JP2000277095A - Lithium ion battery - Google Patents

Lithium ion battery

Info

Publication number
JP2000277095A
JP2000277095A JP11083207A JP8320799A JP2000277095A JP 2000277095 A JP2000277095 A JP 2000277095A JP 11083207 A JP11083207 A JP 11083207A JP 8320799 A JP8320799 A JP 8320799A JP 2000277095 A JP2000277095 A JP 2000277095A
Authority
JP
Japan
Prior art keywords
acetylene black
powder
positive electrode
material layer
black powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11083207A
Other languages
Japanese (ja)
Inventor
Yuriko Yamane
由里子 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP11083207A priority Critical patent/JP2000277095A/en
Publication of JP2000277095A publication Critical patent/JP2000277095A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the conductivity of the whole of a positive electrode material layer, and to improve the ion mobility by including a specified weight ratio of graphite powder and acetylene black powder to be used as a conductive assistant in the positive electrode material layer while mixing with the lithium transition metal double oxide. SOLUTION: Mean grain diameter of the graphite powder included in the conductive assistant so as to improve the conductivity is desirably formed at 5-20 μm, and mean grain diameter of the acetylene black powder for improving the ion mobility is desirably formed at 0.02-0.05 μm. Content percentage of the acetylene black powder in relation to the total quantity is set at 55-70 wt.%. They are desirably used for the conductive assistant included in a positive electrode material layer laminated with a negative electrode material layer, which is mainly composed of carbon material such as amorphous carbon powder or graphite capable of storing and discharging lithium, through an electrode layer including the organic electrolyte while being mixed with the cobalt acid lithium. With this structure, internal resistance of a battery is lowered, and efficient discharging characteristic is improved. Mn, Fe, Ni or Ti is used as a transition metal of the double oxide except for Co.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン電
池に関するものである。
TECHNICAL FIELD The present invention relates to a lithium ion battery.

【0002】[0002]

【従来の技術】コバルト酸リチウム(Lix CoO2
等のリチウム遷移金属複酸化物からなる正極材層と、炭
素材料等のリチウムイオンを吸蔵、放出する負極材を含
有する負極材層とが電解質層を介して積層されて構成さ
れているリチウムイオン電池が知られている。この電解
質層はリチウム塩をエチレンカーボネート、ジメチルカ
ーボネート等の有機溶媒に溶解した有機電解質がセパレ
ータに保持されて構成されている。この種の電池では、
リチウム遷移金属複酸化物の導電性が低いので、正極材
層中にグラファイト粉末等の導電助剤を添加している。
2. Description of the Related Art Lithium cobaltate (Li x CoO 2 )
And a negative electrode material layer containing a negative electrode material that occludes and releases lithium ions such as a carbon material via an electrolyte layer. Batteries are known. This electrolyte layer is configured such that an organic electrolyte in which a lithium salt is dissolved in an organic solvent such as ethylene carbonate or dimethyl carbonate is held by a separator. With this type of battery,
Since the conductivity of the lithium transition metal double oxide is low, a conductive auxiliary such as graphite powder is added to the positive electrode material layer.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、グラフ
ァイト粉末のみの導電助剤では、グラファイト粉末を形
成する層構造の面方向の導電性は高いものの、厚み方向
の導電性は低い。また、リチウムイオンを移動させるイ
オン移動性が低い。そのため、電池の内部抵抗を低く
し、電池の高率放電特性を向上させるのに限界がある。
このような問題を解消するために、アセチレンブラック
粉末を導電助剤として用いることも考えられる。アセチ
レンブラック粉末は、密着性が良好で粉末内部に空孔部
が多いため、電解液が浸透しやすく、イオン移動性が高
い。また、導電性において方向による偏りはない。しか
しながら、アセチレンブラック粉末は、導電性が低い。
However, in the case of a conductive aid consisting only of graphite powder, the conductivity in the plane direction of the layer structure forming the graphite powder is high, but the conductivity in the thickness direction is low. Further, the ion mobility for moving lithium ions is low. Therefore, there is a limit in reducing the internal resistance of the battery and improving the high rate discharge characteristics of the battery.
In order to solve such a problem, it is conceivable to use acetylene black powder as a conductive additive. Acetylene black powder has good adhesion and many pores inside the powder, so that the electrolyte easily penetrates and has high ion mobility. In addition, there is no deviation due to direction in the conductivity. However, acetylene black powder has low conductivity.

