JP6692033B2 - Silicon-containing sulfonate - Google Patents

Silicon-containing sulfonate Download PDF

Info

Publication number
JP6692033B2
JP6692033B2 JP2015230596A JP2015230596A JP6692033B2 JP 6692033 B2 JP6692033 B2 JP 6692033B2 JP 2015230596 A JP2015230596 A JP 2015230596A JP 2015230596 A JP2015230596 A JP 2015230596A JP 6692033 B2 JP6692033 B2 JP 6692033B2
Authority
JP
Japan
Prior art keywords
silicon
formula
represented
group
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015230596A
Other languages
Japanese (ja)
Other versions
JP2017095416A (en
Inventor
真佐人 南条
真佐人 南条
増田 現
現 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Tottori University
Original Assignee
Nisshinbo Holdings Inc
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Holdings Inc, Tottori University filed Critical Nisshinbo Holdings Inc
Priority to JP2015230596A priority Critical patent/JP6692033B2/en
Priority to PCT/JP2016/081073 priority patent/WO2017090346A1/en
Publication of JP2017095416A publication Critical patent/JP2017095416A/en
Application granted granted Critical
Publication of JP6692033B2 publication Critical patent/JP6692033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/06Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with radicals, containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/60Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Pyrrole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Pyridine Compounds (AREA)

Description

本発明は、ケイ素含有スルホン酸塩に関し、詳しくは、シラシクロアルカン構造を含む新規なケイ素含有スルホン酸塩に関する。   The present invention relates to silicon-containing sulfonates, and more particularly to novel silicon-containing sulfonates containing a silacycloalkane structure.

近年、デジタルカメラ、スマートフォン、タブレット機器等の携帯電子機器の普及がめざましく、これに伴って、それらの機器の電源として用いられる、充電により繰り返し使用できる二次電池等の蓄電デバイスの需要が大きく伸びるとともに、その高容量化、高エネルギー密度化の要望がますます高まりつつある。   In recent years, the spread of portable electronic devices such as digital cameras, smartphones, and tablet devices has been remarkable, and along with this, the demand for power storage devices such as secondary batteries that can be repeatedly used by charging and that are used as power sources for those devices has greatly increased. At the same time, there is an increasing demand for higher capacity and higher energy density.

これらの蓄電デバイスでは、一般に、非プロトン性の有機溶媒に電解質塩を溶解させた溶液が電解液として使用されている。これら電解質塩及び非プロトン性の有機溶媒の組み合わせについては、現在まで種々検討されてきている。電解質塩としては、4級アンモニウム塩(特許文献1〜3)や4級ホスホニウム塩(特許文献4)等が、有機溶媒への溶解性及び解離度、並びに電気化学的安定域が広いことから汎用されている。   In these power storage devices, a solution in which an electrolyte salt is dissolved in an aprotic organic solvent is generally used as the electrolytic solution. Various combinations of these electrolyte salts and aprotic organic solvents have been studied so far. As the electrolyte salt, a quaternary ammonium salt (Patent Documents 1 to 3), a quaternary phosphonium salt (Patent Document 4), or the like is widely used because it has a wide solubility and dissociation degree in an organic solvent and an electrochemically stable region. Has been done.

しかし、前記電解質塩はアニオンにフッ素原子等のハロゲン原子を含んでいることから、環境負荷という点で依然として問題があり、改善が望まれている。また、前述した用途に用いられる電解質塩には、高イオン導電性、広い電位窓等の電気化学的特性が要求される。   However, since the electrolyte salt contains a halogen atom such as a fluorine atom in the anion, there is still a problem in terms of environmental load, and improvement is desired. Further, the electrolyte salt used for the above-mentioned applications is required to have high ionic conductivity and electrochemical characteristics such as a wide potential window.

特開昭61−32509号公報JP-A-61-32509 特開昭63−173312号公報JP-A-63-173312 特開平10−55717号公報Japanese Patent Laid-Open No. 10-55717 特開昭62−252927号公報JP 62-252927 A

本発明は、前記事情に鑑みてなされたものであり、ハロゲン原子を含まず、蓄電デバイスの電解質、電解液等として好適に用いられる新規なスルホン酸塩を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel sulfonate that does not contain a halogen atom and can be suitably used as an electrolyte of an electricity storage device, an electrolytic solution, or the like.

本発明者らは、前記目的を達成するために鋭意検討を重ねた結果、シラシクロアルカン構造を含むスルホン酸アニオンと、1価のカチオンとからなるケイ素含有スルホン酸塩が、電気化学的特性に優れることを見出し、本発明を完成させた。   The present inventors have conducted extensive studies to achieve the above-mentioned object, and as a result, a silicon-containing sulfonate composed of a sulfonate anion containing a silacycloalkane structure and a monovalent cation has an electrochemical characteristic. They have found that they are excellent and have completed the present invention.

すなわち、本発明は、下記蓄電デバイス用電解質及びイオン液体を提供する。
1.下記式(1)で表されるケイ素含有スルホン酸塩からなる蓄電デバイス用電解質塩
式中、R1は、炭素数1〜4のアルキル基を表す。mは、1又は2を表す。nは、2〜4の整数を表す。A+は、ナトリウムイオン、カリウムイオン、リチウムイオン、下記式(2)で表される4級アンモニウムイオン、下記式(3)で表される4級ホスホニウムイオン、下記式(4)で表されるイミダゾリウムイオン及び下記式(5)で表されるピリジニウムイオンから選ばれる1価のカチオンを表す。
(式中、R 2 〜R 5 は、それぞれ独立に、炭素数1〜4のアルキル基、又は−(CH 2 ) k −ORで表されるアルコキシアルキル基を表す。kは、1又は2を表す。Rは、メチル基又はエチル基を表す。また、R 2 〜R 5 のいずれか2つが、互いに結合してこれらが結合する窒素原子とともに環を形成してもよく、更に、残りの2つも互いに結合して窒素原子をスピロ原子とするスピロ環を形成してもよい。)
(式中、R 6 は、炭素数1〜12のアルキル基を表す。R 7 は、炭素数1〜20のアルキル基を表す。)
(式中、R 8 及びR 9 は、それぞれ独立に、炭素数1〜4のアルキル基、又は−(CH 2 ) k −ORで表されるアルコキシアルキル基を表す。kは、1又は2を表す。Rは、メチル基又はエチル基を表す。)
(式中、R 10 は、炭素数1〜8のアルキル基、又は−(CH 2 ) k −ORで表されるアルコキシアルキル基を表す。kは、1又は2を表す。Rは、メチル基又はエチル基を表す。)]
2.R1が、メチル基又はエチル基である1の蓄電デバイス用電解質塩。
3.nが、2又は3である1又は2の蓄電デバイス用電解質塩。
4.A+が、ナトリウムイオン、カリウムイオン及びリチウムイオンから選ばれる1価の金属イオンである1〜3のいずれか蓄電デバイス用電解質塩。
.A+、式(2)で表される4級アンモニウムイオンである1〜3のいずれか蓄電デバイス用電解質塩。
.前記4級アンモニウムイオンが、下記式(2−1)〜(2−4)で表されるものから選ばれる蓄電デバイス用電解質塩。
(式中、R及びkは、前記と同じ。R11〜R14は、それぞれ独立に、炭素数1〜4のアルキル基を表す。R15及びR16は、それぞれ独立に、炭素数1〜4のアルキル基を表す。R15及びR16は、互いに結合してこれらが結合する窒素原子とともに環を形成してもよい。)
.A+、式(3)で表される4級ホスホニウムイオンである1〜3のいずれか蓄電デバイス用電解質塩。
.A+、式(4)で表されるイミダゾリウムイオンである1〜3のいずれか蓄電デバイス用電解質塩。
.A+、式(5)で表されるピリジニウムイオンである1〜3のいずれか蓄電デバイス用電解質塩。
前記ケイ素含有スルホン酸塩が、イオン液体である1〜10のいずれかの蓄電デバイス用電解質塩。
11.下記式(1'')で表されるケイ素含有スルホン酸塩からなるイオン液体。
(式中、R 1 、m及びnは、前記と同じ。A' + は、式(2)で表される4級アンモニウムイオン及び式(3)で表される4級ホスホニウムイオンから選ばれる1価のカチオンを表す。)
That is, the present invention provides the following electrolyte salt and ionic liquid for an electricity storage device .
1. An electrolyte salt for an electricity storage device comprising a silicon-containing sulfonate represented by the following formula (1).
[In the formula, R 1 represents an alkyl group having 1 to 4 carbon atoms. m represents 1 or 2. n represents an integer of 2 to 4. A + is a sodium ion, a potassium ion, a lithium ion, a quaternary ammonium ion represented by the following formula (2), a quaternary phosphonium ion represented by the following formula (3), or a following formula (4) It represents a monovalent cation selected from imidazolium ions and pyridinium ions represented by the following formula (5) .
(In the formula, R 2 to R 5 each independently represent an alkyl group having 1 to 4 carbon atoms or an alkoxyalkyl group represented by — (CH 2 ) k —OR. K represents 1 or 2. R represents a methyl group or an ethyl group, and any two of R 2 to R 5 may be bonded to each other to form a ring with the nitrogen atom to which they are bonded, and the remaining 2 They may also be bonded to each other to form a spiro ring having a nitrogen atom as a spiro atom.)
(In the formula, R 6 represents an alkyl group having 1 to 12 carbon atoms. R 7 represents an alkyl group having 1 to 20 carbon atoms.)
(In the formula, R 8 and R 9 each independently represent an alkyl group having 1 to 4 carbon atoms or an alkoxyalkyl group represented by — (CH 2 ) k —OR. K is 1 or 2 Represents, R represents a methyl group or an ethyl group.)
(In the formula, R 10 represents an alkyl group having 1 to 8 carbon atoms or an alkoxyalkyl group represented by — (CH 2 ) k —OR. K represents 1 or 2. R represents a methyl group. Or represents an ethyl group.)]
2. 1. An electrolyte salt for an electricity storage device, wherein R 1 is a methyl group or an ethyl group.
3. The electrolyte salt for an electricity storage device according to 1 or 2, wherein n is 2 or 3.
4. The electrolyte salt for an electricity storage device according to any one of 1 to 3, wherein A + is a monovalent metal ion selected from sodium ion, potassium ion and lithium ion.
5 . The electrolyte salt for an electricity storage device according to any one of 1 to 3 , wherein A + is a quaternary ammonium ion represented by the formula (2).
6 . The electrolyte salt for an electricity storage device of 5 , wherein the quaternary ammonium ion is selected from those represented by the following formulas (2-1) to (2-4).
(In the formula, R and k are the same as the above. R 11 to R 14 each independently represents an alkyl group having 1 to 4 carbon atoms. R 15 and R 16 each independently have 1 to 4 carbon atoms. Represents an alkyl group of 4. R 15 and R 16 may be bonded to each other to form a ring together with the nitrogen atom to which they are bonded.
7 . The electrolyte salt for an electricity storage device according to any one of 1 to 3 , wherein A + is a quaternary phosphonium ion represented by the formula (3).
8 . The electrolyte salt for an electricity storage device according to any one of 1 to 3 , wherein A + is an imidazolium ion represented by the formula (4).
9 . The electrolyte salt for an electricity storage device according to any one of 1 to 3 , wherein A + is a pyridinium ion represented by the formula (5).
1 0 . The electrolyte salt for an electricity storage device according to any one of 1 to 10 , wherein the silicon-containing sulfonate is an ionic liquid.
11. An ionic liquid comprising a silicon-containing sulfonate represented by the following formula (1 ″).
(In the formula, R 1 , m and n are the same as above. A ′ + is 1 selected from the quaternary ammonium ion represented by the formula (2) and the quaternary phosphonium ion represented by the formula (3). Represents a valent cation.)

