JP5245373B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP5245373B2
JP5245373B2 JP2007305312A JP2007305312A JP5245373B2 JP 5245373 B2 JP5245373 B2 JP 5245373B2 JP 2007305312 A JP2007305312 A JP 2007305312A JP 2007305312 A JP2007305312 A JP 2007305312A JP 5245373 B2 JP5245373 B2 JP 5245373B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
battery
anion
mol
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007305312A
Other languages
Japanese (ja)
Other versions
JP2009129797A (en
Inventor
裕江 中川
有希子 藤野
徳雄 稲益
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2007305312A priority Critical patent/JP5245373B2/en
Publication of JP2009129797A publication Critical patent/JP2009129797A/en
Application granted granted Critical
Publication of JP5245373B2 publication Critical patent/JP5245373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は非水電解質電池に関するもので、特に、非水電解質電池に用いる非水電解質に関する。   The present invention relates to a non-aqueous electrolyte battery, and more particularly to a non-aqueous electrolyte used for a non-aqueous electrolyte battery.

近年、高性能化、小型化が進む電子機器用電源、電力貯蔵用電源、移動体用電源等として、リチウム二次電池に代表される非水電解質電池が注目されている。特に、すでに実用化されている電子機器用電源以外の非水電解質電池の用途として、ハイブリッド自動車や電気自動車等の移動体用電源への適用が望まれているが、これら移動体用電源に非水電解質電池を用いるためには、高エネルギー密度であるだけでなく出力特性に優れた電池が強く要求されている。   In recent years, non-aqueous electrolyte batteries typified by lithium secondary batteries have attracted attention as power supplies for electronic equipment, power storage power supplies, power supplies for mobile bodies, and the like that have been improved in performance and size. In particular, as non-electrolyte battery applications other than power supplies for electronic devices that have already been put to practical use, application to mobile power supplies such as hybrid vehicles and electric vehicles is desired. In order to use a water electrolyte battery, a battery having not only high energy density but also excellent output characteristics is strongly demanded.

リチウム二次電池は、一般に、正極集電体と正極活物質を主要構成成分とする正極合剤からなる正極と、負極集電体と負極活物質を主要構成成分とする負極合剤からなる負極と、非水電解質とから構成される。リチウム二次電池を構成する正極活物質としては、リチウム含有遷移金属酸化物が、負極活物質としては、グラファイトに代表される炭素質材料が広く知られている。   Generally, a lithium secondary battery includes a positive electrode composed of a positive electrode mixture mainly composed of a positive electrode current collector and a positive electrode active material, and a negative electrode composed of a negative electrode mixture mainly composed of a negative electrode current collector and a negative electrode active material. And a non-aqueous electrolyte. A lithium-containing transition metal oxide is widely known as a positive electrode active material constituting a lithium secondary battery, and a carbonaceous material typified by graphite is widely known as a negative electrode active material.

また、電解質には、一般的に、常温で液状を呈する非水電解質(非水電解液)が用いられている。該非水電解液は、一般的に常温で液状の有機溶媒に常温で固体状のリチウム塩を溶解させてなるものである。該有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、プロピオラクトン、バレロラクトン、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン等の有機溶媒が用いられている。また、リチウム塩としてはLiPFやLiBFが広く用いられている。 In general, a non-aqueous electrolyte (non-aqueous electrolyte) that is liquid at room temperature is used as the electrolyte. The non-aqueous electrolyte is generally obtained by dissolving a lithium salt that is solid at room temperature in an organic solvent that is liquid at room temperature. Examples of the organic solvent include organic carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, propiolactone, valerolactone, tetrahydrofuran, dimethoxyethane, diethoxyethane, and methoxyethoxyethane. A solvent is used. LiPF 6 and LiBF 4 are widely used as lithium salts.

特許文献1には、非プロトン性溶媒中に、Li[(FSON]で表されるイオン化合物(以下「FSI塩」ともいう)を含むことを特徴とするイオン性伝導材料に関する発明(請求項1)が記載され、FSI塩がポリエーテルの中に溶解されて得られた電解質(段落0032、例2)、FSI塩をプロピレンカーボネートに1.0モル濃度、0.5モル濃度及び0.1モル濃度で溶解した電解液(段落0036〜0037、例3)あるいは重合体電解質中にLiN(CFSOとFSI塩を8/100のモル比で適用した電池(段落0051〜0054、例5)が記載されている。 Patent Document 1 discloses an ionic conductive material containing an ionic compound represented by Li + [(FSO 2 ) 2 N] (hereinafter also referred to as “FSI salt”) in an aprotic solvent. An electrolyte obtained by dissolving an FSI salt in a polyether (paragraph 0032, Example 2), 1.0 mol concentration of propylene carbonate in propylene carbonate, 0.5 mol A battery in which LiN (CF 3 SO 2 ) 2 and FSI salt are applied at a molar ratio of 8/100 in an electrolytic solution (paragraphs 0036 to 0037, Example 3) or a polymer electrolyte dissolved at a concentration and 0.1 molar concentration ( Paragraphs 0051-0054, Example 5) are described.

しかしながら、特許文献1には、N(SOF)アニオン及びその他の含フッ素無機アニオンを共に含有する非水電解質については記載がなく、N(SOF)アニオン及びその他の含フッ素無機アニオンを共に含有することで出力特性を向上できることについては記載も示唆もない。 However, Patent Document 1, N (SO 2 F) 2 anion and no description about the non-aqueous electrolyte containing both other fluorine-containing inorganic anion, N (SO 2 F) 2 anions and other fluorine-containing inorganic There is no description or suggestion that the output characteristics can be improved by containing both anions.

なお、LiN(SOF)はLiPFなど他のリチウム塩と比較して有機溶媒への溶解性が極めて悪く、例えば後述する比較例にはLiN(SOF)のみをリチウム塩として用いた電解液を調整したことを記載したが、このような電解液の調整には、長時間の撹拌や加熱などの非常に繁雑な工程が必要であり、工業上大いに問題があった。 In addition, LiN (SO 2 F) 2 has extremely poor solubility in organic solvents as compared with other lithium salts such as LiPF 6. For example, in a comparative example described later, only LiN (SO 2 F) 2 is used as a lithium salt. Although it was described that the electrolytic solution used was adjusted, the adjustment of such an electrolytic solution required a very complicated process such as long-time stirring and heating, which was very problematic in industry.

特許文献2〜5には、LiN(CSO、LiC(CFSO等の有機リチウム塩と、LiPF、LiClO、LiBF、LiAsFといった無機リチウム塩を共に含有する非水電解質を用いた電池が提案されている。 Patent Documents 2 to 5 include organic lithium salts such as LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 2 and inorganic lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , and LiAsF 6. A battery using a non-aqueous electrolyte containing both has been proposed.

しかしながら、特許文献2〜5のいずれにも、N(SOF)アニオンを含有する非水電解質についての記載は皆無であり、N(SOF)アニオン及びその他の含フッ素無機アニオンを共に含有することで出力特性を向上できることについては記載も示唆もない。
特許第3878206号公報 特許第3016447号公報 特開2002−270231号公報 特開2002−270232号公報 特開2007−220335号公報
However, in any of Patent Documents 2 to 5 also, description of a non-aqueous electrolyte containing N (SO 2 F) 2 anion is nil, N a (SO 2 F) 2 anions and other fluorine-containing inorganic anion There is no description or suggestion that the output characteristics can be improved by containing them together.
Japanese Patent No. 3878206 Japanese Patent No. 3016447 JP 2002-270231 A JP 2002-270232 A JP 2007-220335 A

本発明は上記問題点に鑑みてなされたものであり、出力特性に優れた非水電解質電池を提供することを、一の目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a nonaqueous electrolyte battery having excellent output characteristics.

上記課題を解決するための本発明の構成は以下の通りである。但し、作用機構については推定を含んでおり、その作用機構の成否は、本発明を制限するものではない。   The configuration of the present invention for solving the above-described problems is as follows. However, the action mechanism includes estimation, and the success or failure of the action mechanism does not limit the present invention.

本発明は、正極と、負極と、有機溶媒及びリチウムカチオンを含有する非水電解質と、を備えた非水電解質電池において、前記非水電解質は、N(SOF)アニオン及びその他の含フッ素無機アニオンを含有していることを特徴とする非水電解質電池である。 The present invention provides a non-aqueous electrolyte battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte containing an organic solvent and a lithium cation, wherein the non-aqueous electrolyte includes N (SO 2 F) 2 anion and other contents. A nonaqueous electrolyte battery comprising a fluorine inorganic anion.

ここで、その他の含フッ素無機アニオンとは、N(SOF)アニオン以外の含フッ素無機アニオンをいう。その他の含フッ素無機アニオンとしては、限定されるものではないが、具体的には、BF、PF、AsF、SbF等のアニオンが挙げられる。なかでも、PFアニオン及びBFアニオンの内、少なくとも一種であることが好ましい。なお、これらの含フッ素無機アニオンは、単独で用いてもよく、2種以上混合して用いてもよい。 Here, other fluorine-containing inorganic anions refer to fluorine-containing inorganic anions other than N (SO 2 F) 2 anions. Other fluorine-containing inorganic anions are not limited, but specific examples include anions such as BF 4 , PF 6 , AsF 6 , and SbF 6 . Among them, out of PF 6 anion and BF 4 anion, it is preferably at least one. In addition, these fluorine-containing inorganic anions may be used independently and may be used in mixture of 2 or more types.

このような構成によると、実に驚くべきことに、出力特性に優れた非水電解質電池を提供することができることを見いだし、本発明に至った。   According to such a configuration, it was surprisingly found that a nonaqueous electrolyte battery having excellent output characteristics can be provided, and the present invention has been achieved.

すなわち、電解質がN(SOF)アニオン及びその他の含フッ素無機アニオンを共に含有していることにより、本発明による非水電解質電池は、出力特性に優れた非水電解質電池とすることができる。その作用効果が得られる要因は、必ずしも明らかではないが、初期充電時に負極表面上でN(SOF)アニオンが非水電解質構成成分の中で最も貴な電位から還元分解することにより、負極表面に非常に低抵抗でありながら他の非水電解質構成成分の還元分解を抑制できる保護被膜が形成されるためと本発明者らは推定している。このことは、N(SOF)アニオンが電気化学的安定性に劣ることを示唆しているが、ここに、その他の含フッ素無機アニオンが共存することにより、その後の充放電中におけるN(SOF)アニオンの酸化還元分解が抑制され、電気化学特性に優れた非水電解質電池を容易に提供することが可能となるものと推定される。さらに、特に出力特性に優れた非水電解質電池を提供できる作用効果が得られるのは、N(SOF)アニオンが良好な保護被膜形成剤として作用することに加え、非水電解質電池に用いられる従来の有機アニオンと比較して分子量が小さく、従来の有機アニオンと無機アニオンの中間に位置する性質を持つことにより、放電開始直後の非水電解質中のリチウムカチオンの移動を妨げにくいためと推定される。 That is, when the electrolyte contains both N (SO 2 F) 2 anion and other fluorine-containing inorganic anions, the non-aqueous electrolyte battery according to the present invention is a non-aqueous electrolyte battery having excellent output characteristics. it can. The reason why the effect is obtained is not necessarily clear, but the N (SO 2 F) 2 anion is reduced and decomposed from the most noble potential among the nonaqueous electrolyte components on the negative electrode surface during initial charging, The present inventors presume that a protective film capable of suppressing the reductive decomposition of other nonaqueous electrolyte components while having a very low resistance is formed on the negative electrode surface. This suggests that the N (SO 2 F) 2 anion is inferior in electrochemical stability, but the presence of other fluorine-containing inorganic anions here causes the N during the subsequent charge / discharge. It is presumed that the oxidation-reduction decomposition of (SO 2 F) 2 anion is suppressed and a nonaqueous electrolyte battery excellent in electrochemical characteristics can be easily provided. Furthermore, the effect of providing a non-aqueous electrolyte battery having particularly excellent output characteristics is obtained because the N (SO 2 F) 2 anion functions as a good protective film forming agent, and in addition to the non-aqueous electrolyte battery. This is because the molecular weight is small compared to the conventional organic anion used, and it is located between the conventional organic anion and the inorganic anion, so that it is difficult to prevent the movement of the lithium cation in the non-aqueous electrolyte immediately after the start of discharge. Presumed.

本発明によれば、出力特性に優れた非水電解質電池を提供することができる。   According to the present invention, a nonaqueous electrolyte battery excellent in output characteristics can be provided.

