JP4847675B2 - Nonaqueous electrolyte secondary battery and electrolyte used therefor - Google Patents

Nonaqueous electrolyte secondary battery and electrolyte used therefor Download PDF

Info

Publication number
JP4847675B2
JP4847675B2 JP2003337134A JP2003337134A JP4847675B2 JP 4847675 B2 JP4847675 B2 JP 4847675B2 JP 2003337134 A JP2003337134 A JP 2003337134A JP 2003337134 A JP2003337134 A JP 2003337134A JP 4847675 B2 JP4847675 B2 JP 4847675B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
secondary battery
lithium
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003337134A
Other languages
Japanese (ja)
Other versions
JP2004165151A (en
Inventor
久美子 薗田
秀 越名
徹 松井
正樹 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003337134A priority Critical patent/JP4847675B2/en
Publication of JP2004165151A publication Critical patent/JP2004165151A/en
Application granted granted Critical
Publication of JP4847675B2 publication Critical patent/JP4847675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、主に、リチウムビスフルオロスルフォニルイミドをリチウム塩として含む非水電解質を用いた二次電池に関する。   The present invention mainly relates to a secondary battery using a non-aqueous electrolyte containing lithium bisfluorosulfonylimide as a lithium salt.

近年、パーソナルコンピュータ、携帯電話やPDAなどの情報電子機器、ビデオカムコーダーやミニディスクプレーヤーなどのオーディオビジュアル電子機器の小型・軽量化およびコードレス化が急速に進んでいる。それに伴い、これら電子機器の駆動用電源として、高エネルギー密度を有する二次電池への要望が高まっている。このような状況の下、従来の二次電池である鉛蓄電池、ニッケルカドミウム蓄電池およびニッケル水素蓄電池では到達し得なかった高エネルギー密度を有する非水電解質二次電池の実用化が進められている。   In recent years, information electronic devices such as personal computers, mobile phones and PDAs, and audiovisual electronic devices such as video camcorders and mini disc players are rapidly becoming smaller and lighter and cordless. Accordingly, there is a growing demand for secondary batteries having high energy density as power sources for driving these electronic devices. Under such circumstances, the practical application of non-aqueous electrolyte secondary batteries having high energy density, which cannot be achieved with conventional secondary batteries such as lead storage batteries, nickel cadmium storage batteries and nickel metal hydride storage batteries, is being promoted.

リチウムイオン二次電池やリチウムイオンポリマー二次電池に代表される非水電解質二次電池では、正極活物質として、平均放電電位がリチウム金属の電位に対して3.5Vから4.0Vの範囲であるコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)などの遷移金属酸化物や、遷移金属を複数取り入れた固溶材料(LiCoxNiyMnz2、Li(CoaNibMnc24)などが、単独で、または複数を組み合わせて用いられている。これらの活物質を、導電剤や結着剤などと混合した後、アルミニウム、チタン、ステンレス鋼などからなる集電体上に塗着して圧延すると、正極が得られる。 In a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery or a lithium ion polymer secondary battery, as a positive electrode active material, an average discharge potential is in a range of 3.5 V to 4.0 V with respect to a lithium metal potential. Some transition metal oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and solid solution materials (LiCo x Ni y Mn z) incorporating a plurality of transition metals O 2 , Li (Co a Ni b Mn c ) 2 O 4 ) or the like is used alone or in combination. When these active materials are mixed with a conductive agent, a binder, or the like, and then coated on a current collector made of aluminum, titanium, stainless steel, or the like, and rolled, a positive electrode is obtained.

一方、負極には、一般に、リチウムを吸蔵・放出する炭素材料が用いられている。炭素材料には、人造黒鉛、天然黒鉛、石炭・石油ピッチから造られるメソフェーズ焼成体、難黒鉛化性炭素などが、単独で、または複数を組み合わせて用いられている。これらの炭素材料を、結着剤などと混合した後、銅、鉄、ニッケルなどからなる集電体上に塗着して圧延すると、負極が得られる。   On the other hand, a carbon material that occludes and releases lithium is generally used for the negative electrode. As the carbon material, artificial graphite, natural graphite, mesophase fired body made from coal / petroleum pitch, non-graphitizable carbon, and the like are used alone or in combination. When these carbon materials are mixed with a binder or the like, and then coated on a current collector made of copper, iron, nickel or the like and rolled, a negative electrode is obtained.

一般に、黒鉛材料を用いた負極は、難黒鉛化性炭素を用いた負極と比べ、リチウムを放出する平均電位がリチウム金属の電位に対して約0.2V卑であるため、高電圧と電圧平坦性が望まれる分野には、黒鉛材料が多く用いられている。   In general, a negative electrode using a graphite material has a high voltage and a flat voltage because the average potential for releasing lithium is about 0.2 V lower than that of a lithium metal compared to a negative electrode using non-graphitizable carbon. Many graphite materials are used in the field where properties are desired.

非水電解質は、上記のようなリチウム金属の電位に対して3.5V〜4.0Vの高電位で放電する正極の酸化雰囲気に耐え、かつ、リチウムに近い電位で充放電する負極の還元雰囲気に耐え得ることが望まれる。現在では、高い誘電率を持つエチレンカーボネート(以下、ECという。)と、ジエチルカーボネート(以下、DECという。)、ジメチルカーボネート(以下、DMCという。)、エチルメチルカーボネート(以下、EMCという。)などの低粘性の鎖状カーボネートとを組み合わせた非水溶媒に、六フッ化燐酸リチウム(LiPF6)を溶解させたものが用いられている。 The non-aqueous electrolyte withstands the oxidizing atmosphere of the positive electrode that discharges at a high potential of 3.5 V to 4.0 V with respect to the lithium metal potential as described above, and the reducing atmosphere of the negative electrode that charges and discharges at a potential close to lithium. It is desirable to withstand At present, ethylene carbonate (hereinafter referred to as EC) having a high dielectric constant, diethyl carbonate (hereinafter referred to as DEC), dimethyl carbonate (hereinafter referred to as DMC), ethyl methyl carbonate (hereinafter referred to as EMC), and the like. A solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) in a non-aqueous solvent combined with a low-viscosity chain carbonate is used.

しかしながら、この種の非水電解質は、低粘性で、しかも100℃近辺の沸点を有する鎖状カーボネートを含むため、高温での蒸気圧が高くなる。そのため、電池のパッケージが膨れてしまう可能性がある。また、熱的に不安定で加水分解しやすいLiPF6を溶質として用いているため、電池内部でガス発生などが起こり、パッケージの膨れが助長されやすい。 However, since this type of non-aqueous electrolyte contains a chain carbonate having a low viscosity and a boiling point of around 100 ° C., the vapor pressure at a high temperature is increased. Therefore, the battery package may swell. In addition, since LiPF 6 that is thermally unstable and easily hydrolyzed is used as a solute, gas generation or the like occurs inside the battery, and the swelling of the package is easily promoted.

そこで、LiPF6の代替リチウム塩が検討されているが、例えばLiPF6よりも熱的に安定性が高いLiBF4、リチウムビスパーフルオロメチルスルフォニルイミド(LiN(SO2CF32、以下、LiTFSIという。)、リチウムビスパーフルオロエチルスルフォニルイミド(LiN(SO2252、以下、LiBETIという。)などは、非水電解質のイオン伝導度を低下させるため、電池の放電特性が低下する。また、LiTFSIには、リチウム金属の電位に対して3.7V以上の高電位では、正極の集電体として多用されるアルミニウムを腐食させるという問題もある。LiBETIを用いれば、腐食性は改善されるが、分子量が大きいため、非水電解質の粘性を増大させる傾向が強い。 Therefore, alternative lithium salts of LiPF 6 have been studied. For example, LiBF 4 , lithium bisperfluoromethylsulfonylimide (LiN (SO 2 CF 3 ) 2 , hereinafter referred to as LiTFSI), which has higher thermal stability than LiPF 6. Lithium bisperfluoroethylsulfonylimide (LiN (SO 2 C 2 F 5 ) 2 , hereinafter referred to as LiBETI) and the like lower the ionic conductivity of the non-aqueous electrolyte, so that the discharge characteristics of the battery are reduced. To do. In addition, LiTFSI also has a problem of corroding aluminum frequently used as a positive electrode current collector at a high potential of 3.7 V or higher with respect to the potential of lithium metal. When LiBETI is used, the corrosivity is improved, but since the molecular weight is large, there is a strong tendency to increase the viscosity of the nonaqueous electrolyte.