本発明のケイ素含有スルホン酸塩は、ハロゲンフリーであるため環境負荷が小さい。また、本発明のケイ素含有スルホン酸塩は、従来のハロゲンフリーの塩に比べて広い電位窓を有し、電気化学的に安定である。   Since the silicon-containing sulfonate of the present invention is halogen-free, its environmental load is small. Further, the silicon-containing sulfonate of the present invention has a wider potential window than the conventional halogen-free salt and is electrochemically stable.

実施例1で作製したケイ素含有スルホン酸ナトリウム塩1の1H−NMRチャートである。1 is a 1 H-NMR chart of silicon-containing sodium sulfonate 1 prepared in Example 1. 実施例2で作製したケイ素含有スルホン酸ナトリウム塩2の1H−NMRチャートである。3 is a 1 H-NMR chart of silicon-containing sulfonic acid sodium salt 2 produced in Example 2. 実施例3で作製したケイ素含有スルホン酸ナトリウム塩3の1H−NMRチャートである。3 is a 1 H-NMR chart of silicon-containing sulfonic acid sodium salt 3 produced in Example 3. 実施例4で作製したケイ素含有スルホン酸ナトリウム塩4の1H−NMRチャートである。3 is a 1 H-NMR chart of silicon-containing sulfonic acid sodium salt 4 produced in Example 4. 実施例5で作製したケイ素含有スルホン酸塩1の1H−NMRチャートである。5 is a 1 H-NMR chart of silicon-containing sulfonate 1 produced in Example 5. 実施例5で作製したケイ素含有スルホン酸塩1のDSCチャートである。9 is a DSC chart of silicon-containing sulfonate 1 produced in Example 5. 実施例5で作製したケイ素含有スルホン酸塩1のTG−DTAチャートである。7 is a TG-DTA chart of silicon-containing sulfonate 1 produced in Example 5. 実施例6で作製したケイ素含有スルホン酸塩2の1H−NMRチャートである。7 is a 1 H-NMR chart of silicon-containing sulfonate 2 produced in Example 6. 実施例6で作製したケイ素含有スルホン酸塩2のDSCチャートである。9 is a DSC chart of silicon-containing sulfonate 2 produced in Example 6. 実施例6で作製したケイ素含有スルホン酸塩2のTG−DTAチャートである。7 is a TG-DTA chart of silicon-containing sulfonate 2 produced in Example 6. 実施例7で作製したケイ素含有スルホン酸塩3の1H−NMRチャートである。3 is a 1 H-NMR chart of silicon-containing sulfonate 3 produced in Example 7. 実施例7で作製したケイ素含有スルホン酸塩3のDSCチャートである。9 is a DSC chart of silicon-containing sulfonate 3 produced in Example 7. 実施例7で作製したケイ素含有スルホン酸塩3のTG−DTAチャートである。9 is a TG-DTA chart of silicon-containing sulfonate 3 produced in Example 7. 実施例8で作製したケイ素含有スルホン酸塩4の1H−NMRチャートである。9 is a 1 H-NMR chart of silicon-containing sulfonate 4 produced in Example 8. 実施例8で作製したケイ素含有スルホン酸塩4のDSCチャートである。9 is a DSC chart of silicon-containing sulfonate 4 produced in Example 8. 実施例8で作製したケイ素含有スルホン酸塩4のTG−DTAチャートである。9 is a TG-DTA chart of silicon-containing sulfonate 4 produced in Example 8. 実施例9で作製したケイ素含有スルホン酸塩5の1H−NMRチャートである。9 is a 1 H-NMR chart of silicon-containing sulfonate 5 produced in Example 9. 実施例9で作製したケイ素含有スルホン酸塩5のDSCチャートである。9 is a DSC chart of silicon-containing sulfonate 5 produced in Example 9. 実施例9で作製したケイ素含有スルホン酸塩5のTG−DTAチャートである。9 is a TG-DTA chart of silicon-containing sulfonate 5 produced in Example 9. 実施例10で作製したケイ素含有スルホン酸塩6の1H−NMRチャートである。9 is a 1 H-NMR chart of silicon-containing sulfonate 6 produced in Example 10. 実施例10で作製したケイ素含有スルホン酸塩6のDSCチャートである。11 is a DSC chart of silicon-containing sulfonate 6 produced in Example 10. 実施例10で作製したケイ素含有スルホン酸塩6のTG−DTAチャートである。9 is a TG-DTA chart of silicon-containing sulfonate 6 produced in Example 10. 実施例11で作製したケイ素含有スルホン酸塩7の1H−NMRチャートである。13 is a 1 H-NMR chart of silicon-containing sulfonate 7 produced in Example 11. 実施例11で作製したケイ素含有スルホン酸塩7のDSCチャートである。9 is a DSC chart of silicon-containing sulfonate 7 produced in Example 11. 実施例11で作製したケイ素含有スルホン酸塩7のTG−DTAチャートである。9 is a TG-DTA chart of silicon-containing sulfonate 7 produced in Example 11. 実施例12で作製したケイ素含有スルホン酸塩8の1H−NMRチャートである。8 is a 1 H-NMR chart of silicon-containing sulfonate 8 produced in Example 12. 実施例12で作製したケイ素含有スルホン酸塩8のDSCチャートである。13 is a DSC chart of silicon-containing sulfonate 8 produced in Example 12. 実施例12で作製したケイ素含有スルホン酸塩8のTG−DTAチャートである。9 is a TG-DTA chart of silicon-containing sulfonate 8 produced in Example 12. 実施例13で作製したケイ素含有スルホン酸塩9の1H−NMRチャートである。16 is a 1 H-NMR chart of silicon-containing sulfonate 9 produced in Example 13. 実施例13で作製したケイ素含有スルホン酸塩9のDSCチャートである。16 is a DSC chart of silicon-containing sulfonate 9 produced in Example 13. 実施例13で作製したケイ素含有スルホン酸塩9のTG−DTAチャートである。16 is a TG-DTA chart of silicon-containing sulfonate 9 produced in Example 13. 実施例14で作製したケイ素含有スルホン酸塩10の1H−NMRチャートである。3 is a 1 H-NMR chart of silicon-containing sulfonate 10 produced in Example 14. 実施例14で作製したケイ素含有スルホン酸塩10のDSCチャートである。16 is a DSC chart of silicon-containing sulfonate 10 produced in Example 14. 実施例14で作製したケイ素含有スルホン酸塩10のTG−DTAチャートである。9 is a TG-DTA chart of the silicon-containing sulfonate 10 produced in Example 14. ケイ素含有スルホン酸塩1、8、9、及びEMIBF4の電位窓測定結果を示す図である。It is a figure which shows the potential window measurement result of silicon-containing sulfonates 1, 8, 9 and EMIBF 4 .

[ケイ素含有スルホン酸塩]
本発明のケイ素含有スルホン酸塩は、下記式(1)で表されるものである。
[Silicon-containing sulfonate]
The silicon-containing sulfonate of the present invention is represented by the following formula (1).

式(1)中、R1は、炭素数1〜4のアルキル基を表す。前記アルキル基としては、直鎖状、分岐状、環状のいずれでもよく、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、シクロブチル基等が挙げられる。これらのうち、R1としては、炭素数1〜3のアルキル基が好ましく、炭素数1〜3の直鎖アルキル基がより好ましく、メチル基又はエチル基が更に好ましい。 In formula (1), R 1 represents an alkyl group having 1 to 4 carbon atoms. The alkyl group may be linear, branched, or cyclic, and may be methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, s-butyl, isobutyl, Examples thereof include t-butyl group and cyclobutyl group. Of these, R 1 is preferably an alkyl group having 1 to 3 carbon atoms, more preferably a linear alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group or an ethyl group.

式(1)中、mは、1又は2を表す。nは、2〜4の整数を表すが、2又は3が好ましい。   In formula (1), m represents 1 or 2. n represents an integer of 2 to 4, but 2 or 3 is preferable.

式(1)中、A+は、1価のカチオンを表す。前記1価のカチオンとしては、特に限定されないが、1価の金属イオン、4級アンモニウムイオン、4級ホスホニウムイオン、イミダゾリウムイオン、ピリジニウムイオン等が好ましい。 In formula (1), A + represents a monovalent cation. The monovalent cation is not particularly limited, but monovalent metal ions, quaternary ammonium ions, quaternary phosphonium ions, imidazolium ions, pyridinium ions and the like are preferable.

前記1価の金属イオンとしては、ナトリウムイオン、カリウムイオン、リチウムイオン等のアルカリ金属イオン、銀イオン等が挙げられるが、コスト面から、アルカリ金属イオンが好ましい。   Examples of the monovalent metal ion include alkali metal ions such as sodium ion, potassium ion, and lithium ion, and silver ion. From the viewpoint of cost, the alkali metal ion is preferable.

前記4級アンモニウムイオンとしては、下記式(2)で表されるもの等が挙げられる。
Examples of the quaternary ammonium ion include those represented by the following formula (2).

式(2)中、R2〜R5は、それぞれ独立に、炭素数1〜4のアルキル基、又は−(CH2)k−ORで表されるアルコキシアルキル基を表す。kは、1又は2を表す。Rは、メチル基又はエチル基を表す。 In formula (2), R 2 to R 5 each independently represent an alkyl group having 1 to 4 carbon atoms or an alkoxyalkyl group represented by — (CH 2 ) k —OR. k represents 1 or 2. R represents a methyl group or an ethyl group.

前記炭素数1〜4のアルキル基としては、R1として例示したものと同様のものが挙げられる。前記アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、メトキシエチル基及びエトキシエチル基が挙げられる。前記アルコキシアルキル基のうち、好ましくはメトキシエチル基又はエトキシエチル基である。 Examples of the alkyl group having 1 to 4 carbon atoms are the same as those exemplified as R 1 . Examples of the alkoxyalkyl group include a methoxymethyl group, an ethoxymethyl group, a methoxyethyl group and an ethoxyethyl group. Of the above alkoxyalkyl groups, a methoxyethyl group or an ethoxyethyl group is preferable.

また、R2〜R5のいずれか2つが、互いに結合してこれらが結合する窒素原子とともに環を形成してもよく、更に、残りの2つも互いに結合して窒素原子をスピロ原子とするスピロ環を形成してもよい。この場合、前記環としては、アジリジン環、アゼチジン環、ピロリジン環、ピペリジン環、アゼパン環、イミダゾリジン環、ピリジン環、ピロール環、イミダゾール環、キノール環等が挙げられるが、ピロリジン環、ピペリジン環、イミダゾリジン環、ピリジン環、ピロール環、イミダゾール環、キノール環等が好ましく、ピロリジン環、イミダゾリジン環等がより好ましい。また、前記スピロ環としては、1,1'−スピロビピロリジン環が特に好ましい。 Further, any two of R 2 to R 5 may be bonded to each other to form a ring with the nitrogen atom to which they are bonded, and the remaining two are also bonded to each other to form a spiro atom having a nitrogen atom as a spiro atom. You may form a ring. In this case, examples of the ring include an aziridine ring, an azetidine ring, a pyrrolidine ring, a piperidine ring, an azepan ring, an imidazolidine ring, a pyridine ring, a pyrrole ring, an imidazole ring, and a quinol ring, but a pyrrolidine ring, a piperidine ring, An imidazolidine ring, a pyridine ring, a pyrrole ring, an imidazole ring, a quinol ring and the like are preferable, and a pyrrolidine ring and an imidazolidine ring are more preferable. As the spiro ring, a 1,1′-spirobipyrrolidine ring is particularly preferable.

式(2)で表される4級アンモニウムイオンとして具体的には、下記式(2−1)〜(2−4)で表されるもの等が挙げられる。
Specific examples of the quaternary ammonium ion represented by the formula (2) include those represented by the following formulas (2-1) to (2-4).