【0004】なお、特開平8−153539号公報に
は、導電助剤としてグラファイト粉末のみを用いるグラ
ファイト含有層と、導電助剤としてアセチレンブラック
粉末のみを用いるグラファイト非含有層との二層からな
る正極材層を形成し、グラファイト含有層を電解質層に
接合したリチウムイオン電池が提案されている。しかし
ながら、このようにグラファイト粉末とアセチレンブラ
ック粉末とを混合させずに別々に層を形成するように用
いても、正極材層は局部的に導電性が高くなったり、イ
オン移動性が高くなるものの、正極材層全体の導電性及
びイオン移動性を高めることはできない。
Japanese Patent Application Laid-Open No. 8-153538 discloses a positive electrode comprising two layers: a graphite-containing layer using only graphite powder as a conductive aid, and a graphite-free layer using only acetylene black powder as a conductive aid. A lithium ion battery in which a material layer is formed and a graphite-containing layer is joined to an electrolyte layer has been proposed. However, even when the graphite powder and the acetylene black powder are used so as to form separate layers without being mixed as described above, the positive electrode material layer has locally high conductivity or high ion mobility. However, the conductivity and ion mobility of the entire positive electrode material layer cannot be increased.

【0005】本発明の目的は、正極材層全体の導電性及
びイオン移動性を高めることができるリチウムイオン電
池用正極板及びリチウムイオン電池を提供することにあ
る。
An object of the present invention is to provide a positive electrode plate for a lithium ion battery and a lithium ion battery capable of improving the conductivity and ion mobility of the entire positive electrode material layer.

【0006】[0006]

【課題を解決するための手段】本発明は、リチウム遷移
金属複酸化物と導電助剤とを含む正極材層を有するリチ
ウムイオン電池用正極板を改良の対象とする。リチウム
遷移金属複酸化物とは、リチウムと遷移金属とを含む複
酸化物である。このリチウム遷移金属複酸化物は、コバ
ルト酸リチウム(Lix CoO2 )等を用いることがで
きる。コバルト以外の遷移金属としては、例えばTi,
V,Cr,Mn,Fe,Co,Ni,Mo,W,Cuか
ら選ばれる少なくとも1種がある。本発明では、導電助
剤として、グラファイト粉末とアセチレンブラック粉末
とを用いる。そして、グラファイト粉末とアセチレンブ
ラック粉末とリチウム遷移金属複酸化物を混合された状
態で正極材層中に含ませ、グラファイト粉末とアセチレ
ンブラック粉末とを合せた量に対するアセチレンブラッ
ク粉末の量は55〜70重量%とする。
SUMMARY OF THE INVENTION The object of the present invention is to improve a positive electrode plate for a lithium ion battery having a positive electrode material layer containing a lithium transition metal double oxide and a conductive additive. The lithium transition metal double oxide is a double oxide containing lithium and a transition metal. As this lithium transition metal double oxide, lithium cobalt oxide (Li x CoO 2 ) or the like can be used. Examples of transition metals other than cobalt include Ti,
There is at least one selected from V, Cr, Mn, Fe, Co, Ni, Mo, W, and Cu. In the present invention, graphite powder and acetylene black powder are used as the conductive assistant. Then, the graphite powder, acetylene black powder and lithium transition metal double oxide are mixed and contained in the positive electrode material layer, and the amount of acetylene black powder is 55 to 70 with respect to the total amount of graphite powder and acetylene black powder. % By weight.

【0007】本発明のように、グラファイト粉末とアセ
チレンブラック粉末とを混合したものを導電助剤として
用いると、グラファイト粉末により導電性を高めること
ができ、アセチレンブラック粉末によりイオン移動性を
高めることができる。そのため、電池の内部抵抗を低く
して、しかも電池の高率放電特性を高めることができ
る。
As in the present invention, when a mixture of graphite powder and acetylene black powder is used as a conductive additive, the conductivity can be increased by the graphite powder, and the ion mobility can be increased by the acetylene black powder. it can. Therefore, the internal resistance of the battery can be reduced, and the high-rate discharge characteristics of the battery can be improved.

【0008】正極材層全体の導電性及びイオン移動性を
高めるには、グラファイト粉末とアセチレンブラック粉
末とを合せた量に対するアセチレンブラック粉末の量は
55〜70重量%とする。この量が55重量%を下回る
と、イオン移動性が低下する。また、70重量%を上回
るとグラファイト粉末の量が低下することにより、導電
性が低くなる。
In order to enhance the conductivity and ion mobility of the entire positive electrode material layer, the amount of acetylene black powder is set to 55 to 70% by weight based on the total amount of graphite powder and acetylene black powder. If this amount is less than 55% by weight, ion mobility will decrease. On the other hand, if it exceeds 70% by weight, the amount of the graphite powder decreases, and the conductivity decreases.

【0009】グラファイト粉末は、平均粒子径5〜20
μmのものを用い、アセチレンブラック粉末は、平均粒
子径0.02〜0.05μmのものを用いるのが好まし
い。本発明の正極板を用いたリチウムイオン電池は、リ
チウム遷移金属複酸化物と導電助剤とを含む正極材層
と、リチウムを吸蔵・放出可能な炭素材料を主成分とす
る負極材層とが有機電解質を含む電解質層を介して積層
されてなるリチウムイオン電池であり、導電助剤とし
て、グラファイト粉末とアセチレンブラック粉末とを用
いる。そして、グラファイト粉末とアセチレンブラック
粉末とリチウム遷移金属複酸化物を混合された状態で正
極材層中に含ませ、グラファイト粉末とアセチレンブラ
ック粉末とを合せた量に対するアセチレンブラック粉末
の量を55〜70重量%とする。
The graphite powder has an average particle size of 5 to 20.
μm, and the acetylene black powder preferably has an average particle diameter of 0.02 to 0.05 μm. A lithium ion battery using the positive electrode plate of the present invention includes a positive electrode material layer containing a lithium transition metal complex oxide and a conductive auxiliary, and a negative electrode material layer mainly containing a carbon material capable of absorbing and releasing lithium. This is a lithium ion battery that is stacked with an electrolyte layer containing an organic electrolyte interposed therebetween, and uses graphite powder and acetylene black powder as conductive assistants. Then, the graphite powder, the acetylene black powder and the lithium transition metal double oxide are mixed and included in the positive electrode material layer, and the amount of the acetylene black powder with respect to the total amount of the graphite powder and the acetylene black powder is 55 to 70. % By weight.

【0010】[0010]

【発明の実施の形態】試験に用いる各リチウムイオン電
池を次のように製造した。最初に正極板を作った。ま
ず、平均粒子径10μmのコバルト酸リチウム(Lix
CoO2 )からなる正極材と、炭素粉末からなる導電助
剤と、ポリフッ化ビニリデン(PVDF)からなるバイ
ンダとを重量比94:3:3で混合し、これをN−メチ
ル−2−ピロリドン(NMP)からなる溶媒に分散して
正極スラリーを作った。なお、導電助剤として用いる炭
素粉末としては、表1に示すように、平均粒子径15μ
mのグラファイト粉末、またはグラファイト粉末と平均
粒子径0.035μmのアセチレンブラック粉末とを混
合した混合粉末を用いた。次に各正極スラリーを厚み2
0μmのアルミニウム箔からなる正極集電体の両面に均
一の厚みに塗布してから、乾燥してNMPを取り除き、
ロールプレス機で圧延を行って正極材層を形成した。そ
して、これを幅54mmに切断して短冊状の正極板を作
った。
BEST MODE FOR CARRYING OUT THE INVENTION Each lithium ion battery used for the test was manufactured as follows. First, a positive electrode plate was made. First, lithium cobalt oxide (Li x having an average particle diameter of 10 μm) was used.
A cathode material made of CoO 2 ), a conductive agent made of carbon powder, and a binder made of polyvinylidene fluoride (PVDF) are mixed at a weight ratio of 94: 3: 3, and this is mixed with N-methyl-2-pyrrolidone ( NMP) to prepare a positive electrode slurry. As shown in Table 1, the carbon powder used as the conductive additive has an average particle size of 15 μm.
m of graphite powder or a mixed powder obtained by mixing graphite powder with acetylene black powder having an average particle diameter of 0.035 μm. Next, each positive electrode slurry was
0μm aluminum foil is coated to a uniform thickness on both sides of the positive electrode current collector, then dried to remove NMP,
Rolling was performed with a roll press to form a positive electrode material layer. Then, this was cut into a width of 54 mm to produce a strip-shaped positive electrode plate.

【0011】次に負極板を作った。まず、平均粒子径2
0μmの非晶質炭素粉末の炭素材からなる負極材と、ポ
リフッ化ビニリデンからなるバインダとを体積比90:
10で混合し、これをN−メチル−2−ピロリドン(N
MP)からなる溶媒に分散して負極スラリーを作った。
なお、炭素材としては、非晶質炭素粉末以外にピッチコ
ークス、石油コークス、黒鉛、炭素繊維、活性炭及びこ
れらの混合物等を用いることができる。次に負極スラリ
ーを厚み10μmの銅箔からなる負極集電体の両面に均
一の厚みに塗布してから、乾燥してNMPを取り除き、
ロールプレス機で圧延を行って負極材層を形成した。そ
して、これを幅56mmに切断して短冊状の負極板を作
った。
Next, a negative electrode plate was prepared. First, average particle size 2
A negative electrode material made of a carbon material of 0 μm amorphous carbon powder and a binder made of polyvinylidene fluoride were mixed at a volume ratio of 90:
And mixed with N-methyl-2-pyrrolidone (N
MP) to prepare a negative electrode slurry.
As the carbon material, pitch coke, petroleum coke, graphite, carbon fiber, activated carbon, a mixture thereof, and the like can be used in addition to the amorphous carbon powder. Next, a negative electrode slurry was applied to both sides of a negative electrode current collector made of copper foil having a thickness of 10 μm to a uniform thickness, and then dried to remove NMP.
Rolling was performed with a roll press to form a negative electrode material layer. Then, this was cut into a width of 56 mm to produce a strip-shaped negative electrode plate.

【0012】次に、表1に示す各正極板と負極板とを厚
み25μm,幅58mmのポリエチレン(PE)微多孔
膜からなる帯状のセパレータを介して巻回して巻回式極
板群をそれぞれ作った。次に、巻回式極板群をNiめっ
き鉄からなる円筒形の電池缶内に配置してから、予め負
極集電体に溶接してあるニッケル製の負極タブ端子を電
池缶の底部に溶接した。次にプロピレンカーボネート
(PC)とジメチルカーボネート(DMC)とを体積比
1:1で混合した有機溶媒にLiPF6 からなるリチウ
ム塩を1モル/lの濃度で溶解した有機電解液(非水電
解液)5mlを電池缶内に注入した。
Next, each positive electrode plate and each negative electrode plate shown in Table 1 were wound through a belt-like separator made of a microporous polyethylene (PE) film having a thickness of 25 μm and a width of 58 mm to form a wound type electrode plate group. Had made. Next, after disposing the wound electrode group in a cylindrical battery can made of Ni-plated iron, a nickel negative electrode tab terminal previously welded to the negative electrode current collector is welded to the bottom of the battery can. did. Next, an organic electrolyte (non-aqueous electrolyte) prepared by dissolving a lithium salt of LiPF 6 at a concentration of 1 mol / l in an organic solvent in which propylene carbonate (PC) and dimethyl carbonate (DMC) are mixed at a volume ratio of 1: 1. ) 5 ml was injected into the battery can.

【0013】次に、予め正極集電体に溶接してあるアル
ミニウム製の正極接続端子を安全弁及び圧力スイッチ
(電流遮断装置)を備える電池蓋に溶接した。次に、電
池蓋を絶縁性のポリプロピレンからなるガスケットを介
して電池缶の上部に配置してから、これをかしめて電池
缶内を密閉して公称容量1350mAhの円筒形の試験
用の各リチウムイオン電池を作った。
Next, a positive electrode connecting terminal made of aluminum, which was previously welded to the positive electrode current collector, was welded to a battery lid provided with a safety valve and a pressure switch (current interrupting device). Next, the battery cover was placed on the upper portion of the battery can via a gasket made of insulating polypropylene, and then caulked to seal the inside of the battery can to seal each lithium ion for a cylindrical test having a nominal capacity of 1350 mAh. I made a battery.

【0014】[0014]

【表1】 次に、上記各リチウムイオン電池を周囲温度25℃にお
いて、充電電流1350mA、制限電流4.15Vで3
時間定電流定電圧充電を行い、次に放電電流0.5Cm
A(675mAh),1.0CmA(1350mA
h),2.0CmA(2700mAh),3.0CmA
(4050mAh)で終止電圧2.5Vまでそれぞれ放
電して、各電池の放電電流と放電容量比との関係を調べ
た。図1はその測定結果を示している。
[Table 1] Next, the above lithium-ion batteries were charged at an ambient temperature of 25 ° C. with a charging current of 1350 mA and a limiting current of 4.15 V for 3 hours.
Time constant current constant voltage charge, then discharge current 0.5Cm
A (675 mAh), 1.0 CmA (1350 mA
h), 2.0 CmA (2700 mAh), 3.0 CmA
(4050 mAh) to discharge to a final voltage of 2.5 V, and the relationship between the discharge current and the discharge capacity ratio of each battery was examined. FIG. 1 shows the measurement results.

【0015】図1より、実施例の電池1,2は、比較例
の電池に比べて、高率放電時における放電容量の低下が
低く、高率放電特性が高いのが分る。
From FIG. 1, it can be seen that the batteries 1 and 2 of the embodiment have a lower discharge capacity during high-rate discharge and a higher high-rate discharge characteristic than the batteries of the comparative example.

【0016】また、表1には、実施例1の電池の上記充
放電条件の満充電時における内部抵抗を100とした場
合の上記各リチウムイオン電池の内部抵抗相対値を示し
ている。
Table 1 shows the relative internal resistance of each of the lithium ion batteries when the internal resistance of the battery of Example 1 at the time of full charge under the above charge and discharge conditions is 100.

【0017】表1より、実施例の電池1,2は、比較例
の電池に比べて、電池内部抵抗値を低く抑えることがで
きるのが分る。また、図1及び表1より、グラファイト
粉末とアセチレンブラック粉末とを混合した混合粉末を
用いても、アセチレンブラック粉末の混合粉末に対する
割合が55重量%を下回ったり、70重量%を上回ると
高率放電特性が低下し、電池の内部抵抗が増加するのが
分る。これは、アセチレンブラック粉末の混合粉末に対
する割合が55重量%を下回ると、イオン移動性が低下
し、70重量%を上回るとグラファイト粉末の量が低下
することにより、導電性が低くなるためである。イオン
移動性が低下しても、導電性が低下しても高率放電特性
は低下する。またイオン移動性が低下しても、導電性が
低下しても電池の内部抵抗は増加する。
From Table 1, it can be seen that the batteries 1 and 2 of the embodiment can suppress the internal resistance of the battery lower than that of the battery of the comparative example. Further, from FIG. 1 and Table 1, even when a mixed powder obtained by mixing graphite powder and acetylene black powder is used, if the ratio of the acetylene black powder to the mixed powder is less than 55% by weight or more than 70% by weight, a high ratio is obtained. It can be seen that the discharge characteristics deteriorate and the internal resistance of the battery increases. This is because when the ratio of the acetylene black powder to the mixed powder is less than 55% by weight, the ion mobility is reduced, and when it exceeds 70% by weight, the amount of the graphite powder is reduced, so that the conductivity is reduced. . Even if the ion mobility or the conductivity is reduced, the high-rate discharge characteristics are reduced. Also, the internal resistance of the battery increases even if the ion mobility decreases or the conductivity decreases.

