JP2005104845A - Quaternary ammonium ambient-temperature molten salt and manufacturing method - Google Patents

Quaternary ammonium ambient-temperature molten salt and manufacturing method Download PDF

Info

Publication number
JP2005104845A
JP2005104845A JP2003336389A JP2003336389A JP2005104845A JP 2005104845 A JP2005104845 A JP 2005104845A JP 2003336389 A JP2003336389 A JP 2003336389A JP 2003336389 A JP2003336389 A JP 2003336389A JP 2005104845 A JP2005104845 A JP 2005104845A
Authority
JP
Japan
Prior art keywords
quaternary ammonium
molten salt
temperature molten
room temperature
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003336389A
Other languages
Japanese (ja)
Inventor
Haruyuki Horie
治之 堀江
Hiroyuki Yoshimura
浩幸 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003336389A priority Critical patent/JP2005104845A/en
Publication of JP2005104845A publication Critical patent/JP2005104845A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel quaternary ammonium ambient-temperature molten salt which is useful as an electrolyte salt and an electrolytic solution of electrochemical devices such as a secondary cell, an electrical double layer capacitor, a fuel cell, a dye sensitizing solar cell, and furthermore a solvent for organic synthesis. <P>SOLUTION: The quaternary ammonium ambient-temperature molten salt represented by formula (1) (wherein R<SB>1</SB>to R<SB>5</SB>are each independently a 1-4C alkyl group; n is an integer of 1-6; and A is an anion) is obtained by reacting a tertiary diamino compound with an alkylating agent and thereafter subjecting the product to anion exchange. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、4級アンモニウム系常温溶融塩及びその製造法に関する。本発明の4級アンモニウム系常温溶融塩は、二次電池、電気二重層キャパシタ、燃料電池、色素増感太陽電池等の電気化学デバイスの電解質、電解液、さらには、有機合成用の溶媒として有用である。   The present invention relates to a quaternary ammonium-based room temperature molten salt and a method for producing the same. The quaternary ammonium-based room temperature molten salt of the present invention is useful as an electrolyte, an electrolyte solution, and a solvent for organic synthesis in electrochemical devices such as secondary batteries, electric double layer capacitors, fuel cells, and dye-sensitized solar cells. It is.

常温溶融塩はイオン性液体とも呼ばれ、室温付近で液状を呈し広い温度範囲で蒸気圧が低く、また結晶性の塩に比較して有機溶媒等他物質との相溶性が高く、さらに、イオンのみで構成され高いイオン伝導性を示すことから、電気化学デバイスの電解質、電解液、又は、有機合成用溶媒として展開が図られている。   Room temperature molten salt, also called ionic liquid, is liquid near room temperature, has a low vapor pressure over a wide temperature range, and is more compatible with other substances such as organic solvents than crystalline salts. Therefore, it has been developed as an electrolyte for an electrochemical device, an electrolytic solution, or a solvent for organic synthesis.

常温溶融塩のカチオン成分に関しては、これまで、1−エチル−3−メチルイミダゾリウムをはじめとするイミダゾリウム系カチオン、又は、1−ブチルピリジニウムをはじめとするピリジニウム系カチオンが主に検討され(例えば、特許文献1参照)、ビス(トリフルオロメチルスルホニル)イミド(例えば、特許文献2参照)等種々のアニオンを組合せた常温溶融塩が多数合成されている。   As for the cation component of the room temperature molten salt, imidazolium-based cations such as 1-ethyl-3-methylimidazolium or pyridinium-based cations such as 1-butylpyridinium have been mainly studied so far (for example, A large number of room temperature molten salts in which various anions such as bis (trifluoromethylsulfonyl) imide (for example, see Patent Document 2) are combined are synthesized.

一方、イミダゾリウム系、ピリジニウム系以外の4級アンモニウム系カチオンに関しては、テトラアルキル4級アンモニウム(例えば、特許文献3参照)、アルコキシアルキル基を含む4級アンモニウム(例えば、特許文献4参照)等が報告されているが、その報告例はイミダゾリウム系、ピリジニウム系に比較して著しく少ない。   On the other hand, for quaternary ammonium cations other than imidazolium and pyridinium, tetraalkyl quaternary ammonium (for example, see Patent Document 3), quaternary ammonium containing an alkoxyalkyl group (for example, see Patent Document 4), and the like. Although it has been reported, the number of reported cases is remarkably small compared to imidazolium and pyridinium systems.

特開平11−307121号公報JP-A-11-307121

特開平8−259543号公報JP-A-8-259543 特許第2981545号明細書Japanese Patent No. 2981545 国際公開第02/076924号パンフレットInternational Publication No. 02/076924 Pamphlet

イミダゾリウム系又はピリジニウム系のような環状アミジニウム化合物は、適切なアニオン種との組合わせにより、比較的容易に常温溶融塩とすることができ、また、高い電気伝導率を示すという特徴があるものの、耐電圧が低いという欠点がある。例えば、リチウム二次電池の電解質とした場合には、イミダゾリウム塩は、リチウムよりも貴な電位で分解してしまい安定性に劣る、また、電気二重層キャパシタの電解質とした場合には、電位窓が狭くなり十分な作動電圧が得られない、といった問題がある。さらに、イミダゾリウム系、ピリジニウム系カチオンは合成が煩雑であり、高価となるといった点が問題となっている。   Cyclic amidinium compounds such as imidazolium-based or pyridinium-based compounds can be made into a room temperature molten salt relatively easily by combining with an appropriate anion species, and have a characteristic of exhibiting high electrical conductivity. There is a disadvantage that the withstand voltage is low. For example, in the case of an electrolyte of a lithium secondary battery, the imidazolium salt is decomposed at a noble potential and inferior in stability to lithium, and in the case of an electrolyte of an electric double layer capacitor, the potential is low. There is a problem that the window becomes narrow and a sufficient operating voltage cannot be obtained. Furthermore, imidazolium-based and pyridinium-based cations are problematic in that the synthesis is complicated and expensive.

また、電気二重層キャパシタ等の電解質としてテトラエチルアンモニウム塩等の4級アンモニウム化合物が多く用いられているが、電気化学デバイスとして好適な性能を示すプロピレンカーボネート等有機溶媒への溶解性が十分であるとは言えず、特に低温時に結晶が析出しやすいため、その添加量には制限がある。   In addition, quaternary ammonium compounds such as tetraethylammonium salts are often used as electrolytes for electric double layer capacitors, etc., but have sufficient solubility in organic solvents such as propylene carbonate, which exhibit suitable performance as electrochemical devices. However, the amount of addition is limited because crystals are likely to precipitate particularly at low temperatures.

一方、テトラアルキル型のアンモニウムカチオンは特定のアニオン、例えば、ビス(フルオロアルキルスルホニル)イミドアニオン等の組み合わせにより常温で液状とすることも可能であるが、一般に融点は高くなる傾向がある。   On the other hand, tetraalkyl ammonium cations can be made liquid at room temperature by a combination of specific anions such as bis (fluoroalkylsulfonyl) imide anion, but generally the melting point tends to be high.