式(2−1)〜(2−4)中、R及びkは、前記と同じ。R11〜R14は、それぞれ独立に、炭素数1〜4のアルキル基を表す。R15及びR16は、それぞれ独立に、炭素数1〜4のアルキル基を表す。また、R15及びR16は、互いに結合してこれらが結合する窒素原子とともに環を形成してもよい。 In formulas (2-1) to (2-4), R and k are the same as above. R 11 to R 14 each independently represent an alkyl group having 1 to 4 carbon atoms. R 15 and R 16 each independently represent an alkyl group having 1 to 4 carbon atoms. R 15 and R 16 may be bonded to each other to form a ring with the nitrogen atom to which they are bonded.

前記4級ホスホニウムイオンとしては、下記式(3)で表されるもの等が挙げられる。
Examples of the quaternary phosphonium ion include those represented by the following formula (3).

式(3)中、R6は、炭素数1〜12のアルキル基を表す。前記炭素数1〜12のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、前述した炭素数1〜4のアルキル基のほか、n−ペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基等が挙げられる。 In formula (3), R 6 represents an alkyl group having 1 to 12 carbon atoms. The alkyl group having 1 to 12 carbon atoms may be linear, branched or cyclic. In addition to the alkyl group having 1 to 4 carbon atoms described above, an n-pentyl group, a cyclopentyl group, an n-hexyl group, Examples thereof include cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group and n-dodecyl group.

式(3)中、R7は、炭素数1〜20のアルキル基を表す。前記炭素数1〜20のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、前述した炭素数1〜12のアルキル基のほか、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基等が挙げられる。 In formula (3), R 7 represents an alkyl group having 1 to 20 carbon atoms. The alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic. In addition to the alkyl group having 1 to 12 carbon atoms described above, n-tridecyl group, n-tetradecyl group, n-pentadecyl group. Group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group and the like.

式(3)で表される4級ホスホニウムイオンのうち、R6とR7とが異なる構造のものはイオン液体を形成しやすい。この場合、R6としては、炭素数2〜8のアルキル基が好ましく、炭素数3〜8のアルキル基がより好ましく、炭素数4〜8のアルキル基が更に好ましい。R6として具体的には、例えば、n−ブチル基、n−ヘキシル基等が好ましい。R7としては、炭素数10〜20のアルキル基が好ましく、炭素数12〜20のアルキル基がより好ましい。 Among the quaternary phosphonium ions represented by the formula (3), those having a structure in which R 6 and R 7 are different from each other easily form an ionic liquid. In this case, R 6 is preferably an alkyl group having 2 to 8 carbon atoms, more preferably an alkyl group having 3 to 8 carbon atoms, and further preferably an alkyl group having 4 to 8 carbon atoms. Specific examples of R 6 include an n-butyl group and an n-hexyl group. As R 7 , an alkyl group having 10 to 20 carbon atoms is preferable, and an alkyl group having 12 to 20 carbon atoms is more preferable.

式(3)で表される4級ホスホニウムイオンの例を以下に示すが、これらに限定されない。
Examples of the quaternary phosphonium ion represented by the formula (3) are shown below, but are not limited thereto.

前記イミダゾリウムイオンとしては、下記式(4)で表されるもの等が挙げられる。
Examples of the imidazolium ion include those represented by the following formula (4).

式(4)中、R8及びR9は、それぞれ独立に、炭素数1〜4のアルキル基、又は−(CH2)k−ORで表されるアルコキシアルキル基を表す。R及びkは、前記と同じである。前記炭素数1〜4のアルキル基及びアルコキシアルキル基としては、R2〜R5として例示したものと同様のものが挙げられる。 In formula (4), R 8 and R 9 each independently represent an alkyl group having 1 to 4 carbon atoms or an alkoxyalkyl group represented by — (CH 2 ) k —OR. R and k are the same as above. Examples of the alkyl group having 1 to 4 carbon atoms and the alkoxyalkyl group include the same groups as those exemplified as R 2 to R 5 .

前記ピリジニウムイオンとしては、下記式(5)で表されるもの等が挙げられる。
Examples of the pyridinium ion include those represented by the following formula (5).

式(5)中、R10は、炭素数1〜8のアルキル基、又は−(CH2)k−ORで表されるアルコキシアルキル基を表す。R及びkは、前記と同じである。 In formula (5), R 10 represents an alkyl group having 1 to 8 carbon atoms or an alkoxyalkyl group represented by — (CH 2 ) k —OR. R and k are the same as above.

前記炭素数1〜8のアルキル基としては、直鎖状、分岐状、環状のいずれでもよく、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、シクロブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。前記アルコキシアルキル基としては、R2〜R5として例示したものと同様のものが挙げられる。 The alkyl group having 1 to 8 carbon atoms may be linear, branched, or cyclic, and may be methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, s- Examples thereof include a butyl group, an isobutyl group, a t-butyl group, a cyclobutyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, a cyclopentyl group and a cyclohexyl group. Examples of the alkoxyalkyl group are the same as those exemplified as R 2 to R 5 .

本発明のケイ素含有スルホン酸塩は、カチオンの種類によってはイオン液体となる。例えば、カチオンが式(2−4)で表されるものはイオン液体となるし、式(3)で表されるもののうち、R6とR7とが異なる構造のものはイオン液体になりやすい。イオン液体とはイオンのみから構成される塩であって、一般に融点が100℃以下のものをいう。本発明のケイ素含有スルホン酸塩からなるイオン液体は、ハロゲンフリーであるため環境負荷が小さく、また、従来のハロゲンフリーのイオン液体よりも耐熱性に優れる。本発明のケイ素含有スルホン酸塩からなるイオン液体の分解点は、好ましくは250℃以上、より好ましくは280℃以上、更に好ましくは300℃以上である。 The silicon-containing sulfonate of the present invention becomes an ionic liquid depending on the type of cation. For example, a cation represented by the formula (2-4) is an ionic liquid, and a cation represented by the formula (3) having a structure in which R 6 and R 7 are different is likely to be an ionic liquid. .. The ionic liquid is a salt composed only of ions and generally has a melting point of 100 ° C. or lower. The ionic liquid comprising the silicon-containing sulfonate of the present invention is halogen-free and therefore has a small environmental load, and is superior in heat resistance to conventional halogen-free ionic liquids. The decomposition point of the ionic liquid comprising the silicon-containing sulfonate of the present invention is preferably 250 ° C or higher, more preferably 280 ° C or higher, and further preferably 300 ° C or higher.

[ケイ素含有スルホン酸塩の製造方法]
カチオンが1価の金属イオンである本発明のケイ素含有スルホン酸塩(下記式(6)で表されるもの)は、例えば、下記スキームAに従って合成することができる。
[Method for producing silicon-containing sulfonate]
The silicon-containing sulfonate of the present invention in which the cation is a monovalent metal ion (represented by the following formula (6)) can be synthesized according to the following scheme A, for example.

式中、R1、m及びnは、前記と同じ。n'は、0〜2の整数を表す。M+は、1価の金属イオンを表す。前記1価の金属イオンとしては、前述したものと同様のものが挙げられる。Xは、ハロゲン原子を表す。前記ハロゲン原子としては、フッ素、塩素、臭素及びヨウ素原子が挙げられるが、塩素、臭素及びヨウ素原子が好ましい。 In the formula, R 1 , m and n are the same as above. n'represents an integer of 0-2. M + represents a monovalent metal ion. Examples of the monovalent metal ion include the same as those described above. X represents a halogen atom. Examples of the halogen atom include fluorine, chlorine, bromine and iodine atoms, and chlorine, bromine and iodine atoms are preferable.

出発原料である式(6'')で表される化合物は、従来公知の方法(J. Am. Chem. Soc., 1954, 76, pp. 6012-14等)に従って合成することができる。   The compound represented by the formula (6 ″), which is a starting material, can be synthesized according to a conventionally known method (J. Am. Chem. Soc., 1954, 76, pp. 6012-14 etc.).

スキームA中、第1段階の工程は、式(6'')で表される化合物と有機ハロゲン化物とをカップリング反応させて式(6')で表される化合物とする工程である。式(6'')で表される化合物と、カップリングさせる有機ハロゲン化物との使用比率は、モル比で1:1〜1:1.5程度とすることができる。通常は1:1に近い比率で行うことが好ましい。なお、前記カップリング反応としては、グリニャール反応等を利用し得る。   In Scheme A, the step of the first step is a step of coupling the compound represented by the formula (6 ″) with an organic halide to give a compound represented by the formula (6 ′). The use ratio of the compound represented by the formula (6 ″) and the organic halide to be coupled can be about 1: 1 to 1: 1.5 in molar ratio. Usually, it is preferable to carry out at a ratio close to 1: 1. The coupling reaction may be a Grignard reaction or the like.

第1段階の工程においてグリニャール反応を利用する場合、式(6'')で表される化合物とマグネシウムとを反応させてグリニャール試薬にしてもよく、前記有機ハロゲン化物をグリニャール試薬にしてもよい。グリニャール反応において使用する溶媒としては、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒が挙げられる。また、反応温度は、通常25〜50℃程度であり、好ましくは36℃程度である。反応時間は、通常2〜6時間程度であり、好ましくは4時間程度である。   When the Grignard reaction is used in the first step, the compound represented by formula (6 ″) may be reacted with magnesium to form a Grignard reagent, or the organic halide may be a Grignard reagent. Examples of the solvent used in the Grignard reaction include ether solvents such as diethyl ether and tetrahydrofuran. The reaction temperature is usually about 25 to 50 ° C, preferably about 36 ° C. The reaction time is usually about 2 to 6 hours, preferably about 4 hours.

スキームA中、第2段階の工程は、式(6')で表される化合物をスルホン化する工程である。スルホン化剤としては、亜硫酸水素ナトリウム等が挙げられる。なお、スルホン化は、J. Org. Chem., 1961, 26 (6), pp. 2097-2098を参考にして行うことができる。   In Scheme A, the second step is a step of sulfonating the compound represented by the formula (6 ′). Examples of the sulfonating agent include sodium hydrogen sulfite. The sulfonation can be carried out with reference to J. Org. Chem., 1961, 26 (6), pp. 2097-2098.

第2段階の工程において使用する溶媒としては、水のみ、又は水に補助溶媒としてメタノール、エタノール等のアルコール類、アセトン、アセトニトリル等の親水性溶媒等を加えた混合溶媒が挙げられる。また、反応温度は、通常25〜100℃程度であり、好ましくは35〜70℃程度である。反応時間は、通常2〜72時間程度であり、好ましくは5〜24時間程度である。   Examples of the solvent used in the step of the second step include water alone, or a mixed solvent obtained by adding alcohols such as methanol and ethanol as a cosolvent, and a hydrophilic solvent such as acetone and acetonitrile to water. The reaction temperature is usually about 25 to 100 ° C, preferably about 35 to 70 ° C. The reaction time is usually about 2 to 72 hours, preferably about 5 to 24 hours.

カチオンが4級アンモニウムイオン、4級ホスホニウムイオン、イミダゾリウムイオン、ピリジニウムイオン等である本発明のケイ素含有スルホン酸塩は、例えば、下記式(6)で表されるケイ素含有スルホン酸塩と下記式(7)で表される塩とを用いた、イオン交換樹脂を用いた中和法によって製造することができる。   The silicon-containing sulfonate of the present invention in which the cation is a quaternary ammonium ion, a quaternary phosphonium ion, an imidazolium ion, a pyridinium ion or the like is, for example, a silicon-containing sulfonate represented by the following formula (6) and the following formula. It can be produced by a neutralization method using an ion exchange resin with the salt represented by (7).

(式中、R1、M+、X、m及びnは、前記と同じ。A'+は、4級アンモニウムイオン、4級ホスホニウムイオン、イミダゾリウムイオン、ピリジニウムイオン等を表す。) (In the formula, R 1 , M + , X, m and n are the same as above. A ′ + represents a quaternary ammonium ion, a quaternary phosphonium ion, an imidazolium ion, a pyridinium ion and the like.)