以下に、本発明の実施の形態を詳細に説明するが、本発明はこれらの記述により限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to these descriptions.

本発明の非水電解質は、少なくともリチウムカチオン、N(SOF)アニオン及びその他の含フッ素無機アニオンと、有機溶媒から構成される。本発明の非水電解質を得るための方法については、何ら限定されるものではなく、リチウムカチオンとN(SOF)アニオンからなるリチウム塩及びリチウムカチオンとその他の含フッ素無機アニオンからなるリチウム塩を、有機溶媒に溶解させることにより得ることができる。しかしながら、これに限定されるものではなく、例えば、上記リチウム塩の一方に代えてアンモニウム塩を用いてもよい。 The non-aqueous electrolyte of the present invention is composed of at least a lithium cation, an N (SO 2 F) 2 anion and other fluorine-containing inorganic anions, and an organic solvent. The method for obtaining the non-aqueous electrolyte of the present invention is not limited at all, and a lithium salt composed of a lithium cation and an N (SO 2 F) 2 anion and lithium composed of a lithium cation and other fluorine-containing inorganic anions. The salt can be obtained by dissolving in an organic solvent. However, the present invention is not limited to this. For example, an ammonium salt may be used instead of one of the lithium salts.

本発明の非水電解質は、さらに、他のアニオンとして、ClO、CN、COO、SOCF、N(CFSO、N(CSO、N(CFSO)(CSO)、C(CFSO、C(CSO等のアニオンを含有してもよい。 The nonaqueous electrolyte of the present invention further includes other anions such as ClO 4 , CN, COO, SO 2 CF 2 , N (CF 3 SO 2 ) 2 , N (C 2 F 5 SO 2 ) 2 , N (CF 3 SO 2 ) (C 4 F 9 SO 2 ), C (CF 3 SO 2 ) 3 , C (C 2 F 5 SO 2 ) 3, and the like.

本発明における有機溶媒としては、何ら限定されるものではなく、一般に非水電解質電池用電解液に使用される有機溶媒を使用することができる。具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、クロロエチレンカーボネート、フルオロエチレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネートなどの鎖状カーボネート、γ−ブチロラクトン、プロピオラクトン、バレロラクトン、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタンなどが挙げられるが、特にこれらに限定されるものではない。これらは単独で用いてもよく、2種以上混合して用いてもよい。   The organic solvent in the present invention is not limited at all, and an organic solvent generally used for an electrolyte solution for a nonaqueous electrolyte battery can be used. Specifically, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, vinyl ethylene carbonate, chloroethylene carbonate, fluoroethylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, dipropyl carbonate, dibutyl carbonate, etc. The chain carbonate, γ-butyrolactone, propiolactone, valerolactone, tetrahydrofuran, dimethoxyethane, diethoxyethane, methoxyethoxyethane and the like are not particularly limited thereto. These may be used alone or in combination of two or more.

非水電解質中のN(SOF)アニオンとその他の含フッ素無機アニオンとの混合割合は任意に選択することが可能であるが、本発明の効果を充分に得るためには、アニオン総量に占めるN(SOF)アニオンの混合割合は、80mol%未満であることが好ましい。N(SOF)アニオンの混合割合が80mol%以上になると、リチウムカチオンとN(SOF)アニオンからなるリチウム塩の非水電解質への溶解度が低いため、対イオンであるリチウムカチオンの非水電解質中の含有量が小さくなり、電池の充放電効率が低下する。逆にN(SOF)アニオンの混合割合が1mol%未満になると、電池の出力特性が低下する。従って、非水電解質中のN(SOF)アニオンの混合割合は、1〜80mol%の範囲、さらに言うならば、10〜50mol%の範囲、なかでも20〜50mol%の範囲であることが好ましい。 The mixing ratio of the N (SO 2 F) 2 anion and other fluorine-containing inorganic anions in the non-aqueous electrolyte can be arbitrarily selected, but in order to sufficiently obtain the effects of the present invention, the total amount of anions It is preferable that the mixing ratio of N (SO 2 F) 2 anion to be less than 80 mol%. When the mixing ratio of the N (SO 2 F) 2 anion is 80 mol% or more, the lithium salt composed of the lithium cation and the N (SO 2 F) 2 anion has low solubility in the non-aqueous electrolyte. The content in the non-aqueous electrolyte is reduced, and the charge / discharge efficiency of the battery is reduced. Conversely, when the mixing ratio of N (SO 2 F) 2 anion is less than 1 mol%, the output characteristics of the battery are degraded. Therefore, the mixing ratio of the N (SO 2 F) 2 anion in the non-aqueous electrolyte is in the range of 1 to 80 mol%, more specifically, in the range of 10 to 50 mol%, especially in the range of 20 to 50 mol%. Is preferred.

非水電解質中のリチウムカチオンの含有量は、0.5〜3mol/lの範囲であることが好ましい。リチウムカチオンの含有量が0.5mol/l未満になると、電解質抵抗が大きすぎ、電池の充放電効率が低下する。逆にリチウムカチオンの含有量が3mol/lを越えると、非水電解質の融点が上昇し、常温で液状を保つのが困難となる。以上の点で、非水電解質中のリチウムカチオンの含有量は、0.5〜3mol/lの範囲、さらに言うならば、0.5〜2mol/lの範囲であることが好ましい。   The lithium cation content in the non-aqueous electrolyte is preferably in the range of 0.5 to 3 mol / l. When the content of the lithium cation is less than 0.5 mol / l, the electrolyte resistance is too large, and the charge / discharge efficiency of the battery decreases. On the other hand, when the lithium cation content exceeds 3 mol / l, the melting point of the non-aqueous electrolyte rises and it becomes difficult to maintain a liquid state at room temperature. In view of the above, the lithium cation content in the non-aqueous electrolyte is preferably in the range of 0.5 to 3 mol / l, more specifically in the range of 0.5 to 2 mol / l.

本発明に係る非水電解質電池が備える正極に用いることのできる正極活物質としては、何ら限定されるものではなく、種々の酸化物、硫化物等が挙げられる。例えば、二酸化マンガン(MnO)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLiMn又はLiMnO)、リチウムニッケル複合酸化物(例えばLiNiO)、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケルコバルト複合酸化物(例えばLiNi1−yCo)、リチウムニッケルコバルトマンガン複合酸化物(LiNiCoMn1−y−z)、スピネル型リチウムマンガンニッケル複合酸化物(LiMn2−yNi)、オリビン構造を有するリチウムリン酸化物(LiFePO、LiCoPO、LiVPO、LiVPOF、LiMnPO、LiMn7/8Fe1/8PO、LiNiVO、LiCoPO、Li(PO、Fe(SO、LiFeP、LiFe(PO、LiCoSiO、LiMnSiO、LiFeSiO、LiTePO等)、硫酸鉄(Fe(SO)、バナジウム酸化物(例えばV)などが挙げられる。また、ポリアニリンやポリピロールなどの導電性ポリマー材料、ジスルフィド系ポリマー材料、イオウ(S)、フッ化カーボンなどの有機材料及び無機材料も挙げられる。
これらは単独で用いてもよく、2種以上混合して用いてもよい。
The positive electrode active material that can be used for the positive electrode included in the nonaqueous electrolyte battery according to the present invention is not limited at all, and various oxides, sulfides, and the like can be mentioned. For example, manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (eg, Li x Mn 2 O 4 or Li x MnO 2 ), lithium nickel composite oxide (eg, Li x NiO 2 ) , Lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel cobalt composite oxide (for example, LiNi 1-y Co y O 2 ), lithium nickel cobalt manganese composite oxide (LiNi x Co y Mn 1-yz O) 2 ), spinel type lithium manganese nickel composite oxide (Li x Mn 2 -y Ni y O 4 ), lithium phosphorus oxide having an olivine structure (LiFePO 4 , LiCoPO 4 , LiVPO 4 , LiVPO 4 F, LiMnPO 4 , LiMn 7/8 Fe 1/8 PO 4 , LiNiVO 4 LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Fe 2 (SO 4 ) 3 , LiFeP 2 O 7 , Li 3 Fe 2 (PO 4 ) 3 , Li 2 CoSiO 4 , Li 2 MnSiO 4 , Li 2 FeSiO 4 , LiTePO 4, etc.), iron sulfate (Fe 2 (SO 4 ) 3 ), vanadium oxide (for example, V 2 O 5 ), and the like. In addition, conductive polymer materials such as polyaniline and polypyrrole, disulfide-based polymer materials, organic materials such as sulfur (S) and carbon fluoride, and inorganic materials are also included.
These may be used alone or in combination of two or more.

本発明における非水電解質電池の負極は、主要構成成分である負極活物質として、炭素質材料を用いることができる。黒鉛結晶には良く知られている六方晶系とその他に菱面体晶系に属するものがある。特に、菱面体晶系の黒鉛は、電解液中の溶媒の選択性が広く、例えば、リチウムカチオンと共挿入しやすい有機化合物や、比較的貴な電位で還元分解されやすい有機化合物を、非水電解質の構成材料として用いても、層剥離が抑制され優れた充放電効率を示すことから好ましい。大部分の天然黒鉛及び人造黒鉛は六方晶系であるが、天然黒鉛及び非常に高温で加熱処理された人造黒鉛中に菱面体晶系構造が数%存在していることが知られている。また、粉砕や摩砕することにより六方晶系から菱面体晶系への増加があることが知られている。特に、黒鉛粒子表面に菱面体晶系が多く含まれ、粒子内部は六方晶系が多く含まれるような黒鉛は高容量、耐溶剤性、製造工程などの優位性から最も好ましい。また、炭素質材料として、非黒鉛質炭素材料を用いる場合には、エックス線広角回折法による(002)面の面間隔が0.34nm以上の非黒鉛質炭素材料であることが好ましい。このような非黒鉛質炭素材料を用いると、特に高率充放電特性や出力特性、サイクル充放電特性に優れた非水電解質電池を提供することが可能となる。上記効果が発揮される理由については必ずしも明らかではないが、上記したような非黒鉛質炭素材料は、リチウムカチオンの挿入脱離が起こる反応活性点がランダムに形成されているため、非水電解質を構成する有機溶媒の還元分解や共挿入などの副反応が抑制されるものと推定される。また、化学式Li4+xTi12(0≦x≦3)で表され、スピネル型構造を有するチタン酸リチウムを用いてもよい。ここで、Tiの一部が他の元素で置換されたものを用いてもよく、例えばTiの一部がAlやMgによって特定の比率で置換された構造のチタン酸リチウムを用いると、電位平坦性や高率放電特性の向上を図れるため、好ましい。 In the negative electrode of the nonaqueous electrolyte battery in the present invention, a carbonaceous material can be used as the negative electrode active material which is a main component. Graphite crystals include the well-known hexagonal system and others belonging to the rhombohedral system. In particular, rhombohedral graphite has a wide selectivity for a solvent in an electrolytic solution. For example, an organic compound that easily co-inserts with a lithium cation or an organic compound that easily undergoes reductive decomposition at a relatively noble potential can be obtained using a non-aqueous solution. Even if it uses as a constituent material of electrolyte, delamination is suppressed and it is preferable from showing the outstanding charging / discharging efficiency. Most natural graphite and artificial graphite are hexagonal, but it is known that a few percent of rhombohedral structures exist in natural graphite and artificial graphite heat-treated at a very high temperature. It is also known that there is an increase from hexagonal to rhombohedral by grinding or grinding. In particular, graphite having a large amount of rhombohedral system on the surface of the graphite particle and a large amount of hexagonal system inside the particle is most preferable because of superiority in high capacity, solvent resistance, manufacturing process and the like. Further, when a non-graphitic carbon material is used as the carbonaceous material, it is preferably a non-graphitic carbon material having a (002) plane spacing of 0.34 nm or more according to the X-ray wide angle diffraction method. When such a non-graphitic carbon material is used, it is possible to provide a non-aqueous electrolyte battery that is particularly excellent in high rate charge / discharge characteristics, output characteristics, and cycle charge / discharge characteristics. The reason why the above effect is exerted is not necessarily clear, but the non-graphitic carbon material as described above has reaction active points at which insertion and desorption of lithium cations occur at random. It is presumed that side reactions such as reductive decomposition and co-insertion of the constituent organic solvent are suppressed. Alternatively, lithium titanate represented by the chemical formula Li 4 + x Ti 5 O 12 (0 ≦ x ≦ 3) and having a spinel structure may be used. Here, a material in which a part of Ti is substituted with another element may be used. For example, when lithium titanate having a structure in which a part of Ti is substituted with Al or Mg at a specific ratio, the potential is flattened. This is preferable because it can improve the performance and high rate discharge characteristics.

以下に、本発明を実施例に基づき、さらに詳細に説明するが、本発明はこれらの記載により限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these descriptions.

(本発明電解質1)
エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(MEC)を体積比1:1:1で混合した1リットルの混合溶媒(以下、混合溶媒Aという)に、0.8モルのLiPFと0.2モルのLiN(SOF)を混合することにより、非水電解質を得た。
(Invention electrolyte 1)
0.8 mol of LiPF was added to 1 liter of a mixed solvent (hereinafter referred to as mixed solvent A) in which ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC) were mixed at a volume ratio of 1: 1: 1. A non-aqueous electrolyte was obtained by mixing 6 and 0.2 mol of LiN (SO 2 F) 2 .

(本発明電解質2)
1リットルの混合溶媒Aに、0.5モルのLiPFと0.5モルのLiN(SOF)を混合することにより、非水電解質を得た。
(Invention electrolyte 2)
A nonaqueous electrolyte was obtained by mixing 0.5 mol of LiPF 6 and 0.5 mol of LiN (SO 2 F) 2 in 1 liter of mixed solvent A.

(比較電解質1)
1リットルの混合溶媒Aに、1モルのLiPFを混合することにより、非水電解質を得た。
(Comparative electrolyte 1)
By mixing 1 mol of LiPF 6 with 1 liter of mixed solvent A, a non-aqueous electrolyte was obtained.

(比較電解質2)
1リットルの混合溶媒Aに、1モルのLiN(SOF)を混合することにより、非水電解質を得た。
(Comparative electrolyte 2)
1 mol of mixed solvent A was mixed with 1 mol of LiN (SO 2 F) 2 to obtain a nonaqueous electrolyte.

(比較電解質3)
1リットルの混合溶媒Aに、1モルのLiN(CFSOを混合することにより、非水電解質を得た。
(Comparative electrolyte 3)
By mixing 1 mol of LiN (CF 3 SO 2 ) 2 with 1 liter of mixed solvent A, a non-aqueous electrolyte was obtained.

(比較電解質4)
1リットルの混合溶媒Aに、1モルのLiN(CSOを混合することにより、非水電解質を得た。
(Comparative electrolyte 4)
By mixing 1 mol of LiN (C 2 F 5 SO 2 ) 2 with 1 liter of mixed solvent A, a non-aqueous electrolyte was obtained.

(比較電解質5)
1リットルの混合溶媒Aに、0.5モルのLiN(CFSOと0.5モルのLiN(SOF)を混合することにより、非水電解質を得た。
(Comparative electrolyte 5)
A non-aqueous electrolyte was obtained by mixing 0.5 mol of LiN (CF 3 SO 2 ) 2 and 0.5 mol of LiN (SO 2 F) 2 in 1 liter of the mixed solvent A.

(比較電解質6)
1リットルの混合溶媒Aに、0.5モルのLiPFと0.5モルのLiN(CSOを混合することにより、非水電解質を得た。
(Comparative electrolyte 6)
By mixing 0.5 mol of LiPF 6 and 0.5 mol of LiN (C 2 F 5 SO 2 ) 2 in 1 liter of mixed solvent A, a nonaqueous electrolyte was obtained.

(電解質特性試験)
電解質特性として、円錐−平板型回転式粘度計(東機産業製)を用いて上記した本発明電解質1〜2及び比較電解質1〜6の、20℃における電解質の粘度を測定した。
(Electrolyte property test)
As electrolyte characteristics, the viscosity of the electrolyte at 20 ° C. of the above-described electrolytes 1 to 2 and comparative electrolytes 1 to 6 of the present invention was measured using a cone-plate type rotary viscometer (manufactured by Toki Sangyo).

(非水電解質電池の作製)
本発明電解質1〜2及び比較電解質1〜6を用いて、非水電解質電池を作製した。実施例に係る非水電解質電池の断面図を図2に示す。実施例に係る非水電解質電池は、正極1、負極2、及びセパレータ3からなる極群4と、非水電解質と、外装材としての金属樹脂複合フィルム5から構成されている。正極1は、正極合剤11が正極集電体12上に塗布されてなる。また、負極2は、負極合剤21が負極集電体22上に塗布されてなる。非水電解質は極群4に含浸されている。金属樹脂複合フィルム5は、極群4を覆い、その四方を熱溶着により封止されている。
(Preparation of non-aqueous electrolyte battery)
A non-aqueous electrolyte battery was produced using the present invention electrolytes 1-2 and comparative electrolytes 1-6. FIG. 2 shows a cross-sectional view of the non-aqueous electrolyte battery according to the example. The non-aqueous electrolyte battery according to the example is composed of a pole group 4 including a positive electrode 1, a negative electrode 2, and a separator 3, a non-aqueous electrolyte, and a metal resin composite film 5 as an exterior material. The positive electrode 1 is formed by applying a positive electrode mixture 11 on a positive electrode current collector 12. The negative electrode 2 is formed by applying a negative electrode mixture 21 on a negative electrode current collector 22. The nonaqueous electrolyte is impregnated in the pole group 4. The metal resin composite film 5 covers the pole group 4 and is sealed on all four sides by heat welding.

次に、上記構成の非水電解質電池の製造方法を説明する。正極1は次のようにして得た。まず、LiCoOと、導電剤であるアセチレンブラックを混合し、さらに結着剤としてポリフッ化ビニリデンのN−メチル−2−ピロリドン溶液を混合し、この混合物をアルミ箔からなる正極集電体12の片面に塗布した後、乾燥し、正極合剤11の厚さが所定の厚さとなるようにプレスした。以上の工程により正極1を得た。負極2は、次のようにして得た。まず、負極活物質である黒鉛(エックス線広角回折法による(002)面の面間隔0.336nm)と、結着剤であるポリフッ化ビニリデンのN−メチル−2−ピロリドン溶液を混合し、この混合物を銅箔からなる負極集電体22の片面に塗布した後、乾燥し、負極合剤21厚みが所定の厚さとなるようにプレスした。以上の工程により負極2を得た。セパレータ3は、ポリエチレン製微孔膜を用いた。極群4は、正極合剤11と負極合剤21とを対向させ、その間にセパレータ3を配し、正極1、セパレータ3、負極2の順に積層することにより、構成した。次に、非水電解質中に極群4を浸漬させることにより、極群4に非水電解質を含浸させた。さらに、金属樹脂複合フィルム5で極群4を覆い、その四方を熱溶着により封止した。以上のようにして、本発明電池1〜2及び比較電池1〜6を作製した。 Next, a method for manufacturing the nonaqueous electrolyte battery having the above configuration will be described. The positive electrode 1 was obtained as follows. First, LiCoO 2 and acetylene black, which is a conductive agent, are mixed, and an N-methyl-2-pyrrolidone solution of polyvinylidene fluoride is further mixed as a binder, and this mixture is used as a positive electrode current collector 12 made of an aluminum foil. After coating on one side, it was dried and pressed so that the positive electrode mixture 11 had a predetermined thickness. The positive electrode 1 was obtained by the above process. The negative electrode 2 was obtained as follows. First, graphite (negative electrode active material (002) plane spacing 0.336 nm by X-ray wide angle diffraction method) and N-methyl-2-pyrrolidone solution of polyvinylidene fluoride as a binder were mixed, and this mixture Was applied to one side of a negative electrode current collector 22 made of copper foil, dried, and pressed so that the thickness of the negative electrode mixture 21 was a predetermined thickness. The negative electrode 2 was obtained by the above process. As the separator 3, a polyethylene microporous membrane was used. The pole group 4 was configured by facing the positive electrode mixture 11 and the negative electrode mixture 21, placing the separator 3 therebetween, and laminating the positive electrode 1, the separator 3, and the negative electrode 2 in this order. Next, the electrode group 4 was impregnated with the non-aqueous electrolyte by immersing the electrode group 4 in the non-aqueous electrolyte. Furthermore, the pole group 4 was covered with the metal resin composite film 5, and the four sides were sealed by heat welding. As described above, Invention batteries 1 and 2 and Comparative batteries 1 to 6 were produced.

また、本発明電解質2及び比較電解質1を用いて、負極活物質に難黒鉛化炭素(エックス線広角回折法による(002)面の面間隔0.345nm)を用いた以外は同様の構成にて非水電解質電池を作製した。これを本発明電池3及び比較電池7とする。   In addition, the non-graphite carbon (non-graphite carbon (002) plane spacing of 0.302 nm by X-ray wide angle diffraction method) was used as the negative electrode active material in the same configuration except that the electrolyte 2 of the present invention and the comparative electrolyte 1 were used. A water electrolyte battery was prepared. This is referred to as the present invention battery 3 and comparative battery 7.

(電池特性試験)
電池特性試験として、本発明電池及び比較電池について、高率放電試験を行った。試験温度は20℃とした。充電は、電流10mA、終止電圧4.2Vの定電流充電とした。放電は、電流10mA、30mA、50mAにて終止電圧2.7Vの定電流放電とした。電流50mAで放電し、得られた放電容量を、5It高率放電容量とした。また、それぞれの電流で放電したときの放電開始後10秒目の電池電圧から、最小二乗法で求めた直線(電流−電圧直線)の傾きの絶対値をSOC100%DCRとした。出力特性は、電流−電圧直線の傾きと放電下限電圧の交点から求めることができ、SOC100%DCRが小さいほど出力特性が優れていることを意味する。なお、本発明電池及び比較電池の設計容量は、全て10mAhであり、電流10mAで放電したときの放電容量はいずれも概ね10mAhであった。
(Battery characteristics test)
As a battery characteristic test, a high rate discharge test was performed on the battery of the present invention and the comparative battery. The test temperature was 20 ° C. The charging was a constant current charging with a current of 10 mA and a final voltage of 4.2V. The discharge was a constant current discharge with a final voltage of 2.7 V at a current of 10 mA, 30 mA, and 50 mA. The battery was discharged at a current of 50 mA, and the obtained discharge capacity was defined as a 5 It high-rate discharge capacity. Further, the absolute value of the slope of a straight line (current-voltage straight line) obtained by the least square method from the battery voltage 10 seconds after the start of discharge when discharging at each current was defined as SOC 100% DCR. The output characteristics can be obtained from the intersection of the slope of the current-voltage straight line and the discharge lower limit voltage, and the smaller the SOC 100% DCR, the better the output characteristics. The design capacities of the battery of the present invention and the comparative battery were all 10 mAh, and the discharge capacities when discharged at a current of 10 mA were both approximately 10 mAh.

以上の結果を表1にまとめて示す。なお、5It高率放電容量及びSOC100%DCRは、本発明電池1〜2及び比較電池1〜6については比較電池1の特性を100%としたときの百分率で、本発明電池3及び比較電池7については比較電池7の特性を100%としたときの百分率で示す。また、本発明電解質1、2及び比較電解質1、2の粘度及び本発明電池1、2及び比較電池1、2のSOC100%DCRとLiN(SOF)濃度との関係を図1に示す。 The above results are summarized in Table 1. The 5 It high rate discharge capacity and the SOC 100% DCR are percentages when the characteristics of the comparative battery 1 are 100% for the inventive batteries 1 to 2 and the comparative batteries 1 to 6, and the inventive batteries 3 and 7 are compared. Is shown as a percentage when the characteristic of the comparative battery 7 is taken as 100%. Further, FIG. 1 shows the relationship between the viscosity of the electrolytes 1 and 2 of the present invention and the comparative electrolytes 1 and 2 and the SOC 100% DCR and the concentration of LiN (SO 2 F) 2 of the batteries 1 and 2 of the present invention and the comparative batteries 1 and 2 . .

一般に、電池特性のいくつかは、非水電解質の粘度との相関が認められ、電解質の粘度を測定することにより予想することができる。図1に示したように、本発明電解質1、2及び比較電解質1、2を比べてみると、これらの電解質の粘度はLiN(SOF)濃度に比例して低くなる傾向が認められる。そして、N(SOF)アニオンのみを含有する比較電池2は、その他の含フッ素無機アニオンであるPFアニオンのみを含有する比較電池1と比較して、SOC100%DCRが小さくなる。 In general, some of the battery characteristics correlate with the viscosity of the non-aqueous electrolyte, and can be predicted by measuring the viscosity of the electrolyte. As shown in FIG. 1, when the present electrolytes 1 and 2 and the comparative electrolytes 1 and 2 are compared, the viscosity of these electrolytes tends to decrease in proportion to the LiN (SO 2 F) 2 concentration. . The comparative battery 2 containing only the N (SO 2 F) 2 anion has a lower SOC 100% DCR than the comparative battery 1 containing only the PF 6 anion which is another fluorine-containing inorganic anion.

これに対し、実に驚くべきことに、N(SOF)アニオン及びPFアニオンを共に含有する非水電解質を用いた本発明電池1及び本発明電池2のSOC100%DCRは、PFアニオンのみを含有する比較電池1と比較して大きく低減されていることがわかる。さらに、図1から明らかなように、N(SOF)アニオン及びPFアニオンを共に含有する非水電解質を用いた本発明電池1及び本発明電池2のSOC100%DCRの値は、PFアニオンのみを含有する比較電池1のSOC100%DCRの値をプロットした点と、N(SOF)アニオンのみを含有する比較電池2のSOC100%DCRの値をプロットした点を結ぶ直線(図中一点鎖線で示す)から逸脱して大きく下回る結果となっている。すなわち、SOC100%DCRと非水電解質中のLiN(SOF)濃度との関係は、電解質の粘度のような比例関係にはなく、N(SOF)アニオン及びその他の含フッ素無機アニオンであるPFアニオンを共に含有することによって、SOC100%DCRがN(SOF)アニオンのみを含有する場合と同等かそれ以上に小さくなることは、非水電解質の粘度等の物性からは到底予想できるものではない。 On the other hand, surprisingly, the SOC 100% DCR of the present invention battery 1 and the present invention battery 2 using the nonaqueous electrolyte containing both N (SO 2 F) 2 anion and PF 6 anion is PF 6 anion. It can be seen that it is greatly reduced as compared with the comparative battery 1 containing only. Further, as apparent from FIG. 1, the SOC 100% DCR values of the present invention battery 1 and the present invention battery 2 using the nonaqueous electrolyte containing both N (SO 2 F) 2 anion and PF 6 anion are PF A straight line connecting a point where the SOC 100% DCR value of the comparative battery 1 containing only 6 anions is plotted and a point where the SOC 100% DCR value of the comparative battery 2 containing only N (SO 2 F) 2 anions is plotted ( It is a result that deviates from (shown by a one-dot chain line in the figure) and greatly falls. That is, the relationship between the SOC 100% DCR and the LiN (SO 2 F) 2 concentration in the non-aqueous electrolyte is not proportional to the viscosity of the electrolyte, but the N (SO 2 F) 2 anion and other fluorine-containing inorganic substances By including both the PF 6 anion which is an anion, the SOC 100% DCR is equal to or smaller than the case of containing only the N (SO 2 F) 2 anion from the physical properties such as the viscosity of the nonaqueous electrolyte. Is not at all predictable.

なお、本発明電池1〜3及び比較電池1〜7は同等の5It高率放電容量を示しており、本発明電池は、高エネルギー密度を有する非水電解質電池の特性を何ら悪化させるものではない。   In addition, this invention batteries 1-3 and the comparative batteries 1-7 have shown the equivalent 5It high rate discharge capacity, and this invention battery does not worsen the characteristic of the nonaqueous electrolyte battery which has a high energy density at all. .

また、本発明電池2、3及び比較電池1、7間の比較により、負極活物質として用いた炭素材料の種類にかかわらず、本発明の効果が同様に得られることが確認された。   Moreover, it was confirmed by comparison between this invention battery 2 and 3 and the comparison batteries 1 and 7 that the effect of this invention is acquired similarly irrespective of the kind of carbon material used as a negative electrode active material.

なお、本実施例においては、その他の含フッ素無機アニオンとしてPFアニオンを用いたが、BFアニオン等、PFアニオン以外の含フッ素無機アニオンを用いても同様の効果が得られる。 In this example, PF 6 anion was used as the other fluorine-containing inorganic anion. However, the same effect can be obtained by using a fluorine-containing inorganic anion other than PF 6 anion, such as BF 4 anion.

以上の結果から、本発明によれば、出力特性に優れた非水電解質電池を提供することができることが明らかとなった。   From the above results, it became clear that according to the present invention, a nonaqueous electrolyte battery having excellent output characteristics can be provided.

本発明電池及び比較電池の出力特性と、これに用いた非水電解質の粘度の値を示す図である。It is a figure which shows the output characteristic of this invention battery and a comparison battery, and the value of the viscosity of the nonaqueous electrolyte used for this. 実施例に用いた非水電解質電池の断面図である。It is sectional drawing of the nonaqueous electrolyte battery used for the Example.

符号の説明Explanation of symbols

1 正極
11 正極合剤
12 正極集電体
2 負極
21 負極合剤
22 負極集電体
3 セパレータ
4 極群
5 金属樹脂複合フィルム
DESCRIPTION OF SYMBOLS 1 Positive electrode 11 Positive electrode mixture 12 Positive electrode collector 2 Negative electrode 21 Negative electrode mixture 22 Negative electrode collector 3 Separator 4 Electrode group 5 Metal resin composite film

Claims (4)

正極と、負極と、有機溶媒及びリチウムカチオンを含有する非水電解質と、を備えた非水電解質電池において、
前記有機溶媒は環状カーボネート及び鎖状カーボネートからなるとともに、前記非水電解質は、N(SOF)アニオン及びその他の含フッ素無機アニオンを含有し、かつ前記非水電解質中のアニオン総量に占めるN(SO F) アニオンの混合割合が50mol%以下であることを特徴とする非水電解質電池。
In a non-aqueous electrolyte battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte containing an organic solvent and a lithium cation,
The organic solvent is composed of a cyclic carbonate and a chain carbonate, and the non-aqueous electrolyte contains N (SO 2 F) 2 anion and other fluorine-containing inorganic anions and occupies the total amount of anions in the non-aqueous electrolyte. A non-aqueous electrolyte battery, wherein the mixing ratio of N (SO 2 F) 2 anion is 50 mol% or less .
前記非水電解質中のアニオン総量に占めるN(SON (SO) in the total amount of anions in the non-aqueous electrolyte 2 F)F) 2 アニオンの混合割合が20mol%以上50mol%以下であることを特徴とする請求項1に記載の非水電解質電池。The nonaqueous electrolyte battery according to claim 1, wherein the mixing ratio of anions is 20 mol% or more and 50 mol% or less. 前記非水電解質中のアニオン総量に占めるN(SON (SO) in the total amount of anions in the non-aqueous electrolyte 2 F)F) 2 アニオンの混合割合が50mol%であることを特徴とする請求項1又は2に記載の非水電解質電池。The non-aqueous electrolyte battery according to claim 1, wherein the mixing ratio of anions is 50 mol%. 前記環状カーボネートがエチレンカーボネートであり、前記鎖状カーボネートがジメチルカーボネート及びメチルエチルカーボネートである請求項1〜3の何れかに記載の非水電解質電池。 The non-aqueous electrolyte battery according to any one of claims 1 to 3, wherein the cyclic carbonate is ethylene carbonate, and the chain carbonate is dimethyl carbonate and methyl ethyl carbonate.
JP2007305312A 2007-11-27 2007-11-27 Non-aqueous electrolyte battery Active JP5245373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305312A JP5245373B2 (en) 2007-11-27 2007-11-27 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305312A JP5245373B2 (en) 2007-11-27 2007-11-27 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2009129797A JP2009129797A (en) 2009-06-11
JP5245373B2 true JP5245373B2 (en) 2013-07-24

Family

ID=40820509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305312A Active JP5245373B2 (en) 2007-11-27 2007-11-27 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP5245373B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5678423B2 (en) * 2009-09-16 2015-03-04 日産自動車株式会社 Electrolyte for lithium secondary battery and bipolar secondary battery using the same
JP5445103B2 (en) * 2009-12-18 2014-03-19 ソニー株式会社 Secondary battery, electrolyte for secondary battery, electric tool, electric vehicle and power storage system
EP2511976A4 (en) 2009-12-07 2013-07-17 Sony Corp Secondary cell, electrolyte, cell pack, electronic device, electric vehicle
EP3792221B1 (en) 2010-05-28 2023-07-12 Nippon Shokubai Co., Ltd. Alkali metal salt of fluorosulfonyl imide
KR101233325B1 (en) 2011-04-11 2013-02-14 로베르트 보쉬 게엠베하 Electrolyte for rechargeable lithium battery and rechargeable lithium battery inclduing same
JP6065367B2 (en) 2011-06-07 2017-01-25 ソニー株式会社 Nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
FR2983466B1 (en) 2011-12-06 2014-08-08 Arkema France USE OF MIXTURES OF LITHIUM SALTS AS ELECTROLYTES OF LI-ION BATTERIES
JP2013145732A (en) * 2011-12-16 2013-07-25 Nippon Shokubai Co Ltd Lithium secondary battery
JP5893517B2 (en) * 2012-06-25 2016-03-23 株式会社日本触媒 Non-aqueous electrolyte
JP6483943B2 (en) * 2012-06-26 2019-03-13 株式会社日本触媒 Lithium secondary battery
CN104300176A (en) * 2013-07-16 2015-01-21 江苏华盛精化工股份有限公司 LiPF6/LIFSI/corrosion inhibitors-based lithium-ion battery electrolyte composition
JP6315775B2 (en) * 2014-02-19 2018-04-25 株式会社日本触媒 Lithium ion secondary battery
JP6661935B2 (en) * 2015-09-25 2020-03-11 株式会社豊田自動織機 Negative electrode for power storage device and power storage device
JP6661934B2 (en) * 2015-09-25 2020-03-11 株式会社豊田自動織機 Positive electrode for power storage device and power storage device
CN111108642B (en) 2017-09-22 2024-04-02 三菱化学株式会社 Nonaqueous electrolyte, nonaqueous electrolyte secondary battery, and energy device
WO2019193756A1 (en) * 2018-04-06 2019-10-10 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
JP2018116940A (en) * 2018-04-27 2018-07-26 株式会社日本触媒 Electrolyte and lithium ion secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026056A1 (en) * 1994-03-21 1995-09-28 Centre National De La Recherche Scientifique Ionic conducting material having good anticorrosive properties
JPH08335465A (en) * 1995-04-01 1996-12-17 Sony Corp Nonaqueous electrolytic battery
JP3349399B2 (en) * 1996-11-01 2002-11-25 三洋電機株式会社 Lithium secondary battery
JPH11354154A (en) * 1998-06-09 1999-12-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001307774A (en) * 2000-04-21 2001-11-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP4847675B2 (en) * 2002-10-23 2011-12-28 パナソニック株式会社 Nonaqueous electrolyte secondary battery and electrolyte used therefor
JP2005104845A (en) * 2003-09-26 2005-04-21 Tosoh Corp Quaternary ammonium ambient-temperature molten salt and manufacturing method
JP4759932B2 (en) * 2004-04-26 2011-08-31 株式会社Gsユアサ Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2009129797A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5245373B2 (en) Non-aqueous electrolyte battery
JP5125559B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
US11710846B2 (en) Electrolytes for improved performance of cells with high-capacity anodes based on micron-scale moderate volume-changing particles
KR101378235B1 (en) Lithium secondary battery
WO2017038041A1 (en) Non-aqueous electrolyte secondary battery
US10511021B2 (en) Non-aqueous electrolyte secondary battery
JP4985524B2 (en) Lithium secondary battery
JP4186507B2 (en) Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
US20120052386A1 (en) Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing electrode for nonaqueous electrolyte secondary battery
JP2005317512A (en) Nonaqueous electrolyte battery
JP5115109B2 (en) Non-aqueous electrolyte battery
US20090068560A1 (en) Non-aqueous electrolyte secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JP6565899B2 (en) Nonaqueous electrolyte secondary battery
JP2017152259A (en) Lithium ion secondary battery and recovery method thereof
CN101794909A (en) Rechargeable nonaqueous electrolytic battery
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
KR20170038540A (en) Lithium secondary battery comprising non-aqueous liquid electrolyte
KR20200033764A (en) positive material having surface coated positive active material for lithium secondary battery, preparation method thereof and lithium secondary battery comprising the same
JP2001319653A (en) Non-aqueous secondary battery
KR20170038536A (en) Lithium secondary battery comprising non-aqueous liquid electrolyte
JP5159268B2 (en) Non-aqueous electrolyte battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP4078864B2 (en) Negative electrode for secondary battery and secondary battery
JP5311123B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Ref document number: 5245373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3