さらに、有機合成用溶媒に関しては、低揮発性で難燃性の溶媒の開発が望まれている。   Furthermore, regarding organic synthesis solvents, development of low-volatile and flame-retardant solvents is desired.

本発明は上記の課題に鑑てなされたものであり、その目的は、室温で液状を呈し、かつ、二次電池、電気二重層キャパシタ等の電気化学デバイスの電解質塩や電解液、又は有機合成用の溶媒として有用な4級アンモニウム系常温溶融塩を提供することである。   The present invention has been made in view of the above problems, and its purpose is to exhibit a liquid state at room temperature, and an electrolyte salt or electrolyte solution of an electrochemical device such as a secondary battery or an electric double layer capacitor, or an organic synthesis. It is to provide a quaternary ammonium-based room temperature molten salt useful as a solvent for the use.

本発明者らは、上記したような課題を解決するため鋭意検討を重ねた結果、下記一般式(1)   As a result of intensive studies to solve the above-described problems, the present inventors have found that the following general formula (1)

Figure 2005104845
(式中、R〜Rは各々独立して炭素数1〜4のアルキル基を示し、nは1〜6の整数を示し、Aはアニオンである。)
で表される化合物が、室温で液状を呈し、かつ、高いイオン伝動性を示し、電気化学デバイスの電解質塩や電解液として、さらには有機合成用の溶媒として有用であることを見い出し本発明を完成させるに至った。
Figure 2005104845
(Wherein R 1 to R 5 each independently represents an alkyl group having 1 to 4 carbon atoms, n represents an integer of 1 to 6, and A represents an anion.)
The present invention has been found to be useful as an electrolyte salt or an electrolytic solution for electrochemical devices, and further as a solvent for organic synthesis, exhibiting a liquid state at room temperature and exhibiting high ionic conductivity. It came to complete.

すなわち本発明は、
1.下記一般式(1)で表される4級アンモニウム系常温溶融塩、
That is, the present invention
1. A quaternary ammonium-based room temperature molten salt represented by the following general formula (1):

Figure 2005104845
(式中、R〜Rは各々独立して炭素数1〜4のアルキル基を示し、nは1〜6の整数を示し、Aはアニオンである。)
2.下記一般式(9)
Figure 2005104845
(Wherein R 1 to R 5 each independently represents an alkyl group having 1 to 4 carbon atoms, n represents an integer of 1 to 6, and A represents an anion.)
2. The following general formula (9)

Figure 2005104845
(式中、R〜Rは各々独立して炭素数1〜4のアルキル基を示し、nは1〜6の整数である。)
で表される3級ジアミノ化合物とアルキル化剤を反応させ、その後、生成物をアニオン交換することを特徴とする上記一般式(1)で表される4級アンモニウム系常温溶融塩の製造法、
3.上記一般式(1)で表される4級アンモニウム系常温溶融塩からなる電気化学デバイス用電解質塩、並びに
4.上記一般式(1)で表される4級アンモニウム系常温溶融塩からなる電気化学デバイス用電解液、
である。
Figure 2005104845
(Wherein, R 1 to R 4 each independently represents an alkyl group having 1 to 4 carbon atoms, n represents an integer from 1 to 6.)
A method for producing a quaternary ammonium-based room-temperature molten salt represented by the above general formula (1), characterized in that a tertiary diamino compound represented by the formula (I) is reacted with an alkylating agent, and then the product is subjected to anion exchange,
3. 3. an electrolyte salt for an electrochemical device composed of a quaternary ammonium-based room temperature molten salt represented by the general formula (1), and An electrolytic solution for an electrochemical device comprising a quaternary ammonium-based room temperature molten salt represented by the general formula (1),
It is.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の4級アンモニウム系常温溶融塩は、上記一般式(1)で示される化合物である。上記一般式(1)中、置換基R〜Rは各々独立して炭素数1〜4のアルキル基を示し、具体的には、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基等が挙げられる。nは1〜6の整数を示し、Aはアニオンである。 The quaternary ammonium-based room temperature molten salt of the present invention is a compound represented by the above general formula (1). In the general formula (1), each of the substituents R 1 to R 5 independently represents an alkyl group having 1 to 4 carbon atoms, and specifically includes a methyl group, an ethyl group, an n-propyl group, and i-propyl. Group, n-butyl group, i-butyl group and the like. n represents an integer of 1 to 6, and A is an anion.

本発明の4級アンモニウム系常温溶融塩に使用される4級アンモニウムカチオンとしては、特に限定するものではないが、例えば、(2−ジメチルアミノエチル)トリメチルアンモニウム、(2−ジメチルアミノエチル)エチルジメチルアンモニウム、(2−ジエチルアミノエチル)トリエチルアンモニウム、(2−ジエチルアミノエチル)ジエチルメチルアンモニウム、(3−ジメチルアミノプロピル)トリメチルアンモニウム、(3−ジメチルアミノプロピル)エチルジメチルアンモニウム、(3−ジエチルアミノプロピル)トリエチルアンモニウム、(3−ジエチルアミノプロピル)ジエチルメチルアンモニウム、(4−ジメチルアミノブチル)トリメチルアンモニウム、(4−ジメチルアミノブチル)エチルジメチルアンモニウム、(4−ジエチルアミノブチル)トリエチルアンモニウム、(4−ジエチルアミノブチル)ジエチルメチルアンモニウム、(6−ジメチルアミノヘキシル)トリメチルアンモニウム、(6−ジメチルアミノヘキシル)エチルジメチルアンモニウム、(6−ジエチルアミノヘキシル)トリエチルアンモニウム、(6−ジエチルアミノヘキシル)ジエチルメチルアンモニウム等が好適なものとして挙げられる。このような4級アンモニウムカチオンを適用することにより、広範な対アニオンとの組合せにおいて、融点が50℃以下となり、50℃以下の低温領域で溶融塩とすることが可能となる。   Although it does not specifically limit as a quaternary ammonium cation used for the quaternary ammonium type normal temperature molten salt of this invention, For example, (2-dimethylaminoethyl) trimethylammonium, (2-dimethylaminoethyl) ethyldimethyl Ammonium, (2-diethylaminoethyl) triethylammonium, (2-diethylaminoethyl) diethylmethylammonium, (3-dimethylaminopropyl) trimethylammonium, (3-dimethylaminopropyl) ethyldimethylammonium, (3-diethylaminopropyl) triethylammonium , (3-diethylaminopropyl) diethylmethylammonium, (4-dimethylaminobutyl) trimethylammonium, (4-dimethylaminobutyl) ethyldimethylammonium, 4-diethylaminobutyl) triethylammonium, (4-diethylaminobutyl) diethylmethylammonium, (6-dimethylaminohexyl) trimethylammonium, (6-dimethylaminohexyl) ethyldimethylammonium, (6-diethylaminohexyl) triethylammonium, (6 -Diethylaminohexyl) diethylmethylammonium and the like are preferable. By applying such a quaternary ammonium cation, in the combination with a wide range of counter anions, the melting point is 50 ° C. or lower, and a molten salt can be formed in a low temperature region of 50 ° C. or lower.