一方、近年、イミド塩として、リチウムビスフルオロスルフォニルイミドが開発されている(例えば、特許文献1参照)。
また、高温での蒸気圧の上昇を防ぐために、低粘性で低沸点を有する鎖状カーボネートを、例えばプロピレンカーボネート(以下、PCという。)、γ−ブチロラクトン(以下、GBLという。)などの高沸点溶媒に変えることも検討されている。しかし、GBLとLiPF6は、高温時に反応して、電池の分極抵抗を上昇させるため、充放電特性が低下してしまう。
特表平8−511274号公報
On the other hand, in recent years, lithium bisfluorosulfonylimide has been developed as an imide salt (see, for example, Patent Document 1).
In order to prevent an increase in vapor pressure at a high temperature, a low-viscosity, low-boiling chain carbonate such as propylene carbonate (hereinafter referred to as PC) or γ-butyrolactone (hereinafter referred to as GBL) has a high boiling point. Changing to a solvent is also under consideration. However, GBL and LiPF 6 react at a high temperature to increase the polarization resistance of the battery, so that the charge / discharge characteristics are degraded.
JP-T 8-511274

本発明は、高温環境暴露時や保存時に機器へのダメージにつながる非水電解質二次電池の膨れ等を最小限に抑制すること、高温時もしくは保存時においても安定な非水電解質や二次電池を提供すること、および前記のような性質を有しながらも従来と同等の特性を有する非水電解質二次電池を提供することの少なくともいずれかを目的とする。   The present invention minimizes swelling of a non-aqueous electrolyte secondary battery that leads to damage to equipment during exposure to high-temperature environments or storage, and a non-aqueous electrolyte or secondary battery that is stable even at high temperatures or storage And a non-aqueous electrolyte secondary battery having the above-described properties but having the same characteristics as those of the prior art.

本発明は、充放電可能な正極と、リチウムを吸蔵・放出する負極と、前記正極と前記負極とを電子的に遮蔽する隔膜と、非水電解質からなり、前記正極が平均放電電位がリチウム金属の電位に対して3.5Vから4.0Vである正極活物質と、アルミニウムからなる集電体とを含み、前記非水電解質が非水溶媒および溶質からなり、前記非水溶媒がラクトンからなり、前記溶質が、式(1):(F−O2S−N−SO2−F)Liで表されるリチウムビスフルオロスルフォニルイミドと、LiPFm(Ck2k+16-m(0≦m≦6、1≦k≦2)およびLiBFn(Cj2j+14-n(0≦n≦4、1≦j≦2)より選ばれる少なくとも1つのフッ素を含有する別のリチウム塩とからなり、前記リチウムビスフルオロスルフォニルイミドと前記別のリチウム塩との比率(前記リチウムビスフルオロスルフォニルイミド:前記別のリチウム塩)が、モル比で9:1〜5:5である非水電解質二次電池に関する。ただし、m、n、j、kは整数である。 The present invention comprises a chargeable / dischargeable positive electrode, a negative electrode that occludes and releases lithium, a diaphragm that electronically shields the positive electrode and the negative electrode, and a nonaqueous electrolyte, and the positive electrode has an average discharge potential of lithium metal. A positive electrode active material having a voltage of 3.5 V to 4.0 V with respect to the potential, and a current collector made of aluminum. The nonaqueous electrolyte is made of a nonaqueous solvent and a solute, and the nonaqueous solvent is made of a lactone. The solute is represented by the formula (1): (F—O 2 S—N—SO 2 —F) Li and lithium bisfluorosulfonylimide represented by LiPF m (C k F 2k + 1 ) 6-m ( Another containing at least one fluorine selected from 0 ≦ m ≦ 6, 1 ≦ k ≦ 2) and LiBF n (C j F 2j + 1 ) 4-n (0 ≦ n ≦ 4, 1 ≦ j ≦ 2) Do and a lithium salt of Ri, the lithium bis fluoro sulfonyl Louis bromide before Serial Another ratio of lithium salt (lithium bis-fluoro sulfonyl Louis bromide: said further lithium salt), in a molar ratio of 9: 1 to 5: about 5 der Ru nonaqueous electrolyte secondary battery. However, m, n, j, and k are integers.

前記非水電解質は、さらに、正極および/または負極上で被膜を形成する添加剤を含むことが好ましい。
前記添加剤は、ビニレンカーボネート、ビニルエチレンカーボネート、フェニルエチレンカーボネートおよびプロパンサルトンよりなる群から選ばれた少なくとも1種であることが好ましい。
It is preferable that the non-aqueous electrolyte further includes an additive that forms a film on the positive electrode and / or the negative electrode.
The additive is preferably at least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, phenyl ethylene carbonate, and propane sultone.

前記非水溶媒は、さらに、エチレンカーボネートおよび/またはプロピレンカーボネートを含むことが好ましい。
本発明は、リチウム金属の電位に対して3.7V以上の電位で正極を充電する必要がある場合に、特に有効である。
前記ラクトンは、少なくともγ−ブチロラクトンを含むことが好ましい。
It is preferable that the non-aqueous solvent further contains ethylene carbonate and / or propylene carbonate.
The present invention is particularly effective when it is necessary to charge the positive electrode at a potential of 3.7 V or higher with respect to the potential of the lithium metal.
The lactone preferably contains at least γ-butyrolactone.

本発明は、また、非水溶媒および溶質からなり、前記非水溶媒がラクトンからなり、前記ラクトンがγ−ブチロラクトンからなり、前記溶質が式(1):(F−O2S−N−SO2−F)Liで表されるリチウムビスフルオロスルフォニルイミドと、LiPFm(Ck2k+16-m(0≦m≦6、1≦k≦2)およびLiBFn(Cj2j+14-n(0≦n≦4、1≦j≦2)より選ばれる少なくとも1つのフッ素を含有する別のリチウム塩とからなり、前記リチウムビスフルオロスルフォニルイミドと前記別のリチウム塩との比率(前記リチウムビスフルオロスルフォニルイミド:前記別のリチウム塩)が、モル比で9:1〜5:5である非水電解質二次電池用電解質に関する。 The present invention also includes a non-aqueous solvent and a solute, the non-aqueous solvent is a lactone, the lactone is γ-butyrolactone, and the solute is represented by the formula (1): (F—O 2 S—N—SO 2- F) Lithium bisfluorosulfonylimide represented by LiPF m (C k F 2k + 1 ) 6-m (0 ≦ m ≦ 6, 1 ≦ k ≦ 2) and LiBF n (C j F 2j +1) Ri Do and a 4-n (0 ≦ n ≦ 4,1 ≦ j ≦ 2) than another lithium salt containing at least one fluorine selected, said another lithium salt with lithium bis fluoro sulfonyl Louis bromide ratio of (the lithium bis fluoro sulfonyl Louis bromide: said further lithium salt), in a molar ratio of 9: 1 to 5: about 5 der Ru non-aqueous electrolyte secondary cell electrolyte.

本発明によれば、高温環境暴露時や保存時に、機器へのダメージにつながる電池の膨れを最小限に抑制し、安全で、しかも従来の電池と同等の特性を有する非水電解質二次電池を提供することが可能である。   According to the present invention, there is provided a non-aqueous electrolyte secondary battery that minimizes battery swelling that leads to damage to equipment when exposed to high temperatures and during storage, and that is safe and has the same characteristics as conventional batteries. It is possible to provide.

本発明の非水電解質二次電池では、非水電解質の溶媒にラクトンを用い、溶質には、
式(1):(F−O2S−N−SO2−F)Liで表されるリチウムビスフルオロスルフォニルイミド(以下、LiFSIという。)と、LiPFm(Ck2k+16-m(0≦m≦6、1≦k≦2)およびLiBFn(Cj2j+14-n(0≦n≦4、1≦j≦2)より選ばれる少なくとも1つのフッ素を含有する別のリチウム塩(以下単に「別のリチウム塩」とすることがある)とを用い、リチウムビスフルオロスルフォニルイミドと別のリチウム塩との比率(リチウムビスフルオロスルフォニルイミド:別のリチウム塩)が、モル比で9:1〜5:5である。このように、非水溶媒として、融点が高く蒸気圧の低いラクトンを用い、LiFSIと前記したフッ素を含有する別リチウム塩とを用いることにより、高温暴露時のガス発生や保存時のガス発生が抑えられ、電池の膨れが抑制されるとともに、従来の電池と同等の特性を有する非水電解質二次電池を得ることが可能となる。
In the non-aqueous electrolyte secondary battery of the present invention, a lactone is used as a solvent for the non-aqueous electrolyte,
Formula (1): Lithium bisfluorosulfonylimide (hereinafter referred to as LiFSI) represented by (F—O 2 S—N—SO 2 —F) Li and LiPF m (C k F 2k + 1 ) 6− Contains at least one fluorine selected from m (0 ≦ m ≦ 6, 1 ≦ k ≦ 2) and LiBF n (C j F 2j + 1 ) 4-n (0 ≦ n ≦ 4, 1 ≦ j ≦ 2) And a ratio of lithium bisfluorosulfonylimide to another lithium salt (lithium bisfluorosulfonylimide: another lithium salt) is used. , in a molar ratio of 9: 1 to 5: Ru 5 der. Thus, by using a lactone having a high melting point and a low vapor pressure as a non-aqueous solvent, and using LiFSI and the above-described another lithium salt containing fluorine, gas generation during high-temperature exposure and gas generation during storage can be achieved. Thus, it is possible to obtain a nonaqueous electrolyte secondary battery having characteristics equivalent to those of conventional batteries.

LiFSIがイオン解離したときに生成するアニオン分子は、他のリチウムイミド塩よりもサイズが小さいため、他のイミド塩(LiBETIなど)を同程度の濃度で含む非水電解質に比べて、粘度が低く抑えられる。また、LiFSIの場合、スルフォニル基がリチウムイオンの遮蔽を行うため、LiPF6などと比較しても、イオン解離してリチウムイオンを生成しやすい。そのため、非水電解質中のイオン濃度が高くなり、イオン伝導度が高くなると考えられる。 Since the anion molecule generated when LiFSI is ionically dissociated is smaller in size than other lithium imide salts, its viscosity is lower than that of non-aqueous electrolytes containing other imide salts (such as LiBETI) at the same concentration. It can be suppressed. Further, in the case of LiFSI, since the sulfonyl group shields lithium ions, it is easy to generate lithium ions by ion dissociation even when compared with LiPF 6 or the like. Therefore, it is considered that the ion concentration in the non-aqueous electrolyte increases and the ionic conductivity increases.

本発明は、非水電解質二次電池の正極に、平均放電電位がリチウム金属の電位に対して3.5Vから4.0Vの範囲であるコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)などの遷移金属酸化物や、遷移金属を複数取り入れた固溶材料(LiCoxNiyMnz2、Li(CoaNibMnc24)などを、単独で、または複数を組み合わせて用いる場合に、特に有効である。 In the present invention, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ) having an average discharge potential in the range of 3.5 V to 4.0 V with respect to the potential of the lithium metal is applied to the positive electrode of the nonaqueous electrolyte secondary battery. ), Transition metal oxides such as lithium manganate (LiMn 2 O 4 ), and solid solution materials incorporating a plurality of transition metals (LiCo x Ni y Mn z O 2 , Li (Co a Ni b Mn c ) 2 O 4 ) Etc. are particularly effective when used alone or in combination.

本発明で用いることのできるラクトンには、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)、α−メチル−γ−ブチロラクトンなどを挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちでは、特に、GBLを用いることが好ましい。   Examples of the lactone that can be used in the present invention include γ-butyrolactone (GBL), γ-valerolactone (GVL), α-methyl-γ-butyrolactone, and the like. These may be used alone or in combination of two or more. Of these, it is particularly preferable to use GBL.

正極に、アルミニウムからなる集電体を用い、かつ、非水電解質の溶質として、LiFSIとともに、フッ素を含有する別のリチウム塩を併用することにより、集電体の腐食が顕著に抑制される。腐食抑制の機構は明らかではないが、フッ素を含有する別のリチウム塩が、少量のフッ素イオンを生成し、AlF3の被膜を集電体上に形成することによるものと考えられる。 By using a current collector made of aluminum for the positive electrode and using another lithium salt containing fluorine together with LiFSI as the solute of the non-aqueous electrolyte, corrosion of the current collector is remarkably suppressed . Although the mechanism of corrosion inhibition is not clear, it is considered that another lithium salt containing fluorine generates a small amount of fluorine ions and forms a coating of AlF 3 on the current collector.

別のリチウム塩は、LiPFm(Ck2k+16-m(0≦m≦6、1≦k≦2)およびLiBFn(Cj2j+14-n(0≦n≦4、1≦j≦2)よりなる群から選ばれた少なくとも1種を用いる。なかでもLiPF6、LiBF4を用いることが好ましい。 Other lithium salts are LiPF m (C k F 2k + 1 ) 6-m (0 ≦ m ≦ 6, 1 ≦ k ≦ 2) and LiBF n (C j F 2j + 1 ) 4-n (0 ≦ n ≦ 4,1 ≦ j ≦ 2) Ru with at least one member selected from the group consisting of. Of these, LiPF 6 and LiBF 4 are preferably used.

LiFSIと別のリチウム塩との比率は、モル比で、(LiFSI):(別のリチウム塩)=9:1〜5:5である。
また、非水電解質に含まれる溶質濃度は、0.5〜1.5mol/Lであることが好ましいが、特に限定はない。
Ratio of LiFSI with another lithium salt, in a molar ratio, (LiFSI) :( another lithium salt) = 9: 1 to 5: Ru 5 der.
The solute concentration contained in the nonaqueous electrolyte is preferably 0.5 to 1.5 mol / L, but is not particularly limited.

負極に黒鉛材料を用いる場合、ラクトンからなる非水溶媒は、負極で還元分解されやすい性質を有する。そこで、非水電解質には、負極上で被膜を形成する添加剤を添加することが好ましい。また、正極上で分解する成分が非水電解質に含まれる場合もあるため、正極上で被膜を形成する添加剤を添加してもよい。   When a graphite material is used for the negative electrode, the nonaqueous solvent made of lactone has a property of being easily reductively decomposed by the negative electrode. Therefore, it is preferable to add an additive for forming a film on the negative electrode to the non-aqueous electrolyte. Moreover, since the component which decomposes | disassembles on a positive electrode may be contained in a nonaqueous electrolyte, you may add the additive which forms a film on a positive electrode.

負極には、人造黒鉛、天然黒鉛等の黒鉛材料の他に、石炭・石油ピッチから造られるメソフェーズ焼成体、難黒鉛化性炭素等の炭素材料を用いることもできる。また、Si、Si−Ni合金、Sn−Ni合金などの合金材料などを、単独で、もしくは炭素材料とともに負極に用いることもできる。   In addition to graphite materials such as artificial graphite and natural graphite, mesophase fired bodies made from coal / petroleum pitch and carbon materials such as non-graphitizable carbon can be used for the negative electrode. In addition, alloy materials such as Si, Si—Ni alloy, and Sn—Ni alloy can be used alone or together with the carbon material for the negative electrode.

正極および/または負極上で被膜を形成する添加剤には、環状化合物、フェニルエチレンカーボネート(以下、PhECという。)、プロパンサルトン(以下、PSという。)などを用いることが好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。環状化合物としては、ビニレンカーボネート(以下、VCという。)、ビニルエチレンカーボネート(以下、VECという。)などが挙げられる。これらのうちでは、特に、VCやVECが有効である。   As an additive for forming a film on the positive electrode and / or the negative electrode, it is preferable to use a cyclic compound, phenylethylene carbonate (hereinafter referred to as PhEC), propane sultone (hereinafter referred to as PS), or the like. These may be used alone or in combination of two or more. Examples of the cyclic compound include vinylene carbonate (hereinafter referred to as VC), vinyl ethylene carbonate (hereinafter referred to as VEC), and the like. Of these, VC and VEC are particularly effective.

VECはVCよりも緻密な被膜を電極上に形成するため、副反応を抑制する効果は高いが、レート特性および低温特性はVCを用いた場合に比べて低下する。PSは、VCとVECの中間の性能を与えると考えられる。   Since VEC forms a denser film on the electrode than VC, the effect of suppressing side reactions is high, but the rate characteristics and low-temperature characteristics are lower than when VC is used. PS is thought to give performance in between VC and VEC.

添加剤の量は、非水溶媒100重量部あたり、10重量部以下、さらには5重量部以下であることが好ましい。添加剤の量が多すぎると、被膜が過剰に形成されるため、充放電反応が阻害される。一方、添加剤の効果を十分に得るためには、非水溶媒100重量部あたり、少なくとも0.3重量部以上の添加剤を用いることが好ましい。   The amount of the additive is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, per 100 parts by weight of the nonaqueous solvent. When there is too much quantity of an additive, since a film is formed excessively, charging / discharging reaction is inhibited. On the other hand, in order to sufficiently obtain the effect of the additive, it is preferable to use at least 0.3 part by weight or more of the additive per 100 parts by weight of the non-aqueous solvent.

非水電解質と電極やセパレータとの濡れ性を向上させる観点から、非水溶媒には、ラクトン以外の溶媒を含ませることができる。ラクトン以外の溶媒は、特に限定されないが、非プロトン性溶媒であることが好ましく、環状カーボネート、鎖状カーボネート、環状エーテル、鎖状エーテル、鎖状カルボン酸エステルなどを好ましく用いることができる。また、パーフルオロ基を有する化合物も、ラクトン以外の溶媒として好ましく用いることができる。   From the viewpoint of improving the wettability between the nonaqueous electrolyte and the electrode or separator, the nonaqueous solvent can contain a solvent other than the lactone. The solvent other than lactone is not particularly limited, but is preferably an aprotic solvent, and cyclic carbonates, chain carbonates, cyclic ethers, chain ethers, chain carboxylic acid esters, and the like can be preferably used. A compound having a perfluoro group can also be preferably used as a solvent other than lactone.

非水溶媒に占めるラクトンの割合は、50〜100重量%であることが好ましく、50〜70重量%であることが、さらに好ましい。非水溶媒は、ラクトン単独からなるよりも、少なくとも環状カーボネートを含む方が良好な特性を与える。   The proportion of lactone in the non-aqueous solvent is preferably 50 to 100% by weight, and more preferably 50 to 70% by weight. The non-aqueous solvent gives better characteristics when it contains at least a cyclic carbonate rather than lactone alone.

非水溶媒に占める環状カーボネートの割合は、50重量%以下であることが好ましい。また、非水溶媒に占める鎖状カーボネートの割合は、20重量%以下であることが好ましい。   The proportion of the cyclic carbonate in the non-aqueous solvent is preferably 50% by weight or less. The proportion of the chain carbonate in the non-aqueous solvent is preferably 20% by weight or less.

特に、好ましい組成の非水溶媒としては、例えば、ラクトン50〜70重量%、環状カーボネート20〜30重量%および鎖状カーボネート5〜30重量%からなる非水溶媒を挙げることができる。   In particular, as a nonaqueous solvent having a preferred composition, for example, a nonaqueous solvent comprising 50 to 70% by weight of a lactone, 20 to 30% by weight of a cyclic carbonate, and 5 to 30% by weight of a chain carbonate can be exemplified.

環状カーボネートには、EC、PCなどを用いることが好ましく、鎖状カーボネートには、EMC、DMC、DECなどを用いることが好ましい。   EC, PC or the like is preferably used for the cyclic carbonate, and EMC, DMC, DEC or the like is preferably used for the chain carbonate.

なお、本発明は、円筒型、角型、ラミネート型、コイン型など、いずれの形状の非水電解質二次電池にも適用することができる。また、非水電解質は、ポリマー材料と複合させて、ゲル電解質として用いることもできる。このようなゲル電解質を用いることにより、リチウムイオンポリマー二次電池を得ることができる。
以下に、本発明を実施例に基づいて具体的に説明する。
[参考例1]
The present invention can be applied to any shape non-aqueous electrolyte secondary battery such as a cylindrical shape, a square shape, a laminate shape, and a coin shape. Further, the nonaqueous electrolyte can be combined with a polymer material and used as a gel electrolyte. By using such a gel electrolyte, a lithium ion polymer secondary battery can be obtained.
The present invention will be specifically described below based on examples.
[ Reference Example 1]

(イ)正極の作製
活物質のコバルト酸リチウム(LiCoO2)100重量部に、導電剤としてアセチレンブラックを3重量部、結着剤としてポリフッ化ビリニデン(以下、PVdFという。)を4重量部、適量のN−メチル−2−ピロリドン(以下、NMPという。)加えて混合し、ペースト状正極合剤を得た。なお、PVdFは、予めNMPに溶解してから他の成分と混合した。このペースト状正極合剤をチタン箔からなる集電体の両面に塗着した後、乾燥し、全体を圧延して、正極を得た。
(A) Production of positive electrode 100 parts by weight of lithium cobaltate (LiCoO 2 ) as an active material, 3 parts by weight of acetylene black as a conductive agent, and 4 parts by weight of polyvinylidene fluoride (hereinafter referred to as PVdF) as a binder, An appropriate amount of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) was added and mixed to obtain a paste-like positive electrode mixture. PVdF was previously dissolved in NMP and then mixed with other components. This paste-like positive electrode mixture was applied to both surfaces of a current collector made of a titanium foil, then dried, and the whole was rolled to obtain a positive electrode.

(ロ)負極の作製
活物質の難黒鉛化性炭素(呉羽化学工業(株)製のカーボトロンP)100重量部に、結着剤としてスチレンブタジエンゴムの水性ディスパージョンを樹脂分で3重量部加えて混合し、ペースト状負極合剤を得た。このペースト状負極合剤を、銅箔からなる集電体の両面に塗着した後、乾燥し、全体を圧延して、負極を得た。
(B) Preparation of negative electrode 3 parts by weight of an aqueous dispersion of styrene butadiene rubber as a binder was added to 100 parts by weight of non-graphitizable carbon (Carbotron P manufactured by Kureha Chemical Industry Co., Ltd.) as an active material. To obtain a paste-like negative electrode mixture. This paste-like negative electrode mixture was applied to both sides of a current collector made of copper foil, then dried and the whole was rolled to obtain a negative electrode.

(ハ)非水電解質の調製
非水溶媒には、GBLを単独で用いた。溶質には、LiFSIを単独で用いた。ここでは、GBLに、LiFSIを1mol/Lの濃度で溶解させて非水電解質を調製した。
(C) Preparation of non-aqueous electrolyte GBL was used alone as a non-aqueous solvent. LiFSI was used alone as the solute. Here, a nonaqueous electrolyte was prepared by dissolving LiFSI in GBL at a concentration of 1 mol / L.

(ニ)電池の作製
図1に示すような角型リチウムイオン二次電池を組み立てた。
まず、正極と負極とを、厚さ25μmのポリエチレン製微多孔膜からなるセパレータを介して長円形に捲回し、極板群1を構成した。そして、電極群内の水分を低減するために、電極群を真空乾燥機内で60℃で12時間乾燥させて、電極群内の水分量を50ppm以下とした。
(D) Production of battery A prismatic lithium ion secondary battery as shown in FIG. 1 was assembled.
First, the positive electrode and the negative electrode were wound into an oval shape through a separator made of a polyethylene microporous film having a thickness of 25 μm, thereby constituting the electrode plate group 1. And in order to reduce the water | moisture content in an electrode group, the electrode group was dried at 60 degreeC for 12 hours in the vacuum dryer, and the moisture content in an electrode group was 50 ppm or less.

正極と負極には、それぞれ正極リード2および負極リード3を溶接した。極板群1の上部にポリエチレン樹脂製絶縁リング(図示しない)を装着し、図1に示されるように、アルミニウム製の角薄型電池ケース4の内部に挿入した。正極リード2の他端は、アルミニウム製封口板5にスポット溶接した。負極リード3の他端は、封口板5の中央部にあるニッケル製負極端子6の下部にスポット溶接した(図1では未溶接)。   A positive electrode lead 2 and a negative electrode lead 3 were welded to the positive electrode and the negative electrode, respectively. An insulating ring made of polyethylene resin (not shown) was attached to the upper part of the electrode plate group 1 and inserted into an aluminum rectangular thin battery case 4 as shown in FIG. The other end of the positive electrode lead 2 was spot welded to the aluminum sealing plate 5. The other end of the negative electrode lead 3 was spot welded to the lower part of the nickel negative electrode terminal 6 at the center of the sealing plate 5 (not welded in FIG. 1).

電池ケース4の開口端部と封口板5の周縁部とをレーザー溶接し、所定量の非水電解液を注入口から注入した。最後に注入口をアルミニウム製の封栓7で塞ぎ、レーザー溶接で密封した。
こうして得られた電池の寸法は、幅30mm、総高48mm、奥行き5.3mmとした。また、電池の設計容量は800mAhとした。
The open end of the battery case 4 and the peripheral edge of the sealing plate 5 were laser welded, and a predetermined amount of non-aqueous electrolyte was injected from the injection port. Finally, the inlet was closed with an aluminum plug 7 and sealed by laser welding.
The dimensions of the battery thus obtained were 30 mm in width, 48 mm in total height, and 5.3 mm in depth. The design capacity of the battery was 800 mAh.

雰囲気温度20℃において、得られた電池の充放電を繰り返し行った。ここでは、充電電流0.16Aで、電池電圧4.2Vまで定電流充電を行い、20分間休止した後、放電電流0.16A、終止電圧3.0Vで放電を行うサイクルを繰り返した。その後、充電電流0.16Aで、電池電圧4.1Vまで充電した。この電池を参考例1の電池とした。
[参考例2]
The obtained battery was repeatedly charged and discharged at an atmospheric temperature of 20 ° C. Here, a constant current charge was performed up to a battery voltage of 4.2 V at a charge current of 0.16 A, and after a pause of 20 minutes, a cycle of discharging at a discharge current of 0.16 A and a final voltage of 3.0 V was repeated. Thereafter, the battery was charged to a battery voltage of 4.1 V with a charging current of 0.16 A. This battery was referred to as the battery of Reference Example 1.
[ Reference Example 2]

100重量部のGBLに対して、2重量部のVCを添加剤として添加したこと以外、参考例1と同様の非水電解質を調製した。この非水電解質を用い、負極活物質として難黒鉛化性炭素の代わりに鱗片状黒鉛を用いたこと以外、参考例1と同様の電池を作製した。この電池を参考例2の電池とした。
[実施例]
A nonaqueous electrolyte similar to that of Reference Example 1 was prepared, except that 2 parts by weight of VC was added as an additive to 100 parts by weight of GBL. A battery was prepared in the same manner as in Reference Example 1 except that this non-aqueous electrolyte was used and flaky graphite was used as the negative electrode active material instead of non-graphitizable carbon. This battery was referred to as the battery of Reference Example 2.
[Example 1 ]