式(6)で表されるケイ素含有スルホン酸塩は、前述した方法に従って合成できる。式(7)で表される塩は、従来公知の方法に従って合成することができ、又は市販品を使用することができる。   The silicon-containing sulfonate represented by the formula (6) can be synthesized according to the method described above. The salt represented by the formula (7) can be synthesized according to a conventionally known method, or a commercially available product can be used.

この中和法の場合、まず式(6)で表されるケイ素含有スルホン酸塩及び式(7)で表される塩を、それぞれ陽イオン交換樹脂及び陰イオン交換樹脂を用いて下記式(1')で表されるケイ素含有スルホン酸及び水酸化物に変換した後、両者を混合することによって得ることができる。
(式中、R1、m及びnは、前記と同じ。)
In the case of this neutralization method, first, the silicon-containing sulfonate represented by the formula (6) and the salt represented by the formula (7) are used in the following formula (1) using a cation exchange resin and an anion exchange resin, respectively. It can be obtained by converting the silicon-containing sulfonic acid and hydroxide represented by ') and then mixing both.
(In the formula, R 1 , m and n are the same as above.)

本発明においてこの中和法を適用する場合、式(6)で表されるケイ素含有スルホン酸塩、式(7)で表される塩共にイオン交換するものならば、対イオンの制限は特にない。しかし、コスト面から、式(6)で表されるケイ素含有スルホン酸塩としてはナトリウム塩、カリウム塩等が好ましい。式(7)で表される塩の対イオンとしてはハロゲンイオンが好ましく、コスト面から、塩素イオン、臭素イオンが特に好ましい。   When the neutralization method is applied in the present invention, there is no particular limitation on the counter ion as long as the silicon-containing sulfonate represented by the formula (6) and the salt represented by the formula (7) are ion-exchanged. .. However, from the viewpoint of cost, sodium salts, potassium salts and the like are preferable as the silicon-containing sulfonate represented by the formula (6). As the counter ion of the salt represented by the formula (7), a halogen ion is preferable, and a chlorine ion and a bromine ion are particularly preferable in terms of cost.

前記中和反応におけるケイ素含有スルホン酸及び水酸化物のモル比は特に制限がなく、5:1〜1:5程度とすることができる。コスト面を考慮すると、1:1に近い比率で行うことが好ましく、特に水層の中和点を反応終結点とするのが好ましい。
反応終了後は、通常の後処理を行って目的物を得ることができる。
The molar ratio of the silicon-containing sulfonic acid and the hydroxide in the neutralization reaction is not particularly limited and can be about 5: 1 to 1: 5. Considering the cost, it is preferable to carry out at a ratio close to 1: 1, and it is particularly preferable to use the neutralization point of the aqueous layer as the reaction end point.
After completion of the reaction, usual post-treatment can be carried out to obtain the desired product.

前記ケイ素含有スルホン酸塩のその他の製造方法として、例えば、式(6)で表されるケイ素含有スルホン酸塩と、式(7)で表される塩とを用いて、イオン交換樹脂を用いてイオン交換させる方法が挙げられる。   As another method for producing the silicon-containing sulfonate, for example, a silicon-containing sulfonate represented by formula (6) and a salt represented by formula (7) are used, and an ion exchange resin is used. A method of exchanging ions can be mentioned.

イオン交換方法として具体的には、まず、式(7)で表される塩の水溶液を陽イオン交換樹脂を充填したカラムに通し、前記塩のカチオンを陽イオン交換樹脂に担持させ、水を通して洗浄する。次に、式(6)で表されるケイ素含有スルホン酸塩を前記カラムに通し、溶出液を回収し、精製することで、目的のケイ素含有スルホン酸塩を得ることができる。   Specifically, as an ion exchange method, first, an aqueous solution of the salt represented by the formula (7) is passed through a column packed with a cation exchange resin, the cation of the salt is supported on the cation exchange resin, and washed with water. To do. Next, the silicon-containing sulfonate represented by formula (6) is passed through the column, and the eluate is collected and purified to obtain the desired silicon-containing sulfonate.

前記陽イオン交換樹脂としては、一般的に使用されている陽イオン交換樹脂を用いることができるが、強酸性陽イオン交換樹脂を用いることが好ましい。これらは、市販品として入手可能である。   As the cation exchange resin, a commonly used cation exchange resin can be used, but it is preferable to use a strongly acidic cation exchange resin. These are available as commercial products.

また、本発明のケイ素含有スルホン酸塩のうちケイ素含有スルホン酸有機塩は、前記の合成法以外でも成書(「イオン性液体−開発の最前線と未来−」、シーエムシー出版、2003年、「イオン液体II−驚異的な進歩と多彩な近未来−」、シーエムシー出版、2006年等)記載の一般的なイオン液体合成方法で合成することが可能である。例えば、式(7)で表される塩と式(6)で表されるケイ素含有スルホン酸塩とを溶媒中で反応させて製造することもできる。この場合、溶媒は水、有機溶媒どちらでも構わない。   Further, among the silicon-containing sulfonates of the present invention, the silicon-containing sulfonic acid organic salt is not limited to the above-mentioned synthetic method, and can be used in the publications (“ionic liquids—the forefront and future of development”, CMC Publishing Co., 2003, It can be synthesized by a general ionic liquid synthesis method described in "Ionic Liquid II-Amazing Progress and Various Near Futures", CMC Publishing Co., Ltd., 2006). For example, it can be produced by reacting the salt represented by the formula (7) with the silicon-containing sulfonate represented by the formula (6) in a solvent. In this case, the solvent may be either water or an organic solvent.

[ケイ素含有スルホン酸塩の用途]
本発明のケイ素含有スルホン酸塩は、電気二重層キャパシタ、リチウムイオンキャパシタ、レドックスキャパシタ、リチウム二次電池、リチウムイオン二次電池、リチウム空気電池、プロトンポリマー電池等の蓄電デバイスの電解質や電解質用添加剤として使用し得る。更に、本発明のケイ素含有スルホン酸塩は、ゴム、プラスチック等の高分子材料に添加する帯電防止剤や可塑剤等としても使用し得る。
[Use of silicon-containing sulfonate]
The silicon-containing sulfonate of the present invention is an electrolyte for an electric storage device such as an electric double layer capacitor, a lithium ion capacitor, a redox capacitor, a lithium secondary battery, a lithium ion secondary battery, a lithium air battery, a proton polymer battery, or an additive for an electrolyte. It can be used as an agent. Further, the silicon-containing sulfonate of the present invention can be used as an antistatic agent or a plasticizer added to a polymer material such as rubber or plastic.

また、本発明のケイ素含有スルホン酸塩からなるイオン液体は、ハロゲンフリーのイオン液体であるため、環境負荷の少ないグリーン溶媒として有用である。特に、本発明のケイ素含有スルホン酸塩からなるイオン液体は、従来のイオン液体のみならず、従来の固体の電解質塩と比べても広い電位窓を有し、電気化学的に安定であるため、特に蓄電デバイスの電解質、電解液等として好適に用いることができる。   Further, the ionic liquid comprising the silicon-containing sulfonate of the present invention is a halogen-free ionic liquid, and thus is useful as a green solvent having a low environmental load. In particular, the ionic liquid comprising the silicon-containing sulfonate of the present invention has not only a conventional ionic liquid but also a wider potential window than the conventional solid electrolyte salt, and is electrochemically stable, In particular, it can be suitably used as an electrolyte, an electrolytic solution, etc. of an electricity storage device.

以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に限定されない。なお、実施例等で使用した試薬、分析装置及び条件は以下のとおりである。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. The reagents, analyzers and conditions used in the examples and so on are as follows.

[1]核磁気共鳴(1H−NMR)スペクトル
装置:日本電子(株)製 AL−400
溶媒:重水、重ジメチルスルホキシド又は重クロロホルム
[2]融点
装置:セイコーインスツルメンツ(株)製 DSC 6200
測定条件:20〜60℃まで毎分10℃昇温、60℃で1分間保持後、60〜−90℃まで毎分1℃降温、−90℃で1分間保持後、−90〜60℃まで毎分1℃昇温の条件で測定した。
[3]分解点
装置:セイコーインスツルメンツ(株)製 TG−DTA 6200
測定条件:空気雰囲気下、30〜500℃まで毎分10℃昇温の条件で測定し、10%重量減少した温度を分解点とした。
[4]サイクリックボルタンメトリー測定
装置:電気化学測定装置HSV−100(北斗電工(株)製)
測定条件:作用極にグラッシーカーボン電極、対極に白金電極、参照極にAg/Ag+型参照電極を用いて、掃引速度5mV/secで測定を行った。
[1] Nuclear magnetic resonance ( 1 H-NMR) spectrum device: AL-400 manufactured by JEOL Ltd.
Solvent: heavy water, heavy dimethyl sulfoxide or heavy chloroform [2] Melting point apparatus: Seiko Instruments Inc. DSC 6200
Measurement conditions: 10 ° C./minute heating to 20 to 60 ° C., holding at 60 ° C. for 1 minute, 1 ° C./minute cooling to 60 to −90 ° C., holding at −90 ° C. for 1 minute, then to −90 to 60 ° C. The measurement was performed under the condition that the temperature was raised by 1 ° C. per minute.
[3] Decomposition point device: TG-DTA 6200 manufactured by Seiko Instruments Inc.
Measurement conditions: Under an air atmosphere, the temperature was increased from 30 to 500 ° C. at 10 ° C./min, and the temperature at which the weight was reduced by 10% was taken as the decomposition point.
[4] Cyclic voltammetry measuring device: electrochemical measuring device HSV-100 (manufactured by Hokuto Denko Co., Ltd.)
Measurement conditions: A glassy carbon electrode was used as the working electrode, a platinum electrode was used as the counter electrode, and an Ag / Ag + type reference electrode was used as the reference electrode, and the measurement was performed at a sweep rate of 5 mV / sec.

[1]ケイ素含有スルホン酸ナトリウム塩の合成
[実施例1]ケイ素含有スルホン酸ナトリウム塩1の合成
[1] Synthesis of silicon-containing sodium sulfonate [Example 1] Synthesis of silicon-containing sodium sulfonate 1

滴下漏斗、還流冷却管及び磁気攪拌子を備えた三口フラスコに、マグネシウム22.25g(915mmol)を加えて脱気乾燥、窒素置換し、マグネシウムの表面を削るために窒素気流下で一晩攪拌した。三口フラスコに、メチルトリクロロシラン67.32g(450mmol)及びジエチルエーテル(400mL)を入れ、滴下漏斗に1,4−ジブロモブタン96.26g(446mmol)のジエチルエーテル(300mL)溶液を入れ、室温でゆっくりと滴下した。滴下開始後すぐに白濁し、滴下終了時には茶色懸濁液になった。滴下終了後、更に4時間加熱還流した。放冷後、吸引濾過でマグネシウム塩を濾別し、常圧蒸留でジエチルエーテルを留去した。残渣を常圧で蒸留し、沸点134℃留分を分取し、無色油状物のSi−クロロ−Si−メチルシラシクロペンタンを得た(収量27.87g、収率46.0%)。   To a three-necked flask equipped with a dropping funnel, a reflux condenser and a magnetic stirrer, 22.25 g (915 mmol) of magnesium was added, degassed and dried, and the atmosphere was replaced with nitrogen, and the mixture was stirred overnight under a nitrogen stream to scrape the surface of magnesium. .. 67.32 g (450 mmol) of methyltrichlorosilane and diethyl ether (400 mL) were placed in a three-necked flask, and a solution of 96.26 g (446 mmol) of 1,4-dibromobutane in diethyl ether (300 mL) was placed in the dropping funnel, and slowly added at room temperature. And dripped. Immediately after the start of the dropwise addition, it became cloudy, and at the end of the dropwise addition, it became a brown suspension. After completion of the dropping, the mixture was heated and refluxed for 4 hours. After allowing to cool, magnesium salts were filtered off by suction filtration, and diethyl ether was distilled off by atmospheric distillation. The residue was distilled under normal pressure, and the fraction with a boiling point of 134 ° C. was collected to obtain a colorless oily product of Si-chloro-Si-methylsilacyclopentane (yield 27.87 g, yield 46.0%).

滴下漏斗、還流冷却管及び磁気攪拌子を備えた三口フラスコに、窒素気流下でSi−クロロ−Si−メチルシラシクロペンタン19.22g(143mmol)及びTHF(80mL)を入れて室温で攪拌し、そこに塩化ビニルマグネシウムのテトラヒドロフラン溶液100mL(146mmol)を室温でゆっくりと滴下した。滴下終了後、4時間加熱還流した。氷浴でフラスコを冷却しながら1mol/L塩酸を加えて加水分解し、有機層を抽出分離した。得られた淡黄色透明の有機層を無水硫酸マグネシウムで乾燥した。ジエチルエーテルを常圧蒸留で留去し、残渣を常圧で蒸留して106℃留分を分取し、無色液体としてSi−メチル−Si−ビニルシラシクロペンタンを得た(収量8.528g、収率47.2%)。   A three-necked flask equipped with a dropping funnel, a reflux condenser and a magnetic stirrer was charged with 19.22 g (143 mmol) of Si-chloro-Si-methylsilacyclopentane and THF (80 mL) under a nitrogen stream and stirred at room temperature. 100 mL (146 mmol) of a solution of vinylmagnesium chloride in tetrahydrofuran was slowly added dropwise thereto at room temperature. After completion of dropping, the mixture was heated under reflux for 4 hours. While cooling the flask in an ice bath, 1 mol / L hydrochloric acid was added for hydrolysis, and the organic layer was extracted and separated. The obtained pale yellow transparent organic layer was dried over anhydrous magnesium sulfate. Diethyl ether was distilled off under atmospheric pressure, the residue was distilled under atmospheric pressure, and the 106 ° C. fraction was collected to obtain Si-methyl-Si-vinylsilacyclopentane as a colorless liquid (yield 8.528 g, Yield 47.2%).

得られたSi−メチル−Si−ビニルシラシクロペンタン、これの2倍の物質量のNaHSO3及び0.17倍の物質量のNaNO2、並びにNaNO2と同重量のNaNO3をオートクレーブに投入した。続いてSi−メチル−Si−ビニルシラシクロペンタンの60倍容量のイオン交換水とメタノールとの混合液(比率2:1)を投入し、オートクレーブを閉じ密閉系にし、激しく攪拌を行い終夜反応させた。充分に長時間反応させた後、オートクレーブを開放し、析出した固体分を桐山ロートを用いた減圧濾過で濾別した。得られた濾液をエバポレータで濃縮した。この時、メタノールが留去した程度で止め、イオン交換水を残した溶液とし、そのまま冷蔵庫に入れた。結晶が析出した後、桐山ロートを用い、減圧濾過により濾別した。この時、洗浄液は冷蔵庫で冷やしておいたイオン交換水を用いた。得られた結晶を同様の方法でイオン交換水のみを溶媒として再結晶を数度繰り返し行い、目的物であるケイ素含有スルホン酸ナトリウム塩1を得た(収率30%)。ケイ素含有スルホン酸ナトリウム塩1の1H−NMRチャート(溶媒:重水)を図1に示す。 The resulting Si- methyl -Si- vinyl silacyclopentane, twice the amount of substance of NaHSO 3 and 0.17 times the substance amount of NaNO 2 in which, as well as NaNO 2 the same weight of NaNO 3 were added to the autoclave .. Then, a mixed solution of Si-methyl-Si-vinylsilacyclopentane with 60 times the volume of ion-exchanged water and methanol (ratio 2: 1) was added, the autoclave was closed to make a closed system, and the mixture was vigorously stirred and reacted overnight. It was After reacting for a sufficiently long time, the autoclave was opened, and the precipitated solid was filtered by vacuum filtration using a Kiriyama funnel. The obtained filtrate was concentrated with an evaporator. At this time, the solution was stopped when methanol was distilled off, and a solution was left with ion-exchanged water, and the solution was placed in the refrigerator as it was. After the crystals were deposited, they were filtered by vacuum filtration using a Kiriyama funnel. At this time, the cleaning liquid used was ion-exchanged water that had been cooled in a refrigerator. The obtained crystals were recrystallized several times by the same method using only ion-exchanged water as a solvent to obtain a silicon-containing sodium sulfonate salt 1 as a target product (yield 30%). 1 H-NMR chart (solvent: heavy water) of silicon-containing sodium sulfonate 1 is shown in FIG.

[実施例2]ケイ素含有スルホン酸ナトリウム塩2の合成
[Example 2] Synthesis of silicon-containing sodium sulfonate 2

滴下漏斗、還流冷却管及び磁気攪拌子を備えた三口フラスコに、マグネシウム5.65g(232mmol)を加えて脱気乾燥、窒素置換し、マグネシウムの表面を削るために窒素気流下で一晩攪拌した。三口フラスコに、実施例1に記載の方法で得た中間体Si−クロロ−Si−メチルシラシクロペンタン21.59g(161mmol)とジエチルエーテル(80mL)とを入れ、滴下漏斗に3−クロロ−1−プロペン(塩化アリル)12.76g(167mmol)のジエチルエーテル(20mL)溶液を入れ、室温でゆっくりと滴下した。滴下途中で黒色懸濁液になり、後に灰色懸濁液に変化した。滴下終了後、更に4時間加熱還流した。氷浴でフラスコを冷却しながら1mol/L塩酸を加えて加水分解し、有機層を抽出分離した。得られた淡黄色透明の有機層を無水硫酸マグネシウムで乾燥させた。ジエチルエーテルを常圧蒸留で留去し、残渣を減圧蒸留して58−63℃/4.2kPa留分を分取し、無色液体としてSi−アリル−Si−メチルシラシクロペンタンを得た(収量16.66g、収率73.8%)。   To a three-necked flask equipped with a dropping funnel, a reflux condenser and a magnetic stirrer, 5.65 g (232 mmol) of magnesium was added, degassed and dried, and the atmosphere was replaced with nitrogen, and the mixture was stirred overnight under a nitrogen stream to scrape the surface of magnesium. .. 21.59 g (161 mmol) of the intermediate Si-chloro-Si-methylsilacyclopentane obtained by the method described in Example 1 and diethyl ether (80 mL) were placed in a three-necked flask, and 3-chloro-1 was placed in a dropping funnel. A solution of 12.76 g (167 mmol) of propene (allyl chloride) in diethyl ether (20 mL) was added, and the mixture was slowly added dropwise at room temperature. During the dropping, it became a black suspension and later changed to a gray suspension. After completion of the dropping, the mixture was heated and refluxed for 4 hours. While cooling the flask in an ice bath, 1 mol / L hydrochloric acid was added for hydrolysis, and the organic layer was extracted and separated. The obtained pale yellow transparent organic layer was dried over anhydrous magnesium sulfate. Diethyl ether was distilled off by atmospheric distillation, the residue was distilled under reduced pressure and the 58-63 ° C./4.2 kPa fraction was collected to obtain Si-allyl-Si-methylsilacyclopentane as a colorless liquid (yield. 16.66 g, yield 73.8%).

Si−メチル−Si−ビニルシラシクロペンタンをSi−アリル−Si−メチルシラシクロペンタンに変更した以外は、実施例1に記載の方法と同様にしてスルホン化反応及び精製を行い、ケイ素含有スルホン酸ナトリウム塩2を得た(収率10%)。ケイ素含有スルホン酸ナトリウム塩2の1H−NMRチャート(溶媒:重水)を図2に示す。 The sulfonation reaction and purification were performed in the same manner as in the method described in Example 1 except that Si-methyl-Si-vinylsilacyclopentane was changed to Si-allyl-Si-methylsilacyclopentane, and the silicon-containing sulfonic acid was used. Sodium salt 2 was obtained (yield 10%). The 1 H-NMR chart (solvent: heavy water) of silicon-containing sodium sulfonate 2 is shown in FIG.

[実施例3]ケイ素含有スルホン酸ナトリウム塩3の合成
[Example 3] Synthesis of silicon-containing sodium sulfonate 3

滴下漏斗、還流冷却管及び磁気攪拌子を備えた三口フラスコに、マグネシウム4.02g(165mmol)を加えて脱気乾燥、窒素置換し、マグネシウムの表面を削るために窒素気流下で一晩攪拌した。三口フラスコに、実施例1に記載の方法で得た中間体Si−クロロ−Si−メチルシラシクロペンタン20.65g(154mmol)、ジエチルエーテル(40mL)及びTHF(3mL)を入れ、滴下漏斗に1−ブロモ−4−ブテン20.00g(148mmol)のジエチルエーテル(30mL)溶液を入れ、室温でゆっくりと滴下した。滴下開始後すぐに黒ずみ、灰色懸濁液になった後に黒色溶液となった。これを二日加熱還流させると灰色懸濁液へ変化した。氷浴でフラスコを冷却しながら1mol/L塩酸を加えて加水分解し、有機層を抽出分離した。得られた淡黄色透明の有機層を無水硫酸マグネシウムで乾燥させた。ジエチルエーテルを常圧蒸留で留去し、残渣を減圧蒸留して58−65℃/2.0kPa留分を分取し、Si−ホモアリル−Si−メチルシラシクロペンタンを無色液体として得た(収量14.72g、収率64.5%)。   To a three-necked flask equipped with a dropping funnel, a reflux condenser and a magnetic stirrer, 4.02 g (165 mmol) of magnesium was added, deaerated and dried, and the atmosphere was replaced with nitrogen, and the mixture was stirred overnight under a nitrogen stream to scrape the surface of magnesium. .. A three-necked flask was charged with 20.65 g (154 mmol) of the intermediate Si-chloro-Si-methylsilacyclopentane obtained by the method described in Example 1, diethyl ether (40 mL) and THF (3 mL), and the dropping funnel was charged with 1 A solution of 20.00 g (148 mmol) of -bromo-4-butene in diethyl ether (30 mL) was added, and the mixture was slowly added dropwise at room temperature. Immediately after the start of dropping, the solution became dark and became a gray suspension, which then became a black solution. When this was heated under reflux for 2 days, it turned into a gray suspension. While cooling the flask in an ice bath, 1 mol / L hydrochloric acid was added for hydrolysis, and the organic layer was extracted and separated. The obtained pale yellow transparent organic layer was dried over anhydrous magnesium sulfate. Diethyl ether was distilled off under atmospheric pressure, the residue was distilled under reduced pressure, and a 58-65 ° C / 2.0 kPa fraction was collected to obtain Si-homoallyl-Si-methylsilacyclopentane as a colorless liquid (yield. 14.72 g, yield 64.5%).

Si−メチル−Si−ビニルシラシクロペンタンをSi−ホモアリル−Si−メチルシラシクロペンタンに変更した以外は、実施例1に記載の方法と同様にしてスルホン化反応及び精製を行い、目的物であるケイ素含有スルホン酸ナトリウム塩3を得た(収率28%)。ケイ素含有スルホン酸ナトリウム塩3の1H−NMRチャート(溶媒:重ジメチルスルホキシド)を図3に示す。 Except that Si-methyl-Si-vinylsilacyclopentane was changed to Si-homoallyl-Si-methylsilacyclopentane, the sulfonation reaction and purification were carried out in the same manner as in the method described in Example 1 to obtain the desired product. Silicon-containing sulfonic acid sodium salt 3 was obtained (yield 28%). FIG. 3 shows the 1 H-NMR chart (solvent: heavy dimethyl sulfoxide) of silicon-containing sodium sulfonate 3.

[実施例4]ケイ素含有スルホン酸ナトリウム塩4の合成
[Example 4] Synthesis of silicon-containing sodium sulfonate 4

窒素気流下で、還流冷却管、滴下漏斗及び磁気攪拌子を備えた三口フラスコに、マグネシウム9.72g(0.400mol)を入れ活性化させ、ここにメチルトリクロロシラン30.22g(0.202mol)とジエチルエーテル200mLとを入れ、滴下漏斗から1,5−ジブロモペンタン51.48g(0.224mol)のジエチルエーテル(100mL)溶液を攪拌しながらゆっくり滴下し、滴下終了後一晩攪拌した。析出したマグネシウム塩を吸引濾過で取り除き、ジエチルエーテルを常圧蒸留で留去した。残渣を減圧蒸留で蒸留して63−79℃/4.2kPa留分を分取し、目的物であるSi−クロロ−Si−メチルシラシクロヘキサンを無色透明液体として得た(収量22.00g、収率74%)(ただし、生成物は塩素置換体と臭素置換体の混合物として得られた。)。   Under a nitrogen stream, 9.72 g (0.400 mol) of magnesium was placed in a three-necked flask equipped with a reflux condenser, a dropping funnel and a magnetic stirrer for activation, and 30.22 g (0.202 mol) of methyltrichlorosilane was activated. And diethyl ether (200 mL) were added, and a solution of 1,5-dibromopentane (51.48 g, 0.224 mol) in diethyl ether (100 mL) was slowly added dropwise with stirring through a dropping funnel, and the mixture was stirred overnight after completion of the addition. The precipitated magnesium salt was removed by suction filtration, and diethyl ether was distilled off under atmospheric pressure. The residue was distilled by vacuum distillation to collect a fraction of 63-79 ° C./4.2 kPa to obtain the desired product, Si-chloro-Si-methylsilacyclohexane, as a colorless transparent liquid (yield 22.00 g, yield). 74%) (however, the product was obtained as a mixture of a chlorine-substituted product and a bromine-substituted product).

次に、窒素気流下で、還流冷却管、滴下漏斗及び磁気攪拌子を備えた三口フラスコに、マグネシウム4.86g(0.20mol)を入れ活性化させ、ここに前記Si−クロロ−Si−メチルシラシクロヘキサン7.87g(0.19mol)とジエチルエーテル150mLとを入れ、滴下漏斗からアリルクロリド7.96g(0.21mol)のジエチルエーテル(50mL)溶液を攪拌しながらゆっくり滴下し、滴下終了後一晩攪拌した。析出したマグネシウム塩を吸引濾過で取り除き、ジエチルエーテルを常圧蒸留で留去した。残渣を減圧蒸留で蒸留して75−78℃/3.7kPa留分を分取し、目的物であるSi−アリル−Si−メチルシラシクロヘキサンを無色透明液体として得た(収量21.77g、収率74%)。   Then, under a nitrogen stream, 4.86 g (0.20 mol) of magnesium was placed in a three-necked flask equipped with a reflux condenser, a dropping funnel and a magnetic stirrer for activation, and the Si-chloro-Si-methyl was introduced thereinto. 7.87 g (0.19 mol) of silacyclohexane and 150 mL of diethyl ether were added, and a solution of 7.96 g (0.21 mol) of allyl chloride in diethyl ether (50 mL) was slowly added dropwise with stirring through a dropping funnel. Stir overnight. The precipitated magnesium salt was removed by suction filtration, and diethyl ether was distilled off under atmospheric pressure. The residue was distilled under reduced pressure to fractionate a 75-78 ° C./3.7 kPa fraction to obtain the desired product, Si-allyl-Si-methylsilacyclohexane, as a colorless transparent liquid (yield 21.77 g, yield). 74%).

還流冷却管及び磁気攪拌子を備えた三口フラスコに、NaHSO3 12.61g(121mmol)、NaNO2 0.71g(10mmol)、NaNO3 0.72g(8mmol)、水100mL、メタノール250mL及びSi−アリル−Si−メチルシラシクロヘキサン9.21g(60mmol)を入れ、3日間攪拌した。析出した白色固体を吸引濾過で取り除き、濾液中のメタノールを常圧蒸留で留去し室温まで冷却すると無色結晶が析出した。この結晶を一旦濾別し、得られた結晶をエタノールを用いて再結晶させ、目的物であるケイ素含有スルホン酸ナトリウム塩4を無色結晶として得た(収量7.30g、収率47%)。ケイ素含有スルホン酸ナトリウム塩4の1H−NMRチャート(溶媒:重ジメチルスルホキシド)を図4に示す。 In a three-necked flask equipped with a reflux condenser and a magnetic stirrer, NaHSO 3 12.61 g (121 mmol), NaNO 2 0.71 g (10 mmol), NaNO 3 0.72 g (8 mmol), water 100 mL, methanol 250 mL and Si-allyl. 9.21 g (60 mmol) of -Si-methylsilacyclohexane was added and stirred for 3 days. The precipitated white solid was removed by suction filtration, methanol in the filtrate was distilled off under atmospheric pressure, and cooled to room temperature to precipitate colorless crystals. The crystals were once filtered off, and the obtained crystals were recrystallized using ethanol to obtain the desired product, silicon-containing sodium sulfonate 4 as colorless crystals (yield 7.30 g, yield 47%). FIG. 4 shows the 1 H-NMR chart (solvent: heavy dimethyl sulfoxide) of silicon-containing sodium sulfonate 4.

[2]ケイ素含有スルホン酸有機塩の合成
ケイ素含有スルホン酸塩の合成はいずれもカチオン原料のハライド塩を対応する水酸化物に変換したものとアニオン原料のケイ素含有スルホン酸ナトリウム塩(ケイ素含有スルホン酸ナトリウム塩1〜4)を対応するスルホン酸へ変換した後、中和反応により合成した。詳細を以下に示す。
[2] Synthesis of Silicon-Containing Sulfonic Acid Organic Salt In the synthesis of silicon-containing sulfonates, the cation raw material halide salt is converted to the corresponding hydroxide and the anion raw material silicon-containing sulfonic acid sodium salt (silicon containing sulfone is used). The acid sodium salt 1 to 4) was converted to the corresponding sulfonic acid and then synthesized by a neutralization reaction. Details are shown below.

[実施例5]ケイ素含有スルホン酸塩1の合成
Example 5 Synthesis of silicon-containing sulfonate 1

特開2014−082315号公報に記載の方法で、N−2−メトキシエチル−N−メチルピロリジニウムクロライドを合成した。N−2−メトキシエチル−N−メチルピロリジニウムクロライドをイオン交換水に溶解した溶液(5倍希釈)を調整した。この溶液に、洗浄液が中性を示すまで良く洗浄した強塩基性イオン交換樹脂ORLITE DS-2(オルガノ(株)、交換容量1.4meq/mL、OH型)をN−2−メトキシエチル−N−メチルピロリジニウムクロライドの2.5倍モル相当量投入した。6〜7時間後、桐山ロートで濾過をしてイオン交換樹脂を濾別した。濾液に新たに洗浄済みのORLITE DS-2を原料の2.5倍モル相当量を投入し、一晩放置後、桐山ロートで濾過をしてイオン交換樹脂を濾別し、塩の大部分がクロライド塩から水酸化物に変換した溶液を得た。更に、濾液をORLITE DS-2(原料の10倍モル相当)を充填したカラムに空間速度SV=1で流し処理し、中和反応用の水酸化物水溶液を得た。   N-2-methoxyethyl-N-methylpyrrolidinium chloride was synthesized by the method described in JP-A-2014-082315. A solution (5-fold dilution) of N-2-methoxyethyl-N-methylpyrrolidinium chloride dissolved in ion-exchanged water was prepared. Strongly basic ion exchange resin ORLITE DS-2 (Organo Corporation, exchange capacity 1.4 meq / mL, OH type), which had been thoroughly washed until the washing solution showed neutrality, was added to this solution in N-2-methoxyethyl-N. -Methylpyrrolidinium chloride was added in an amount equivalent to 2.5 times the molar amount. After 6 to 7 hours, the ion exchange resin was separated by filtration with a Kiriyama funnel. The newly washed ORLITE DS-2 was added to the filtrate in an amount equivalent to 2.5 times the molar amount of the raw material, left overnight, and then filtered with a Kiriyama funnel to filter out the ion exchange resin. A solution of chloride salt converted to hydroxide was obtained. Further, the filtrate was flown through a column packed with ORLITE DS-2 (corresponding to 10 times mol of the raw material) at a space velocity SV = 1 to obtain a hydroxide aqueous solution for neutralization reaction.

ケイ素含有スルホン酸ナトリウム塩1をイオン交換水に溶解した溶液(10倍希釈)を調整した。この溶液に、洗浄液が中性を示すまでよく洗浄した強酸性イオン交換樹脂AMBERLYST 15JS-HG・DRY(オルガノ(株)、交換容量4.7meq/g、H型)をケイ素含有スルホン酸ナトリウム塩1の2.5倍モル相当量投入した。6〜7時間後、桐山ロートで濾過をしてイオン交換樹脂を濾別した。濾液に新たに洗浄済みのAMBERLYST 15JS-HG・DRYを原料の2.5倍モル相当量を投入し、一晩放置後、桐山ロートで濾過をしてイオン交換樹脂を濾別し、塩の大部分がスルホン酸ナトリウム塩からスルホン酸に変換した溶液を得た。更に濾液をAMBERLYST 15JS-HG・DRY(原料の10倍モル相当)を充填したカラムに空間速度SV=1で流し処理し、中和反応用のスルホン酸水溶液を得た。   A solution (10-fold diluted) in which silicon-containing sodium sulfonate 1 was dissolved in ion-exchanged water was prepared. A strongly acidic ion exchange resin AMBERLYST 15JS-HG DRY (Organo Corporation, exchange capacity 4.7 meq / g, H type) that had been thoroughly washed until the washing liquid became neutral was added to this solution. 2.5 times the molar equivalent amount of was added. After 6 to 7 hours, the ion exchange resin was separated by filtration with a Kiriyama funnel. The newly washed AMBERLYST 15JS-HG / DRY was added to the filtrate in an amount equivalent to 2.5 times the amount of the raw material, left overnight and then filtered with a Kiriyama funnel to filter out the ion exchange resin to remove salt. A solution was obtained in which a portion was converted from sulfonic acid sodium salt to sulfonic acid. Further, the filtrate was flown through a column packed with AMBERLYST 15JS-HG.DRY (corresponding to 10 times mol of the raw material) at a space velocity SV = 1 to obtain a sulfonic acid aqueous solution for neutralization reaction.

前記水酸化物水溶液とスルホン酸ナトリウム水溶液とをpH試験紙でpHを確認しつつ混合し、pH試験紙がpH7を示した時点で混合を終了し、ケイ素含有スルホン酸塩1の水溶液を調製した。この水溶液からエバポレータで大部分の水を留去した後、更に110℃(オイルバス使用)で真空ポンプを用いて1時間以上真空引きを行い、目的物であるケイ素含有スルホン酸塩1を得た。ケイ素含有スルホン酸塩1の1H−NMRチャート(溶媒:重クロロホルム)を図5に、DSCチャートを図6に、TG−DTAチャートを図7に示す。なお、ケイ素含有スルホン酸塩1は、イオン液体であった。 The hydroxide aqueous solution and the sodium sulfonate aqueous solution were mixed while confirming the pH with a pH test paper, and when the pH test paper showed pH 7, the mixing was terminated to prepare an aqueous solution of silicon-containing sulfonate 1. .. After most of the water was distilled off from this aqueous solution with an evaporator, the solution was further evacuated at 110 ° C. (using an oil bath) for 1 hour or more using a vacuum pump to obtain the target silicon-containing sulfonate 1. .. A 1 H-NMR chart (solvent: deuterated chloroform) of silicon-containing sulfonate 1 is shown in FIG. 5, a DSC chart is shown in FIG. 6, and a TG-DTA chart is shown in FIG. 7. The silicon-containing sulfonate 1 was an ionic liquid.