本発明の4級アンモニウム系常温溶融塩に使用されるアニオンAとしては、特に限定するものではないが、本発明のカチオンと組合せて融点が低くなるようなアニオンが好適に用いられる。このようなアニオンとしては、例えば、下記一般式(2)
RfSO (2)
(式中、Rfはフルオロアルキル基を表す)
で示されるフルオロアルキルスルホネートアニオン、下記一般式(3)
(RfSO (3)
(式中、Rfは上記と同じ定義である)
で示されるビス(フルオロアルキルスルホニル)イミドアニオン、下記一般式(4)
(RfSO (4)
(式中、Rfは上記と同じ定義である)
で示されるトリス(フルオロアルキルスルホニル)カルボアニオン、下記一般式(5)
(FSO (5)
で示されるビス(フルオロスルホニル)イミドアニオン、下記一般式(6)
(RfCO) (6)
(式中、Rfは上記と同じ定義である)
で示されるビス(フルオロアルキルカルボニル)イミドアニオン、下記一般式(7)
(RfSO)N(CORf) (7)
(式中、Rfは上記と同じ定義である)
で示される(フルオロアルキルスルホニル)(フルオロアルキルカルボニル)イミドアニオン、及び下記一般式(8)
RfCOO (8)
(式中、Rfは上記と同じ定義である)
で示されるフルオロアルキルカルボキシアニオン等が挙げられる。具体的には、トリフルオロメタンスルホネート、ビス(トリフルオロメチルスルホニル)イミド、ビス(ペンタフルオロエチルスルホニル)イミド、トリス(トリフルオロメチルスルホニル)カルバニオン、ビス(フルオロスルホニル)イミド、ビス(トリフルオロメチルカルボニル)イミド、(トリフルオロメチルスルホニル)(トリフルオロメチルカルボニル)イミド、トリフルオロ酢酸等のアニオンが好適なものとして挙げられる。これらアニオンは単独で用いられる他、2種以上を組合せても良い。
The anion A used in the quaternary ammonium-based room temperature molten salt of the present invention is not particularly limited, but an anion having a low melting point in combination with the cation of the present invention is preferably used. As such an anion, for example, the following general formula (2)
RfSO 3 (2)
(Wherein Rf represents a fluoroalkyl group)
A fluoroalkylsulfonate anion represented by the general formula (3):
(RfSO 2 ) 2 N (3)
(Wherein Rf has the same definition as above)
A bis (fluoroalkylsulfonyl) imide anion represented by the following general formula (4):
(RfSO 2 ) 3 C (4)
(Wherein Rf has the same definition as above)
Tris (fluoroalkylsulfonyl) carbanion represented by the following general formula (5)
(FSO 2 ) 2 N (5)
Bis (fluorosulfonyl) imide anion represented by the following general formula (6)
(RfCO) 2 N (6)
(Wherein Rf has the same definition as above)
Bis (fluoroalkylcarbonyl) imide anion represented by the following general formula (7)
(RfSO 2) N - (CORf ) (7)
(Wherein Rf has the same definition as above)
A (fluoroalkylsulfonyl) (fluoroalkylcarbonyl) imide anion represented by the general formula (8):
RfCOO (8)
(Wherein Rf has the same definition as above)
And the like, and the like. Specifically, trifluoromethanesulfonate, bis (trifluoromethylsulfonyl) imide, bis (pentafluoroethylsulfonyl) imide, tris (trifluoromethylsulfonyl) carbanion, bis (fluorosulfonyl) imide, bis (trifluoromethylcarbonyl) Preferable examples include anions such as imide, (trifluoromethylsulfonyl) (trifluoromethylcarbonyl) imide, and trifluoroacetic acid. These anions may be used alone or in combination of two or more.

本発明の4級アンモニウム塩の製造法については、特に制限はなく、各種の方法を用いることができる。例えば、上記一般式(9)で示されるN,N,N’,N’−テトラアルキルアルキレンジアミン化合物をモノアルキル4級塩化し、その後、生成物をアニオン交換することによって本発明の4級アンモニウム系常温溶融塩を製造することができる。   There is no restriction | limiting in particular about the manufacturing method of the quaternary ammonium salt of this invention, Various methods can be used. For example, the N, N, N ′, N′-tetraalkylalkylenediamine compound represented by the above general formula (9) is subjected to monoalkyl quaternary chlorination, and then the product is subjected to anion exchange so that the quaternary ammonium of the present invention A normal temperature molten salt can be produced.

上記一般式(9)中、置換基R〜Rは各々独立して炭素数1〜4のアルキル基を示し、具体的には、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基等が挙げられる。また、nは1〜6の整数を示す。本発明の方法において、上記一般式(9)で示される化合物としては、特に限定するものではないが、例えば、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラエチルエチレンジアミン、N,N,N’,N’−テトラメチル−1,3−プロパンジアミン、N,N,N’,N’−テトラエチル−1,3−プロパンジアミン、N,N,N’,N’−テトラメチル−1,4−ブタンジアミン、N,N,N’,N’−テトラエチル−1,4−ブタンジアミン、エチルエチレンジアミン、N,N,N’,N’−テトラメチル−1,6−ヘキサンジアミン、N,N,N’,N’−テトラエチル−1,6−ヘキサンジアミン等が挙げられる。 In the general formula (9), each of the substituents R 1 to R 4 independently represents an alkyl group having 1 to 4 carbon atoms, specifically, methyl group, ethyl group, n-propyl group, i-propyl. Group, n-butyl group, i-butyl group and the like. Moreover, n shows the integer of 1-6. In the method of the present invention, the compound represented by the general formula (9) is not particularly limited. For example, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetraethylethylenediamine, N, N, N ′, N′-tetramethyl-1,3-propanediamine, N, N, N ′, N′-tetraethyl-1,3-propanediamine, N, N, N ', N'-tetramethyl-1,4-butanediamine, N, N, N', N'-tetraethyl-1,4-butanediamine, ethylethylenediamine, N, N, N ', N'-tetramethyl- Examples include 1,6-hexanediamine, N, N, N ′, N′-tetraethyl-1,6-hexanediamine, and the like.

本発明の方法において、モノアルキル4級塩化に際しては、ジアルキルカーボネートを使用する方法、ハロゲン化アルキルを使用する方法の他、硫酸アルキルエステル、カルボン酸アルキルエステルを使用する方法等も採ることができる。   In the method of the present invention, for monoalkyl quaternary chlorination, a method using a dialkyl carbonate, a method using an alkyl halide, a method using a sulfuric acid alkyl ester, a carboxylic acid alkyl ester, or the like can be employed.