【0018】[0018]

【発明の効果】本発明によれば、グラファイト粉末とア
セチレンブラック粉末とを混合した混合粉末を用いるの
で、グラファイト粉末により導電性を高めることがで
き、アセチレンブラック粉末によりイオン移動性を高め
ることができる。そのため、電池の内部抵抗を低くし
て、しかも電池の高率放電特性を高めることができる。
According to the present invention, since a mixed powder obtained by mixing graphite powder and acetylene black powder is used, the conductivity can be enhanced by the graphite powder, and the ion mobility can be enhanced by the acetylene black powder. . Therefore, the internal resistance of the battery can be reduced, and the high-rate discharge characteristics of the battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試験に用いた電池の放電電流と放電容量比との
関係を示す図である。
FIG. 1 is a diagram showing a relationship between a discharge current and a discharge capacity ratio of a battery used in a test.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウム遷移金属複酸化物と導電助剤と
を含む正極材層を有するリチウムイオン電池用正極板に
おいて、 前記導電助剤として、グラファイト粉末とアセチレンブ
ラック粉末とが用いられ、 前記グラファイト粉末と前記アセチレンブラック粉末と
前記リチウム遷移金属複酸化物は、混合された状態で前
記正極材層中に含まれており、 前記グラファイト粉末と前記アセチレンブラック粉末と
を合せた量に対する前記アセチレンブラック粉末の量が
55〜70重量%であることを特徴とするリチウムイオ
ン電池用正極板。
1. A positive electrode plate for a lithium ion battery having a positive electrode material layer containing a lithium transition metal double oxide and a conductive auxiliary, wherein graphite powder and acetylene black powder are used as the conductive auxiliary, The powder, the acetylene black powder, and the lithium transition metal double oxide are contained in the positive electrode material layer in a mixed state, and the acetylene black powder with respect to the combined amount of the graphite powder and the acetylene black powder Is 55 to 70% by weight.
【請求項2】 前記グラファイト粉末の平均粒子径が5
〜20μmであり、前記アセチレンブラック粉末の平均
粒子径が0.02〜0.05μmであることを特徴とす
るリチウムイオン電池用正極板。
2. The graphite powder having an average particle size of 5
A positive electrode plate for a lithium ion battery, wherein the acetylene black powder has an average particle size of 0.02 to 0.05 μm.
【請求項3】 リチウム遷移金属複酸化物と導電助剤と
を含む正極材層と、リチウムを吸蔵・放出可能な炭素材
料を主成分とする負極材層とが有機電解質を含む電解質
層を介して積層されてなるリチウムイオン電池におい
て、 前記導電助剤として、グラファイト粉末とアセチレンブ
ラック粉末とが用いられ、 前記グラファイト粉末と前記アセチレンブラック粉末と
前記リチウム遷移金属複酸化物は、混合された状態で前
記正極材層中に含まれており、 前記グラファイト粉末と前記アセチレンブラック粉末と
を合せた量に対する前記アセチレンブラック粉末の量が
55〜70重量%であることを特徴とするリチウムイオ
ン電池。
3. A positive electrode material layer containing a lithium transition metal double oxide and a conductive auxiliary, and a negative electrode material layer mainly containing a carbon material capable of occluding and releasing lithium are interposed through an electrolyte layer containing an organic electrolyte. In the lithium ion battery formed by stacking, graphite powder and acetylene black powder are used as the conductive assistant, and the graphite powder, the acetylene black powder, and the lithium transition metal complex oxide are mixed. A lithium ion battery contained in the positive electrode material layer, wherein the amount of the acetylene black powder is 55 to 70% by weight based on the total amount of the graphite powder and the acetylene black powder.
JP11083207A 1999-03-26 1999-03-26 Lithium ion battery Pending JP2000277095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11083207A JP2000277095A (en) 1999-03-26 1999-03-26 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11083207A JP2000277095A (en) 1999-03-26 1999-03-26 Lithium ion battery

Publications (1)

Publication Number Publication Date
JP2000277095A true JP2000277095A (en) 2000-10-06

Family

ID=13795889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11083207A Pending JP2000277095A (en) 1999-03-26 1999-03-26 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP2000277095A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260664A (en) * 2001-02-28 2002-09-13 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
US6706446B2 (en) 2000-12-26 2004-03-16 Shin-Kobe Electric Machinery Co., Ltd. Non-aqueous electrolytic solution secondary battery
JP2008243529A (en) * 2007-03-27 2008-10-09 Hitachi Vehicle Energy Ltd Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011044320A (en) * 2009-08-20 2011-03-03 Furukawa Battery Co Ltd:The Method of manufacturing positive electrode plate for nonaqueous electrolyte secondary battery
WO2015012375A1 (en) * 2013-07-24 2015-01-29 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same
EP3343676A1 (en) 2016-12-27 2018-07-04 Automotive Energy Supply Corporation Electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706446B2 (en) 2000-12-26 2004-03-16 Shin-Kobe Electric Machinery Co., Ltd. Non-aqueous electrolytic solution secondary battery
JP2002260664A (en) * 2001-02-28 2002-09-13 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2008243529A (en) * 2007-03-27 2008-10-09 Hitachi Vehicle Energy Ltd Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011044320A (en) * 2009-08-20 2011-03-03 Furukawa Battery Co Ltd:The Method of manufacturing positive electrode plate for nonaqueous electrolyte secondary battery
WO2015012375A1 (en) * 2013-07-24 2015-01-29 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same
CN105580165A (en) * 2013-07-24 2016-05-11 日产自动车株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same
JPWO2015012375A1 (en) * 2013-07-24 2017-03-02 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
CN105580165B (en) * 2013-07-24 2018-08-14 日产自动车株式会社 Positive electrode for nonaqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery for having used the anode
US10439224B2 (en) 2013-07-24 2019-10-08 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
EP3343676A1 (en) 2016-12-27 2018-07-04 Automotive Energy Supply Corporation Electrode for lithium ion secondary battery, and lithium ion secondary battery
US10573883B2 (en) 2016-12-27 2020-02-25 Envision Aesc Japan Ltd. Electrode for lithium ion secondary battery, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4245532B2 (en) Nonaqueous electrolyte secondary battery
JP6521883B2 (en) Non-aqueous electrolyte battery and method of manufacturing the same
WO2015111710A1 (en) Non-aqueous secondary battery
WO2015115051A1 (en) Nonaqueous-electrolyte secondary-battery negative electrode
US10505215B2 (en) Method of manufacturing non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5336698B2 (en) Non-aqueous electrolyte battery
JP5348730B2 (en) Lithium ion secondary battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
CN117038880A (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
US20090286139A1 (en) Lithium secondary battery
CN110890525B (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
JP2001006747A (en) Nonaqueous electrolyte secondary battery
JP2017091886A (en) Nonaqueous electrolyte secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP2008159280A (en) Nonaqueous electrolyte battery
JP2007172879A (en) Battery and its manufacturing method
JP5782869B2 (en) Nonaqueous electrolyte secondary battery and current collector for nonaqueous electrolyte secondary battery
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP2000277095A (en) Lithium ion battery
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP2002075460A (en) Lithium secondary cell
WO2014156092A1 (en) Lithium-ion cell
JP2007335308A (en) Nonaqueous electrolyte secondary battery
JP2015210891A (en) Nonaqueous electrolyte secondary battery