[実施例6]ケイ素含有スルホン酸塩2の合成
Example 6 Synthesis of silicon-containing sulfonate 2

ケイ素含有スルホン酸ナトリウム塩1をケイ素含有スルホン酸ナトリウム塩2に変えた以外は、実施例5と同様の方法によりケイ素含有スルホン酸塩2を得た。ケイ素含有スルホン酸塩2の1H−NMRチャート(溶媒:重クロロホルム)を図8に、DSCチャートを図9に、TG−DTAチャートを図10に示す。なお、ケイ素含有スルホン酸塩2は、イオン液体であった。 A silicon-containing sulfonate 2 was obtained by the same method as in Example 5, except that the silicon-containing sodium sulfonate 1 was changed to the silicon-containing sodium sulfonate 2. The 1 H-NMR chart (solvent: deuterated chloroform) of the silicon-containing sulfonate 2 is shown in FIG. 8, the DSC chart is shown in FIG. 9, and the TG-DTA chart is shown in FIG. The silicon-containing sulfonate 2 was an ionic liquid.

[実施例7]ケイ素含有スルホン酸塩3の合成
[Example 7] Synthesis of silicon-containing sulfonate 3

ケイ素含有スルホン酸ナトリウム塩1をケイ素含有スルホン酸ナトリウム塩3に変えた以外は、実施例5と同様の方法によりケイ素含有スルホン酸塩3を得た。ケイ素含有スルホン酸塩3の1H−NMRチャート(溶媒:重クロロホルム)を図11に、DSCチャートを図12に、TG−DTAチャートを図13に示す。なお、ケイ素含有スルホン酸塩3は、イオン液体であった。 A silicon-containing sulfonate 3 was obtained in the same manner as in Example 5 except that the silicon-containing sodium sulfonate 1 was replaced with the silicon-containing sodium sulfonate 3. A 1 H-NMR chart (solvent: deuterated chloroform) of silicon-containing sulfonate 3 is shown in FIG. 11, a DSC chart is shown in FIG. 12, and a TG-DTA chart is shown in FIG. The silicon-containing sulfonate 3 was an ionic liquid.

[実施例8]ケイ素含有スルホン酸塩4の合成
[Example 8] Synthesis of silicon-containing sulfonate 4

N−2−メトキシエチル−N−メチルピロリジニウムクロライドをトリブチルドデシルホスホニウム臭化物塩(東京化成工業(株))に変えた以外は、実施例5と同様の方法によりケイ素含有スルホン酸塩4を得た。ケイ素含有スルホン酸塩4の1H−NMRチャート(溶媒:重クロロホルム)を図14に、DSCチャートを図15に、TG−DTAチャートを図16に示す。なお、ケイ素含有スルホン酸塩4は、イオン液体であった。 Silicon-containing sulfonate 4 was obtained in the same manner as in Example 5, except that N-2-methoxyethyl-N-methylpyrrolidinium chloride was replaced with tributyldodecylphosphonium bromide salt (Tokyo Kasei Kogyo Co., Ltd.). It was The 1 H-NMR chart (solvent: deuterated chloroform) of the silicon-containing sulfonate 4 is shown in FIG. 14, the DSC chart is shown in FIG. 15, and the TG-DTA chart is shown in FIG. 16. The silicon-containing sulfonate 4 was an ionic liquid.

[実施例9]ケイ素含有スルホン酸塩5の合成
Example 9 Synthesis of silicon-containing sulfonate 5

N−2−メトキシエチル−N−メチルピロリジニウムクロライドをトリブチルドデシルホスホニウム臭化物塩(東京化成工業(株))に、ケイ素含有スルホン酸ナトリウム塩1をケイ素含有スルホン酸ナトリウム塩3に変えた以外は、実施例5と同様の方法によりケイ素含有スルホン酸塩5を得た。ケイ素含有スルホン酸塩5の1H−NMRチャート(溶媒:重クロロホルム)を図17に、DSCチャートを図18に、TG−DTAチャートを図19に示す。なお、ケイ素含有スルホン酸塩5は、イオン液体であった。 N-2-methoxyethyl-N-methylpyrrolidinium chloride was changed to tributyldodecylphosphonium bromide salt (Tokyo Chemical Industry Co., Ltd.), and silicon-containing sulfonic acid sodium salt 1 was changed to silicon-containing sulfonic acid sodium salt 3. A silicon-containing sulfonate 5 was obtained in the same manner as in Example 5. A 1 H-NMR chart (solvent: deuterated chloroform) of silicon-containing sulfonate 5 is shown in FIG. 17, a DSC chart is shown in FIG. 18, and a TG-DTA chart is shown in FIG. The silicon-containing sulfonate 5 was an ionic liquid.

[実施例10]ケイ素含有スルホン酸塩6の合成
Example 10 Synthesis of silicon-containing sulfonate 6

ケイ素含有スルホン酸ナトリウム塩1をケイ素含有スルホン酸ナトリウム塩4に変えた以外は、実施例5と同様の方法によりケイ素含有スルホン酸塩6を得た。ケイ素含有スルホン酸塩6の1H−NMRチャート(溶媒:重クロロホルム)を図20に、DSCチャートを図21に、TG−DTAチャートを図22に示す。なお、ケイ素含有スルホン酸塩6は、イオン液体であった。 A silicon-containing sulfonate 6 was obtained in the same manner as in Example 5, except that the silicon-containing sodium sulfonate 1 was replaced with the silicon-containing sodium sulfonate 4. A 1 H-NMR chart (solvent: deuterated chloroform) of silicon-containing sulfonate 6 is shown in FIG. 20, a DSC chart is shown in FIG. 21, and a TG-DTA chart is shown in FIG. The silicon-containing sulfonate 6 was an ionic liquid.

[実施例11]ケイ素含有スルホン酸塩7の合成
Example 11 Synthesis of silicon-containing sulfonate 7

N−2−メトキシエチル−N−メチルピロリジニウムクロライドをトリブチルドデシルホスホニウム臭化物塩(東京化成工業(株))に、ケイ素含有スルホン酸ナトリウム塩1をケイ素含有スルホン酸ナトリウム塩4に変えた以外は、実施例5と同様の方法によりケイ素含有スルホン酸塩7を得た。ケイ素含有スルホン酸塩7の1H−NMRチャート(溶媒:重クロロホルム)を図23に、DSCチャートを図24に、TG−DTAチャートを図25に示す。なお、ケイ素含有スルホン酸塩7は、イオン液体であった。 N-2-methoxyethyl-N-methylpyrrolidinium chloride was changed to tributyldodecylphosphonium bromide salt (Tokyo Kasei Kogyo Co., Ltd.), and silicon-containing sodium sulfonate 1 was replaced with silicon-containing sodium sulfonate 4. A silicon-containing sulfonate 7 was obtained in the same manner as in Example 5. The 1 H-NMR chart (solvent: deuterated chloroform) of the silicon-containing sulfonate 7 is shown in FIG. 23, the DSC chart is shown in FIG. 24, and the TG-DTA chart is shown in FIG. 25. The silicon-containing sulfonate 7 was an ionic liquid.

[実施例12]ケイ素含有スルホン酸塩8の合成
[Example 12] Synthesis of silicon-containing sulfonate 8

N−2−メトキシエチル−N−メチルピロリジニウムクロライドをN,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムアイオダイドに変えた以外は、実施例5と同様の方法によりケイ素含有スルホン酸塩8を得た。なお、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムアイオダイドは、Electrochimica Acta, 49 (2004) pp. 3603-3611記載の合成法に準じ合成した。ケイ素含有スルホン酸塩8の1H−NMRチャート(溶媒:重クロロホルム)を図26に、DSCチャートを図27に、TG−DTAチャートを図28に示す。 By a method similar to that in Example 5, except that N-2-methoxyethyl-N-methylpyrrolidinium chloride was replaced with N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium iodide. A silicon-containing sulfonate 8 was obtained. The N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium iodide was synthesized according to the synthesis method described in Electrochimica Acta, 49 (2004) pp. 3603-3611. The 1 H-NMR chart (solvent: deuterated chloroform) of silicon-containing sulfonate 8 is shown in FIG. 26, the DSC chart is shown in FIG. 27, and the TG-DTA chart is shown in FIG. 28.

[実施例13]ケイ素含有スルホン酸塩9の合成
Example 13 Synthesis of silicon-containing sulfonate 9

N−2−メトキシエチル−N−メチルピロリジニウムクロライドをN,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムアイオダイドに、ケイ素含有スルホン酸塩1をケイ素含有スルホン酸ナトリウム塩2に変えた以外は、実施例5と同様の方法によりケイ素含有スルホン酸塩9を得た。ケイ素含有スルホン酸塩9の1H−NMRチャート(溶媒:重クロロホルム)を図29に、DSCチャートを図30に、TG−DTAチャートを図31に示す。 N-2-methoxyethyl-N-methylpyrrolidinium chloride in N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium iodide and silicon-containing sulfonate 1 in silicon-containing sodium sulfonate A silicon-containing sulfonate 9 was obtained in the same manner as in Example 5, except that the salt 2 was used. The 1 H-NMR chart (solvent: deuterated chloroform) of silicon-containing sulfonate 9 is shown in FIG. 29, the DSC chart is shown in FIG. 30, and the TG-DTA chart is shown in FIG. 31.

[実施例14]ケイ素含有スルホン酸塩10の合成
Example 14 Synthesis of silicon-containing sulfonate 10

N−2−メトキシエチル−N−メチルピロリジニウムクロライドをN,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムアイオダイドに、ケイ素含有スルホン酸塩1をケイ素含有スルホン酸ナトリウム塩3に変えた以外は、実施例5と同様の方法によりケイ素含有スルホン酸塩10を得た。ケイ素含有スルホン酸塩10の1H−NMRチャート(溶媒:重クロロホルム)を図32に、DSCチャートを図33に、TG−DTAチャートを図34に示す。 N-2-methoxyethyl-N-methylpyrrolidinium chloride in N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium iodide and silicon-containing sulfonate 1 in silicon-containing sodium sulfonate A silicon-containing sulfonate 10 was obtained in the same manner as in Example 5, except that the salt 3 was used. A 1 H-NMR chart (solvent: deuterated chloroform) of the silicon-containing sulfonate 10 is shown in FIG. 32, a DSC chart is shown in FIG. 33, and a TG-DTA chart is shown in FIG. 34.

DSC及びTG−DTA測定より求めたケイ素含有スルホン酸塩1〜10の融点及び分解点(10%重量減少、大気下)を表1に示す。   Table 1 shows the melting points and decomposition points (10% weight loss, under air) of the silicon-containing sulfonates 1 to 10 determined by DSC and TG-DTA measurements.

[3]電位窓の測定
[実施例15〜17、比較例1]
ケイ素含有スルホン酸塩1(実施例15)、8(実施例16)、9(実施例17)、及び1−エチル−3−メチルイミダゾリウムテトラフルオロボレート(EMIBF4)(比較例1)について、サイクリックボルタンメトリー測定を行った。ケイ素含有スルホン酸塩1、8、及びEMIBF4については、各々1Mの炭酸プロピレン溶液を調整し、ケイ素含有スルホン酸塩9については、0.1Mのプロピレンカーボネート溶液を調整し、測定を行った。
結果を図35に示す。図35から明らかなように、既存のイオン液体であるEMIBF4に比し、本発明のケイ素含有スルホン酸塩の電位窓はいずれも広く、電気化学的安定性に優れることがわかった。
[3] Measurement of potential window [Examples 15 to 17, Comparative Example 1]
Silicon-containing sulfonate 1 (Example 15), 8 (Example 16), about 9 (Example 17), and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF 4) (Comparative Example 1), Cyclic voltammetry measurement was performed. For the silicon-containing sulfonates 1 and 8 and EMIBF 4 , a 1M propylene carbonate solution was prepared, and for the silicon-containing sulfonate 9, a 0.1M propylene carbonate solution was prepared and measured.
Results are shown in FIG. As is clear from FIG. 35, it was found that the potential windows of the silicon-containing sulfonates of the present invention are wider than those of the existing ionic liquid, EMIBF 4, and that they have excellent electrochemical stability.

Claims (11)

下記式(1)で表されるケイ素含有スルホン酸塩からなる蓄電デバイス用電解質塩
式中、R1は、炭素数1〜4のアルキル基を表す。mは、1又は2を表す。nは、2〜4の整数を表す。A+は、ナトリウムイオン、カリウムイオン、リチウムイオン、下記式(2)で表される4級アンモニウムイオン、下記式(3)で表される4級ホスホニウムイオン、下記式(4)で表されるイミダゾリウムイオン及び下記式(5)で表されるピリジニウムイオンから選ばれる1価のカチオンを表す。
(式中、R 2 〜R 5 は、それぞれ独立に、炭素数1〜4のアルキル基、又は−(CH 2 ) k −ORで表されるアルコキシアルキル基を表す。kは、1又は2を表す。Rは、メチル基又はエチル基を表す。また、R 2 〜R 5 のいずれか2つが、互いに結合してこれらが結合する窒素原子とともに環を形成してもよく、更に、残りの2つも互いに結合して窒素原子をスピロ原子とするスピロ環を形成してもよい。)
(式中、R 6 は、炭素数1〜12のアルキル基を表す。R 7 は、炭素数1〜20のアルキル基を表す。)
(式中、R 8 及びR 9 は、それぞれ独立に、炭素数1〜4のアルキル基、又は−(CH 2 ) k −ORで表されるアルコキシアルキル基を表す。kは、1又は2を表す。Rは、メチル基又はエチル基を表す。)
(式中、R 10 は、炭素数1〜8のアルキル基、又は−(CH 2 ) k −ORで表されるアルコキシアルキル基を表す。kは、1又は2を表す。Rは、メチル基又はエチル基を表す。)]
An electrolyte salt for an electricity storage device comprising a silicon-containing sulfonate represented by the following formula (1).
[In the formula, R 1 represents an alkyl group having 1 to 4 carbon atoms. m represents 1 or 2. n represents an integer of 2 to 4. A + is a sodium ion, a potassium ion, a lithium ion, a quaternary ammonium ion represented by the following formula (2), a quaternary phosphonium ion represented by the following formula (3), or a following formula (4) It represents a monovalent cation selected from imidazolium ions and pyridinium ions represented by the following formula (5) .
(In the formula, R 2 to R 5 each independently represent an alkyl group having 1 to 4 carbon atoms or an alkoxyalkyl group represented by — (CH 2 ) k —OR. K represents 1 or 2. R represents a methyl group or an ethyl group, and any two of R 2 to R 5 may be bonded to each other to form a ring with the nitrogen atom to which they are bonded, and the remaining 2 They may also be bonded to each other to form a spiro ring having a nitrogen atom as a spiro atom.)
(In the formula, R 6 represents an alkyl group having 1 to 12 carbon atoms. R 7 represents an alkyl group having 1 to 20 carbon atoms.)
(In the formula, R 8 and R 9 each independently represent an alkyl group having 1 to 4 carbon atoms or an alkoxyalkyl group represented by — (CH 2 ) k —OR. K is 1 or 2 Represents, R represents a methyl group or an ethyl group.)
(In the formula, R 10 represents an alkyl group having 1 to 8 carbon atoms or an alkoxyalkyl group represented by — (CH 2 ) k —OR. K represents 1 or 2. R represents a methyl group. Or represents an ethyl group.)]
1が、メチル基又はエチル基である請求項1記載の蓄電デバイス用電解質塩。 The electrolyte salt for an electricity storage device according to claim 1, wherein R 1 is a methyl group or an ethyl group. nが、2又は3である請求項1又は2記載の蓄電デバイス用電解質塩。 The electrolyte salt for an electricity storage device according to claim 1, wherein n is 2 or 3. +が、ナトリウムイオン、カリウムイオン及びリチウムイオンから選ばれる1価の金属イオンである請求項1〜3のいずれか1項記載の蓄電デバイス用電解質塩。 The electrolyte salt for an electricity storage device according to claim 1, wherein A + is a monovalent metal ion selected from sodium ion, potassium ion and lithium ion. +、式(2)で表される4級アンモニウムイオンである請求項1〜3のいずれか1項記載の蓄電デバイス用電解質 The electrolyte salt for an electricity storage device according to claim 1 , wherein A + is a quaternary ammonium ion represented by the formula (2) . 前記4級アンモニウムイオンが、下記式(2−1)〜(2−4)で表されるものから選ばれる請求項記載の蓄電デバイス用電解質塩。
(式中、R及びkは、前記と同じ。R11〜R14は、それぞれ独立に、炭素数1〜4のアルキル基を表す。R15及びR16は、それぞれ独立に、炭素数1〜4のアルキル基を表す。R15及びR16は、互いに結合してこれらが結合する窒素原子とともに環を形成してもよい。)
The electrolyte salt for an electricity storage device according to claim 5 , wherein the quaternary ammonium ion is selected from those represented by the following formulas (2-1) to (2-4).
(In the formula, R and k are the same as above. R 11 to R 14 each independently represent an alkyl group having 1 to 4 carbon atoms. R 15 and R 16 each independently have 1 to 4 carbon atoms. Represents an alkyl group of 4. R 15 and R 16 may be bonded to each other to form a ring together with the nitrogen atom to which they are bonded.
+、式(3)で表される4級ホスホニウムイオンである請求項1〜3のいずれか1項記載の蓄電デバイス用電解質 The electrolyte salt for an electricity storage device according to claim 1 , wherein A + is a quaternary phosphonium ion represented by the formula (3) . +、式(4)で表されるイミダゾリウムイオンである請求項1〜3のいずれか1項記載の蓄電デバイス用電解質 The electrolyte salt for an electricity storage device according to claim 1 , wherein A + is an imidazolium ion represented by the formula (4) . +が、下記式(5)で表されるピリジニウムイオンである請求項1〜3のいずれか1項記載の蓄電デバイス用電解質 The electrolyte salt for an electricity storage device according to claim 1, wherein A + is a pyridinium ion represented by the following formula (5) . 前記ケイ素含有スルホン酸塩が、イオン液体である請求項1〜10のいずれか1項記載の蓄電デバイス用電解質塩。 The electrolyte salt for an electricity storage device according to claim 1 , wherein the silicon-containing sulfonate is an ionic liquid. 下記式(1'')で表されるケイ素含有スルホン酸塩からなるイオン液体。An ionic liquid comprising a silicon-containing sulfonate represented by the following formula (1 ″).
[式中、R[In the formula, R 11 は、炭素数1〜4のアルキル基を表す。mは、1又は2を表す。nは、2〜4の整数を表す。ARepresents an alkyl group having 1 to 4 carbon atoms. m represents 1 or 2. n represents an integer of 2 to 4. A ++ は、下記式(2)で表される4級アンモニウムイオン及び下記式(3)で表される4級ホスホニウムイオンから選ばれる1価のカチオンを表す。Represents a monovalent cation selected from a quaternary ammonium ion represented by the following formula (2) and a quaternary phosphonium ion represented by the following formula (3).
(式中、R(In the formula, R 22 〜R~ R 5Five は、それぞれ独立に、炭素数1〜4のアルキル基、又は−(CHAre each independently an alkyl group having 1 to 4 carbon atoms, or-(CH 22 )) kk −ORで表されるアルコキシアルキル基を表す。kは、1又は2を表す。Rは、メチル基又はエチル基を表す。また、RRepresents an alkoxyalkyl group represented by -OR. k represents 1 or 2. R represents a methyl group or an ethyl group. Also, R 22 〜R~ R 5Five のいずれか2つが、互いに結合してこれらが結合する窒素原子とともに環を形成してもよく、更に、残りの2つも互いに結合して窒素原子をスピロ原子とするスピロ環を形成してもよい。)Any two of them may be bonded to each other to form a ring together with the nitrogen atom to which they are bonded, and the remaining two may also be bonded to each other to form a spiro ring having a nitrogen atom as a spiro atom. .. )
(式中、R(In the formula, R 66 は、炭素数1〜12のアルキル基を表す。RRepresents an alkyl group having 1 to 12 carbon atoms. R 77 は、炭素数1〜20のアルキル基を表す。)]Represents an alkyl group having 1 to 20 carbon atoms. )]
JP2015230596A 2015-11-26 2015-11-26 Silicon-containing sulfonate Active JP6692033B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015230596A JP6692033B2 (en) 2015-11-26 2015-11-26 Silicon-containing sulfonate
PCT/JP2016/081073 WO2017090346A1 (en) 2015-11-26 2016-10-20 Silicon-containing sulfonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015230596A JP6692033B2 (en) 2015-11-26 2015-11-26 Silicon-containing sulfonate

Publications (2)

Publication Number Publication Date
JP2017095416A JP2017095416A (en) 2017-06-01
JP6692033B2 true JP6692033B2 (en) 2020-05-13

Family

ID=58763357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015230596A Active JP6692033B2 (en) 2015-11-26 2015-11-26 Silicon-containing sulfonate

Country Status (2)

Country Link
JP (1) JP6692033B2 (en)
WO (1) WO2017090346A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108682567B (en) * 2018-05-09 2019-09-13 中国科学院兰州化学物理研究所 A method of high-performance super capacitor is constructed by adjusting electrode voltage range
JP7404056B2 (en) * 2018-12-13 2023-12-25 三菱ケミカル株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2020094009A (en) * 2018-12-14 2020-06-18 日清紡ホールディングス株式会社 Ammonium salt having saccharin anion
WO2020202280A1 (en) * 2019-03-29 2020-10-08 日清紡ホールディングス株式会社 Conductive metal paste

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020038A1 (en) * 2007-08-03 2009-02-12 Idemitsu Kosan Co., Ltd. Lubricant base oil and lubricant composition
JP6090561B2 (en) * 2012-10-16 2017-03-08 日清紡ホールディングス株式会社 Electrolyte salt and electrolyte for power storage device, and power storage device

Also Published As

Publication number Publication date
WO2017090346A1 (en) 2017-06-01
JP2017095416A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6692033B2 (en) Silicon-containing sulfonate
WO2009136608A1 (en) Ionic liquid
CN107849070A (en) Di-phosphate ester salt, its manufacture method, the nonaqueous electrolytic solution and charge storage element of charge storage element
JP4322004B2 (en) Onium salt
JP5471972B2 (en) Electrolyte for magnesium secondary battery and magnesium secondary battery using the same
US20020160261A1 (en) Borate salts for use in electrochemical cells
EP3447059B1 (en) Silicon-containing sulfuric acid ester salt
KR20120068038A (en) Fluoroalkane derivative, gelling agent and gel composition
WO2008056776A1 (en) Mesoionic compound, ionic liquid composed of mesoionic compound, and method for producing mesoionic compound
JP2005200359A (en) Ionic compound
JP2004331521A (en) Ionic liquid
TW527357B (en) Lithium salts, process for preparing them, nonaqueous electrolyte and electrochemical cell
JP2013526055A (en) Organosilicon glycol-based electrolytes with hydroxy ends
US9221847B2 (en) Ionic liquid
JP2005179254A (en) Cold molten salt and method for producing the same
JP2009084193A (en) Thiazolium salt
JP5227524B2 (en) Ionic liquid having sulfonium cation containing SN bond and method for producing the same
EP3932904A1 (en) Silyl ether-containing sulfonate salt
JP2004262896A (en) Quaternary ammonium room temperature molten salt and method for producing the same
JP2013047217A (en) Ionic liquid
JP4815127B2 (en) Method for producing room temperature molten salt
JP2020066605A (en) Silicon-containing tetraalkyl borate

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20151225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200325

R150 Certificate of patent or registration of utility model

Ref document number: 6692033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250