非水溶媒には、GBLを単独で用いた。溶質には、LiFSIとLiPF6とをモル比7:3で併用した。ここでは、GBLに、LiFSIを0.7mol/L、LiPF6を0.3mol/Lの濃度で溶解させて非水電解質を調製した。この非水電解質を用い、正極集電体としてチタン箔の代わりにアルミニウム箔を用いたこと以外、参考例2と同様の電池を作製した。この電池を実施例の電池とした。
[実施例]
As the non-aqueous solvent, GBL was used alone. For the solute, LiFSI and LiPF 6 were used in a molar ratio of 7: 3. Here, a nonaqueous electrolyte was prepared by dissolving LiFSI in GBL at a concentration of 0.7 mol / L and LiPF 6 at a concentration of 0.3 mol / L. Using this non-aqueous electrolyte, a battery similar to that of Reference Example 2 was produced except that an aluminum foil was used instead of the titanium foil as the positive electrode current collector. This battery was referred to as the battery of Example 1 .
[Example 2 ]

非水溶媒には、30重量%のECと、70重量%のGBLとからなる混合溶媒を用いた。溶質には、LiFSIとLiPF6とをモル比7:3で併用した。ここでは、上記混合溶媒に、LiFSIを0.7mol/L、LiPF6を0.3mol/Lの濃度で溶解させ、100重量部の混合溶媒に対して2重量部のVCを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例と同様の電池を作製した。この電池を実施例の電池とした。
[参考]
As the non-aqueous solvent, a mixed solvent composed of 30% by weight of EC and 70% by weight of GBL was used. For the solute, LiFSI and LiPF 6 were used in a molar ratio of 7: 3. Here, LiFSI is dissolved in the above mixed solvent at a concentration of 0.7 mol / L and LiPF 6 at a concentration of 0.3 mol / L, and 2 parts by weight of VC is added as an additive to 100 parts by weight of the mixed solvent. A non-aqueous electrolyte was prepared. A battery was prepared in the same manner as in Example 1 except that this nonaqueous electrolyte was used. This battery was referred to as the battery of Example 2 .
[ Reference Example 3 ]

100重量部のGBLに対して、2重量部のVECを添加剤として添加したこと以外、参考例1と同様の非水電解質を調製した。この非水電解質を用い、負極活物質として難黒鉛化性炭素の代わりに鱗片状黒鉛を用いたこと以外、参考例1と同様の電池を作製した。この電池を参考の電池とした。
[参考]
A nonaqueous electrolyte similar to that of Reference Example 1 was prepared, except that 2 parts by weight of VEC was added as an additive to 100 parts by weight of GBL. A battery was prepared in the same manner as in Reference Example 1 except that this non-aqueous electrolyte was used and flaky graphite was used as the negative electrode active material instead of non-graphitizable carbon. This battery was referred to as the battery of Reference Example 3 .
[ Reference Example 4 ]

100重量部のGBLに対して、2重量部のPSを添加剤として添加したこと以外、参考例1と同様の非水電解質を調製した。この非水電解質を用い、負極活物質として難黒鉛化性炭素の代わりに鱗片状黒鉛を用いたこと以外、参考例1と同様の電池を作製した。この電池を参考の電池とした。
[実施例]
A nonaqueous electrolyte similar to that of Reference Example 1 was prepared, except that 2 parts by weight of PS was added as an additive to 100 parts by weight of GBL. A battery was prepared in the same manner as in Reference Example 1 except that this non-aqueous electrolyte was used and flaky graphite was used as the negative electrode active material instead of non-graphitizable carbon. This battery was referred to as the battery of Reference Example 4 .
[Example 3 ]

非水溶媒には、30重量%のECと、70重量%のGBLとからなる混合溶媒を用いた。溶質には、LiFSIとLiPF6とをモル比7:3で併用した。ここでは、上記混合溶媒に、LiFSIを0.7mol/L、LiPF6を0.3mol/Lの濃度で溶解させ、100重量部の混合溶媒に対して、2重量部のVECを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例と同様の電池を作製し、この電池を実施例の電池とした。
[実施例]
As the non-aqueous solvent, a mixed solvent composed of 30% by weight of EC and 70% by weight of GBL was used. For the solute, LiFSI and LiPF 6 were used in a molar ratio of 7: 3. Here, LiFSI is dissolved in the above mixed solvent at a concentration of 0.7 mol / L and LiPF 6 at a concentration of 0.3 mol / L, and 2 parts by weight of VEC is added as an additive to 100 parts by weight of the mixed solvent. Thus, a non-aqueous electrolyte was prepared. A battery similar to that of Example 1 was produced except that this non-aqueous electrolyte was used, and this battery was referred to as the battery of Example 3 .
[Example 4 ]

非水溶媒には、30重量%のECと、70重量%のGBLとからなる混合溶媒を用いた。溶質には、LiFSIとLiPF6とをモル比7:3で併用した。ここでは、上記混合溶媒に、LiFSIを0.7mol/L、LiPF6を0.3mol/Lの濃度で溶解させ、100重量部の混合溶媒に対して2重量部のPSを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例と同様の電池を作製した。この電池を実施例の電池とした。
[参考]
As the non-aqueous solvent, a mixed solvent composed of 30% by weight of EC and 70% by weight of GBL was used. For the solute, LiFSI and LiPF 6 were used in a molar ratio of 7: 3. Here, LiFSI is dissolved in the above mixed solvent at a concentration of 0.7 mol / L and LiPF 6 at a concentration of 0.3 mol / L, and 2 parts by weight of PS is added as an additive to 100 parts by weight of the mixed solvent. A non-aqueous electrolyte was prepared. A battery was prepared in the same manner as in Example 1 except that this nonaqueous electrolyte was used. This battery was referred to as the battery of Example 4 .
[ Reference Example 5 ]

非水溶媒としてGBLの代わりに、GVLを用いたこと以外、実施例1と同様の電池を作製した。この電池を参考の電池とした。
[参考]
A battery similar to that of Example 1 was produced except that GVL was used instead of GBL as the non-aqueous solvent. This battery was referred to as the battery of Reference Example 5 .
[ Reference Example 6 ]

非水溶媒としてGBLの代わりに、30重量%のPCと、70重量%のGVLとからなる混合溶媒を用いたこと以外、参考例1と同様の電池を作製した。この電池を参考の電池とした。
[実施例]
A battery was prepared in the same manner as in Reference Example 1 except that a mixed solvent composed of 30% by weight of PC and 70% by weight of GVL was used as the non-aqueous solvent instead of GBL. This battery was referred to as battery of Reference Example 6 .
[Example 5 ]

非水溶媒には、GBLを単独で用いた。溶質には、LiFSIとLiBF4とをモル比7:3で併用した。ここでは、GBLに、LiFSIを0.7mol/L、LiBF4を0.3mol/Lの濃度で溶解させて非水電解質を調製した。この非水電解質を用いたこと以外、実施例と同様の電池を作製した。この電池を実施例の電池とした。
《比較例1》
As the non-aqueous solvent, GBL was used alone. LiFSI and LiBF 4 were used in combination at a molar ratio of 7: 3 as the solute. Here, a nonaqueous electrolyte was prepared by dissolving LiFSI in GBL at a concentration of 0.7 mol / L and LiBF 4 at a concentration of 0.3 mol / L. A battery was prepared in the same manner as in Example 1 except that this nonaqueous electrolyte was used. This battery was referred to as the battery of Example 5 .
<< Comparative Example 1 >>

非水溶媒には、25重量%のECと、75重量%のEMCとからなる混合溶媒を用いた。溶質には、LiPF6を単独で用いた。ここでは、上記混合溶媒に、LiPF6を1mol/Lの濃度で溶解させ、100重量部の混合溶媒に対して、2重量部のVCを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例と同様の電池を作製した。この電池を比較例1の電池とした。
《比較例2》
As the non-aqueous solvent, a mixed solvent composed of 25% by weight of EC and 75% by weight of EMC was used. LiPF 6 was used alone as the solute. Here, LiPF 6 was dissolved in the above mixed solvent at a concentration of 1 mol / L, and 2 parts by weight of VC was added as an additive to 100 parts by weight of the mixed solvent to prepare a nonaqueous electrolyte. A battery was prepared in the same manner as in Example 1 except that this nonaqueous electrolyte was used. This battery was referred to as the battery of Comparative Example 1.
<< Comparative Example 2 >>

非水溶媒には、GBLを単独で用いた。溶質には、LiPF6を単独で用いた。ここでは、GBLに、LiPF6を1mol/Lの濃度で溶解させ、100重量部のGBLに対して、2重量部のVCを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例と同様の電池を作製した。この電池を比較例2の電池とした。
《比較例3》
As the non-aqueous solvent, GBL was used alone. LiPF 6 was used alone as the solute. Here, LiPF 6 was dissolved in GBL at a concentration of 1 mol / L, and 2 parts by weight of VC was added as an additive to 100 parts by weight of GBL to prepare a nonaqueous electrolyte. A battery was prepared in the same manner as in Example 1 except that this nonaqueous electrolyte was used. This battery was referred to as the battery of Comparative Example 2.
<< Comparative Example 3 >>

