JP3563268B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP3563268B2
JP3563268B2 JP19785598A JP19785598A JP3563268B2 JP 3563268 B2 JP3563268 B2 JP 3563268B2 JP 19785598 A JP19785598 A JP 19785598A JP 19785598 A JP19785598 A JP 19785598A JP 3563268 B2 JP3563268 B2 JP 3563268B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
battery
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19785598A
Other languages
Japanese (ja)
Other versions
JP2000030707A (en
Inventor
道夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP19785598A priority Critical patent/JP3563268B2/en
Publication of JP2000030707A publication Critical patent/JP2000030707A/en
Application granted granted Critical
Publication of JP3563268B2 publication Critical patent/JP3563268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、携帯型電子機器の作動電源、電気自動車あるいはハイブリッド電気自動車等のモータ駆動電源として使用される二次電池のなかで、リチウム遷移金属複合酸化物を正極活物質として用いた、内部抵抗が小さく、高出力なリチウム二次電池に関する。
【0002】
【従来の技術】
近年、携帯電話、VTR、ノート型コンピュータ等の携帯型電子機器の小型軽量化が加速度的に進行しており、その電源用電池としては、正極活物質にリチウム遷移金属複合酸化物を、負極活物質に炭素質材料を、電解液にLiイオン電解質を有機溶媒に溶解した有機電解液を用いた二次電池が用いられるようになってきている。
【0003】
このような電池は、一般的にリチウム二次電池、またはリチウムイオン電池と称せられており、エネルギー密度が大きく、また単電池電圧も約4V程度と高い特徴を有することから、前述の携帯型電子機器のみならず、最近の環境問題を背景に、低公害車として積極的な一般への普及が図られている電気自動車あるいはハイブリッド電気自動車のモータ駆動電源としても注目を集めている。
【0004】
ここで、特に、電気自動車等のモータ駆動用電源として用いられる大容量のリチウム二次電池においては、加速、登坂等に必要な大電流出力を得て、また、充放電効率を高めるために、電池の内部抵抗を低減することが、非常に重要である。
【0005】
そこで、電池を構成する種々の材料の導電性(電子伝導性)に着目し、正極活物質にアセチレンブラック等の導電性微粒子を添加して導電性を改良し、電池の内部抵抗を低抵抗化する試みがなされている。これは、正極活物質として用いられているコバルト酸リチウム(LiCoO)やマンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)等は、リチウムイオン伝導性と電子伝導性とを併せ持つ混合導電体であって、その電子伝導性は必ずしも大きなものではないことによる。
【0006】
【発明が解決しようとする課題】
ここで、アセチレンブラックを添加しない場合には、正極活物質粉体間の接触が悪くなって電池の内部抵抗が増大し、また、正極活物質の利用率が低下し、総じて、電池特性が低下する。このことから、アセチレンブラックの添加が電池の内部抵抗の低減やサイクル特性の向上に寄与していることは明らかである。
【0007】
しかしながら、アセチレンブラックの添加は、正極活物質の充填量を減少させるため、電池容量を低下させるこことなる。また、アセチレンブラックは、カーボンの一種であって半導体であり、その電子伝導率は金属に比べて約3桁低い。したがって、アセチレンブラックによる電子伝導性の向上にも限界があると考えられ、その添加量は、内部抵抗の低減というプラスの効果と、電池容量の低下というマイナスの効果を比較して、適量に設定されることとなる。
【0008】
また、正極活物質粉体は、充放電の際のリチウムイオンの脱離挿入に伴って体積変化を起こすために、添加されたアセチレンブラックは、この体積変化によって正極活物質粉体間の電気的接続、あるいは正極活物質粉体と集電体との電気的接続に寄与しなくなり、経時的に内部抵抗が増大する結果を招いている可能性もある。
【0009】
したがって、正極活物質の導電性の向上を図るためには、正極活物質自体の電気抵抗を低減し、あくまでアセチレンブラックの添加は補助的な導電性の改善に止めることが好ましいと考えられる。しかし、正極活物質自体の電気抵抗を大きく低減する方法はこれまで見出されていなかった。
【0010】
【課題を解決するための手段】
本発明は、上述した従来技術の問題点に鑑みてなされたものであり、その目的とするところは、マンガン酸リチウム(LiMn)を正極活物質として使用した場合に、正極活物質自体の低抵抗化を図り、大出力、高容量のリチウム二次電池を提供することにある。
【0011】
すなわち、本発明によれば、正極活物質として、所定比に調整された各元素の塩および/または酸化物の混合物を、酸化雰囲気、700℃〜900℃の範囲で、5時間〜50時間かけて焼成することによって得られる、MoおよびWのうちの少なくとも1種の元素がMnのモル数に対して1.5モル%以上10モル%以下の添加量で添加されたマンガン酸リチウムスピネルを用いてなるとともに、電解液として、有機溶媒に電解質を溶解した有機電解液を用いてなることを特徴とするリチウム二次電池、が提供される。
【0013】
【発明の実施の形態】
本発明のリチウム二次電池においては、MoおよびWのうちの少なくとも1種の元素(以下、これらの元素群を総称して「添加元素」という。)が添加されたマンガン酸リチウムスピネルを正極活物質として用いてなる。ここで、基礎となるマンガン酸リチウムは一般的に化学式LiMn24で表されるが、LiMn24は、必ずしもこのような化学式で表されるようなストイキオメトリーな組成を有する必要はない。なお、LiMn24は材料が安価である点で、汎用電池用材料として好ましく、また出力密度が大きい点で、特に、電気自動車等のモータ駆動用電源として好適である等の優れた特徴を有している。
【0014】
添加元素が、どのような形でLiMn24中に存在しているかは現在のところ明らかではなく、その態様としては、添加元素がLiMn24中に固溶、つまり、陽イオン間での元素置換が行われて電子伝導性が改善されている場合、添加元素の酸化物または添加元素とLiMn24との化合物が、焼結助剤的にLiMn24の一次粒子間および/または二次粒子間の結合を強固なものとして、LiMn24粒子内および/または粒子間の接触抵抗が低減されている場合、添加元素とLiMn24との反応物が良好な導電性を示し、正極活物質全体の抵抗の低減に寄与している場合等、種々推定される。したがって、添加元素が結晶相として存在しているか、またはアモルファス相として存在しているかもまた、明らかではない。
【0015】
しかしながら、後述する実施例に示すように、原料の調製段階でこれらの添加元素を含ませて得られた正極活物質を用いた電池において、顕著な内部抵抗の低減効果が得られていることは実験的に確認された事実である。つまり、正極活物質自体が低抵抗化されている。
【0016】
さて、LiMn24への添加元素の添加量は、LiMn24中のMnのモル数に対して1.5モル%以上10モル%以下では特に顕著な効果が得られるが、添加量が0.1モル%未満の場合および20モル%超の場合では、電池における内部抵抗の低減効果が認められない。
【0017】
このような本発明の正極活物質の作製は、原料として、所定比に調整された各元素(添加元素およびLi、Mn)の塩および/または酸化物の混合物を、酸化雰囲気、700℃〜900℃の範囲で、5時間〜50時間かけて焼成することで行われる。
【0018】
なお、各元素の塩は特に限定されるものではないが、原料として純度が高くしかも安価なものを使用することができることが好ましく、昇温、焼成時に有害な分解ガスが発生しない炭酸塩、酢酸塩を用いることが、安全衛生面、装置の保守面からも好ましいが、硝酸塩や塩酸塩、硫酸塩等を用いることもできる。
【0019】
さて、電池の作製に使用される正極活物質以外の材料は、特に限定されるものではなく、従来公知の種々の材料を用いることができる。たとえば、負極活物質としては、ソフトカーボンやハードカーボンといったアモルファス系炭素質材料や高黒鉛化炭素材料等の人造黒鉛、あるいは天然黒鉛といった炭素質材料が用いられる。
【0020】
また、電解液としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)といった炭酸エステル系のもの、プロピレンカーボネート(PC)やγ−ブチロラクトン、テトラヒドロフラン、アセトニトリル等の有機溶媒の単独溶媒または混合溶媒に、電解質としてのLiPF6やLiBF4等のリチウム錯体フッ素化合物、あるいはLiClO4といったリチウムハロゲン化物等を1種類または2種類以上を溶解した有機電解液を用いることができる。
【0021】
上述の通り、本発明の添加元素を含んだLiMnを基礎とする正極活物質においては、正極活物質の低抵抗化が図られ、好ましい電気的特性を有するようになる。これにより、電池の内部抵抗の顕著な低減が図られるのみならず、導電助剤の添加量を増量する必要がなくなり、正極活物質自体の充填量を増量することができる。一方、これらの添加元素を所定量ほど含ませても、後述する実施例に示すように、サイクル特性に何ら悪影響を及ぼすことがない。
【0022】
このような特性を有する電池は、特に電気自動車やハイブリッド電気自動車のモータ駆動用電源として用いた場合に、所定の加速性能、登坂性能といった走行性能が維持され、また、一充電当たりの継続走行距離が長く保たれるという優れた効果が得られる。
【0023】
【実施例】
以下、添加元素としてのMo、Wを用いた実施例により、本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
【0024】
(Mo、W添加正極活物質の作製)
出発原料として、市販のLi2CO3、MnO2、WO3 またはMoO3の粉末を用い、Li:Mn:MoまたはW=0.5:1:0.025のモル比組成(Moの添加量はMnのモル数に対して2.5モル%)となるように秤量、混合し、酸化雰囲気、800℃で24時間焼成して正極活物質を得た。以後、こうして得られた正極活物質を「W0.05(2.5モル%)添加LiMn24」のように表記することとし、表1に作製した正極活物質の組成を示す。なお、比較のために、添加元素を含まない正極活物質LiMn24も、同様の条件により作製した。
【0025】
【表1】

Figure 0003563268
【0026】
(電池の製造)
まず、作製した種々の正極活物質のそれぞれについて、正極活物質と、導電材たるアセチレンブラック粉末と、結着材たるポリフッ化ビニリデンを、重量比で50:2:3の比で混合し、正極材料を作製した。その正極材料0.02gを300kg/cm2の圧力で直径20mmφの円板状にプレス成形し、正極とした。こうして作製した正極と、エチレンカーボネートとジエチルカーボネートが等体積比で混合された有機溶媒に電解質としてのLiPF6を1モル/Lなる割合で溶解した電解液と、カーボンからなる負極、および正極と負極を隔てるセパレータを用いて、コインセルを作製した。
【0027】
(電池の内部抵抗の測定)
まず、表1に示した正極活物質を用いたコインセルについて、正極活物質の容量に応じて1Cレートの定電流−定電圧で4.1Vまで充電し、同じく1Cレートの定電流で2.5Vまで放電させる充放電試験を1サイクルのみ行い、充電終了後の休止状態での電位と放電開始直後での電位との差(電位差)を放電電流で除することにより、電池の内部抵抗を求めた。その結果を表1に並記した。添加元素を含まないLiMn24と比較して、MoまたはWを所定量添加した場合に、電池の内部抵抗が著しく低減されていることがわかる。したがって、このような電池における内部抵抗の低減は、正極活物質自体の抵抗が小さくなっていることによるものと言える。
【0028】
次に、添加元素による正極活物質の低抵抗化の効果が得られる範囲を調べるために、表2に示した組成となるように、上述した方法と同様の方法により、正極活物質の作製および電池の作製と内部抵抗の評価を行った。結果を表2に並記する。
【0029】
【表2】
Figure 0003563268
【0030】
添加量がマンガン酸リチウムスピネル中のMnのモル数に対して、0.1モル%以上20モル%以下の場合で電池の内部抵抗が低く抑えられ、1.5モル%以上10モル%以下の場合に、特に顕著な内部抵抗の低減効果が現れることが明らかとなった。一方、0.1モル%未満および20モル%超の場合には、内部抵抗の低減効果はほとんど得られなかった。
【0031】
なお、上述した試験の結果を受けて、WとMoを同時に添加した正極活物質で、上述した実験を行ったところ、同様に、WとMoの合計の添加量がマンガン酸リチウムスピネル中のMnのモル数に対して、1.5モル%以上10モル%以下の範囲で、内部抵抗の低減効果が得られることを確認した
【0032】
(サイクル運転試験)
次いで、表1記載の正極活物質を用いた電池において、先の内部抵抗を測定する場合の充放電と同じ条件で、充放電サイクルを100回繰り返した。その結果、WあるいはMoを添加したことによるサイクル特性の劣化は認められなかった。そして、同様の試験を、表2記載の正極活物質を用いた電池について行ったところ、いずれの電池においても、同等のサイクル特性が得られた。
【0033】
【発明の効果】
上述の通り、本発明のリチウム二次電池によれば、マンガン酸リチウムに所定の添加元素を所定量添加して得られた低抵抗な正極活物質を用いているので、電池の内部抵抗の大幅な低減実現することができる。また、導電助剤の添加量を多くする必要がないので正極活物質の充填量を多くして電池容量を大きくすることができる。これにより、大出力、高容量であってしかも充放電サイクル特性に優れ電池提供することができるという顕著な効果を奏する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a secondary battery used as a driving power source of a portable electronic device, a motor driving power source of an electric vehicle or a hybrid electric vehicle or the like, wherein an internal resistance using a lithium transition metal composite oxide as a positive electrode active material is improved. And a high output lithium secondary battery.
[0002]
[Prior art]
In recent years, portable electronic devices such as mobile phones, VTRs, and notebook computers have been rapidly reduced in size and weight. As a power supply battery, a lithium transition metal composite oxide is used as a positive electrode active material, and a negative electrode active material is used. Secondary batteries using an organic electrolyte obtained by dissolving a carbonaceous material as a substance and a Li ion electrolyte as an electrolyte in an organic solvent have been used.
[0003]
Such batteries are generally rechargeable lithium battery or has been referred to as a lithium ion battery, the energy density is large, since the single-cell voltage also have about about 4V and high characteristic, the aforementioned portable Not only electronic equipment but also a motor drive power source of an electric vehicle or a hybrid electric vehicle, which has been actively spread as a low-emission vehicle due to recent environmental problems, has attracted attention.
[0004]
Here, in particular, in a large-capacity lithium secondary battery used as a power supply for driving a motor of an electric vehicle or the like, in order to obtain a large current output required for acceleration, climbing a slope, etc. It is very important to reduce the internal resistance of the battery.
[0005]
Therefore, focusing on the conductivity (electron conductivity) of various materials that compose the battery, the conductivity is improved by adding conductive fine particles such as acetylene black to the positive electrode active material, and the internal resistance of the battery is reduced. Attempts have been made to do so. This is because lithium cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickel oxide (LiNiO 2 ), and the like used as the positive electrode active material have both lithium ion conductivity and electron conductivity. This is because it is a mixed conductor and its electronic conductivity is not always large.
[0006]
[Problems to be solved by the invention]
Here, when acetylene black is not added, the contact between the positive electrode active material powders deteriorates, the internal resistance of the battery increases, and the utilization rate of the positive electrode active material decreases, and the battery characteristics generally decrease. I do. From this, it is clear that the addition of acetylene black contributes to the reduction of the internal resistance of the battery and the improvement of the cycle characteristics.
[0007]
However, the addition of acetylene black reduces the filling amount of the positive electrode active material, which is a factor that lowers the battery capacity. Acetylene black is a type of carbon and is a semiconductor, and its electronic conductivity is about three orders of magnitude lower than that of metals. Therefore, it is thought that there is a limit to the improvement of electron conductivity by acetylene black, and the addition amount is set to an appropriate amount by comparing the positive effect of reducing internal resistance and the negative effect of lowering battery capacity. Will be done.
[0008]
In addition, since the positive electrode active material powder undergoes a volume change accompanying the desorption and insertion of lithium ions during charge and discharge, the added acetylene black causes the electric current between the positive electrode active material powder to change due to this volume change. It may not contribute to the connection or the electrical connection between the positive electrode active material powder and the current collector, which may result in an increase in internal resistance over time.
[0009]
Therefore, in order to improve the conductivity of the positive electrode active material, it is considered preferable to reduce the electric resistance of the positive electrode active material itself and to stop the addition of acetylene black to the auxiliary conductivity improvement. However, a method for greatly reducing the electric resistance of the positive electrode active material itself has not been found so far.
[0010]
[Means for Solving the Problems]
The present invention has been made in view of the above-described problems of the related art, and an object of the present invention is to use lithium manganate (LiMn 2 O 4 ) as a positive electrode active material, To provide a high-output, high-capacity lithium secondary battery.
[0011]
That is, according to the present invention, a mixture of a salt and / or an oxide of each element adjusted to a predetermined ratio is used as a positive electrode active material in an oxidizing atmosphere at a temperature of 700 to 900 ° C. for 5 to 50 hours. obtained by firing Te, at least one element is added, the lithium manganate spinel in amount of 1.5 mol% to 10 mol% or less with respect to the number of moles of Mn of the Mo contact and W The present invention provides a lithium secondary battery characterized by using an organic electrolytic solution obtained by dissolving an electrolyte in an organic solvent as the electrolytic solution .
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the lithium secondary battery of the present invention, at least one element of Mo Contact and W (hereinafter collectively referred to element group called "additive element".) The positive electrode of the lithium manganate spinel is added Used as an active material. Here, the basic lithium manganate is generally represented by a chemical formula LiMn 2 O 4 , but LiMn 2 O 4 does not necessarily need to have a stoichiometric composition represented by such a chemical formula. Absent. In addition, LiMn 2 O 4 is preferable as a material for general-purpose batteries in that the material is inexpensive, and has excellent characteristics such as being suitable as a power source for driving a motor of an electric vehicle or the like in terms of a high output density. Have.
[0014]
It is not clear at present how the additive element is present in LiMn 2 O 4 , and as an embodiment, the additive element forms a solid solution in LiMn 2 O 4 , that is, between the cations. When the electron conductivity is improved by performing element substitution of, an oxide of the additive element or a compound of the additive element and LiMn 2 O 4 is used as a sintering aid between primary particles of LiMn 2 O 4 and If the contact resistance within the LiMn 2 O 4 particles and / or between the particles is reduced by strengthening the bond between the secondary particles and / or the reaction between the additive element and LiMn 2 O 4 , good conductivity is obtained. It is estimated in various ways, for example, when it shows the property and contributes to the reduction of the resistance of the whole positive electrode active material. Therefore, it is also not clear whether the additional element exists as a crystalline phase or as an amorphous phase.
[0015]
However, as shown in the examples described below, in the battery using the positive electrode active material obtained by including these additional elements at the stage of preparing the raw material, a remarkable effect of reducing the internal resistance is obtained. This is an experimentally confirmed fact. That is, the positive electrode active material itself has a reduced resistance.
[0016]
Now, the addition amount of the additive element to LiMn 2 O 4 is to moles of Mn in LiMn 2 O 4 1. Although 5 Ru particularly remarkable effect can be obtained in 10 mol% or less, in the case added pressure amount in the case and 20 mol% of less than 0.1 mol%, observed effect of reducing the internal resistance of the battery Absent.
[0017]
In the production of such a positive electrode active material of the present invention, a mixture of a salt and / or an oxide of each element (additional element and Li, Mn) adjusted to a predetermined ratio is used as a raw material in an oxidizing atmosphere at 700 ° C. to 900 ° C. The firing is performed in the range of 5 ° C. for 5 hours to 50 hours.
[0018]
Incidentally, although not salts of the respective elements are particularly limited, lay preferable to be able to use a purity Moreover inexpensive high as the raw material, heating, carbonates harmful decomposition gases during firing does not occur, The use of acetate is preferable from the viewpoint of safety and health and maintenance of the apparatus, but nitrate, hydrochloride, sulfate and the like can also be used.
[0019]
The material other than the positive electrode active material used for manufacturing the battery is not particularly limited, and various conventionally known materials can be used. For example, as the negative electrode active material, an amorphous carbonaceous material such as soft carbon or hard carbon, artificial graphite such as highly graphitized carbon material, or a carbonaceous material such as natural graphite is used.
[0020]
Also, electrodeposition as the solution liquid of ethylene carbonate (EC), diethyl carbonate (DEC), one of the carbonic ester such as dimethyl carbonate (DMC), propylene carbonate (PC) and γ- butyrolactone, tetrahydrofuran, in organic solvent such as acetonitrile An organic electrolyte in which one or more lithium complex fluorine compounds such as LiPF 6 or LiBF 4 as electrolytes or lithium halides such as LiClO 4 are dissolved in a single solvent or a mixed solvent can be used.
[0021]
As described above, in the positive electrode active material based on LiMn 2 O 4 containing the additional element of the present invention, the resistance of the positive electrode active material is reduced, and preferable electric characteristics are obtained. This not only significantly reduces the internal resistance of the battery, but also eliminates the need to increase the amount of the conductive additive, thereby increasing the filling amount of the positive electrode active material itself. On the other hand, even if a predetermined amount of these additional elements is contained, there is no adverse effect on the cycle characteristics as shown in the examples described later.
[0022]
The battery having such characteristics maintains traveling performance such as a predetermined acceleration performance and a hill-climbing performance, particularly when used as a power supply for driving a motor of an electric vehicle or a hybrid electric vehicle. An excellent effect that the distance is kept long can be obtained.
[0023]
【Example】
Hereinafter, the actual施例with M o, W to an additional element, the present invention will be described in more detail, the present invention is not limited to the following examples.
[0024]
(Preparation of Mo, W-added cathode active material)
As a starting material, a commercially available powder of Li 2 CO 3 , MnO 2 , WO 3 or MoO 3 is used, and a molar ratio composition of Li: Mn: Mo or W = 0.5: 1: 0.025 (addition of Mo) The amount was 2.5 mol% based on the number of moles of Mn) , mixed, and calcined at 800 ° C. for 24 hours in an oxidizing atmosphere to obtain a positive electrode active material. Hereinafter, the positive electrode active material thus obtained is referred to as “W0.05 (2.5 mol%) added LiMn 2 O 4 ”, and Table 1 shows the composition of the prepared positive electrode active material. For comparison, a positive electrode active material LiMn 2 O 4 containing no additional element was also manufactured under the same conditions.
[0025]
[Table 1]
Figure 0003563268
[0026]
(Manufacture of batteries)
First, for each of the various prepared positive electrode active materials, a positive electrode active material, acetylene black powder as a conductive material, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 50: 2: 3, and the positive electrode was mixed. Materials were made. 0.02 g of the positive electrode material was press-formed at a pressure of 300 kg / cm 2 into a disk having a diameter of 20 mmφ to obtain a positive electrode. The positive electrode thus prepared, an electrolytic solution in which LiPF 6 as an electrolyte is dissolved at a ratio of 1 mol / L in an organic solvent in which ethylene carbonate and diethyl carbonate are mixed at an equal volume ratio, a negative electrode made of carbon, and a positive electrode and a negative electrode A coin cell was produced using a separator separating the above.
[0027]
(Measurement of battery internal resistance)
First, a coin cell using the positive electrode active material shown in Table 1 was charged up to 4.1 V at a constant current of 1 C rate-constant voltage according to the capacity of the positive electrode active material, and 2.5 V at a constant current of 1 C rate. The battery was subjected to only one cycle of a charge / discharge test, and the difference between the potential in the resting state after the charge was completed and the potential immediately after the start of the discharge (potential difference) was divided by the discharge current to determine the internal resistance of the battery. . The results are shown in Table 1. It can be seen that the internal resistance of the battery is significantly reduced when a predetermined amount of Mo or W is added, as compared with LiMn 2 O 4 containing no additional element. Therefore, it can be said that the decrease in the internal resistance in such a battery is due to the decrease in the resistance of the positive electrode active material itself.
[0028]
Next, in order to examine a range in which the effect of reducing the resistance of the positive electrode active material by the added element can be obtained, the production of the positive electrode active material was performed by the same method as described above so that the composition shown in Table 2 was obtained. The battery was fabricated and the internal resistance was evaluated. The results are listed in Table 2.
[0029]
[Table 2]
Figure 0003563268
[0030]
When the addition amount is 0.1 mol % or more and 20 mol % or less with respect to the number of moles of Mn in the lithium manganate spinel, the internal resistance of the battery is suppressed low, and 1.5 mol % or more and 10 mol % or less. In this case, it was revealed that a particularly significant effect of reducing the internal resistance appeared. On the other hand, when it is less than 0.1 mol % and more than 20 mol %, the effect of reducing the internal resistance was hardly obtained.
[0031]
In addition, based on the result of the above-mentioned test, when the above-mentioned experiment was performed using the positive electrode active material to which W and Mo were simultaneously added, similarly, the total addition amount of W and Mo was Mn in the lithium manganate spinel. It was confirmed that the effect of reducing the internal resistance was obtained in the range of 1.5 mol% or more and 10 mol% or less with respect to the number of moles .
[0032]
(Cycle operation test)
Next, in the battery using the positive electrode active material shown in Table 1, the charge / discharge cycle was repeated 100 times under the same conditions as the charge / discharge when measuring the internal resistance. As a result, no deterioration in cycle characteristics due to the addition of W or Mo was observed. Then, the same test, was performed on batteries using the positive electrode active material described in Table 2, in any of the cell, similar cycle characteristics were obtained.
[0033]
【The invention's effect】
As described above, according to the lithium secondary battery of the present invention, since a low-resistance positive electrode active material obtained by adding a predetermined amount of a predetermined element to lithium manganate is used, the internal resistance of the battery is significantly increased. It is possible to realize a significant reduction. In addition, since it is not necessary to increase the amount of the conductive additive, the amount of the positive electrode active material can be increased to increase the battery capacity. As a result, a remarkable effect that a battery having high output and high capacity and excellent in charge / discharge cycle characteristics can be provided can be provided.

Claims (1)

正極活物質として、所定比に調整された各元素の塩および/または酸化物の混合物を、酸化雰囲気、700℃〜900℃の範囲で、5時間〜50時間かけて焼成することによって得られる、MoおよびWのうちの少なくとも1種の元素がMnのモル数に対して1.5モル%以上10モル%以下の添加量で添加されたマンガン酸リチウムスピネルを用いてなるとともに、電解液として、有機溶媒に電解質を溶解した有機電解液を用いてなることを特徴とするリチウム二次電池。The positive electrode active material is obtained by firing a mixture of salts and / or oxides of the respective elements adjusted to a predetermined ratio in an oxidizing atmosphere at 700 ° C. to 900 ° C. for 5 hours to 50 hours . together comprising using at least one element is added, the lithium manganate spinel in amount of 1.5 mol% to 10 mol% or less with respect to the number of moles of Mn of the Mo contact and W, as an electrolyte A lithium secondary battery comprising an organic electrolytic solution obtained by dissolving an electrolyte in an organic solvent .
JP19785598A 1998-07-13 1998-07-13 Lithium secondary battery Expired - Fee Related JP3563268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19785598A JP3563268B2 (en) 1998-07-13 1998-07-13 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19785598A JP3563268B2 (en) 1998-07-13 1998-07-13 Lithium secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004000548A Division JP2004152777A (en) 2004-01-05 2004-01-05 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000030707A JP2000030707A (en) 2000-01-28
JP3563268B2 true JP3563268B2 (en) 2004-09-08

Family

ID=16381466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19785598A Expired - Fee Related JP3563268B2 (en) 1998-07-13 1998-07-13 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3563268B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613943B2 (en) * 2006-11-10 2011-01-19 三菱化学株式会社 Lithium transition metal-based compound powder, method for producing the same, spray-dried body as a pre-fired body, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JPWO2010150626A1 (en) 2009-06-25 2012-12-10 日本碍子株式会社 Method for producing spinel type lithium manganate and method for producing positive electrode active material for lithium secondary battery
KR101264333B1 (en) * 2011-01-12 2013-05-14 삼성에스디아이 주식회사 Cathode active material, cathode and lithium battery containing the same, and preparation method thereof
JP6417888B2 (en) 2014-11-20 2018-11-07 戸田工業株式会社 Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6428192B2 (en) * 2014-11-20 2018-11-28 戸田工業株式会社 Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2000030707A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
KR100670507B1 (en) Lithium secondary battery
US7892679B2 (en) Non-aqueous electrolyte secondary battery
US9083062B2 (en) Battery packs for vehicles and high capacity pouch secondary batteries for incorporation into compact battery packs
JP3142522B2 (en) Lithium secondary battery
JP5052161B2 (en) Nonaqueous electrolyte secondary battery
US20160380309A1 (en) Long-life lithium-ion batteries
JP2005078820A (en) Non-aqueous electrolyte secondary battery
JP2019520687A (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte for lithium secondary battery containing the same, and lithium secondary battery
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
CN111048831B (en) Electrolyte for secondary battery and lithium secondary battery comprising same
JP2000228195A (en) Lithium secondary battery
JP2000200607A (en) Lithium secondary battery
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP6400364B2 (en) Cathode active material for non-aqueous secondary battery and method for producing the same
JP3563268B2 (en) Lithium secondary battery
JP2004235166A (en) Lithium secondary battery
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP7357994B2 (en) Method for producing positive electrode active material for secondary batteries
JP2020513653A (en) Active material for positive electrode of battery cell, positive electrode and battery cell
JP3497420B2 (en) Lithium secondary battery
JP3566106B2 (en) Lithium secondary battery
JP4078864B2 (en) Negative electrode for secondary battery and secondary battery
JP5666561B2 (en) Nonaqueous electrolyte secondary battery
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
KR100378012B1 (en) Positive active material composition for lithium secondary battery and lithium secondary battery using same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees