電圧で電流値が0.04mAになるまで定電圧充電させて活性化させた。
(Example 3)
In Example 3, a three-electrode test cell produced in the same manner as in Example 1 above was used, and the above-mentioned three-electrode test cell became a working electrode at a current density of 0.2 mA / cm 2. The battery is charged until the potential of the positive electrode becomes 4.6 V (vs. Li / Li + ) with respect to the reference electrode using metallic lithium, and further, this constant voltage of 4.6 V is constant until the current value becomes 0.04 mA. It was activated by voltage charging.

(比較例1)
比較例1においては、上記の実施例1と同様にして作製した三電極式試験用セルを用い、上記の三電極式試験用セルを0.2mA/cm2の電流密度で、作用極となる正極の電位が金属リチウムを用いた参照極に対して4.3V(vs.Li/Li+)になるまで充電させ、さらにこの4.3Vの定電圧で電流値が0.04mAになるまで定電圧充電させて活性化させた。
(Comparative Example 1)
In Comparative Example 1, a three-electrode test cell produced in the same manner as in Example 1 was used, and the above-mentioned three-electrode test cell became a working electrode at a current density of 0.2 mA / cm 2. The battery is charged until the potential of the positive electrode becomes 4.3 V (vs. Li / Li + ) with respect to the reference electrode using metallic lithium, and the current value is constant until the current value becomes 0.04 mA at the constant voltage of 4.3 V. It was activated by voltage charging.

次に、上記のように活性化させた実施例1〜3及び比較例1の各三電極式試験用セルを、それぞれ0.2mA/cm2の電流密度で、作用極となる正極の電位が金属リチウムを用いた参照極に対して2.5V(vs.Li/Li+)になるまで放電させた。 Next, in each of the three-electrode test cells activated in Examples 1 to 3 and Comparative Example 1 activated as described above, the potential of the positive electrode serving as the working electrode is 0.2 mA / cm 2. The battery was discharged to 2.5 V (vs. Li / Li + ) with respect to a reference electrode using metallic lithium.

そして、活性化させて実施例1〜3及び比較例1の各三電極式試験用セルを上記のように放電させた後、それぞれ0.2mA/cm2の電流密度で、作用極となる正極の電位が金属リチウムを用いた参照極に対して4.3V(vs.Li/Li+)になるまで充電させ、さらにこの4.3Vの定電圧で電流値が0.04mAになるまで定電圧充電させ後、0.2mA/cm2の低い電流密度で、作用極となる正極の電位が金属リチウムを用いた参照極に対して2.5V(vs.Li/Li+)になるまで放電させて、それぞれ低率での放電容量Qを求めた。 Then, after activating and discharging each of the three-electrode test cells of Examples 1 to 3 and Comparative Example 1 as described above, the positive electrode serving as a working electrode at a current density of 0.2 mA / cm 2. Is charged until the potential becomes 4.3 V (vs. Li / Li + ) with respect to the reference electrode using metallic lithium, and the constant voltage until the current value becomes 0.04 mA at the constant voltage of 4.3 V. After charging, the battery is discharged at a low current density of 0.2 mA / cm 2 until the potential of the positive electrode serving as the working electrode becomes 2.5 V (vs. Li / Li + ) with respect to the reference electrode using metallic lithium. Thus, the discharge capacity Q L at a low rate was obtained.

次に、上記の各三電極式試験用セルを、それぞれ0.2mA/cm2の電流密度で、作用極となる正極の電位が金属リチウムを用いた参照極に対して4.3V(vs.Li/Li+)になるまで充電させ、さらにこの4.3Vの定電圧で電流値が0.04mAになるまで定電圧充電させた後、100.04mA/cm2の高い電流密度で、作用極となる正極の電位が金属リチウムを用いた参照極に対して2.5V(vs.Li/Li+)になるまで放電させて、それぞれ高率での放電容量Qを求めた。 Next, in each of the three-electrode test cells, the potential of the positive electrode serving as the working electrode is 4.3 V (vs. vs. current) with a current density of 0.2 mA / cm 2 with respect to the reference electrode using metallic lithium. Li / Li + ), and further at a constant voltage of 4.3 V until the current value reaches 0.04 mA, and then at a high current density of 100.04 mA / cm 2 , the working electrode Then, discharge was performed until the potential of the positive electrode becomes 2.5 V (vs. Li / Li + ) with respect to the reference electrode using metallic lithium, and the discharge capacity Q H at a high rate was obtained.