ジアルキルカーボネートによるモノアルキル4級塩化反応としては、特に限定するものではないが、例えば、次のような方法を採ることができる。すなわち、上記一般式(9)で示される化合物に対し、通常0.1〜3倍モル量の、より好ましくは0.5〜1.2倍モル量のジアルキルカーボネートを、無溶媒、又はメタノール、エタノール、n−プロパノール、i−プロパノール、エチレングリコール、ジエチレングリコール、エチレンカーボネート、プロピレンカーボネート、アセトニトリル、テトラヒドロフラン、ジオキサン、トルエン、キシレン等の有機溶媒の存在下、通常80〜150℃の温度で、常圧下又はオートクレーブを用いた加圧下、通常1〜100時間の反応で行うことにより、一般式(1)で示されるアンモニウムカチオンのアルキルカーボネート塩を得ることができる。なお、ジアルキルカーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート等が挙げられる。   Although it does not specifically limit as a monoalkyl quaternary chlorination reaction by a dialkyl carbonate, For example, the following methods can be taken. That is, with respect to the compound represented by the general formula (9), usually 0.1 to 3 times the molar amount, more preferably 0.5 to 1.2 times the molar amount of the dialkyl carbonate is used without solvent or methanol, In the presence of an organic solvent such as ethanol, n-propanol, i-propanol, ethylene glycol, diethylene glycol, ethylene carbonate, propylene carbonate, acetonitrile, tetrahydrofuran, dioxane, toluene, xylene and the like, usually at a temperature of 80 to 150 ° C. under normal pressure or The alkyl carbonate salt of the ammonium cation represented by the general formula (1) can be obtained by carrying out the reaction under a pressure of 1 to 100 hours under pressure using an autoclave. Examples of the dialkyl carbonate include dimethyl carbonate, diethyl carbonate, and di-n-propyl carbonate.

また、ハロゲン化アルキルを4級化剤として用いた場合には、特に限定するものではないが、例えば、次のような方法により反応を行うことができる。すなわち、上記一般式(9)で示される化合物に対し、通常0.1〜3倍モル量の、より好ましくは0.5〜1.2倍モル量のハロゲン化アルキルを反応させればよい。反応溶媒としては、特に限定するものではないが、モノアルキル4級塩化によりハロゲン塩が析出するような溶媒、例えば、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒が好適に用いられる。反応は通常0〜120℃の温度で、常圧下又は加圧下、0.5〜50時間で行うことにより進行し、本発明の4級アンモニウム系常温溶融塩に使用される4級アンモニウムカチオンのハロゲン塩を得ることができる。なお、該反応において使用されるハロゲン化アルキルとしては、例えば、ヨードメタン、ブロモメタン、クロロメタン、ヨードエタン、ブロモエタン、クロロエタン、1−ヨードプロパン、1−ブロモプロパン、1−クロロプロパン、2−ヨードプロパン、2−ブロモプロパン、2−クロロプロパン、1−ヨードブタン、1−ブロモブタン、1−クロロブタン等が挙げられる。   Further, when alkyl halide is used as a quaternizing agent, the reaction can be carried out by, for example, the following method, although not particularly limited. That is, with respect to the compound represented by the general formula (9), the alkyl halide is usually reacted in an amount of 0.1 to 3 times mol, more preferably 0.5 to 1.2 times mol. Although it does not specifically limit as a reaction solvent, Ether solvents, such as a solvent from which a halogen salt precipitates by monoalkyl quaternary chloride, for example, diethyl ether, dibutyl ether, tetrahydrofuran, a dioxane, are used suitably. The reaction usually proceeds at a temperature of 0 to 120 ° C. under normal pressure or under pressure for 0.5 to 50 hours, and the halogen of the quaternary ammonium cation used in the quaternary ammonium room temperature molten salt of the present invention. A salt can be obtained. Examples of the alkyl halide used in the reaction include iodomethane, bromomethane, chloromethane, iodoethane, bromoethane, chloroethane, 1-iodopropane, 1-bromopropane, 1-chloropropane, 2-iodopropane, 2- Examples include bromopropane, 2-chloropropane, 1-iodobutane, 1-bromobutane, and 1-chlorobutane.

こうして得られた4級アンモニウム塩は、容易に所望のアニオンに交換することができ、特に生成塩が疎水性を有するフルオロアルカンスルホネートアニオン、フルオロアルカンスルホニルイミドアニオン、フルオロアルカンスルホニルカルボアニオン、トリフルオロアルキルカルボン酸アニオン等では、水洗により容易に副生塩を除去することができる。例えば、アルキルカーボネート塩からビス(フルオロアルカンスルホニル)イミド塩への変換は、室温下、等モル量の4級アンモニウムメチルカーボネート塩とビス(フルオロアルカンスルホニル)イミドのアルカリ金属塩を用い、水、又は水と混和する有機溶剤との共存下で混合することにより直ちに進行し、その際炭酸ガスの発生が見られる。また、副生するアルカリ金属の炭酸塩は水洗することにより容易に除去できる。またハロゲン塩、硫酸塩からのアニオン交換も同様の方法で行うことができる。   The quaternary ammonium salt thus obtained can be easily exchanged for a desired anion, and in particular the product salt has a hydrophobic fluoroalkanesulfonate anion, fluoroalkanesulfonylimide anion, fluoroalkanesulfonylcarboanion, trifluoroalkyl. With a carboxylate anion or the like, the by-product salt can be easily removed by washing with water. For example, the conversion from an alkyl carbonate salt to a bis (fluoroalkanesulfonyl) imide salt is performed using an equimolar amount of quaternary ammonium methyl carbonate salt and an alkali metal salt of bis (fluoroalkanesulfonyl) imide at room temperature, water, or The reaction proceeds immediately by mixing in the presence of an organic solvent miscible with water, and carbon dioxide gas is generated. The alkali metal carbonate by-produced can be easily removed by washing with water. Anion exchange from halogen salts and sulfates can also be performed in the same manner.

本発明の4級アンモニウム系常温溶融塩は、室温領域において液状を示しており、また高いイオン電導性を示すことから、二次電池、電気二重層キャパシタ、燃料電池、色素増感太陽電池等の電気化学デバイスにおいて、電解質塩や電解液として使用することができる。また、電解液用途では常温溶融塩単独の他、有機溶媒に溶解した状態で使用することができる。   The quaternary ammonium-based room temperature molten salt of the present invention shows a liquid state in the room temperature region and exhibits high ionic conductivity, so that it can be used for secondary batteries, electric double layer capacitors, fuel cells, dye-sensitized solar cells, etc. In an electrochemical device, it can be used as an electrolyte salt or an electrolytic solution. In addition, for use as an electrolytic solution, it can be used in a state dissolved in an organic solvent in addition to a room temperature molten salt alone.

電解液を構成する溶媒としては、本発明の4級アンモニウム系常温溶融塩を溶解することができ、電気化学デバイスの作動電圧範囲で安定なものであれば、特に限定されるものではないが、一般的には、電解質を良く溶解し、誘電率が高く、低粘度であり、さらには、高沸点の溶媒が好適である。具体的には、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン、N−メチルピロリドン、ジメチルカーボネート、ジエチルカーボネート、エチレングリコール、プロピレングリコール、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、スルホラン等が挙げられる。これらの溶媒は単独で使用しても良いし、また2種以上混合して使用しても良い。   The solvent constituting the electrolytic solution is not particularly limited as long as it can dissolve the quaternary ammonium-based room temperature molten salt of the present invention and is stable in the operating voltage range of the electrochemical device, In general, a solvent that dissolves the electrolyte well, has a high dielectric constant, has a low viscosity, and has a high boiling point is preferable. Specific examples include ethylene carbonate, propylene carbonate, γ-butyrolactone, N-methylpyrrolidone, dimethyl carbonate, diethyl carbonate, ethylene glycol, propylene glycol, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, and sulfolane. These solvents may be used alone or in combination of two or more.

電解液として使用する際の、4級アンモニウム塩の濃度については、特に限定するものではないが、性能面から好ましくは0.1mol/l以上、より好ましくは0.5mol/l以上として使用する。   Although it does not specifically limit about the density | concentration of the quaternary ammonium salt at the time of using as electrolyte solution, Preferably it is 0.1 mol / l or more from a performance surface, More preferably, it uses as 0.5 mol / l or more.

本発明の電解液においては、本発明の4級アンモニウム系常温溶融塩以外の電解質を併用しても良い。このような電解質としては、二次電池、電気二重層キャパシタ、燃料電池、色素増感太陽電池等の電気化学デバイスに使用できるものであればよく、特に限定されない。また、本発明の4級アンモニウム系常温溶融塩をリチウム二次電池の電解液として使用する際には、リチウムテトラフルオロボレート、リチウムヘキサフルオロホスフェート、リチウムビス(トリフルオロメチルスルホニル)イミド、過塩素酸リチウム等のリチウム塩を添加することが好ましい。   In the electrolytic solution of the present invention, an electrolyte other than the quaternary ammonium-based room temperature molten salt of the present invention may be used in combination. Such an electrolyte is not particularly limited as long as it can be used for an electrochemical device such as a secondary battery, an electric double layer capacitor, a fuel cell, and a dye-sensitized solar cell. In addition, when the quaternary ammonium-based room temperature molten salt of the present invention is used as an electrolyte for a lithium secondary battery, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium bis (trifluoromethylsulfonyl) imide, perchloric acid It is preferable to add a lithium salt such as lithium.

また、本発明の4級アンモニウム系常温溶融塩は極性が高く、有機系化合物、高分子化合物等多数の物質を溶解することから、有機合成用の反応溶媒、抽出、分離溶媒として有用である。適用反応としては、例えば、オレフィンの重合・二量化、水素化、酸化、芳香族のアルキル化、メタセシス反応、カルボニル化反応、ヘック反応、ヒドロホルミル化、不均化、フリーデルクラフト反応、ディースアルダー反応、テロメリゼーション、Wittig反応、バイリス・ヒルマン反応といった反応が挙げられる。   Further, the quaternary ammonium-based room temperature molten salt of the present invention has high polarity and dissolves many substances such as organic compounds and polymer compounds, and is therefore useful as a reaction solvent, extraction, and separation solvent for organic synthesis. Applicable reactions include, for example, olefin polymerization / dimerization, hydrogenation, oxidation, aromatic alkylation, metathesis reaction, carbonylation reaction, Heck reaction, hydroformylation, disproportionation, Friedel-Craft reaction, Diess Alder reaction , Telomerization, Wittig reaction, Billis-Hillman reaction and the like.

本発明の4級アンモニウム系常温溶融塩は、上記したように室温付近で液状を呈し、高い電気伝導性を示し、また電解液用有機溶媒への高い溶解性を示すことから、二次電池、電気二重層キャパシタ、燃料電池、色素増感太陽電池等の電気化学デバイス、さらには有機合成用の溶媒として極めて有用である。   As described above, the quaternary ammonium-based room temperature molten salt of the present invention is liquid near room temperature, exhibits high electrical conductivity, and exhibits high solubility in an organic solvent for an electrolytic solution. It is extremely useful as an electrochemical device such as an electric double layer capacitor, a fuel cell, and a dye-sensitized solar cell, and further as a solvent for organic synthesis.

以下、実施例、比較例に基づいて具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。   Hereinafter, although it demonstrates concretely based on an Example and a comparative example, this invention is not limited only to these Examples.

実施例1 (2−ジメチルアミノエチル)トリメチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミドの合成
攪拌機、冷却管、温度計を附した200mlフラスコに、N,N,N’,N’−テトラメチルエチレンジアミン29.1g(0.25mol)、ジメチルカーボネート22.6g(0.25mol)、及び、n−プロパノール30mlを仕込み、還流条件下で23時間反応を行った。なおこの間、反応液の温度は90から100℃まで徐々に上昇した。その後、未反応のジメチルカーボネート、n−プロパノールを留去、さらに、ジエチルエーテル中で洗浄操作を行い不純物を除去、乾燥を行い、(2−ジメチルアミノエチル)トリメチルアンモニウム・メチルカーボネート塩26.8gを得た。
Example 1 Synthesis of (2-dimethylaminoethyl) trimethylammonium bis (trifluoromethylsulfonyl) imide A 200 ml flask equipped with a stirrer, condenser and thermometer was charged with N, N, N ′, N′-tetramethylethylenediamine. 29.1 g (0.25 mol), 22.6 g (0.25 mol) of dimethyl carbonate, and 30 ml of n-propanol were charged, and the reaction was performed under reflux conditions for 23 hours. During this period, the temperature of the reaction solution gradually increased from 90 to 100 ° C. Thereafter, unreacted dimethyl carbonate and n-propanol were distilled off, and further, a washing operation was performed in diethyl ether to remove impurities, followed by drying to obtain 26.8 g of (2-dimethylaminoethyl) trimethylammonium methyl carbonate salt. Obtained.

次いで、得られた(2−ジメチルアミノエチル)トリメチルアンモニウム・メチルカーボネート10.0gを水30gに溶解し、等モル量のリチウムビス(トリフルオロメチルスルホニル)イミド14.1gの30%水溶液を攪拌しながら滴下した。滴下終了後さらに30分間攪拌、熟成を行い、静置により水相と有機相(目的物)に2相分離させ、有機相を水洗、乾燥を行い、室温(25℃)で液状の(2−ジメチルアミノエチル)トリメチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド13.3gを得た。なお、生成物の確認はH−NMRにより行った(図1参照)
実施例2 (2−ジメチルアミノエチル)エチルジメチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミドの合成
実施例1と同様の装置に、N,N,N’,N’−テトラメチルエチレンジアミン11.6g(0.10mol)をテトラヒドロフラン100mlに溶解させ、ヨードエタン15.6g(0.10mol)を30分かけて滴下し、滴下終了後、室温で1時間熟成、その後、60℃で4時間反応を行い、析出物をろ過、乾燥し、(2−ジメチルアミノエチル)エチルジメチルアンモニウム・ヨーダイド25.6gを得た。
Next, 10.0 g of the obtained (2-dimethylaminoethyl) trimethylammonium methyl carbonate was dissolved in 30 g of water, and a 30% aqueous solution of 14.1 g of an equimolar amount of lithium bis (trifluoromethylsulfonyl) imide was stirred. While dripping. After completion of the dropwise addition, the mixture is further stirred and aged for 30 minutes, allowed to stand to separate into two phases, an aqueous phase and an organic phase (target product), the organic phase is washed with water, dried, and liquid (2- 13.3 g of (dimethylaminoethyl) trimethylammonium bis (trifluoromethylsulfonyl) imide was obtained. The product was confirmed by 1 H-NMR (see FIG. 1).
Example 2 Synthesis of (2-dimethylaminoethyl) ethyldimethylammonium bis (trifluoromethylsulfonyl) imide In the same apparatus as in Example 1, 11.6 g of N, N, N ′, N′-tetramethylethylenediamine ( 0.10 mol) was dissolved in 100 ml of tetrahydrofuran, and 15.6 g (0.10 mol) of iodoethane was added dropwise over 30 minutes. After completion of the addition, the mixture was aged at room temperature for 1 hour, and then reacted at 60 ° C. for 4 hours. The product was filtered and dried to obtain 25.6 g of (2-dimethylaminoethyl) ethyldimethylammonium iodide.

次いで、得られた(2−ジメチルアミノエチル)エチルジメチルアンモニウム・ヨーダイド10.0gを水10gに溶解し、等モル量のリチウムビス(トリフルオロメチルスルホニル)イミド10.6gの50%水溶液を攪拌しながら滴下した。以下実施例1と同様の操作を行い、(2−ジメチルアミノエチル)エチルジメチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド12.4gを得た。   Next, 10.0 g of the obtained (2-dimethylaminoethyl) ethyldimethylammonium iodide was dissolved in 10 g of water, and a 50% aqueous solution of 10.6 g of an equimolar amount of lithium bis (trifluoromethylsulfonyl) imide was stirred. While dripping. Thereafter, the same operation as in Example 1 was performed to obtain 12.4 g of (2-dimethylaminoethyl) ethyldimethylammonium bis (trifluoromethylsulfonyl) imide.

実施例3 (2−ジメチルアミノエチル)トリメチルアンモニウム・トリフルオロメタンスルホネートの合成
実施例1の方法で得られた(2−ジメチルアミノエチル)トリメチルアンモニウム・メチルカーボネート10.0gを水30gに溶解し、攪拌下、等モル量のトリフルオロメタンスルホン酸ナトリウム8.45gの30%水溶液を攪拌しながら滴下した。滴下終了後さらに30分間攪拌、熟成を行い、静置により水相と有機相(目的物)に2相分離させ、有機相を水洗、乾燥を行い、室温(25℃)で液状の(2−ジメチルアミノエチル)トリメチルアンモニウム・トリフルオロメタンスルホネート12.9gを得た。
Example 3 Synthesis of (2-dimethylaminoethyl) trimethylammonium trifluoromethanesulfonate 10.0 g of (2-dimethylaminoethyl) trimethylammonium methylcarbonate obtained by the method of Example 1 was dissolved in 30 g of water and stirred. Then, an equimolar amount of 8.45 g of a sodium trifluoromethanesulfonate 30% aqueous solution was added dropwise with stirring. After completion of the dropwise addition, the mixture is further stirred and aged for 30 minutes, allowed to stand to separate into two phases, an aqueous phase and an organic phase (target product), the organic phase is washed with water, dried, and liquid (2- 12.9 g of dimethylaminoethyl) trimethylammonium trifluoromethanesulfonate was obtained.

実施例4 (3−ジメチルアミノプロピル)トリメチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミドの合成
N,N,N’,N’−テトラメチル−1,3−プロパンジアミン13.0g(0.10mol)を用いた以外は実施例2と同様の方法により、(3−ジメチルアミノプロピル)トリメチルアンモニウム・ヨーダイド25.0gを得た。
Example 4 Synthesis of (3-dimethylaminopropyl) trimethylammonium bis (trifluoromethylsulfonyl) imide 13.0 g (0.10 mol) of N, N, N ′, N′-tetramethyl-1,3-propanediamine 25.0 g of (3-dimethylaminopropyl) trimethylammonium iodide was obtained in the same manner as in Example 2 except that was used.

次いで、得られた(3−ジメチルアミノプロピル)エチルジメチルアンモニウム・ヨーダイド10.0gを用いた以外は実施例2と同様に塩交換、処理を行い、(3−ジメチルアミノプロピル)トリメチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド12.7gを得た。   Subsequently, salt exchange and treatment were performed in the same manner as in Example 2 except that 10.0 g of the obtained (3-dimethylaminopropyl) ethyldimethylammonium iodide was used, and (3-dimethylaminopropyl) trimethylammonium bis ( 12.7 g of (trifluoromethylsulfonyl) imide was obtained.

実施例5〜実施例8(電気伝導率の評価)
実施例1〜実施例4で得られた常温溶融塩の25℃における電気伝導率を測定した。その結果を表1に示す。
Examples 5 to 8 (Evaluation of electrical conductivity)
The electrical conductivity at 25 ° C. of the room temperature molten salt obtained in Examples 1 to 4 was measured. The results are shown in Table 1.

Figure 2005104845
実施例9〜実施例12
実施例1〜実施例3で得られた常温溶融塩をプロピレンカーボネートに溶解した電解液の、電気伝導率の測定結果を表1にあわせて示す。
Figure 2005104845
Example 9 to Example 12
Table 1 shows the measurement results of the electrical conductivity of the electrolytic solutions obtained by dissolving the room temperature molten salts obtained in Examples 1 to 3 in propylene carbonate.

比較例1、比較例2
溶媒にプロピレンカーボネートを用いた場合のテトラエチルアンモニウム・テトラフルオロボレート(試薬)の電気伝導率の測定結果を表1に合わせて示す。
Comparative Example 1 and Comparative Example 2
Table 1 shows the measurement results of the electrical conductivity of tetraethylammonium tetrafluoroborate (reagent) when propylene carbonate is used as the solvent.

テトラエチルアンモニウム・テトラフルオロボレートはプロピレンカーボネートに対する溶解性が低く1.5mol/lの濃度では塩が析出し、電気伝導率は測定できなかった。   Tetraethylammonium tetrafluoroborate had low solubility in propylene carbonate, and a salt was precipitated at a concentration of 1.5 mol / l, and the electrical conductivity could not be measured.

実施例1で得られた(2−ジメチルアミノエチル)トリメチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミドのH−NMRスペクトル図である。1 is a 1 H-NMR spectrum diagram of (2-dimethylaminoethyl) trimethylammonium bis (trifluoromethylsulfonyl) imide obtained in Example 1. FIG.

Claims (9)

下記一般式(1)で表される4級アンモニウム系常温溶融塩。
Figure 2005104845
(式中、R〜Rは各々独立して炭素数1〜4のアルキル基を示し、nは1〜6の整数を示し、Aはアニオンである。)
A quaternary ammonium-based room temperature molten salt represented by the following general formula (1).
Figure 2005104845
(Wherein R 1 to R 5 each independently represents an alkyl group having 1 to 4 carbon atoms, n represents an integer of 1 to 6, and A represents an anion.)
融点が50℃以下である請求項1記載の4級アンモニウム系常温溶融塩。 The quaternary ammonium-based room temperature molten salt according to claim 1, having a melting point of 50 ° C or lower. 上記一般式(1)で表される4級アンモニウム系常温溶融塩において、アニオンAが、下記一般式(2)
RfSO (2)
(式中、Rfはフルオロアルキル基を表す)
で示されるフルオロアルキルスルホネートアニオン、下記一般式(3)
(RfSO (3)
(式中、Rfは上記と同じ定義である)
で示されるビス(フルオロアルキルスルホニル)イミドアニオン、下記一般式(4)
(RfSO (4)
(式中、Rfは上記と同じ定義である)
で示されるトリス(フルオロアルキルスルホニル)カルボアニオン、下記一般式(5)
(FSO (5)
で示されるビス(フルオロスルホニル)イミドアニオン、下記一般式(6)
(RfCO) (6)
(式中、Rfは上記と同じ定義である)
で示されるビス(フルオロアルキルカルボニル)イミドアニオン、下記一般式(7)
(RfSO)N(CORf) (7)
(式中、Rfは上記と同じ定義である)
で示される(フルオロアルキルスルホニル)(フルオロアルキルカルボニル)イミドアニオン、及び下記一般式(8)
RfCOO (8)
(式中、Rfは上記と同じ定義である)
で示されるフルオロアルキルカルボキシアニオンからなる群より選ばれる1種又は2種以上のアニオンであることを特徴とする請求項1又は2記載の4級アンモニウム系常温溶融塩。
In the quaternary ammonium-based room temperature molten salt represented by the general formula (1), the anion A is represented by the following general formula (2).
RfSO 3 (2)
(Wherein Rf represents a fluoroalkyl group)
A fluoroalkylsulfonate anion represented by the general formula (3):
(RfSO 2 ) 2 N (3)
(Wherein Rf has the same definition as above)
A bis (fluoroalkylsulfonyl) imide anion represented by the following general formula (4):
(RfSO 2 ) 3 C (4)
(Wherein Rf has the same definition as above)
Tris (fluoroalkylsulfonyl) carbanion represented by the following general formula (5)
(FSO 2 ) 2 N (5)
Bis (fluorosulfonyl) imide anion represented by the following general formula (6)
(RfCO) 2 N (6)
(Wherein Rf has the same definition as above)
Bis (fluoroalkylcarbonyl) imide anion represented by the following general formula (7)
(RfSO 2) N - (CORf ) (7)
(Wherein Rf has the same definition as above)
A (fluoroalkylsulfonyl) (fluoroalkylcarbonyl) imide anion represented by the general formula (8):
RfCOO (8)
(Wherein Rf has the same definition as above)
The quaternary ammonium-based room temperature molten salt according to claim 1 or 2, which is one or more anions selected from the group consisting of fluoroalkylcarboxy anions represented by formula (1).
上記一般式(1)で表される4級アンモニウム系常温溶融塩において、アニオンAが、トリフルオロメタンスルホネート、ビス(トリフルオロメチルスルホニル)イミド、ビス(ペンタフルオロエチルスルホニル)イミド、トリス(トリフルオロメチルスルホニル)カルバニオン、ビス(フルオロスルホニル)イミド、ビス(トリフルオロメチルカルボニル)イミド、(トリフルオロメチルスルホニル)(トリフルオロメチルカルボニル)イミド、及びトリフルオロ酢酸からなる群より選ばれる1種又は2種以上のアニオンであることを特徴とする請求項1又は請求項2に記載の4級アンモニウム系常温溶融塩。 In the quaternary ammonium room temperature molten salt represented by the general formula (1), the anion A is trifluoromethanesulfonate, bis (trifluoromethylsulfonyl) imide, bis (pentafluoroethylsulfonyl) imide, tris (trifluoromethyl). One or more selected from the group consisting of (sulfonyl) carbanion, bis (fluorosulfonyl) imide, bis (trifluoromethylcarbonyl) imide, (trifluoromethylsulfonyl) (trifluoromethylcarbonyl) imide, and trifluoroacetic acid The quaternary ammonium-based room temperature molten salt according to claim 1 or 2, wherein 下記一般式(9)
Figure 2005104845
(式中、R〜Rは各々独立して炭素数1〜4のアルキル基を示し、nは1〜6の整数である。)
で表される3級ジアミノ化合物とアルキル化剤を反応させ、その後、生成物をアニオン交換することを特徴とする請求項1乃至請求項4のいずれかに記載の4級アンモニウム系常温溶融塩の製造法。
The following general formula (9)
Figure 2005104845
(Wherein, R 1 to R 4 each independently represents an alkyl group having 1 to 4 carbon atoms, n represents an integer from 1 to 6.)
A quaternary ammonium-based room temperature molten salt according to any one of claims 1 to 4, characterized in that a tertiary diamino compound represented by the formula (I) is reacted with an alkylating agent, and then the product is subjected to anion exchange. Manufacturing method.
アルキル化剤がジアルキルカーボネート又はハロゲン化アルキルであることを特徴とする請求項5に記載の4級アンモニウム系常温溶融塩の製造法。 The method for producing a quaternary ammonium-based room temperature molten salt according to claim 5, wherein the alkylating agent is a dialkyl carbonate or an alkyl halide. 請求項3又は請求項4に記載のアニオンによりアニオン交換することを特徴とする請求項5に記載の4級アンモニウム系常温溶融塩の製造法。 6. The method for producing a quaternary ammonium-based room temperature molten salt according to claim 5, wherein anion exchange is performed with the anion according to claim 3 or 4. 請求項1乃至請求項4のいずれかに記載の4級アンモニウム系常温溶融塩からなる電気化学デバイス用電解質塩。 An electrolyte salt for an electrochemical device comprising the quaternary ammonium-based ambient temperature molten salt according to any one of claims 1 to 4. 請求項1乃至請求項4のいずれかに記載の4級アンモニウム系常温溶融塩からなる電気化学デバイス用電解液。
An electrolytic solution for an electrochemical device comprising the quaternary ammonium-based room temperature molten salt according to any one of claims 1 to 4.
JP2003336389A 2003-09-26 2003-09-26 Quaternary ammonium ambient-temperature molten salt and manufacturing method Pending JP2005104845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336389A JP2005104845A (en) 2003-09-26 2003-09-26 Quaternary ammonium ambient-temperature molten salt and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336389A JP2005104845A (en) 2003-09-26 2003-09-26 Quaternary ammonium ambient-temperature molten salt and manufacturing method

Publications (1)

Publication Number Publication Date
JP2005104845A true JP2005104845A (en) 2005-04-21