非水溶媒には、GBLを単独で用いた。溶質には、LiBETIを単独で用いた。ここでは、GBLに、LiBETIを1mol/Lの濃度で溶解させ、100重量部のGBLに対して、2重量部のVCを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例と同様の電池を作製した。この電池を比較例3の電池とした。
《比較例4》
As the non-aqueous solvent, GBL was used alone. LiBETI was used alone as the solute. Here, LiBETI was dissolved in GBL at a concentration of 1 mol / L, and 2 parts by weight of VC was added as an additive to 100 parts by weight of GBL to prepare a nonaqueous electrolyte. A battery was prepared in the same manner as in Example 1 except that this nonaqueous electrolyte was used. This battery was referred to as the battery of Comparative Example 3.
<< Comparative Example 4 >>

非水溶媒には、30重量%のECと、70重量%のGBLとからなる混合溶媒を用いた。溶質には、LiPF6を単独で用いた。ここでは、上記混合溶媒に、LiPF6を1mol/Lの濃度で溶解させ、100重量部の混合溶媒に対して、2重量部のVCを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例と同様の電池を作製した。この電池を比較例4の電池とした。
《比較例5》
As the non-aqueous solvent, a mixed solvent composed of 30% by weight of EC and 70% by weight of GBL was used. LiPF 6 was used alone as the solute. Here, LiPF 6 was dissolved in the above mixed solvent at a concentration of 1 mol / L, and 2 parts by weight of VC was added as an additive to 100 parts by weight of the mixed solvent to prepare a nonaqueous electrolyte. A battery was prepared in the same manner as in Example 1 except that this nonaqueous electrolyte was used. This battery was referred to as the battery of Comparative Example 4.
<< Comparative Example 5 >>

非水溶媒には、25重量%のECと、75重量%のEMCとからなる混合溶媒を用いた。溶質には、LiFSIを単独で用いた。ここでは、上記混合溶媒に、LiFSIを1mol/Lの濃度で溶解させ、100重量部の混合溶媒に対して、2重量部のVCを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、参考例2と同様の電池を作製した。この電池を比較例5の電池とした。 As the non-aqueous solvent, a mixed solvent composed of 25% by weight of EC and 75% by weight of EMC was used. LiFSI was used alone as the solute. Here, LiFSI was dissolved in the mixed solvent at a concentration of 1 mol / L, and 2 parts by weight of VC was added as an additive to 100 parts by weight of the mixed solvent to prepare a nonaqueous electrolyte. A battery was prepared in the same manner as in Reference Example 2, except that this nonaqueous electrolyte was used. This battery was referred to as the battery of Comparative Example 5.

保存試験を高温暴露試験と兼ねて以下のように行った。
20℃の環境下において、放電電流0.8A、終止電圧3.0Vで、電池の放電を行った後、最大電流0.56A、設定電圧4.2Vで、定電流定電圧充電を2時間行った。この時の充電容量を電池の規定容量とした。
The storage test was performed as follows in combination with the high temperature exposure test.
In a 20 ° C environment, the battery was discharged at a discharge current of 0.8 A and a final voltage of 3.0 V, and then a constant current and constant voltage charge was performed for 2 hours at a maximum current of 0.56 A and a set voltage of 4.2 V. It was. The charge capacity at this time was defined as the specified capacity of the battery.

高温保存後における放電容量の回復率の測定は以下のように行った。
規定容量に充電した各電池を、0℃または20℃の環境下において、放電電流0.8A、終止電圧3.0Vで放電し、放電容量を測定した。そして、最大電流0.56A、設定電圧4.2Vで、定電流定電圧充電を2時間行い、その後、周囲温度85℃で、3日間保存した。保存後の電池を、0℃または20℃の環境下において、放電電流0.8A、終止電圧3.0Vで放電した。
The recovery rate of the discharge capacity after high temperature storage was measured as follows.
Each battery charged to a specified capacity was discharged at a discharge current of 0.8 A and a final voltage of 3.0 V in an environment of 0 ° C. or 20 ° C., and the discharge capacity was measured. Then, constant current and constant voltage charging was performed for 2 hours at a maximum current of 0.56 A and a set voltage of 4.2 V, and then stored at an ambient temperature of 85 ° C. for 3 days. The battery after storage was discharged at a discharge current of 0.8 A and a final voltage of 3.0 V in an environment of 0 ° C. or 20 ° C.

保存前の放電容量、高温保存後の放電容量、および高温保存後の電池の膨れ(増加した厚み)を表1に示す。   Table 1 shows the discharge capacity before storage, the discharge capacity after high temperature storage, and the swelling (increased thickness) of the battery after high temperature storage.

Figure 0004847675
Figure 0004847675

比較例1の場合、高温保存後の電池の電気特性は良好な値を示した。しかし、比較例1の電池の膨れは極めて大きく、1mm近く膨れ、その膨れのために電子機器の外観を大きく損なうことが懸念された。   In the case of Comparative Example 1, the electric characteristics of the battery after high temperature storage showed good values. However, the swelling of the battery of Comparative Example 1 was extremely large, and it was swollen by about 1 mm, and there was a concern that the swelling of the electronic device would be greatly impaired due to the swelling.

比較例1と比較し、非水溶媒にGBLを単独で用いた比較例2の電池の膨れは、比較例1の約17%に収まっている。これは、溶媒にGBLを用いたことにより、非水電解質の蒸気圧が低くなったことや、活物質等との反応性が低下したことが寄与したものと考えられる。   Compared to Comparative Example 1, the swelling of the battery of Comparative Example 2 using GBL alone as the non-aqueous solvent is about 17% of Comparative Example 1. This is considered to be attributable to the fact that the vapor pressure of the nonaqueous electrolyte was lowered and the reactivity with the active material and the like was reduced by using GBL as a solvent.

さらに、実施例2と比較例4では、ECとGBLとの混合溶媒を用いているため、両方とも電池の膨れは小さかった。一方、電気特性は、溶質にLiFSIを用いた実施例の方が大きく向上した。 Furthermore, in Example 2 and Comparative Example 4, since a mixed solvent of EC and GBL was used, the swelling of the batteries was small in both cases. On the other hand, the electrical characteristics of Example 2 using LiFSI as the solute were greatly improved.

実施例では、高温保存後の電池の膨れが小さく、高温保存後の容量も比較的良好であった。なお、参考例1および参考例2は、正極集電体としてチタン箔の代わりにステンレス鋼などからなる集電体を用いることもできる。また、コイン型電池などでも好ましい特性が期待できる。 In Example 1 , the swelling of the battery after high temperature storage was small, and the capacity after high temperature storage was relatively good. In Reference Example 1 and Reference Example 2, a current collector made of stainless steel or the like can be used as the positive electrode current collector instead of the titanium foil. In addition, favorable characteristics can be expected even in a coin-type battery.

ここでは、正極活物質として満充電電位がリチウム金属の電位に対して4.3Vと非常に高いLiCoO2を用いたため、実施例では、フッ素を含有するLiPF6をLiFSIと併用したことが電池特性の向上に大きく寄与していると考えられる。同じくアルミニウム箔を正極集電体に用いた場合でも、充電電位がリチウム金属の電位に対して3.7V未満の正極活物質を用いる場合には、LiPF6の使用の有無によって、電池特性に変化はないと考えられる。LiPF6以外のフッ素を含有するリチウム塩を用いた場合にも、同様のことが言えると考えられる。 In this example, LiCoO 2 having a very high full charge potential of 4.3 V with respect to the potential of lithium metal was used as the positive electrode active material. Therefore, in Examples 1 and 2 , LiPF 6 containing fluorine was used in combination with LiFSI. Is considered to contribute greatly to the improvement of battery characteristics. Similarly, even when aluminum foil is used for the positive electrode current collector, when a positive electrode active material having a charging potential of less than 3.7 V with respect to the lithium metal potential is used, the battery characteristics change depending on whether or not LiPF 6 is used. It is not considered. The same can be said when a lithium salt containing fluorine other than LiPF 6 is used.

実施例は、電池の膨れが小さく、電気特性は実施例の中で最も良好であった。これは、LiFSIとLiPF6とを併用したことに加え、添加剤としてVCを用いたことや、非水溶媒にECを混合したことが寄与したものと考えられる。すなわち、実施例の電池では、GBLの負極上での還元分解が十分に抑制されているものと考えられる。これらの添加剤は、負極に黒鉛材料を用いる場合に特に有効であるが、黒鉛材料の結晶性が高くなる場合には、初期充放電効率を向上させる観点からも、これらの添加剤を用いることが有効である。 In Example 2 , the swelling of the battery was small, and the electrical characteristics were the best among the examples. This is considered to be attributable to the fact that, in addition to the combined use of LiFSI and LiPF 6 , the use of VC as an additive and the mixing of EC with a non-aqueous solvent contributed. That is, in the battery of Example 2 , it is considered that the reductive decomposition on the negative electrode of GBL is sufficiently suppressed. These additives are particularly effective when a graphite material is used for the negative electrode. However, when the graphite material has high crystallinity, these additives should also be used from the viewpoint of improving the initial charge / discharge efficiency. Is effective.