そして、上記のように求めた低率での放電容量Qと高率での放電容量Qとから,下記の式により、実施例1〜3及び比較例1の各三電極式試験用セルにおける放電負荷率(%)を求め、その結果を下記の表1に示した。 Then, from the discharge capacity Q L at the low rate and the discharge capacity Q H at the high rate obtained as described above, the three-electrode test cells of Examples 1 to 3 and Comparative Example 1 are obtained by the following formula. The discharge load factor (%) was determined and the results are shown in Table 1 below.

放電負荷率(%)=(Q/Q)×100 Discharge load factor (%) = (Q H / Q L ) × 100

Figure 2009218112
Figure 2009218112

この結果、正極活物質に、前記の一般式に示される条件を満たすリチウム含有遷移金属酸化物であるLi1.06Ni0.47Mn0.472を用い、作用極となる正極の電位が金属リチウムを用いた参照極に対して4.4〜4.6V(vs.Li/Li+)の範囲になるように充電させて活性化させた実施例1〜3のものは、作用極となる正極の電位が金属リチウムを用いた参照極に対して4.3V(vs.Li/Li+)になるように充電させて活性化させた比較例1のものに比べて、放電負荷率が改善され、高率放電特性が向上していた。 As a result, Li 1.06 Ni 0.47 Mn 0.47 O 2 , which is a lithium-containing transition metal oxide that satisfies the conditions represented by the above general formula, was used as the positive electrode active material, and the positive electrode potential used as the working electrode was metal lithium. In Examples 1 to 3, which were activated by charging in a range of 4.4 to 4.6 V (vs. Li / Li + ) with respect to the reference electrode, the potential of the positive electrode serving as the working electrode was Compared to that of Comparative Example 1 which was activated by charging to 4.3 V (vs. Li / Li + ) with respect to the reference electrode using metallic lithium, the discharge load factor was improved and the high rate Discharge characteristics were improved.

(比較例2,3)
比較例2,3においては、正極活物質のリチウム含有遷移金属酸化物に、遷移金属元素としてNiとMnの他にCoを含み、前記の一般式に示されるリチウム含有遷移金属酸化物の条件を満たしていないLi1.05Ni0.46Mn0.46Co0.032を用い、それ以外は、上記の実施例1の場合と同様にして三電極式試験用セルを作製した。
(Comparative Examples 2 and 3)
In Comparative Examples 2 and 3, the lithium-containing transition metal oxide of the positive electrode active material contains Co as a transition metal element in addition to Ni and Mn, and the conditions of the lithium-containing transition metal oxide represented by the above general formula are as follows. A three-electrode test cell was prepared in the same manner as in Example 1 except that Li 1.05 Ni 0.46 Mn 0.46 Co 0.03 O 2 was used.

そして、上記の三電極式試験用セルを活性化させるにあたり、比較例2においては、0.20.04mA/cm2の電流密度で作用極となる正極の電位が金属リチウムを用いた参照極に対して4.6V(vs.Li/Li+)になるまで充電させ、さらにこの4.6Vの定電圧で電流値が0.04mAになるまで定電圧充電させて活性化させる一方、比較例3においては、4.3V(vs.Li/Li+)になるまで充電させ、さらにこの4.3Vの定電圧で電流値が0.04mAになるまで定電圧充電させて活性化させた。 Then, in activating the above three-electrode test cell, in Comparative Example 2, the potential of the positive electrode serving as the working electrode at a current density of 0.20.04 mA / cm 2 is applied to the reference electrode using metallic lithium. On the other hand, the battery is charged until it reaches 4.6 V (vs. Li / Li + ), and further activated at a constant voltage of 4.6 V until the current value reaches 0.04 mA. The battery was charged until it reached 4.3 V (vs. Li / Li + ), and was further activated by constant voltage charging at a constant voltage of 4.3 V until the current value reached 0.04 mA.

(比較例4,5)
比較例4,5においては、正極活物質のリチウム含有遷移金属酸化物に、遷移金属元素としてNiとMnの他にCoを含み、前記の一般式に示されるリチウム含有遷移金属酸化物の条件を満たしていないLi1.05Ni0.38Mn0.38Co0.192を用い、それ以外は、上記の実施例1の場合と同様にして三電極式試験用セルを作製した。
(Comparative Examples 4 and 5)
In Comparative Examples 4 and 5, the lithium-containing transition metal oxide of the positive electrode active material contains Co as a transition metal element in addition to Ni and Mn, and the conditions of the lithium-containing transition metal oxide represented by the above general formula are as follows. A three-electrode test cell was prepared in the same manner as in Example 1 except that unfilled Li 1.05 Ni 0.38 Mn 0.38 Co 0.19 O 2 was used.

そして、上記の三電極式試験用セルを活性化させるにあたり、比較例4においては、0.20.04mA/cm2の電流密度で作用極となる正極の電位が金属リチウムを用いた参照極に対して4.6V(vs.Li/Li+)になるまで充電させ、さらにこの4.6Vの定電圧で電流値が0.04mAになるまで定電圧充電させて活性化させる一方、比較例5においては、4.3V(vs.Li/Li+)になるまで充電させ、さらにこの4.3Vの定電圧で電流値が0.04mAになるまで定電圧充電させて活性化させた。 Then, in activating the above-described three-electrode test cell, in Comparative Example 4, the potential of the positive electrode serving as the working electrode at a current density of 0.20.04 mA / cm 2 becomes a reference electrode using metallic lithium. On the other hand, the battery was charged until it reached 4.6 V (vs. Li / Li + ), and further activated at a constant voltage of 4.6 V until the current value reached 0.04 mA. The battery was charged until it reached 4.3 V (vs. Li / Li + ), and was further activated by constant voltage charging at a constant voltage of 4.3 V until the current value reached 0.04 mA.

(比較例6,7)
比較例6,7においては、正極活物質のリチウム含有遷移金属酸化物として、遷移金属元素としてNiとMnの他にCoを含み、前記の一般式に示されるリチウム含有遷移金属酸化物の条件を満たしていないLi1.06Ni0.33Mn0.28Co0.332を用い、それ以外は、上記の実施例1の場合と同様にして三電極式試験用セルを作製した。
(Comparative Examples 6 and 7)
In Comparative Examples 6 and 7, the lithium-containing transition metal oxide of the positive electrode active material contains Co as a transition metal element in addition to Ni and Mn, and the conditions for the lithium-containing transition metal oxide represented by the above general formula are as follows: A three-electrode test cell was produced in the same manner as in Example 1 except that unfilled Li 1.06 Ni 0.33 Mn 0.28 Co 0.33 O 2 was used.

そして、上記の三電極式試験用セルを活性化させるにあたり、比較例6においては、0.20.04mA/cm2の電流密度で作用極となる正極の電位が金属リチウムを用いた参照極に対して4.6V(vs.Li/Li+)になるまで充電させ、さらにこの4.6Vの定電圧で電流値が0.04mAになるまで定電圧充電させて活性化させる一方、比較例7においては、4.3V(vs.Li/Li+)になるまで充電させ、さらにこの4.3Vの定電圧で電流値が0.04mAになるまで定電圧充電させて活性化させた。 Then, in activating the above three-electrode test cell, in Comparative Example 6, the potential of the positive electrode serving as the working electrode at a current density of 0.20.04 mA / cm 2 is applied to the reference electrode using metallic lithium. On the other hand, the battery was charged until it reached 4.6 V (vs. Li / Li + ), and further activated at a constant voltage of 4.6 V until the current value reached 0.04 mA. The battery was charged until it reached 4.3 V (vs. Li / Li + ), and was further activated by constant voltage charging at a constant voltage of 4.3 V until the current value reached 0.04 mA.

(比較例8,9)
比較例8,9においては、正極活物質のリチウム含有遷移金属酸化物として、遷移金属元素としてNiとCoとAlとを含み、Mnを含んでいない、前記の一般式に示されるリチウム含有遷移金属酸化物の条件を満たしていないLi1.02Ni0.81Co0.13Al0.042を用い、それ以外は、上記の実施例1の場合と同様にして三電極式試験用セルを作製した。
(Comparative Examples 8 and 9)
In Comparative Examples 8 and 9, as the lithium-containing transition metal oxide of the positive electrode active material, the lithium-containing transition metal represented by the above general formula, which contains Ni, Co, and Al as transition metal elements and does not contain Mn A three-electrode test cell was prepared in the same manner as in Example 1 except that Li 1.02 Ni 0.81 Co 0.13 Al 0.04 O 2 not satisfying the oxide conditions was used.

そして、上記の三電極式試験用セルを活性化させるにあたり、比較例8においては、0.20.04mA/cm2の電流密度で作用極となる正極の電位が金属リチウムを用いた参照極に対して4.6V(vs.Li/Li+)になるまで充電させ、さらにこの4.6Vの定電圧で電流値が0.04mAになるまで定電圧充電させて活性化させる一方、比較例9においては、4.3V(vs.Li/Li+)になるまで充電させ、さらにこの4.3Vの定電圧で電流値が0.04mAになるまで定電圧充電させて活性化させた。 Then, in activating the above-described three-electrode test cell, in Comparative Example 8, the potential of the positive electrode serving as the working electrode at a current density of 0.20.04 mA / cm 2 becomes the reference electrode using metallic lithium. On the other hand, the battery was charged until it reached 4.6 V (vs. Li / Li + ), and further activated at a constant voltage of 4.6 V until the current value reached 0.04 mA. The battery was charged until it reached 4.3 V (vs. Li / Li + ), and was further activated by constant voltage charging at a constant voltage of 4.3 V until the current value reached 0.04 mA.

次に、上記のように活性化させた比較例2〜9の各三電極式試験用セルを、それぞれ0.2mA/cm2の電流密度で、作用極となる正極の電位が金属リチウムを用いた参照極に対して2.5V(vs.Li/Li+)になるまで放電させた後、上記の場合と同様にして、低率での放電容量Q及び高率での放電容量Qを求め、前記の式により、比較例2〜9の各三電極式試験用セルにおける放電負荷率(%)を求め、その結果を下記の表2に示した。 Next, in each of the three-electrode test cells of Comparative Examples 2 to 9 activated as described above, the potential of the positive electrode serving as the working electrode is metal lithium at a current density of 0.2 mA / cm 2 . After being discharged to 2.5 V (vs. Li / Li + ) with respect to the reference electrode, the discharge capacity Q L at the low rate and the discharge capacity Q H at the high rate are the same as in the above case. The discharge load factor (%) in each of the three-electrode test cells of Comparative Examples 2 to 9 was determined by the above formula, and the results are shown in Table 2 below.

Figure 2009218112
Figure 2009218112

この結果、正極活物質に、遷移金属元素としてNiとMnの他にCoを含み、またNiとCoとAlとを含み、Mnを含んでいない前記の一般式に示される条件を満たしていないリチウム含有遷移金属酸化物を用いた場合、作用極となる正極の電位が金属リチウムを用いた参照極に対して4.6V(vs.Li/Li+)になるように充電させて活性化させた比較例2,4,6,8のものは、作用極となる正極の電位が金属リチウムを用いた参照極に対して4.3V(vs.Li/Li+)になるように充電させて活性化させた比較例3,5,7,9のものに比べて、何れも放電負荷率が小さくなって、高率放電特性が低下しており、正極活物質に前記の一般式に示される条件を満たすリチウム含有遷移金属酸化物を用いた実施例1〜3及び比較例1の場合とは逆の結果になっていた。 As a result, the positive electrode active material contains Co as a transition metal element in addition to Ni and Mn, and also contains Ni, Co and Al, and does not contain Mn, but does not satisfy the conditions shown in the above general formula. When the contained transition metal oxide was used, it was activated by being charged so that the potential of the positive electrode serving as the working electrode was 4.6 V (vs. Li / Li + ) with respect to the reference electrode using metallic lithium. In Comparative Examples 2, 4, 6, and 8, the positive electrode serving as the working electrode is charged and charged so that the potential of the positive electrode is 4.3 V (vs. Li / Li + ) with respect to the reference electrode using metallic lithium. Compared to those of Comparative Examples 3, 5, 7, and 9, the discharge load factor was reduced and the high rate discharge characteristics were reduced, and the conditions shown in the above general formula for the positive electrode active material Examples 1-3 using a lithium-containing transition metal oxide satisfying The case of Comparative Examples 1 was supposed to reverse the result.

このため、正極の電位が金属リチウム基準で4.4〜4.6V(vs.Li/Li+)の範囲になるように充電させて活性化させた場合に、放電負荷率が改善されて高率放電特性が向上するというのは、正極活物質に、前記の一般式に示される条件を満たすリチウム含有遷移金属酸化物を用いた場合における特有の効果であることが分かった。 For this reason, when the positive electrode is charged and activated so that the potential of the positive electrode is in the range of 4.4 to 4.6 V (vs. Li / Li + ) with respect to metallic lithium, the discharge load factor is improved and increased. It has been found that the improvement in rate discharge characteristics is a characteristic effect when a lithium-containing transition metal oxide satisfying the condition represented by the above general formula is used for the positive electrode active material.

また、上記の比較例2〜9のものにおいては、何れも正極活物質中にCoが含有されているため、上記の実施例1〜3に用いた正極活物質に比べて、正極活物質のコストが高くつくという問題があった。   Moreover, in any of the above Comparative Examples 2 to 9, since Co is contained in the positive electrode active material, compared with the positive electrode active material used in the above Examples 1 to 3, the positive electrode active material There was a problem that the cost was high.

なお、上記の実施例1〜3における三電極式試験用セルにおいては、負極となる対極に金属リチウムを用いたが、実際の非水電解質二次電池を作製する場合には、負極に金属リチウムが析出しないように、負極活物質に金属リチウム以外のものを用いるようにする。   In the three-electrode test cells in Examples 1 to 3, metallic lithium was used for the counter electrode serving as the negative electrode. However, when an actual nonaqueous electrolyte secondary battery was manufactured, metallic lithium was used for the negative electrode. In order to prevent precipitation, a material other than metallic lithium is used as the negative electrode active material.

また、このように金属リチウム以外の負極活物質を用いて非水電解質二次電池を作製するにあたり、前記のように正極における正極活物質と負極における負極活物質との割合を、正極の電位が金属リチウム基準で4.4V(vs.Li/Li+)になるまで充電した時の正極の充電容量に対する負極の充電容量の比が1〜1.35の範囲、正極の電位が金属リチウム基準で4.5V(vs.Li/Li+)になるまで充電した時の正極の充電容量に対する負極の充電容量の比が1〜1.20の範囲、正極の電位が金属リチウム基準で4.6V(vs.Li/Li+)になるまで充電した時の正極の充電容量に対する負極の充電容量の比が1〜1.10の範囲になるようにすると、上記のように正極の電位が金属リチウム基準で4.4〜4.6V(vs.Li/Li+)になる高い電位まで充電させて活性化させた場合にも、負極に金属リチウムが析出して電池が劣化するということがなく、また余分な負極活物質を含有させることによる電池容量が低下するということもない。 Further, in producing a non-aqueous electrolyte secondary battery using a negative electrode active material other than metallic lithium as described above, the ratio of the positive electrode active material in the positive electrode to the negative electrode active material in the negative electrode is determined as follows. The ratio of the charge capacity of the negative electrode to the charge capacity of the positive electrode when charged to 4.4 V (vs. Li / Li + ) based on the metal lithium is in the range of 1-1.35, and the potential of the positive electrode is based on the metal lithium The ratio of the charge capacity of the negative electrode to the charge capacity of the positive electrode when charged to 4.5 V (vs. Li / Li + ) is in the range of 1 to 1.20, and the potential of the positive electrode is 4.6 V (based on metallic lithium). vs. Li / Li + ) When the ratio of the charge capacity of the negative electrode to the charge capacity of the positive electrode when charged to be in the range of 1 to 1.10. 4.4 to 4.6 (Vs.Li/Li +) to a high potential to be allowed to charge even when activated, without that the battery is deteriorated by metal lithium is precipitated on the anode, also to contain extra negative electrode active material Therefore, the battery capacity is not reduced.

本発明の実施例1〜3及び比較例1〜9において作製した正極を作用極に用いた三電極式試験用セルの概略説明図である。It is a schematic explanatory drawing of the three-electrode type test cell which used the positive electrode produced in Examples 1-3 and Comparative Examples 1-9 of this invention for the working electrode.

符号の説明Explanation of symbols

11 作用極(正極)
12 対極(負極)
13 参照極
14 非水電解液
11 Working electrode (positive electrode)
12 Counter electrode (negative electrode)
13 Reference electrode 14 Non-aqueous electrolyte

Claims (8)

一般式Li1+xNiaMnbc2+d(式中、MはNa,K,B,F,Mg,Al,Ti,Cr,V,Fe,Cu,Zn,Nb,Mo,Zr,Sn,Wの群から選択される少なくとも一種の元素であり、x+a+b+c=1,0<x≦0.1,0.7≦a/b≦1.3,0≦c≦0.05,−0.1≦d≦0.1の条件を満たす。)で表されるリチウム含有遷移金属酸化物を正極活物質として含む正極と、金属リチウム以外の負極活物質を含む負極と、リチウムイオン伝導性を有する非水電解質とを備え、上記の正極の電位が金属リチウム基準で4.4〜4.6V(vs.Li/Li+)の範囲になるように充電させて活性化させたことを特徴とする非水電解質二次電池。 Formula Li 1 + x Ni a Mn b M c O 2 + d ( wherein, M is Na, K, B, F, Mg, Al, Ti, Cr, V, Fe, Cu, Zn, Nb, Mo, At least one element selected from the group consisting of Zr, Sn, and W, x + a + b + c = 1, 0 <x ≦ 0.1, 0.7 ≦ a / b ≦ 1.3, 0 ≦ c ≦ 0.05, A positive electrode containing a lithium-containing transition metal oxide represented by -0.1 ≦ d ≦ 0.1 as a positive electrode active material, a negative electrode containing a negative electrode active material other than metallic lithium, and lithium ion conduction A positive non-aqueous electrolyte, and activated by being charged so that the potential of the positive electrode is in a range of 4.4 to 4.6 V (vs. Li / Li + ) with respect to metallic lithium. Non-aqueous electrolyte secondary battery characterized. 請求項1に記載の非水電解質二次電池において、前記の正極活物質として、前記の一般式におけるcが0であるリチウム含有ニッケル・マンガン複合酸化物を用いたことを特徴とする非水電解質二次電池。   2. The nonaqueous electrolyte secondary battery according to claim 1, wherein a lithium-containing nickel / manganese composite oxide in which c in the general formula is 0 is used as the positive electrode active material. 3. Secondary battery. 請求項1又は請求項2に記載の非水電解質二次電池において、前記の正極における正極活物質と負極における負極活物質との割合が、正極の電位が金属リチウム基準で4.4V(vs.Li/Li+)になるまで充電した時の正極の充電容量に対する負極の充電容量の比が1〜1.35の範囲、正極の電位が金属リチウム基準で4.5V(vs.Li/Li+)になるまで充電した時の正極の充電容量に対する負極の充電容量の比が1〜1.20の範囲、正極の電位が金属リチウム基準で4.6V(vs.Li/Li+)になるまで充電した時の正極の充電容量に対する負極の充電容量の比が1〜1.10の範囲になるようにしたことを特徴とする非水電解質二次電池。 3. The nonaqueous electrolyte secondary battery according to claim 1, wherein the ratio of the positive electrode active material in the positive electrode to the negative electrode active material in the negative electrode is such that the potential of the positive electrode is 4.4 V (vs. Li / Li + ratio ranges of charge capacity 1 to 1.35 of the negative electrode to the charge capacity of the positive electrode when the charged until), 4.5V at a potential of the positive electrode metallic lithium reference (vs.Li/Li + ) Until the ratio of the negative electrode charge capacity to the positive electrode charge capacity in the range of 1 to 1.20 when charged until the positive electrode potential is 4.6 V (vs. Li / Li + ) on the basis of metallic lithium. A nonaqueous electrolyte secondary battery characterized in that a ratio of a negative electrode charge capacity to a positive electrode charge capacity when charged is in a range of 1 to 1.10. 請求項1〜請求項3の何れかに記載の非水電解質二次電池において、前記の負極活物質が炭素材料であることを特徴とする非水電解質二次電池。   4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is a carbon material. 5. 請求項1〜請求項4の何れかに記載の非水電解質二次電池において、前記の正極活物質に用いる前記のリチウム含有遷移金属酸化物の一次粒子の平均粒径が0.5μm以上、2μm以下であり、二次粒子の平均粒径が5μm以上、15μm以下であることを特徴とする非水電解質二次電池。   5. The nonaqueous electrolyte secondary battery according to claim 1, wherein an average particle size of primary particles of the lithium-containing transition metal oxide used for the positive electrode active material is 0.5 μm or more and 2 μm. A nonaqueous electrolyte secondary battery having a secondary particle average particle size of 5 μm or more and 15 μm or less. 請求項1〜請求項5の何れか1項に記載の非水電解質二次電池において、前記の非水電解質中に、ビニレンカーボネートが2.0質量%以下の比率で含有されていることを特徴とする非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein vinylene carbonate is contained in the nonaqueous electrolyte at a ratio of 2.0% by mass or less. A non-aqueous electrolyte secondary battery. 請求項1〜請求項6の何れか1項に記載の非水電解質二次電池において、前記の非水電解質における非水系溶媒に、環状カーボネートと鎖状カーボネートとが2/8〜5/5の体積比になったものを用いたことを特徴とする非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the nonaqueous solvent in the nonaqueous electrolyte includes 2/8 to 5/5 of a cyclic carbonate and a chain carbonate. A non-aqueous electrolyte secondary battery using a volume ratio. 一般式Li1+xNiaMnbc2+d(式中、MはNa,K,B,F,Mg,Al,Ti,Cr,V,Fe,Cu,Zn,Nb,Mo,Zr,Sn,Wの群から選択される少なくとも一種の元素であり、x+a+b+c=1,0<x≦0.1,0.7≦a/b≦1.3,0≦c≦0.05,−0.1≦d≦0.1の条件を満たす。)で表されるリチウム含有遷移金属酸化物を正極活物質として含む正極と、金属リチウム以外の負極活物質を含む負極と、リチウムイオン伝導性を有する非水電解質とを備えた非水電解質二次電池を、上記の正極の電位が金属リチウム基準で4.4〜4.6V(vs.Li/Li+)の範囲になるように充電させて活性化させることを特徴とする非水電解質二次電池の製造方法。 Formula Li 1 + x Ni a Mn b M c O 2 + d ( wherein, M is Na, K, B, F, Mg, Al, Ti, Cr, V, Fe, Cu, Zn, Nb, Mo, At least one element selected from the group consisting of Zr, Sn, and W, x + a + b + c = 1, 0 <x ≦ 0.1, 0.7 ≦ a / b ≦ 1.3, 0 ≦ c ≦ 0.05, A positive electrode containing a lithium-containing transition metal oxide represented by -0.1 ≦ d ≦ 0.1 as a positive electrode active material, a negative electrode containing a negative electrode active material other than metallic lithium, and lithium ion conduction A non-aqueous electrolyte secondary battery equipped with a non-aqueous electrolyte having such a property that the potential of the positive electrode is in the range of 4.4 to 4.6 V (vs. Li / Li + ) with respect to metallic lithium. And a method for producing a non-aqueous electrolyte secondary battery.
JP2008061397A 2008-03-11 2008-03-11 Nonaqueous electrolyte secondary battery and manufacturing method therefor Pending JP2009218112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008061397A JP2009218112A (en) 2008-03-11 2008-03-11 Nonaqueous electrolyte secondary battery and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008061397A JP2009218112A (en) 2008-03-11 2008-03-11 Nonaqueous electrolyte secondary battery and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2009218112A true JP2009218112A (en) 2009-09-24

Family

ID=41189756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008061397A Pending JP2009218112A (en) 2008-03-11 2008-03-11 Nonaqueous electrolyte secondary battery and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2009218112A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038564A (en) * 2010-08-06 2012-02-23 Tdk Corp Active material, method for manufacturing active material, and lithium ion secondary battery
US20150079463A1 (en) * 2012-04-27 2015-03-19 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary cell and method for manufacturing same
US9266444B2 (en) 2010-12-28 2016-02-23 Sony Corporation Lithium ion secondary battery, electric tool, electric vehicle, and power storage system
JP2016532250A (en) * 2014-04-04 2016-10-13 エルジー・ケム・リミテッド Secondary battery with improved life performance
US9812709B2 (en) 2010-12-28 2017-11-07 Sony Corporation Lithium secondary battery, positive electrode active material, positive electrode, electric tool, electric vehicle, and power storage system
US10283769B2 (en) 2012-08-02 2019-05-07 Nissan Motor Co., Ltd. Non-aqueous organic electrolyte secondary cell
WO2020111222A1 (en) 2018-11-30 2020-06-04 株式会社村田製作所 Secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325791A (en) * 1993-05-14 1994-11-25 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH10321227A (en) * 1997-05-23 1998-12-04 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2006185794A (en) * 2004-12-28 2006-07-13 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery, and its charging method
JP2006344509A (en) * 2005-06-09 2006-12-21 Nec Corp Lithium secondary battery
JP2007066839A (en) * 2005-09-02 2007-03-15 Sony Corp Cathode active material, manufacturing method of the same, and battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325791A (en) * 1993-05-14 1994-11-25 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH10321227A (en) * 1997-05-23 1998-12-04 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2006185794A (en) * 2004-12-28 2006-07-13 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery, and its charging method
JP2006344509A (en) * 2005-06-09 2006-12-21 Nec Corp Lithium secondary battery
JP2007066839A (en) * 2005-09-02 2007-03-15 Sony Corp Cathode active material, manufacturing method of the same, and battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038564A (en) * 2010-08-06 2012-02-23 Tdk Corp Active material, method for manufacturing active material, and lithium ion secondary battery
CN103069622A (en) * 2010-08-06 2013-04-24 Tdk株式会社 Active material, process for production of active material, and lithium ion secondary battery
US9093712B2 (en) 2010-08-06 2015-07-28 Tdk Corporation Active material, manufacturing method for active material, and lithium ion secondary battery
US9266444B2 (en) 2010-12-28 2016-02-23 Sony Corporation Lithium ion secondary battery, electric tool, electric vehicle, and power storage system
US9812709B2 (en) 2010-12-28 2017-11-07 Sony Corporation Lithium secondary battery, positive electrode active material, positive electrode, electric tool, electric vehicle, and power storage system
US20150079463A1 (en) * 2012-04-27 2015-03-19 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary cell and method for manufacturing same
US9847524B2 (en) * 2012-04-27 2017-12-19 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary cell and method for manufacturing same
US10283769B2 (en) 2012-08-02 2019-05-07 Nissan Motor Co., Ltd. Non-aqueous organic electrolyte secondary cell
JP2016532250A (en) * 2014-04-04 2016-10-13 エルジー・ケム・リミテッド Secondary battery with improved life performance
US9887407B2 (en) 2014-04-04 2018-02-06 Lg Chem, Ltd. Secondary battery with improved life characteristics
US10673045B2 (en) 2014-04-04 2020-06-02 Lg Chem, Ltd. Secondary battery with improved life characteristics
WO2020111222A1 (en) 2018-11-30 2020-06-04 株式会社村田製作所 Secondary battery

Similar Documents

Publication Publication Date Title
JP6589856B2 (en) Nonaqueous electrolyte secondary battery
JP5245373B2 (en) Non-aqueous electrolyte battery
US20090305136A1 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US20140329146A1 (en) Nonaqueous electrolyte secondary battery
WO2017038041A1 (en) Non-aqueous electrolyte secondary battery
US20110195309A1 (en) Nonaqueous electrolyte secondary battery
JP5125559B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP2011070789A (en) Nonaqueous electrolyte secondary battery
WO2015141179A1 (en) Non-aqueous electrolyte secondary battery
WO2011016553A1 (en) Non-aqueous electrolyte secondary battery
WO2010035681A1 (en) Nonaqueous electrolyte secondary battery
JP2010251280A (en) Nonaqueous electrolyte secondary battery
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP6565899B2 (en) Nonaqueous electrolyte secondary battery
JP2009277395A (en) Nonaqueous secondary battery, and nonaqueous secondary battery system
WO2013042421A1 (en) Secondary battery
JP5216973B2 (en) Non-aqueous secondary battery and non-aqueous secondary battery system
JP2014060029A (en) Nonaqueous electrolytic secondary battery
WO2014049977A1 (en) Non-aqueous electrolyte secondary battery
WO2013129376A1 (en) Active material for non-aqueous electrolyte secondary cell, electrode for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and method for producing active material for non-aqueous electrolyte secondary cell
JP5666561B2 (en) Nonaqueous electrolyte secondary battery
JP4078864B2 (en) Negative electrode for secondary battery and secondary battery
JP3563268B2 (en) Lithium secondary battery
JP2022528246A (en) Non-aqueous electrolyte solution additive for lithium secondary batteries, non-aqueous electrolyte solution for lithium secondary batteries and lithium secondary batteries containing this
KR20140116448A (en) Positive electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507