Family

ID=34532539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336389A Pending JP2005104845A (en) 2003-09-26 2003-09-26 Quaternary ammonium ambient-temperature molten salt and manufacturing method

Country Status (1)

Country Link
JP (1) JP2005104845A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023920A1 (en) * 2005-08-26 2007-03-01 Toyota Jidosha Kabushiki Kaisha Ion-conductive material and use thereof
WO2007134484A1 (en) * 2006-05-18 2007-11-29 Citic Guoan Mengguli New Energy Technology Co., Ltd. A lithium-ion battery with medium and small capacity and high output
JP2007317447A (en) * 2006-05-24 2007-12-06 Dai Ichi Kogyo Seiyaku Co Ltd Dye-sensitized solar cell
JP2008526821A (en) * 2005-01-04 2008-07-24 ザ クィーンズ ユニヴァーシティー オブ ベルファスト Basic ionic liquid
WO2009011249A1 (en) 2007-07-18 2009-01-22 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium secondary battery
JP2009129797A (en) * 2007-11-27 2009-06-11 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
JPWO2008056585A1 (en) * 2006-11-07 2010-02-25 住友ベークライト株式会社 Secondary battery electrode slurry, secondary battery electrode, method for manufacturing secondary battery electrode, and secondary battery
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
JP2010170831A (en) * 2009-01-22 2010-08-05 Sony Corp Nonaqueous electrolyte battery
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
CN101379653B (en) * 2006-02-03 2011-08-31 第一工业制药株式会社 Lithium secondary battery using ionic liquid
KR101415844B1 (en) * 2013-03-29 2014-07-09 한국과학기술연구원 A hydrophobic and ionic liquid based absorbentfor sulphur dioxide and sulfurous acid
EP2752861A1 (en) * 2011-08-30 2014-07-09 Ocean's King Lighting Science&Technology Co., Ltd. Double-center quaternary ammonium salt ion liquid, preparation method therefor and use thereof
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
JP2021504447A (en) * 2017-11-21 2021-02-15 日東電工株式会社 Basic ionic liquid composition and elements containing it

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526821A (en) * 2005-01-04 2008-07-24 ザ クィーンズ ユニヴァーシティー オブ ベルファスト Basic ionic liquid
KR101052016B1 (en) 2005-08-26 2011-07-26 도요타 지도샤(주) Ion-Conductive Materials and Their Uses
US8124264B2 (en) 2005-08-26 2012-02-28 Toyota Jidosha Kabushiki Kaisha Ion-conductive material and use thereof
WO2007023920A1 (en) * 2005-08-26 2007-03-01 Toyota Jidosha Kabushiki Kaisha Ion-conductive material and use thereof
CN101379653B (en) * 2006-02-03 2011-08-31 第一工业制药株式会社 Lithium secondary battery using ionic liquid
WO2007134484A1 (en) * 2006-05-18 2007-11-29 Citic Guoan Mengguli New Energy Technology Co., Ltd. A lithium-ion battery with medium and small capacity and high output
JP2007317447A (en) * 2006-05-24 2007-12-06 Dai Ichi Kogyo Seiyaku Co Ltd Dye-sensitized solar cell
JPWO2008056585A1 (en) * 2006-11-07 2010-02-25 住友ベークライト株式会社 Secondary battery electrode slurry, secondary battery electrode, method for manufacturing secondary battery electrode, and secondary battery
TWI470861B (en) * 2006-11-07 2015-01-21 Sumitomo Bakelite Co Secondary battery electrode paste, secondary battery electrode, secondary battery electrode manufacturing method and secondary battery
JP5338318B2 (en) * 2006-11-07 2013-11-13 住友ベークライト株式会社 Secondary battery electrode slurry, secondary battery electrode, method for manufacturing secondary battery electrode, and secondary battery
JP5215307B2 (en) * 2007-07-18 2013-06-19 第一工業製薬株式会社 Lithium secondary battery
US9214697B2 (en) 2007-07-18 2015-12-15 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium secondary battery
WO2009011249A1 (en) 2007-07-18 2009-01-22 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium secondary battery
JP2009129797A (en) * 2007-11-27 2009-06-11 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
JP2010170831A (en) * 2009-01-22 2010-08-05 Sony Corp Nonaqueous electrolyte battery
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2752861A1 (en) * 2011-08-30 2014-07-09 Ocean's King Lighting Science&Technology Co., Ltd. Double-center quaternary ammonium salt ion liquid, preparation method therefor and use thereof
EP2752861A4 (en) * 2011-08-30 2015-04-01 Oceans King Lighting Science Double-center quaternary ammonium salt ion liquid, preparation method therefor and use thereof
US9202632B2 (en) 2011-08-30 2015-12-01 Ocean's King Lighting Science & Technology Co., Ltd. Double-center quaternary ammonium salt ion liquid, preparation method therefor and use thereof
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
KR101415844B1 (en) * 2013-03-29 2014-07-09 한국과학기술연구원 A hydrophobic and ionic liquid based absorbentfor sulphur dioxide and sulfurous acid
JP2021504447A (en) * 2017-11-21 2021-02-15 日東電工株式会社 Basic ionic liquid composition and elements containing it
US11655402B2 (en) 2017-11-21 2023-05-23 Nitto Denko Corporation Basic ionic liquids compositions and elements including the same

Similar Documents

Publication Publication Date Title
JP2005104845A (en) Quaternary ammonium ambient-temperature molten salt and manufacturing method
JP4705476B2 (en) Method for producing fluorine compound
JP2005139100A (en) Ordinary temperature melted salt
JP5778575B2 (en) Reactive ionic liquid
JP2005200359A (en) Ionic compound
WO2009136608A1 (en) Ionic liquid
JP4322004B2 (en) Onium salt
KR20150107846A (en) Low symmetry molecules and phosphonium salts, methods of making and devices formed there from
JP2005104846A (en) Quaternary ammonium ambient-temperature molten salt and its manufacturing method
JP2006225372A (en) Method for synthesizing ionic complex
JPWO2009025246A1 (en) Process for producing purified ammonium salt of fluorine-containing bissulfonylimide
JP6692033B2 (en) Silicon-containing sulfonate
JP2017193510A (en) Silicon-containing sulfate ester salt
JP2010258333A (en) Electrolyte using quaternary ammonium salt electrolyte, and electrochemical element
JP2004262897A (en) Quaternary ammonium room temperature molten salt and method for producing the same
JP2005225843A (en) Method for producing alkoxyalkyl group-containing quaternary ammonium salt
KR100922706B1 (en) Composition for electrolytic solution and process for producing the same
JP6051757B2 (en) Ionic liquid
JP5796128B2 (en) Bipyridyl cationic ionic liquid having two centers, its preparation method and use
JP5116655B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JPWO2011132307A1 (en) Electrolytic solution and power storage device using the electrolytic solution
JP2004262896A (en) Quaternary ammonium room temperature molten salt and method for producing the same
JP2006210259A (en) Nonaqueous electrolytic solution
JP5116654B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JPH11322760A (en) Production of organic onium salt