以上のように、本発明は、高温環境暴露時や保存時における高度な安全性が求められる非水電解質二次電池の分野において特に有用である。   As described above, the present invention is particularly useful in the field of non-aqueous electrolyte secondary batteries that require a high level of safety when exposed to high temperatures and during storage.

図1は、本発明の非水電解質二次電池の一例の一部切欠斜視図である。FIG. 1 is a partially cutaway perspective view of an example of the nonaqueous electrolyte secondary battery of the present invention.

符号の説明Explanation of symbols

1 極板群
2 正極リード
3 負極リード
4 電池ケース
5 封口板
6 負極端子
7 封栓
DESCRIPTION OF SYMBOLS 1 Electrode plate group 2 Positive electrode lead 3 Negative electrode lead 4 Battery case 5 Sealing plate 6 Negative electrode terminal 7 Sealing

Claims (10)

充放電可能な正極と、リチウムを吸蔵・放出する負極と、前記正極と前記負極とを電子的に遮蔽する隔膜と、非水電解質からなり、
前記正極が、平均放電電位がリチウム金属の電位に対して3.5Vから4.0Vである正極活物質と、アルミニウムからなる集電体とを含み、
前記非水電解質が、非水溶媒および溶質からなり、
前記非水溶媒が、ラクトンからなり、
前記溶質が、式(1):(F−O2S−N−SO2−F)Li
で表されるリチウムビスフルオロスルフォニルイミドと、LiPFm(Ck2k+16-m(0≦m≦6、1≦k≦2)およびLiBFn(Cj2j+14-n(0≦n≦4、1≦j≦2)より選ばれる少なくとも1つのフッ素を含有する別のリチウム塩とからなり、前記リチウムビスフルオロスルフォニルイミドと前記別のリチウム塩との比率(前記リチウムビスフルオロスルフォニルイミド:前記別のリチウム塩)が、モル比で9:1〜5:5である非水電解質二次電池。
A chargeable / dischargeable positive electrode, a negative electrode that occludes and releases lithium, a diaphragm that electronically shields the positive electrode and the negative electrode, and a non-aqueous electrolyte,
The positive electrode includes a positive electrode active material having an average discharge potential of 3.5 V to 4.0 V with respect to a lithium metal potential, and a current collector made of aluminum,
The non-aqueous electrolyte comprises a non-aqueous solvent and a solute;
The non-aqueous solvent comprises a lactone;
The solute has the formula (1): (F—O 2 S—N—SO 2 —F) Li
LiPF m (C k F 2k + 1 ) 6-m (0 ≦ m ≦ 6, 1 ≦ k ≦ 2) and LiBF n (C j F 2j + 1 ) 4− n (0 ≦ n ≦ 4,1 ≦ j ≦ 2) Ri Do from another lithium salt containing at least one fluorine from selected, the ratio of the another lithium salt with lithium bis fluoro sulfonyl Louis bromide (the lithium bis fluoro sulfonyl Louis bromide: said further lithium salt), in a molar ratio of 9: 1 to 5: 5 der Ru nonaqueous electrolyte secondary battery.
前記非水電解質が、さらに、正極および/または負極上で被膜を形成する添加剤を含む請求項1記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte further includes an additive that forms a film on the positive electrode and / or the negative electrode. 前記添加剤が、ビニレンカーボネート、ビニルエチレンカーボネート、フェニルエチレンカーボネートおよびプロパンサルトンよりなる群から選ばれた少なくとも1種である請求項2記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 2, wherein the additive is at least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, phenyl ethylene carbonate, and propane sultone. 前記非水溶媒が、さらに、エチレンカーボネートおよび/またはプロピレンカーボネートを含む請求項1記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous solvent further contains ethylene carbonate and / or propylene carbonate. 前記正極が、リチウム金属の電位に対して3.7V以上の電位で充電が必要な正極である請求項1記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode is a positive electrode that needs to be charged at a potential of 3.7 V or more with respect to a potential of lithium metal. 前記ラクトンが、γ−ブチロラクトンからなる請求項1記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the lactone is γ-butyrolactone. 非水溶媒および溶質からなり、
前記非水溶媒が、ラクトンからなり、
前記ラクトンが、γ−ブチロラクトンからなり、
前記溶質が、式(1):(F−O2S−N−SO2−F)Li
で表されるリチウムビスフルオロスルフォニルイミドと、LiPFm(Ck2k+16-m(0≦m≦6、1≦k≦2)およびLiBFn(Cj2j+14-n(0≦n≦4、1≦j≦2)より選ばれる少なくとも1つのフッ素を含有する別のリチウム塩とからなり、前記リチウムビスフルオロスルフォニルイミドと前記別のリチウム塩との比率(前記リチウムビスフルオロスルフォニルイミド:前記別のリチウム塩)が、モル比で9:1〜5:5である非水電解質二次電池用電解質。
Consisting of non-aqueous solvent and solute,
The non-aqueous solvent comprises a lactone;
The lactone comprises γ-butyrolactone,
The solute has the formula (1): (F—O 2 S—N—SO 2 —F) Li
LiPF m (C k F 2k + 1 ) 6-m (0 ≦ m ≦ 6, 1 ≦ k ≦ 2) and LiBF n (C j F 2j + 1 ) 4− n (0 ≦ n ≦ 4,1 ≦ j ≦ 2) Ri Do from another lithium salt containing at least one fluorine from selected, the ratio of the another lithium salt with lithium bis fluoro sulfonyl Louis bromide (the lithium bis fluoro sulfonyl Louis bromide: said further lithium salt), in a molar ratio of 9: 1 to 5: 5 der Ru non-aqueous electrolyte secondary cell electrolyte.
さらに、正極および/または負極上で被膜を形成する添加剤を含む請求項7記載の非水電解質二次電池用電解質。   Furthermore, the electrolyte for nonaqueous electrolyte secondary batteries of Claim 7 containing the additive which forms a film on a positive electrode and / or a negative electrode. 前記添加剤が、ビニレンカーボネート、ビニルエチレンカーボネート、フェニルエチレンカーボネートおよびプロパンサルトンよりなる群から選ばれた少なくとも1種である請求項8記載の非水電解質二次電池用電解質。   The electrolyte for a non-aqueous electrolyte secondary battery according to claim 8, wherein the additive is at least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, phenyl ethylene carbonate, and propane sultone. 前記非水溶媒が、さらに、エチレンカーボネートおよび/またはプロピレンカーボネートを含む請求項7記載の非水電解質二次電池用電解質。   The electrolyte for a nonaqueous electrolyte secondary battery according to claim 7, wherein the nonaqueous solvent further contains ethylene carbonate and / or propylene carbonate.
JP2003337134A 2002-10-23 2003-09-29 Nonaqueous electrolyte secondary battery and electrolyte used therefor Expired - Fee Related JP4847675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337134A JP4847675B2 (en) 2002-10-23 2003-09-29 Nonaqueous electrolyte secondary battery and electrolyte used therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002308984 2002-10-23
JP2002308984 2002-10-23
JP2003337134A JP4847675B2 (en) 2002-10-23 2003-09-29 Nonaqueous electrolyte secondary battery and electrolyte used therefor

Publications (2)

Publication Number Publication Date
JP2004165151A JP2004165151A (en) 2004-06-10
JP4847675B2 true JP4847675B2 (en) 2011-12-28

Family

ID=32828097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337134A Expired - Fee Related JP4847675B2 (en) 2002-10-23 2003-09-29 Nonaqueous electrolyte secondary battery and electrolyte used therefor

Country Status (1)

Country Link
JP (1) JP4847675B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150034499A (en) * 2013-09-26 2015-04-03 주식회사 엘지화학 Lithium secondary battery with improved output performance

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073161B2 (en) * 2004-10-13 2012-11-14 三星エスディアイ株式会社 Non-aqueous electrolyte for lithium secondary battery, lithium secondary battery and secondary battery system
KR20220156102A (en) 2005-10-20 2022-11-24 미쯔비시 케미컬 주식회사 Lithium secondary cell and nonaqueous electrolytic solution for use therein
JP2014082220A (en) * 2005-10-28 2014-05-08 Mitsubishi Chemicals Corp Nonaqueous electrolyte for secondary battery, and nonaqueous electrolyte secondary battery using the same
US20100178555A1 (en) * 2007-06-29 2010-07-15 Adam Samuel Best Lithium energy storage device
JP5273765B2 (en) * 2007-09-14 2013-08-28 国立大学法人京都大学 Molten salt composition and use thereof
JP5245373B2 (en) * 2007-11-27 2013-07-24 株式会社Gsユアサ Non-aqueous electrolyte battery
JP2011082033A (en) * 2009-10-07 2011-04-21 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery module
JP2011150958A (en) 2010-01-25 2011-08-04 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
US8623558B2 (en) 2010-03-29 2014-01-07 Panasonic Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP5720325B2 (en) * 2011-03-11 2015-05-20 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP6065367B2 (en) 2011-06-07 2017-01-25 ソニー株式会社 Nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP6208934B2 (en) * 2011-09-26 2017-10-04 株式会社日本触媒 Lithium ion secondary battery
JP5848587B2 (en) * 2011-11-15 2016-01-27 株式会社日本触媒 Lithium secondary battery
FR2983466B1 (en) * 2011-12-06 2014-08-08 Arkema France USE OF MIXTURES OF LITHIUM SALTS AS ELECTROLYTES OF LI-ION BATTERIES
JP2013157088A (en) 2012-01-26 2013-08-15 Sony Corp Battery and battery pack, electronic apparatus, electric vehicle, power storage device and power system
JP6018820B2 (en) * 2012-07-04 2016-11-02 株式会社日本触媒 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
JP2014022291A (en) * 2012-07-20 2014-02-03 Nippon Shokubai Co Ltd Nonaqueous electrolyte and lithium secondary battery using the same
KR20140082573A (en) 2012-12-24 2014-07-02 주식회사 엘지화학 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
JP6113496B2 (en) * 2012-12-26 2017-04-12 株式会社日本触媒 Lithium secondary battery
JP6179372B2 (en) 2013-01-17 2017-08-16 ソニー株式会社 Active material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6078629B2 (en) * 2013-02-18 2017-02-08 株式会社日本触媒 Electrolytic solution and lithium ion secondary battery provided with the same
CN104781975B (en) * 2013-02-20 2017-10-24 株式会社Lg化学 Non-aqueous electrolytic solution and the lithium secondary battery comprising it
TWI636603B (en) 2013-02-20 2018-09-21 Lg化學股份有限公司 Electrolyte solution additive for lithium secondary battery, and non-aqueous electrolyte solution and lithium secondary battery including the additive
JP6085194B2 (en) * 2013-03-06 2017-02-22 公立大学法人首都大学東京 Polymer electrolyte
JP6213908B2 (en) * 2013-03-21 2017-10-18 国立大学法人東京農工大学 Polymer electrolyte material
JP6592228B2 (en) * 2013-03-29 2019-10-16 株式会社日本触媒 Overcharge prevention agent, electrolytic solution containing the same, and lithium ion secondary battery
JP2014203748A (en) * 2013-04-08 2014-10-27 株式会社日本触媒 Nonaqueous electrolytic solution for lithium ion secondary batteries, and lithium ion secondary battery having the same
US9825335B2 (en) 2013-05-16 2017-11-21 Lg Chem, Ltd. Non-aqueous electrolyte solution and lithium secondary battery including the same
EP2978059B1 (en) * 2013-05-16 2018-01-31 LG Chem, Ltd. Non-aqueous electrolytic solution and lithium secondary battery comprising same
US9806379B2 (en) 2013-05-27 2017-10-31 Lg Chem, Ltd. Non-aqueous electrolyte solution and lithium secondary battery including the same
CN104604014B (en) * 2013-05-27 2018-03-06 株式会社Lg化学 Non-aqueous electrolytic solution and the lithium secondary battery for including it
KR101893227B1 (en) * 2013-11-01 2018-08-30 주식회사 엘지화학 Nonaqueous electrolyte and lithium secondary battery containing the same
CN103594729B (en) * 2013-11-28 2015-11-18 深圳新宙邦科技股份有限公司 A kind of electrolyte for lithium ion battery
JP6561982B2 (en) 2014-04-23 2019-08-21 株式会社村田製作所 Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
KR20160001783A (en) * 2014-06-26 2016-01-07 에스케이이노베이션 주식회사 Secondary battery with improved high-temperature and low-temperature properties
US20160118689A1 (en) * 2014-10-24 2016-04-28 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion storage battery
US10276871B2 (en) 2014-12-09 2019-04-30 Samsung Sdi Co., Ltd. Rechargeable lithium battery
JP6595176B2 (en) * 2014-12-09 2019-10-23 三星エスディアイ株式会社 Lithium ion secondary battery
JP2017073273A (en) * 2015-10-07 2017-04-13 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
CN105428715B (en) 2015-11-04 2018-06-08 深圳新宙邦科技股份有限公司 A kind of non-aqueous electrolyte for lithium ion cell and lithium ion battery
CN105428717A (en) 2015-12-18 2016-03-23 深圳新宙邦科技股份有限公司 Electrolyte for lithium ion battery and lithium ion battery
JP6784927B2 (en) * 2015-12-22 2020-11-18 セントラル硝子株式会社 Electrolyte for non-aqueous electrolyte batteries, and non-aqueous electrolyte batteries using this
JP7120005B2 (en) * 2016-05-26 2022-08-17 日本電気株式会社 lithium ion secondary battery
JP6212180B2 (en) * 2016-07-27 2017-10-11 株式会社日本触媒 Non-aqueous electrolyte and lithium secondary battery using the same
JP6978259B2 (en) * 2016-10-14 2021-12-08 三洋化成工業株式会社 Positive electrode for lithium-ion batteries and lithium-ion batteries
US10923717B2 (en) 2016-11-03 2021-02-16 Lg Chem, Ltd. Lithium ion secondary battery
JP2019114390A (en) * 2017-12-22 2019-07-11 日本ゼオン株式会社 Electrolyte composition for electrochemical device and manufacturing method of electrode for electrochemical device
JP2020053171A (en) * 2018-09-25 2020-04-02 株式会社日立製作所 Non-aqueous electrolyte, non-volatile electrolyte, and secondary battery
JP7461887B2 (en) 2018-10-25 2024-04-04 パナソニックホールディングス株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7147719B2 (en) * 2019-08-27 2022-10-05 株式会社豊田中央研究所 lithium ion capacitor
JP7147725B2 (en) * 2019-10-01 2022-10-05 株式会社豊田中央研究所 lithium ion capacitor
WO2023171746A1 (en) * 2022-03-11 2023-09-14 Apb株式会社 Battery module and method for manufacturing battery module

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3288068B2 (en) * 1992-03-31 2002-06-04 日立マクセル株式会社 Organic electrolyte battery
DE69535612T2 (en) * 1994-03-21 2008-07-24 Centre National De La Recherche Scientifique (C.N.R.S.) ION-CONDUCTIVE MATERIAL WITH GOOD CORROSION-RESISTANT CHARACTERISTICS
JPH11339850A (en) * 1998-05-29 1999-12-10 Nec Mori Energy Kk Lithium-ion secondary battery
JPH11354154A (en) * 1998-06-09 1999-12-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH11354153A (en) * 1998-06-09 1999-12-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH11354155A (en) * 1998-06-09 1999-12-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP3920510B2 (en) * 1998-10-29 2007-05-30 株式会社東芝 Non-aqueous electrolyte secondary battery
JP3380501B2 (en) * 1999-10-26 2003-02-24 ジ−エス・メルコテック株式会社 Non-aqueous electrolyte secondary battery
JP2001307774A (en) * 2000-04-21 2001-11-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2002015771A (en) * 2000-04-28 2002-01-18 Toshiba Corp Nonaqueous electrolyte and nonaqueous electrlyte secondary cell
JP2002056827A (en) * 2000-08-09 2002-02-22 Seiko Instruments Inc Nonaqueous electrolyte secondary battery
JP2002184462A (en) * 2000-09-28 2002-06-28 Toshiba Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP4678927B2 (en) * 2000-09-29 2011-04-27 株式会社Gsユアサ Nonaqueous electrolyte and lithium battery using the same
FR2818972B1 (en) * 2000-12-29 2003-03-21 Rhodia Chimie Sa PROCESS FOR FLUORINATION OF A HALOGEN COMPOUND
JP2002280060A (en) * 2001-03-15 2002-09-27 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and lithium secondary battery using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150034499A (en) * 2013-09-26 2015-04-03 주식회사 엘지화학 Lithium secondary battery with improved output performance
KR101640288B1 (en) * 2013-09-26 2016-07-15 주식회사 엘지화학 Lithium secondary battery with improved output performance

Also Published As

Publication number Publication date
JP2004165151A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4847675B2 (en) Nonaqueous electrolyte secondary battery and electrolyte used therefor
US7709157B2 (en) Non-aqueous electrolyte secondary battery and electrolyte for the same
CN101188313B (en) Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including same
JP4527605B2 (en) Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same
US8313866B2 (en) Non-aqueous electrolytes and electrochemical devices including the same
US8338030B2 (en) Non-aqueous electrolyte secondary battery
JP4187959B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP3961597B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
US20030148183A1 (en) Non-aqueous electrolyte battery
US7422827B2 (en) Nonaqueous electrolyte
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JP2001307774A (en) Nonaqueous electrolyte secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4479045B2 (en) Nonaqueous electrolyte secondary battery
JP4703121B2 (en) Non-aqueous electrolyte secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP4714976B2 (en) Nonaqueous electrolyte secondary battery
US20200076000A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP3448494B2 (en) Non-aqueous electrolyte secondary battery
JPH1140195A (en) Nonaqueous electrolyte secondary battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP3963611B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP2001297762A (en) Secondary cell with nonaqueous electrolyte
KR101294763B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2003157832A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees