JP2000030707A - Lithium secondary battery - Google Patents
Lithium secondary batteryInfo
- Publication number
- JP2000030707A JP2000030707A JP10197855A JP19785598A JP2000030707A JP 2000030707 A JP2000030707 A JP 2000030707A JP 10197855 A JP10197855 A JP 10197855A JP 19785598 A JP19785598 A JP 19785598A JP 2000030707 A JP2000030707 A JP 2000030707A
- Authority
- JP
- Japan
- Prior art keywords
- electrode active
- active material
- positive electrode
- mol
- internal resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】 本発明は、携帯型電子機器
の作動電源、電気自動車あるいはハイブリッド電気自動
車等のモータ駆動電源として使用される二次電池のなか
で、リチウム遷移金属複合酸化物を正極活物質として用
いた、内部抵抗が小さく、高出力なリチウム二次電池に
関する。BACKGROUND OF THE INVENTION The present invention relates to a secondary battery used as an operating power source for a portable electronic device or a motor driving power source for an electric vehicle or a hybrid electric vehicle. The present invention relates to a high-output lithium secondary battery having a low internal resistance and used as a substance.
【0002】[0002]
【従来の技術】 近年、携帯電話、VTR、ノート型コ
ンピュータ等の携帯型電子機器の小型軽量化が加速度的
に進行しており、その電源用電池としては、正極活物質
にリチウム遷移金属複合酸化物を、負極活物質に炭素質
材料を、電解液にLiイオン電解質を有機溶媒に溶解し
た有機電解液を用いた二次電池が用いられるようになっ
てきている。2. Description of the Related Art In recent years, portable electronic devices such as mobile phones, VTRs, and notebook computers have been rapidly reduced in size and weight. As a power supply battery, a lithium transition metal composite oxide is used as a positive electrode active material. A secondary battery using an organic electrolytic solution obtained by dissolving a carbonaceous material as an anode active material and a Li-ion electrolyte in an organic solvent as an electrolytic solution has been used.
【0003】 このような電池は、一般的にリチウム二
次電池、もしくはリチウムイオン電池と称せられてお
り、エネルギー密度が大きく、また単電池電圧も約4V
程度と高い特徴を有することから、前記携帯型電子機器
のみならず、最近の環境問題を背景に、低公害車として
積極的な一般への普及が図られている電気自動車あるい
はハイブリッド電気自動車のモータ駆動電源としても注
目を集めている。[0003] Such a battery is generally called a lithium secondary battery or a lithium ion battery, and has a large energy density and a cell voltage of about 4V.
Due to its high degree of characteristics, not only the portable electronic device but also a motor of an electric vehicle or a hybrid electric vehicle which is actively spread as a low-emission vehicle due to recent environmental problems. It is also attracting attention as a drive power supply.
【0004】 ここで、特に、電気自動車等のモータ駆
動用電源として用いられる大容量のリチウム二次電池に
おいては、加速、登坂等に必要な大電流出力を得て、ま
た、充放電効率を高めるために、電池の内部抵抗を低減
することが、非常に重要である。Here, in particular, in a large-capacity lithium secondary battery used as a power source for driving a motor of an electric vehicle or the like, a large current output required for acceleration, climbing a slope, or the like is obtained, and charge / discharge efficiency is increased. Therefore, it is very important to reduce the internal resistance of the battery.
【0005】 そこで、電池を構成する種々の材料の導
電性(電子伝導性)に着目し、正極活物質にアセチレン
ブラック等の導電性微粒子を添加して導電性を改良し、
電池の内部抵抗を低抵抗化する試みがなされている。こ
れは、正極活物質として用いられているコバルト酸リチ
ウム(LiCoO2)やマンガン酸リチウム(LiMn2
O4)、ニッケル酸リチウム(LiNiO2)等は、リチ
ウムイオン伝導性と電子伝導性とを併せ持つ混合導電体
であって、その電子伝導性は必ずしも大きなものではな
いことによる。Therefore, focusing on the conductivity (electron conductivity) of various materials constituting the battery, the conductivity is improved by adding conductive fine particles such as acetylene black to the positive electrode active material.
Attempts have been made to lower the internal resistance of batteries. This is because lithium cobalt oxide (LiCoO 2 ) or lithium manganate (LiMn 2 ) used as a positive electrode active material is used.
O 4 ), lithium nickelate (LiNiO 2 ), and the like are mixed conductors having both lithium ion conductivity and electron conductivity, and the electron conductivity is not necessarily large.
【0006】[0006]
【発明が解決しようとする課題】 ここで、アセチレン
ブラックを添加しない場合には、正極活物質粉体間の接
触が悪くなって電池の内部抵抗が増大し、また、正極活
物質の利用率が低下し、総じて、電池特性が低下する。
このことから、アセチレンブラックの添加が電池の内部
抵抗の低減やサイクル特性の向上に寄与していることは
明らかである。Here, when acetylene black is not added, the contact between the positive electrode active material powders deteriorates, the internal resistance of the battery increases, and the utilization rate of the positive electrode active material decreases. And, generally, battery characteristics.
From this, it is clear that the addition of acetylene black contributes to a reduction in internal resistance of the battery and an improvement in cycle characteristics.
【0007】 しかしながら、アセチレンブラックの添
加は、正極活物質の充填量を減少させるため、電池容量
を低下させるこことなる。また、アセチレンブラック
は、カーボンの一種であって半導体であり、その電子伝
導率は金属に比べて約3桁低い。したがって、アセチレ
ンブラックによる電子伝導性の向上にも限界があると考
えられ、その添加量は、内部抵抗の低減というプラスの
効果と、電池容量の低下というマイナスの効果を比較し
て、適量に設定されることとなる。[0007] However, the addition of acetylene black reduces the filling amount of the positive electrode active material, which is a factor that lowers the battery capacity. Acetylene black is a type of carbon and is a semiconductor, and its electronic conductivity is about three orders of magnitude lower than that of metals. Therefore, it is thought that there is a limit in the improvement of electron conductivity by acetylene black, and the amount of addition is set to an appropriate amount by comparing the positive effect of reducing the internal resistance and the negative effect of reducing the battery capacity. Will be done.
【0008】 また、正極活物質粉体は、充放電の際の
リチウムイオンの脱離挿入に伴って体積変化を起こすた
めに、添加されたアセチレンブラックは、この体積変化
によって正極活物質粉体間の電気的接続、あるいは正極
活物質粉体と集電体との電気的接続に寄与しなくなり、
経時的に内部抵抗が増大する結果を招いている可能性も
ある。Further, since the positive electrode active material powder undergoes a volume change due to the desorption and insertion of lithium ions during charge and discharge, the added acetylene black causes the volume change of the positive electrode active material powder due to the volume change. Does not contribute to the electrical connection of the positive electrode active material powder and the current collector,
It is possible that the internal resistance increases over time.
【0009】 したがって、正極活物質の導電性の向上
を図るためには、正極活物質自体の電気抵抗を低減し、
あくまでアセチレンブラックの添加は補助的な導電性の
改善に止めることが好ましいと考えられる。しかし、正
極活物質自体の電気抵抗を大きく低減する方法はこれま
で見出されていなかった。Therefore, in order to improve the conductivity of the positive electrode active material, the electric resistance of the positive electrode active material itself is reduced,
It is considered that the addition of acetylene black is preferably limited to auxiliary conductivity improvement. However, a method for greatly reducing the electric resistance of the positive electrode active material itself has not been found so far.
【0010】[0010]
【課題を解決するための手段】 本発明は、上述した従
来技術の問題点に鑑みてなされたものであり、その目的
とするところは、マンガン酸リチウム(LiMn2O4)
を正極活物質として使用した場合に、正極活物質自体の
低抵抗化を図り、大出力、高容量のリチウム二次電池を
提供することにある。Means for Solving the Problems The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide lithium manganate (LiMn 2 O 4 ).
It is an object of the present invention to provide a high-output, high-capacity lithium secondary battery by reducing the resistance of the positive electrode active material itself when using as a positive electrode active material.
【0011】 すなわち、本発明によれば、B、Bi、
Mo、P、Cr、V、Wの中から選ばれた少なくとも1
種類以上の元素を添加してなるマンガン酸リチウムスピ
ネルを正極活物質として用いたことを特徴とするリチウ
ム二次電池、が提供される。That is, according to the present invention, B, Bi,
At least one selected from Mo, P, Cr, V, W
A lithium secondary battery is provided, which uses a lithium manganate spinel to which at least two or more kinds of elements are added as a positive electrode active material.
【0012】 ここで、マンガン酸リチウムスピネルへ
の元素の添加量は、マンガン酸リチウムスピネル中のM
nのモル数に対して0.1mol%以上20mol%以
下とすることが好ましく、特に、1.5mol%以上1
0mol%以下とすると、より好ましい。このような正
極活物質の作製は、好適には、所定比に調整された各元
素の塩および/または酸化物の混合物を、酸化雰囲気、
700℃〜900℃の範囲で、5時間〜50時間かけて
焼成して行われる。Here, the addition amount of the element to the lithium manganate spinel is determined by M
n is preferably 0.1 mol% or more and 20 mol% or less, particularly 1.5 mol% or more and 1 mol
More preferably, it is 0 mol% or less. In the preparation of such a positive electrode active material, a mixture of salts and / or oxides of the respective elements adjusted to a predetermined ratio is preferably added to an oxidizing atmosphere,
The firing is performed in the range of 700 ° C to 900 ° C for 5 hours to 50 hours.
【0013】[0013]
【発明の実施の形態】 本発明のリチウム二次電池にお
いては、B、Bi、Mo、P、Cr、V、W(以下、こ
れらの元素群を総称して「添加元素」という。)の中か
ら選ばれた少なくとも1種類以上の元素を添加してなる
マンガン酸リチウムスピネルを正極活物質として用い
る。ここで、基礎となるマンガン酸リチウムは一般的に
化学式LiMn2O4で表されるが、LiMn2O4は、必
ずしもこのような化学式で表されるようなストイキオメ
トリーな組成を有する必要はない。なお、LiMn2O4
は材料が安価である点で、汎用電池用材料として好まし
く、また出力密度が大きい点で、特に電気自動車等のモ
ータ駆動用電源として好適である等の優れた特徴を有し
ている。BEST MODE FOR CARRYING OUT THE INVENTION In the lithium secondary battery of the present invention, B, Bi, Mo, P, Cr, V, and W (hereinafter, these element groups are collectively referred to as “additional elements”). Lithium manganate spinel obtained by adding at least one element selected from the above is used as a positive electrode active material. Here, the basic lithium manganate is generally represented by a chemical formula LiMn 2 O 4 , but LiMn 2 O 4 does not necessarily have to have a stoichiometric composition as represented by such a chemical formula. Absent. Note that LiMn 2 O 4
Has excellent features such as being preferred as a general-purpose battery material in that the material is inexpensive, and being particularly suitable as a power source for driving a motor of an electric vehicle or the like because of its high output density.
【0014】 添加元素が、どのような形でLiMn2
O4中に存在しているかは現在のところ明らかではな
く、その態様としては、添加元素がLiMn2O4中に固
溶、つまり、陽イオン間での元素置換が行われて電子伝
導性が改善されている場合、添加元素の酸化物もしくは
添加元素とLiMn2O4との化合物が、焼結助剤的にL
iMn2O4の一次粒子間及び/又は二次粒子間の結合を
強固なものとして、LiMn2O4粒子内及び/又は粒子
間の接触抵抗が低減されている場合、添加元素とLiM
n2O4との反応物が良好な導電性を示し、正極活物質全
体の抵抗の低減に寄与している場合等、種々推定され
る。したがって、添加元素が結晶相として存在している
か、またはアモルファス相として存在しているかもま
た、明らかではない。The additive element is LiMn 2 in any form.
At present, it is not clear whether it is present in O 4 , and as an aspect, the additive element forms a solid solution in LiMn 2 O 4 , that is, element substitution is performed between cations, and electron conductivity is increased. In the case of improvement, the oxide of the additive element or the compound of the additive element and LiMn 2 O 4 is converted into a sintering aid by L
When the contact resistance between LiMn 2 O 4 particles and / or between particles is reduced by strengthening the bond between primary particles and / or between secondary particles of iMn 2 O 4 , the additive element and LiM
It is presumed that the reaction product with n 2 O 4 shows good conductivity and contributes to the reduction of the resistance of the entire positive electrode active material, and various other factors are considered. Therefore, it is not clear whether the additive element exists as a crystalline phase or as an amorphous phase.
【0015】 しかしながら、後述する実施例に示すよ
うに、原料の調製段階でこれらの添加元素を含ませて得
られた正極活物質を用いた電池において、顕著な内部抵
抗の低減効果が得られていることは実験的に確認された
事実である。つまり、正極活物質自体が低抵抗化されて
いる。However, as shown in the examples described later, in the battery using the positive electrode active material obtained by incorporating these additional elements in the raw material preparation stage, a remarkable effect of reducing the internal resistance was obtained. Is a fact confirmed experimentally. That is, the resistance of the positive electrode active material itself is reduced.
【0016】 さて、LiMn2O4への添加元素の添加
量は、LiMn2O4中のMnのモル数に対して0.1m
ol%以上20mol%以下とすることが好ましく、さ
らに、1.5mol%以上10mol%以下では特に顕
著な効果が得られ、好ましい。添加量が0.1mol%
未満の場合および20mol%超の場合では、電池にお
ける内部抵抗の低減効果が認められない。The amount of the additional element added to LiMn 2 O 4 is 0.1 m with respect to the number of moles of Mn in LiMn 2 O 4.
ol% or more and 20 mol% or less, and more preferably 1.5 mol% or more and 10 mol% or less, since a particularly remarkable effect is obtained. 0.1mol% added
If it is less than 20% or more than 20 mol%, the effect of reducing the internal resistance in the battery is not recognized.
【0017】 このような本発明の正極活物質の作製
は、原料として、所定比に調整された各元素(添加元素
およびLi、Mn)の塩および/または酸化物の混合物
を、酸化雰囲気、700℃〜900℃の範囲で、5時間
〜50時間かけて焼成することで行われる。In the production of such a positive electrode active material of the present invention, a mixture of a salt and / or an oxide of each element (additive element and Li, Mn) adjusted to a predetermined ratio is used as a raw material in an oxidation atmosphere, It is carried out by baking in a range of 5 ° C. to 900 ° C. for 5 hours to 50 hours.
【0018】 なお、各元素の塩は特に限定されるもの
ではないが、原料として純度が高くしかも安価なものを
使用することができることが好ましいことはいうまでも
なく、昇温、焼成時に有害な分解ガスが発生しない炭酸
塩、酢酸塩を用いることが、安全衛生面、装置の保守面
からも好ましいが、硝酸塩や塩酸塩、硫酸塩等を用いる
こともできる。The salt of each element is not particularly limited, but needless to say, it is preferable to use a high-purity and inexpensive material as a raw material. It is preferable to use carbonates and acetates that do not generate decomposition gas from the viewpoint of safety and health and maintenance of the apparatus, but nitrates, hydrochlorides, sulfates and the like can also be used.
【0019】 さて、電池の作製に使用される正極活物
質以外の材料は、特に限定されるものではなく、従来公
知の種々の材料を用いることができる。たとえば、負極
活物質としては、ソフトカーボンやハードカーボンとい
ったアモルファス系炭素質材料や高黒鉛化炭素材料等の
人造黒鉛、あるいは天然黒鉛といった炭素質材料が用い
られる。The material other than the positive electrode active material used for manufacturing the battery is not particularly limited, and various conventionally known materials can be used. For example, as the negative electrode active material, an amorphous carbon material such as soft carbon or hard carbon, artificial graphite such as highly graphitized carbon material, or a carbon material such as natural graphite is used.
【0020】 また、有機電解液としては、エチレンカ
ーボネート(EC)、ジエチルカーボネート(DE
C)、ジメチルカーボネート(DMC)といった炭酸エ
ステル系のもの、プロピレンカーボネート(PC)やγ
−ブチロラクトン、テトラヒドロフラン、アセトニトリ
ル等の有機溶媒の単独溶媒もしくは混合溶媒に、電解質
としてのLiPF6やLiBF4等のリチウム錯体フッ素
化合物、あるいはLiClO4といったリチウムハロゲ
ン化物等を1種類もしくは2種類以上を溶解したものを
用いることができる。As the organic electrolyte, ethylene carbonate (EC), diethyl carbonate (DE)
C), carbonates such as dimethyl carbonate (DMC), propylene carbonate (PC) and γ
- butyrolactone, dissolved in tetrahydrofuran, alone or a mixed solvent of an organic solvent such as acetonitrile, lithium complex fluorine compound such as LiPF 6 and LiBF 4 as an electrolyte, or one or two or more kinds of LiClO 4 lithium halides such as Can be used.
【0021】 上述の通り、本発明の添加元素を含んだ
LiMn2O4を基礎とする正極活物質においては、正極
活物質の低抵抗化が図られ、好ましい電気的特性を有す
るようになる。これにより、電池の内部抵抗の顕著な低
減が図られるのみならず、導電助剤の添加量を増量する
必要がなくなり、正極活物質自体の充填量を増量するこ
とができる。一方、これらの添加元素を所定量ほど含ま
せても、後述する実施例に示すように、サイクル特性に
何ら悪影響を及ぼすことがない。As described above, in the positive electrode active material based on LiMn 2 O 4 containing the additive element of the present invention, the positive electrode active material has low resistance and has favorable electric characteristics. This not only significantly reduces the internal resistance of the battery, but also eliminates the need to increase the amount of the conductive additive, thereby increasing the filling amount of the positive electrode active material itself. On the other hand, even if a predetermined amount of these additional elements is contained, there is no adverse effect on the cycle characteristics as shown in the examples described later.
【0022】 このような特性を有する電池は、特に電
気自動車やハイブリッド電気自動車のモータ駆動用電源
として用いた場合に、所定の加速性能、登坂性能といっ
た走行性能が維持され、また、一充電当たりの継続走行
距離が長く保たれるという優れた効果が得られる。A battery having such characteristics maintains traveling performance such as a predetermined acceleration performance and a hill-climbing performance particularly when used as a power supply for driving a motor of an electric vehicle or a hybrid electric vehicle, and also has a function of charging per charge. The excellent effect that the continuous running distance is kept long can be obtained.
【0023】[0023]
【実施例】 以下、添加元素として、Mo、Wを用いた
場合の実施例により、本発明をさらに詳細に説明する
が、本発明が以下の実施例に限定されるものでないこと
はいうまでもない。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples in which Mo and W are used as additional elements. However, needless to say, the present invention is not limited to the following examples. Absent.
【0024】 (Mo、W添加正極活物質の作製)出発
原料として、市販のLi2CO3、MnO2、WO3もしく
はMoO3の粉末を用い、Li:Mn:MoもしくはW
=0.5:1:0.025(=1:2:0.05)のモ
ル比組成となるように秤量、混合し、酸化雰囲気、80
0℃で24時間焼成して正極活物質を得た。以後、こう
して得られた正極活物質を「W0.05添加LiMn2
O4」のように表記することとし、表1に作製した正極
活物質の組成を示す。なお、比較のために、添加元素を
含まない正極活物質LiMn2O4も、同様の条件により
作製した。(Preparation of Mo and W Added Positive Electrode Active Material) A commercially available powder of Li 2 CO 3 , MnO 2 , WO 3 or MoO 3 is used as a starting material, and Li: Mn: Mo or W
= 0.5: 1: 0.025 (= 1: 2: 0.05).
The mixture was fired at 0 ° C. for 24 hours to obtain a positive electrode active material. Thereafter, the positive electrode active material thus obtained was referred to as “W0.05-added LiMn 2
O 4 "notation and that as shows the composition of a positive electrode active material prepared in Table 1. For comparison, a positive electrode active material LiMn 2 O 4 containing no additional element was also manufactured under the same conditions.
【0025】[0025]
【表1】 [Table 1]
【0026】 (電池の製造)まず、作製した種々の正
極活物質のそれぞれについて、正極活物質と、導電材た
るアセチレンブラック粉末と、結着材たるポリフッ化ビ
ニリデンを、重量比で50:2:3の比で混合し、正極
材料を作製した。その正極材料0.02gを300kg
/cm2の圧力で直径20mmφの円板状にプレス成形
し、正極とした。こうして作製した正極と、エチレンカ
ーボネートとジエチルカーボネートが等体積比で混合さ
れた有機溶媒に電解質としてのLiPF6を1mol/
Lなる割合で溶解した電解液と、カーボンからなる負
極、および正極と負極を隔てるセパレータを用いて、コ
インセルを作製した。(Manufacture of Battery) First, with respect to each of the prepared various positive electrode active materials, a positive electrode active material, acetylene black powder as a conductive material, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 50: 2: The mixture was mixed at a ratio of 3 to prepare a positive electrode material. 0.02 g of the cathode material is 300 kg
/ Cm 2 at a pressure of 20 mmφ into a disk to form a positive electrode. LiPF 6 as an electrolyte was added to the thus prepared positive electrode and an organic solvent in which ethylene carbonate and diethyl carbonate were mixed at an equal volume ratio of 1 mol / liter.
A coin cell was manufactured using an electrolyte dissolved in a ratio of L, a negative electrode made of carbon, and a separator separating the positive electrode and the negative electrode.
【0027】 (電池の内部抵抗の測定)まず、表1に
示した正極活物質を用いたコインセルについて、正極活
物質の容量に応じて1Cレートの定電流−定電圧で4.
1Vまで充電し、同じく1Cレートの定電流で2.5V
まで放電させる充放電試験を1サイクルのみ行い、充電
終了後の休止状態での電位と放電開始直後での電位との
差(電位差)を放電電流で除することにより、電池の内
部抵抗を求めた。その結果を表1に並記した。添加元素
を含まないLiMn2O4と比較して、MoもしくはWを
所定量添加した場合に、電池の内部抵抗が著しく低減さ
れていることがわかる。したがって、このような電池に
おける内部抵抗の低減は、正極活物質自体の抵抗が小さ
くなっていることによるものと言える。(Measurement of Internal Resistance of Battery) First, for a coin cell using the positive electrode active material shown in Table 1, at a constant current-constant voltage of 1 C rate according to the capacity of the positive electrode active material.
Charge up to 1V, 2.5V at 1C constant current
The battery was subjected to only one cycle of a charge / discharge test for discharging the battery, and the difference between the potential in the resting state after charging and the potential immediately after the start of discharging (potential difference) was divided by the discharge current to determine the internal resistance of the battery. . The results are shown in Table 1. It can be seen that the internal resistance of the battery is significantly reduced when a predetermined amount of Mo or W is added, as compared with LiMn 2 O 4 containing no added element. Therefore, it can be said that the decrease in the internal resistance in such a battery is due to the decrease in the resistance of the positive electrode active material itself.
【0028】 次に、添加元素による正極活物質の低抵
抗化の効果が得られる範囲を調べるために、表2に示し
た組成となるように、上述した方法と同様の方法によ
り、正極活物質の作製および電池の作製と内部抵抗の評
価を行った。結果を表2に並記する。Next, in order to examine the range in which the effect of lowering the resistance of the positive electrode active material by the additive element can be obtained, the positive electrode active material was obtained by the same method as described above so that the composition shown in Table 2 was obtained. , A battery, and the internal resistance were evaluated. The results are listed in Table 2.
【0029】[0029]
【表2】 [Table 2]
【0030】 添加量がマンガン酸リチウムスピネル中
のMnのモル数に対して、0.1mol%以上20mo
l%以下の場合で電池の内部抵抗が低く抑えられ、1.
5mol%以上10mol%以下の場合に、特に顕著な
内部抵抗の低減効果が現れることが明らかとなった。一
方、0.1mol%未満および20mol%超の場合に
は、内部抵抗の低減効果はほとんど得られなかった。The addition amount is 0.1 mol% or more to 20 mol based on the number of moles of Mn in the lithium manganate spinel.
In the case of 1% or less, the internal resistance of the battery is kept low.
It became clear that a particularly significant effect of reducing the internal resistance appears when the content is 5 mol% or more and 10 mol% or less. On the other hand, when the content is less than 0.1 mol% or more than 20 mol%, the effect of reducing the internal resistance was hardly obtained.
【0031】 なお、上述した試験の結果を受けて、W
とMoを同時に添加した正極活物質で、上述した実験を
行ったところ、同様に、WとMoの合計の添加量がマン
ガン酸リチウムスピネル中のMnのモル数に対して、
0.1mol%以上20mol%以下の範囲で、内部抵
抗の低減効果が得られることを確認した。さらに、B、
Bi、P、Cr、Vの中から少なくとも1種以上を選択
した場合も同様であった。Note that, based on the results of the above test, W
When the above-described experiment was performed using the positive electrode active material to which Mo and Mo were simultaneously added, the total addition amount of W and Mo was similarly determined based on the number of moles of Mn in the lithium manganate spinel.
It was confirmed that the effect of reducing the internal resistance was obtained in the range of 0.1 mol% to 20 mol%. Further, B,
The same applies when at least one or more of Bi, P, Cr, and V are selected.
【0032】 (サイクル運転試験)次いで、表1記載
の正極活物質を用いた電池において、先の内部抵抗を測
定する場合の充放電と同じ条件で、充放電サイクルを1
00回繰り返した。その結果、WあるいはMoを添加し
たことによるサイクル特性の劣化は認められなかった。
そして、同様の試験を、表2記載の正極活物質を用いた
電池、およびB、Bi、P、Cr、Vの中から少なくと
も1種以上を選択して作製した正極活物質を用いた電池
について行ったところ、いずれの電池においても、同等
のサイクル特性が得られた。(Cycle Operation Test) Next, in the battery using the positive electrode active material shown in Table 1, a charge / discharge cycle was performed under the same conditions as the charge / discharge when measuring the internal resistance.
Repeated 00 times. As a result, deterioration of the cycle characteristics due to the addition of W or Mo was not recognized.
Similar tests were conducted on batteries using the positive electrode active materials described in Table 2 and on batteries using at least one or more types selected from B, Bi, P, Cr, and V. As a result, the same cycle characteristics were obtained in all the batteries.
【0033】[0033]
【発明の効果】 上述の通り、本発明のリチウム二次電
池によれば、マンガン酸リチウムに所定の添加元素を添
加して得られた低抵抗な正極活物質を用いているので、
電池の内部抵抗の大幅な低減が実現される。また、導電
助剤の添加量を多くする必要がないので正極活物質の充
填量を多くして電池容量を大きくすることができる。こ
れにより、大出力、高容量であってしかも充放電サイク
ル特性に優れる電池が提供されるという顕著な効果を奏
する。As described above, according to the lithium secondary battery of the present invention, since a low-resistance positive electrode active material obtained by adding a predetermined additive element to lithium manganate is used,
A significant reduction in the internal resistance of the battery is realized. Also, since it is not necessary to increase the amount of the conductive additive, the amount of the positive electrode active material can be increased to increase the battery capacity. As a result, a remarkable effect is provided in that a battery having high output, high capacity, and excellent charge / discharge cycle characteristics is provided.
Claims (4)
から選ばれた少なくとも1種類以上の元素を添加してな
るマンガン酸リチウムスピネルを正極活物質として用い
たことを特徴とするリチウム二次電池。1. A lithium manganate spinel obtained by adding at least one element selected from the group consisting of B, Bi, Mo, P, Cr, V and W as a positive electrode active material. Rechargeable lithium battery.
チウムスピネル中のMnのモル数に対して0.1mol
%以上20mol%以下であることを特徴とする請求項
1記載のリチウム二次電池。2. The amount of the element added is 0.1 mol based on the number of moles of Mn in the lithium manganate spinel.
The lithium secondary battery according to claim 1, wherein the content of the lithium secondary battery is not less than 20 mol% and not more than 20 mol%.
チウムスピネル中のMnのモル数に対して1.5mol
%以上10mol%以下であることを特徴とする請求項
2記載のリチウム二次電池。3. The amount of the element added is 1.5 mol based on the number of moles of Mn in the lithium manganate spinel.
The lithium secondary battery according to claim 2, wherein the content is not less than 10 mol% and not more than 10 mol%.
各元素の塩および/または酸化物の混合物を、酸化雰囲
気、700℃〜900℃の範囲で、5時間〜50時間か
けて焼成し、得られたものであることを特徴とする請求
項1〜3のいずれか一項に記載のリチウム二次電池。4. A calcining of a mixture of salts and / or oxides of the respective elements, in which the positive electrode active material is adjusted to a predetermined ratio, in an oxidizing atmosphere at 700 to 900 ° C. for 5 to 50 hours. The lithium secondary battery according to any one of claims 1 to 3, wherein the lithium secondary battery is obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19785598A JP3563268B2 (en) | 1998-07-13 | 1998-07-13 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19785598A JP3563268B2 (en) | 1998-07-13 | 1998-07-13 | Lithium secondary battery |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004000548A Division JP2004152777A (en) | 2004-01-05 | 2004-01-05 | Lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000030707A true JP2000030707A (en) | 2000-01-28 |
JP3563268B2 JP3563268B2 (en) | 2004-09-08 |
Family
ID=16381466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19785598A Expired - Fee Related JP3563268B2 (en) | 1998-07-13 | 1998-07-13 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3563268B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010150626A1 (en) * | 2009-06-25 | 2010-12-29 | 日本碍子株式会社 | Method for producing spinel type lithium manganate and method for producing positive electrode active material for lithium secondary battery |
JP2011003551A (en) * | 2006-11-10 | 2011-01-06 | Mitsubishi Chemicals Corp | Lithium transition metal based compound powder, its manufacturing method, spray drying object used as baking precursor of the powder, and positive electrode of lithium secondary battery and lithium secondary battery using the powder |
JP2012146662A (en) * | 2011-01-12 | 2012-08-02 | Samsung Sdi Co Ltd | Cathode active material, cathode and lithium battery employing the same, and method of preparing the same |
WO2016080517A1 (en) * | 2014-11-20 | 2016-05-26 | 戸田工業株式会社 | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery |
WO2016080518A1 (en) * | 2014-11-20 | 2016-05-26 | 戸田工業株式会社 | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for manufacturing same, and non-aqueous electrolyte secondary battery |
-
1998
- 1998-07-13 JP JP19785598A patent/JP3563268B2/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011003551A (en) * | 2006-11-10 | 2011-01-06 | Mitsubishi Chemicals Corp | Lithium transition metal based compound powder, its manufacturing method, spray drying object used as baking precursor of the powder, and positive electrode of lithium secondary battery and lithium secondary battery using the powder |
WO2010150626A1 (en) * | 2009-06-25 | 2010-12-29 | 日本碍子株式会社 | Method for producing spinel type lithium manganate and method for producing positive electrode active material for lithium secondary battery |
US8303927B2 (en) | 2009-06-25 | 2012-11-06 | Ngk Insulators, Ltd. | Methods for manufacturing spinel-type lithium manganese and cathode active material for lithium secondary battery |
JP2012146662A (en) * | 2011-01-12 | 2012-08-02 | Samsung Sdi Co Ltd | Cathode active material, cathode and lithium battery employing the same, and method of preparing the same |
CN107004849A (en) * | 2014-11-20 | 2017-08-01 | 户田工业株式会社 | Positive electrode active material for nonaqueous electrolyte secondary battery particle powder and its manufacture method and rechargeable nonaqueous electrolytic battery |
EP3223345A4 (en) * | 2014-11-20 | 2018-07-18 | Toda Kogyo Corporation | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for manufacturing same, and non-aqueous electrolyte secondary battery |
JP2016100173A (en) * | 2014-11-20 | 2016-05-30 | 戸田工業株式会社 | Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery |
JP2016100174A (en) * | 2014-11-20 | 2016-05-30 | 戸田工業株式会社 | Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery |
KR20170084230A (en) * | 2014-11-20 | 2017-07-19 | 도다 고교 가부시끼가이샤 | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery |
KR20170084229A (en) * | 2014-11-20 | 2017-07-19 | 도다 고교 가부시끼가이샤 | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for manufacturing same, and non-aqueous electrolyte secondary battery |
WO2016080517A1 (en) * | 2014-11-20 | 2016-05-26 | 戸田工業株式会社 | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery |
CN107004850A (en) * | 2014-11-20 | 2017-08-01 | 户田工业株式会社 | Positive electrode active material for nonaqueous electrolyte secondary battery particle powder and its manufacture method and rechargeable nonaqueous electrolytic battery |
EP3223346A4 (en) * | 2014-11-20 | 2018-07-18 | Toda Kogyo Corporation | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery |
WO2016080518A1 (en) * | 2014-11-20 | 2016-05-26 | 戸田工業株式会社 | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for manufacturing same, and non-aqueous electrolyte secondary battery |
US10446843B2 (en) | 2014-11-20 | 2019-10-15 | Toda Kogyo Corp. | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for manufacturing same, and non-aqueous electrolyte secondary battery |
US10547047B2 (en) | 2014-11-20 | 2020-01-28 | Toda Kogyo Corp. | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery |
US10892483B2 (en) | 2014-11-20 | 2021-01-12 | Toda Kogyo Corp. | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for manufacturing same, and non-aqueous electrolyte secondary battery |
CN107004849B (en) * | 2014-11-20 | 2021-02-26 | 户田工业株式会社 | Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery |
US11127940B2 (en) | 2014-11-20 | 2021-09-21 | Toda Kogyo Corp. | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery |
KR102447787B1 (en) * | 2014-11-20 | 2022-09-27 | 도다 고교 가부시끼가이샤 | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for manufacturing same, and non-aqueous electrolyte secondary battery |
KR102447786B1 (en) * | 2014-11-20 | 2022-09-27 | 도다 고교 가부시끼가이샤 | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP3563268B2 (en) | 2004-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3142522B2 (en) | Lithium secondary battery | |
US7892679B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2007234565A (en) | Nonaqueous electrolyte secondary battery | |
JPH08213015A (en) | Positive active material for lithium secondary battery and lithium secondary battery | |
JP2007073487A (en) | Nonaqueous electrolyte secondary battery | |
JP2005078820A (en) | Non-aqueous electrolyte secondary battery | |
JP5159133B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3652539B2 (en) | Method for manufacturing lithium secondary battery | |
US20130260262A1 (en) | Nonaqueous electrolyte secondary battery | |
JP2000200607A (en) | Lithium secondary battery | |
JP4530822B2 (en) | Nonaqueous electrolyte secondary battery and charging method thereof | |
JP2009218112A (en) | Nonaqueous electrolyte secondary battery and manufacturing method therefor | |
JP5626035B2 (en) | Method for pretreatment and use of lithium ion secondary battery | |
JP2004235166A (en) | Lithium secondary battery | |
JP3563268B2 (en) | Lithium secondary battery | |
JP2006073253A (en) | Nonaqueous electrolyte battery | |
JP3497420B2 (en) | Lithium secondary battery | |
JP2008084766A (en) | Non-aqueous electrolyte secondary battery | |
JP3566106B2 (en) | Lithium secondary battery | |
JP2022534525A (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
JP4078864B2 (en) | Negative electrode for secondary battery and secondary battery | |
JP4649848B2 (en) | Non-aqueous electrolyte secondary battery | |
US6764790B2 (en) | Lithium secondary battery | |
WO2013125465A1 (en) | Positive electrode active material | |
JP2004152777A (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040105 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040430 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040602 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |