JP2007172879A - Battery and its manufacturing method - Google Patents

Battery and its manufacturing method Download PDF

Info

Publication number
JP2007172879A
JP2007172879A JP2005365048A JP2005365048A JP2007172879A JP 2007172879 A JP2007172879 A JP 2007172879A JP 2005365048 A JP2005365048 A JP 2005365048A JP 2005365048 A JP2005365048 A JP 2005365048A JP 2007172879 A JP2007172879 A JP 2007172879A
Authority
JP
Japan
Prior art keywords
active material
electrode plate
mixture layer
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005365048A
Other languages
Japanese (ja)
Inventor
Takeshi Nakamoto
武志 中本
Takeshi Shimozono
下薗  武司
Isao Suzuki
鈴木  勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2005365048A priority Critical patent/JP2007172879A/en
Publication of JP2007172879A publication Critical patent/JP2007172879A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery capable of obtaining a sufficiently high capacity (improved in high-rate discharge characteristics) even when discharge by large current is carried out. <P>SOLUTION: The non-aqueous electrolyte secondary battery 10 is provided with a positive electrode plate 20 and a negative electrode plate 30 in which mixture layers 22, 32 containing active material are formed on belt-shape current collectors 21, 31. Exposed portions 24, 34 on which the mixture layers 2, 32 are not formed are provided at one side edge part of the current collectors 21, 31, and lead terminals 23, 33 are connected to the expose portions 24, 34. The amount of active material at the starting end parts 21A, 31A on the lead terminal side in width direction is larger than the amount of active material at the terminal parts 21B, 31B on the opposite side in cross-section parallel to short sides 25, 35 of the current collectors 21, 31 in at least one mixture layers 22, 32 out of the mixture layers 22, 32 of the positive electrode plate 20 and the negative electrode plate 30, thereby, high-rate discharge characteristics can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電池およびその製造方法に関する。   The present invention relates to a battery and a manufacturing method thereof.

例えば非水電解質二次電池は、エネルギー密度が高く小型軽量化が可能な二次電池として携帯電話やデジタルカメラ、ノート型パーソナルコンピュータ等の小型電源として広く採用されている。また、近年では、エネルギー密度が高いという特性を活かして、電気自動車、ハイブリッド電気自動車等の電源等に利用すべく、その大型化も積極的に検討されている。   For example, nonaqueous electrolyte secondary batteries are widely used as small power sources for mobile phones, digital cameras, notebook personal computers, and the like as secondary batteries that have a high energy density and can be reduced in size and weight. Further, in recent years, taking advantage of the property of high energy density, an increase in size has been actively studied for use as a power source for electric vehicles, hybrid electric vehicles and the like.

上記用途のうち、特に電気自動車やハイブリッド電気自動車向け電源等に非水電解質二次電池を適用するためには、携帯機器の電源として用いられるものよりも大電流放電時の容量維持率(以下、高率放電特性という)の高いものが必要とされる。従来、このような用途に用いられる非水電解質二次電池として、特許文献1に記載のものなどが知られている。
特開平10−208730号公報
Among the above uses, in order to apply a non-aqueous electrolyte secondary battery to a power source for an electric vehicle or a hybrid electric vehicle in particular, a capacity maintenance rate during a large current discharge (hereinafter, referred to as a power source for a portable device) A high-rate discharge characteristic is required. Conventionally, as a nonaqueous electrolyte secondary battery used for such an application, a battery described in Patent Document 1 is known.
JP-A-10-208730

特許文献1に記載の非水電解質二次電池は、その集電体上に活物質を含有する合剤層が形成されかつ、合剤層の形成されていない露出部にリード端子が接続されている正極板と負極板とを備えている。この正極板と負極板は、その集電体の両面に活物質を含有する合剤を均一に塗布後、乾燥・プレスを経て製造されるので、活物質量が均一な合剤層が形成されている。   In the nonaqueous electrolyte secondary battery described in Patent Document 1, a mixture layer containing an active material is formed on the current collector, and a lead terminal is connected to an exposed portion where the mixture layer is not formed. A positive electrode plate and a negative electrode plate. The positive electrode plate and the negative electrode plate are produced by uniformly applying a mixture containing an active material on both sides of the current collector, followed by drying and pressing, so that a mixture layer with a uniform amount of active material is formed. ing.

一般に、電池の、電極板の集電体における抵抗はリード端子が接続された部分(以下、リード端子接続部という)から離れるほど大きくなる。一方、集電体上に形成される合剤層における抵抗は、合剤層中の活物質と集電体との距離などの因子により影響を受けるが、合剤層が非常に薄い層でできていることから、活物質と集電体との距離よりも前述した集電体における抵抗の影響を受けやすい。したがって、集電体における抵抗の影響をうけて、リード端子接続部に近い合剤層では電位が低くリード端子接続部から離れるほど電位が高くなる電位差が発生し、大電流が放電されると更にこの電位差は大きくなる。そして、合剤層のうち電位の低いところでは、電位の高いところに比べて電池反応が優先的におこり活物質の利用率が高くなる。   Generally, the resistance of the current collector of the electrode plate of the battery increases as the distance from the portion where the lead terminal is connected (hereinafter referred to as the lead terminal connecting portion) increases. On the other hand, the resistance of the mixture layer formed on the current collector is affected by factors such as the distance between the active material in the mixture layer and the current collector, but the mixture layer can be made of a very thin layer. Therefore, it is more susceptible to the above-described resistance in the current collector than the distance between the active material and the current collector. Therefore, under the influence of the resistance in the current collector, a potential difference is generated in which the potential is low in the mixture layer near the lead terminal connection portion and the potential increases as the distance from the lead terminal connection portion increases. This potential difference increases. And in a mixture layer, in a place where electric potential is low, battery reaction preferentially occurs compared with a place where electric potential is high, and the utilization factor of an active material becomes high.

ところで、特許文献1に記載の非水電解質二次電池に大電流を放電すると、このものにおいてはリード端子接続部からの距離の如何にかかわらず活物質量が均一であるから、活物質の利用率が高い部分では電池反応に要する活物質が不足し、十分な放電容量が得られなかった。   By the way, when a large current is discharged to the non-aqueous electrolyte secondary battery described in Patent Document 1, the amount of the active material is uniform regardless of the distance from the lead terminal connection portion. In the portion where the rate is high, the active material required for the battery reaction is insufficient, and a sufficient discharge capacity cannot be obtained.

本発明は上記のような事情に基づいて完成されたものであって、大電流による放電を行った際にも十分高い容量が得られる(高率放電特性を向上した)電池を提供することを目的とする。   The present invention has been completed based on the above circumstances, and provides a battery that has a sufficiently high capacity (improved high-rate discharge characteristics) even when discharged by a large current. Objective.

本発明者らは上記目的を達成するために鋭意研究を行った結果、正極板および負極板の少なくとも一方の集電体上に、活物質の利用率に合った合剤層を形成することで大電流放電時にも高い容量が得られるという知見を得た。   As a result of intensive studies to achieve the above object, the present inventors have formed a mixture layer that matches the utilization ratio of the active material on at least one of the current collectors of the positive electrode plate and the negative electrode plate. It was found that high capacity can be obtained even during large current discharge.

上記の目的を達成するための手段として、請求項1の発明は、一対の長辺及び短辺によって囲まれた帯状をなす集電体上に活物質を含有する合剤層を形成してなる正極板と負極板とを、セパレータを挟んで重ねて巻回して構成した発電要素を電池ケースに収容した電池において、前記集電体にはその一方の長辺側の側縁部に前記合剤層が形成されていない露出部が設けられ、その露出部にリード端子が接続されると共に、前記正極板および前記負極板の前記合剤層のうち少なくとも一方の合剤層においては、前記集電体の巻回軸に平行な断面においてその幅方向の前記リード端子側の活物質量が、その反対側における活物質量よりも多いことを特徴とする電池である。   As means for achieving the above object, the invention of claim 1 is formed by forming a mixture layer containing an active material on a current collector having a band shape surrounded by a pair of long sides and short sides. In a battery in which a power generation element configured by stacking and winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween is housed in a battery case, the current collector has the mixture on the side edge on one long side thereof An exposed portion in which no layer is formed is provided, a lead terminal is connected to the exposed portion, and at least one of the mixture layers of the positive electrode plate and the negative electrode plate includes the current collector In the cross section parallel to the winding axis of the body, the amount of active material on the lead terminal side in the width direction is larger than the amount of active material on the opposite side.

請求項2の発明は、請求項1に記載のものにおいて前記正極板および前記負極板の双方の合剤層において、前記集電体の前記巻回軸に平行な断面においてその幅方向の前記リード端子側の活物質量が、その反対側における活物質量よりも多いところに特徴を有する。   According to a second aspect of the present invention, in the mixture layer of both the positive electrode plate and the negative electrode plate according to the first aspect, the lead in the width direction in a cross section parallel to the winding axis of the current collector It is characterized in that the amount of active material on the terminal side is larger than the amount of active material on the opposite side.

請求項3の発明は、請求項1または請求項2に記載のものにおいて、前記リード端子側における合剤層の活物質量は、その反対側における活物質量に対して3%〜20%多いところに特徴を有する。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the amount of active material in the mixture layer on the lead terminal side is 3% to 20% more than the amount of active material on the opposite side. However, it has characteristics.

請求項4の発明は一対の長辺及び短辺によって囲まれた帯状をなす集電体上に活物質を含有する合剤層が形成されると共に、前記合剤層の形成されていない露出部にリード端子が接続されている正極板と負極板とを、セパレータを挟んで重ねて巻回して構成した発電要素を電池ケースに収容した非水電解質二次電池の製造方法において、前記集電体の一方の長辺側の側縁部を前記露出部とし、前記正極板および前記負極板のうち少なくとも一方の合剤層は、前記巻回軸に平行な断面においてその幅方向の前記リード端子側の活物質量がその反対側における活物質量よりも多くなるように前記集電体に合剤を塗布した後、前記合剤層の前記リード端子側の活物質の密度が前記反対側における活物質の密度よりも高くなるように形成されると共に前記合剤層が前記集電体上で均一な厚みを有するようにプレスするプレス工程を経て製造されることを特徴とする電池の製造方法である。   In the invention of claim 4, a mixture layer containing an active material is formed on a current collector having a band shape surrounded by a pair of long sides and short sides, and an exposed portion in which the mixture layer is not formed In the method of manufacturing a non-aqueous electrolyte secondary battery in which a power generation element configured by stacking and winding a positive electrode plate and a negative electrode plate, each having a lead terminal connected thereto, with a separator interposed therebetween, is housed in a battery case. The side edge of one of the long sides is the exposed portion, and at least one mixture layer of the positive electrode plate and the negative electrode plate is on the lead terminal side in the width direction in a cross section parallel to the winding axis. After the mixture is applied to the current collector so that the amount of the active material is larger than the amount of the active material on the opposite side, the density of the active material on the lead terminal side of the mixture layer is the active material on the opposite side. Formed to be higher than the density of the material A method for producing a battery, characterized in that Kigo agent layer is manufactured through a press process of pressing to have a uniform thickness on the current collector.

<請求項1の発明>
請求項1に記載の発明によれば、正極板および負極板の合剤層のうち少なくとも一方においては、集電体の短辺に平行な断面においてその幅方向のリード端子側の活物質量が、その反対側における活物質量よりも多いから、活物質の利用率に合った合剤層が形成されている。したがって、大電流放電時にも、活物質が不足することがない。その結果、十分な放電容量を得ることができる。
<Invention of Claim 1>
According to the first aspect of the present invention, in at least one of the mixture layers of the positive electrode plate and the negative electrode plate, the amount of active material on the lead terminal side in the width direction in the cross section parallel to the short side of the current collector is Since the amount of the active material is larger than that on the opposite side, a mixture layer that matches the utilization rate of the active material is formed. Therefore, there is no shortage of active material even during large current discharge. As a result, a sufficient discharge capacity can be obtained.

<請求項2の発明>
請求項2に記載の発明によれば、正極板および負極板の双方において活物質の利用率に合った合剤層が形成されているから、より好適な放電容量を得ることができる。
<Invention of Claim 2>
According to the second aspect of the present invention, since the mixture layer matching the utilization ratio of the active material is formed on both the positive electrode plate and the negative electrode plate, a more preferable discharge capacity can be obtained.

<請求項3の発明>
請求項3に記載の発明によれば、リード端子側における合剤層の活物質量は、その反対側における活物質量に対して3%〜20%多いから、より活物質の利用率に合った合剤層が形成される。
<Invention of Claim 3>
According to the third aspect of the invention, the amount of the active material in the mixture layer on the lead terminal side is 3% to 20% more than the amount of the active material on the opposite side. A mixture layer is formed.

<請求項4の発明>
請求項4に記載の発明によれば、正極板および負極板のうち少なくとも一方の合剤層は、巻回軸に平行な断面においてその幅方向のリード端子側の活物質量がその反対側における活物質量よりも多くなるように集電体に合剤を塗布した後、合剤層のリード端子側の活物質の密度が反対側における活物質の密度よりも高くなるように形成されると共に合剤層が前記集電体上で均一な厚みを有するようにプレスするプレス工程を経て製造されるから、本発明の電池を容易に作製することができる。
<Invention of Claim 4>
According to the invention described in claim 4, at least one of the positive electrode plate and the negative electrode plate has a cross section parallel to the winding axis, and the active material amount on the side of the lead terminal in the width direction is on the opposite side. After the mixture is applied to the current collector so as to exceed the amount of the active material, the density of the active material on the lead terminal side of the mixture layer is formed to be higher than the density of the active material on the opposite side Since the mixture layer is manufactured through a pressing process in which the mixture layer is pressed so as to have a uniform thickness on the current collector, the battery of the present invention can be easily manufactured.

<実施形態1>   <Embodiment 1>

以下本発明の実施形態について説明するが本発明はこれに限定されるものではない。   Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.

図1には、完成形態の非水電解質二次電池10(以下、電池10と記載する)を破断して示す。この電池10には、円筒状に形成された電池ケース11と、その内部に収容される発電要素15とが備えられている。   FIG. 1 shows a nonaqueous electrolyte secondary battery 10 (hereinafter referred to as a battery 10) in a completed form in a broken state. The battery 10 includes a battery case 11 formed in a cylindrical shape and a power generation element 15 accommodated therein.

電池ケース11は、有底の円筒容器状に形成された金属製の電池ケース11と、略円盤状に形成されてこの電池ケース11の開放口を封止する金属製のキャップ12とで構成されている。電池ケース11内には、渦巻状に構成された発電要素15が、その上下に円盤状の絶縁板13を配した状態で収容されている。そして、この電池ケース11の開放口には、キャップ12が封口ガスケット14を介してかしめつけられている。また、電池ケース11の内部には、非水電解液が注入されている。   The battery case 11 includes a metal battery case 11 formed in a cylindrical shape with a bottom and a metal cap 12 formed in a substantially disk shape and sealing the opening of the battery case 11. ing. In the battery case 11, a power generation element 15 configured in a spiral shape is accommodated in a state in which disk-shaped insulating plates 13 are arranged above and below the power generation element 15. A cap 12 is caulked to the opening of the battery case 11 via a sealing gasket 14. In addition, a non-aqueous electrolyte is injected into the battery case 11.

非水電解液は非水溶媒に電解質塩を溶解してなり、非水溶媒は、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート、ビニレンカーボネートなどの極性溶媒を単独でまたは二種以上混合して使用することができる。   The non-aqueous electrolyte solution is obtained by dissolving an electrolyte salt in a non-aqueous solvent. Use polar solvents such as formamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate, vinylene carbonate alone or in admixture of two or more. be able to.

非水溶媒に溶解する電解質塩は、LiPF、LiClO、LiBF、LiAsF、LiCFCO、LiCF(CF、LiCF(C、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF、LiN(COCFCF、LiPF(CFCF等の塩を単独でまたは二種以上混合して使用することができる。 The electrolyte salts that dissolve in the non-aqueous solvent are LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 (CF 3 ) 3 , LiCF 3 (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 , LiN (COCF 2 CF 3 ) 2 , LiPF 3 (CF 2 CF 3 ) 3 and the like alone Or a mixture of two or more.

電池ケース11内に収容された発電要素15は、正極板20と負極板30とをセパレータ16を挟んで巻回されて構成されている。   The power generation element 15 accommodated in the battery case 11 is configured by winding a positive electrode plate 20 and a negative electrode plate 30 with a separator 16 interposed therebetween.

セパレータ16としては、織布、不織布、合成樹脂微多孔膜等を用いることができ、特に合成樹脂微多孔膜を好適に用いることができる。なかでも、ポリエチレン及びポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好適に用いることができる。   As the separator 16, a woven fabric, a nonwoven fabric, a synthetic resin microporous membrane, or the like can be used, and a synthetic resin microporous membrane can be particularly preferably used. Among these, polyolefin microporous membranes such as polyethylene and polypropylene microporous membranes, or microporous membranes composed of these can be suitably used in terms of thickness, membrane strength, membrane resistance, and the like.

正極板20は、アルミニウムなどの金属により形成された厚さ10〜20μmの正極集電体21の両面に、リチウムイオンを吸蔵放出可能な正極活物質を含有する正極合剤層22(後述する)を備えている。また、正極集電体21は、図2に示すように、帯状をなし、具体的には、10〜20cmの一対の短辺25および1〜5mの長辺26A,26Bによって囲まれた形状をなしている。長辺26Aを含む所定の帯状領域(本発明における長辺側の側縁部)は、正極合剤層22の形成されていない露出部24とされる。この露出部24には長辺26Aに交差するように正極リード端子23が約10cm間隔で多数接続されている。この正極リード端子23は巻回後ひとまとめにされ、その先端部は、正極板20から上方へ突出され、正極端子の役割を果たすキャップ12に接続されている。正極リード端子23の材質としては、アルミニウム、ニッケルまたはチタンを等の金属を用いることができる。   The positive electrode plate 20 includes a positive electrode mixture layer 22 (described later) containing a positive electrode active material capable of occluding and releasing lithium ions on both surfaces of a positive electrode current collector 21 having a thickness of 10 to 20 μm formed of a metal such as aluminum. It has. Further, as shown in FIG. 2, the positive electrode current collector 21 has a belt shape, specifically, a shape surrounded by a pair of short sides 25 of 10 to 20 cm and long sides 26A and 26B of 1 to 5 m. There is no. A predetermined belt-like region including the long side 26 </ b> A (the side edge portion on the long side in the present invention) is an exposed portion 24 where the positive electrode mixture layer 22 is not formed. A large number of positive electrode lead terminals 23 are connected to the exposed portion 24 at intervals of about 10 cm so as to intersect the long side 26A. The positive electrode lead terminals 23 are gathered together after being wound, and their tip portions protrude upward from the positive electrode plate 20 and are connected to the cap 12 serving as a positive electrode terminal. As a material of the positive electrode lead terminal 23, a metal such as aluminum, nickel, or titanium can be used.

正極合剤層22は、図4に示すように、露出部24に隣り合うリード端子23側の始端部21Aから長辺26Bを終端部21A(リード端子23の反対側)としてほぼ均一な厚みを有し、その片側の厚みが100μm前後になるように正極集電体21に対して略対称に形成されている。正極合剤層22は、その始端部21Aから終端部21Bに近づくに従って合剤層の密度が低くなるように形成されており、その結果、始端部21Aから終端部21Bに近づくに従って活物質量が少なくなっている。活物質の利用率を考慮すると、正極合剤層22のうち最も密度が高いリード端子23側の始端部21Aにおける活物質量は、密度が最も低いリード端子23と反対側の終端部21Bの活物質量に対して3%〜20%多いのが好ましい(請求項3に記載の発明)。活物質量の差が3%未満であると活物質の利用率に合った合剤層が形成されず、20%を超えると始端部21Aと終端部21Bでの活物質量の差が大きくなりすぎて、終端部21Bでは活物質が不足した状態となる。   As shown in FIG. 4, the positive electrode mixture layer 22 has a substantially uniform thickness with the long side 26 </ b> B from the start end 21 </ b> A adjacent to the exposed portion 24 to the end 21 </ b> A (opposite to the lead terminal 23). And formed substantially symmetrically with respect to the positive electrode current collector 21 so that the thickness of one side thereof is about 100 μm. The positive electrode mixture layer 22 is formed so that the density of the mixture layer decreases as it approaches the end portion 21B from the start end portion 21A. As a result, the amount of active material increases as it approaches the end portion 21B from the start end portion 21A. It is running low. Considering the utilization factor of the active material, the active material amount in the start end portion 21A on the lead terminal 23 side with the highest density in the positive electrode mixture layer 22 is the active material amount on the end portion 21B on the opposite side to the lead terminal 23 with the lowest density. The amount is preferably 3% to 20% more than the amount of the substance (the invention according to claim 3). If the difference in the amount of active material is less than 3%, a mixture layer that matches the utilization rate of the active material is not formed. If the amount exceeds 20%, the difference in the amount of active material between the start end portion 21A and the end portion 21B increases. Thus, the terminal portion 21B is in a state where the active material is insufficient.

正極合剤層22に含有される正極活物質としては、組成式LiMO、Li、NaMO(ただし、Mは一種類以上の遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル構造または層状構造の金属カルコゲン化物または、金属酸化物などのリチウムを吸蔵放出する遷移金属酸化物を用いることができる。その具体例としては、LiCoO、LiNiO、LiNi1/2Mn1/2、LiNi1/3Mn1/3Co1/3、LiCoNi1−x、LiMn、LiMn、MnO、FeO、V、V13、TiOまたはTiS等が挙げられる。 The positive electrode active material contained in the positive electrode mixture layer 22 includes a composition formula of Li x MO 2 , Li y M 2 O 4 , and Na x MO 2 (where M is one or more transition metals, 0 ≦ x ≦ 1 , 0 ≦ y ≦ 2), a metal chalcogenide having a tunnel structure or a layered structure, or a transition metal oxide that occludes and releases lithium such as a metal oxide can be used. Specific examples thereof include LiCoO 2 , LiNiO 2 , LiNi 1/2 Mn 1/2 O 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiCo x Ni 1-x O 2 , LiMn 2 O. 4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , TiO 2 or TiS 2 .

上記した正極活物質には、導電剤、結着剤等を添加することができる。導電剤としては、無機化合物、有機化合物を用いることができる。無機化合物としては、カーボンブラック、グラファイトなどを用いることができ、有機化合物としては、例えばポリアニリン等の導電性ポリマーなどを用いることができる。結着剤としては、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、スチレン−ブタジエンゴム、ポリアクリロニトリルなどを単独で、あるいは混合して用いることができる。   A conductive agent, a binder, or the like can be added to the positive electrode active material. As the conductive agent, an inorganic compound or an organic compound can be used. As the inorganic compound, carbon black, graphite and the like can be used, and as the organic compound, for example, a conductive polymer such as polyaniline can be used. As the binder, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyacrylonitrile and the like can be used alone or in combination.

負極板30は、銅などの金属により形成された厚さ10ないし20μmの銅箔からなる負極集電体31の両面に、リチウムイオンを吸蔵放出可能な負極活物質を含有する負極合剤層32(後述する)を備えている。負極集電体31は、図2に示すように、帯状をなし、具体的には、10〜20cmの一対の短辺35および1〜5mの長辺36A,36Bによって囲まれた形状をなしている。長辺36Aを含む所定の帯状領域(本発明における長辺側の側縁部)は、負極合剤層32の形成されていない露出部34とされる。この露出部34には長辺36Aに交差するように負極リード端子33が約10cm間隔で多数接続されている。この負極リード端子33は巻回後ひとまとめにされ、その先端部は、負極板30から下方へ突出され、負極端子としての役割を果たす電池ケース11の底部に接続されている。負極リード端子33の材質としては、銅やニッケルなどの金属を用いることができ、銅箔にニッケルをメッキしたものが好ましい。   The negative electrode plate 30 includes a negative electrode mixture layer 32 containing a negative electrode active material capable of occluding and releasing lithium ions on both surfaces of a negative electrode current collector 31 formed of a copper foil having a thickness of 10 to 20 μm formed of a metal such as copper. (To be described later). As shown in FIG. 2, the negative electrode current collector 31 has a band shape, specifically, a shape surrounded by a pair of short sides 35 of 10 to 20 cm and long sides 36A and 36B of 1 to 5 m. Yes. A predetermined belt-like region including the long side 36 </ b> A (long side side edge portion in the present invention) is an exposed portion 34 where the negative electrode mixture layer 32 is not formed. A large number of negative electrode lead terminals 33 are connected to the exposed portion 34 at intervals of about 10 cm so as to intersect the long side 36A. The negative electrode lead terminals 33 are gathered together after being wound, and their tip portions protrude downward from the negative electrode plate 30 and are connected to the bottom of the battery case 11 serving as a negative electrode terminal. As a material of the negative electrode lead terminal 33, a metal such as copper or nickel can be used, and a copper foil plated with nickel is preferable.

負極合剤層32は、図4に示すように、露出部34に隣り合う始端部31Aから終端部31Bにかけてほぼ均一な厚みを有し、その片側の厚みが100μm前後になるように負極集電体31に対して略対称に形成されている。負極合剤層32は、その始端部31Aから終端部31Bに近づくに従って密度が低くなるように形成されており、その結果、始端部31Aから終端部31B側に近づくに従って活物質量が少なくなっている。活物質の利用率を考慮すると、負極合剤層32のうち最も密度が高いリード端子33側の始端部31Aにおける活物質量は、密度が最も低い終端部31Bの活物質量に対して、3%〜20%多いのが好ましい(請求項3に記載の発明)。活物質量の差が3%未満であると活物質の利用率に合った合剤層が形成されず、20%を超えると始端部31Aと終端部31Bでの活物質量の差が大きくなりすぎて、終端部31Bでは活物質が不足した状態となる。   As shown in FIG. 4, the negative electrode mixture layer 32 has a substantially uniform thickness from the start end portion 31A adjacent to the exposed portion 34 to the end portion 31B, and the negative electrode current collector so that the thickness of one side thereof is about 100 μm. It is formed substantially symmetrical with respect to the body 31. The negative electrode mixture layer 32 is formed so as to decrease in density as it approaches the end portion 31B from the start end portion 31A, and as a result, the amount of active material decreases as it approaches the end portion 31B side from the start end portion 31A. Yes. Considering the utilization factor of the active material, the active material amount in the start end portion 31A on the lead terminal 33 side having the highest density in the negative electrode mixture layer 32 is 3 with respect to the active material amount in the end portion 31B having the lowest density. % To 20% is preferable (the invention according to claim 3). If the difference in the amount of active material is less than 3%, a mixture layer that matches the utilization rate of the active material is not formed. If the amount exceeds 20%, the difference in the amount of active material between the start end portion 31A and the end portion 31B increases. Thus, the terminal portion 31B is in a state where the active material is insufficient.

負極合剤層32に含有される負極活物質としては、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe、WO、MoO、SiO、CuO等の金属酸化物、グラファイト、カーボン等の炭素質材料、Li(LiN)等の窒化リチウム、もしくは金属リチウム、またはこれらの混合物を用いることができる。 Examples of the negative electrode active material contained in the negative electrode mixture layer 32 include alloys of lithium, such as Al, Si, Pb, Sn, Zn, and Cd, and metals such as LiFe 2 O 3 , WO 2 , MoO 2 , SiO, and CuO. A carbonaceous material such as oxide, graphite, or carbon, lithium nitride such as Li 5 (Li 3 N), metallic lithium, or a mixture thereof can be used.

なお、本実施形態においては、より高率放電特性を向上させるという観点から、正極合剤層22と負極合剤層32の双方について、始端部21A,31Aの活物質量が終端部21B,31Bよりも多くなるように形成されている(請求項2および請求項5の発明)が、一方の合剤層のみが、このように形成されているものも本発明に含まれる。   In the present embodiment, from the viewpoint of improving the high rate discharge characteristics, the active material amounts of the start end portions 21A and 31A are the end portions 21B and 31B for both the positive electrode mixture layer 22 and the negative electrode mixture layer 32. (The inventions of claims 2 and 5) are included in the present invention, but only one mixture layer is formed in this way.

また、本実施形態においては、正極合剤層22と負極合剤層32とはその厚みが始端部21A,31Aから終端部21B,31Bにかけてほぼ均一に形成され、かつ合剤の密度が始端部21A,31Aから終端部21B,31Bに近づくにしたがって密度が低くなるように形成されているが、始端部21A,31Aの活物質量が終端部21B,31Bよりも多くなるように形成されていればよく、例えば、図3に示すように、始端部21A,31Aと終端部21B,31Bにおける厚みに差があるものなども本発明に含まれる。   In the present embodiment, the positive electrode mixture layer 22 and the negative electrode mixture layer 32 are formed so that the thicknesses thereof are substantially uniform from the start end portions 21A and 31A to the end end portions 21B and 31B, and the density of the mixture is the start end portion. It is formed so that the density decreases as it approaches the terminal portions 21B and 31B from 21A and 31A, but it is formed so that the amount of active material of the starting end portions 21A and 31A is larger than that of the terminal portions 21B and 31B. For example, as shown in FIG. 3, the present invention includes those having a difference in thickness between the start end portions 21A and 31A and the end end portions 21B and 31B.

次に本実施形態の電池10の製造方法について説明する。
まず、それぞれの集電体21,31の両面に対応する合剤組成物を塗布して、乾燥し、ロールプレス機により圧延することで合剤層22,32が形成された正極板20および負極板30が製造される。本発明においては、結果として、正極板20の合剤層22および負極板30の合剤層32のうち少なくとも一方で、集電体21,31のリード端子側23,33側の始端部21A,31Aの活物質量がリード端子23,33と反対側の終端部21B,31Bよりも多くなるように形成されていればよい。
Next, a method for manufacturing the battery 10 of this embodiment will be described.
First, the positive electrode plate 20 and the negative electrode on which the mixture layers 22 and 32 are formed by applying the mixture composition corresponding to both surfaces of the current collectors 21 and 31, drying and rolling with a roll press machine. A plate 30 is manufactured. In the present invention, as a result, at least one of the mixture layer 22 of the positive electrode plate 20 and the mixture layer 32 of the negative electrode plate 30, the start end portion 21 </ b> A on the lead terminal side 23, 33 side of the current collectors 21, 31, The active material amount of 31A may be formed so as to be larger than that of the terminal portions 21B and 31B on the opposite side to the lead terminals 23 and 33.

具体的には、図3に示すように、集電体21,31上に合剤を塗布する際に、始端部21A,31A側から終端部21B,31B側に近づくに従い塗布する合剤の量を減らすことで、リード端子23,33側の始端部21A,31Aの活物資量が終端部21B,31Bよりも多くなるように塗布し(以下、塗布工程という)、図4に示すように、それぞれの合剤層22,32の厚みが始端部21A,31Aから終端部21B,31Bにかけてほぼ均一になるようにプレスすることで、始端部21A,31Aの密度が終端部21B,31Bより高くなる工程(以下、プレス工程という)を経て、正極板20および負極板30が製造される(請求項4に記載の発明)。本実施形態においては、合剤層22,32の始端部21A,31Aの密度が終端部21B,31Bよりも高い正極板20および負極板30を簡易に製造することができるという観点から好適に上記の方法で製造される。   Specifically, as shown in FIG. 3, when the mixture is applied onto the current collectors 21 and 31, the amount of the mixture applied as it approaches the end portions 21B and 31B from the start end portions 21A and 31A side. Is applied so that the active material amount of the start end portions 21A, 31A on the lead terminals 23, 33 side is larger than that of the end portions 21B, 31B (hereinafter referred to as application step), as shown in FIG. By pressing the mixture layers 22 and 32 so that the thicknesses of the mixture layers 22 and 32 are substantially uniform from the start end portions 21A and 31A to the end portions 21B and 31B, the density of the start end portions 21A and 31A becomes higher than that of the end portions 21B and 31B. The positive electrode plate 20 and the negative electrode plate 30 are manufactured through a process (hereinafter referred to as a pressing process) (the invention according to claim 4). In the present embodiment, preferably, the positive electrode plate 20 and the negative electrode plate 30 in which the density of the start end portions 21A and 31A of the mixture layers 22 and 32 is higher than the end portions 21B and 31B can be easily manufactured. It is manufactured by the method.

なお、本発明において正極板20および負極板30は、上記塗布工程を経た後、合剤層22,32の厚みを均一化せず、厚みに差がある状態となるようにプレスして製造してもよいし、塗布量の調整をせずに集電体21,31に合剤を塗布した後、始端部21A,31Aの活物質量が終端部21B,31Bよりも多くなるようにプレスして製造してもよい。   In the present invention, the positive electrode plate 20 and the negative electrode plate 30 are manufactured by pressing the mixture layers 22 and 32 so that the thicknesses of the mixture layers 22 and 32 are not uniform after the application step. Alternatively, after the mixture is applied to the current collectors 21 and 31 without adjusting the application amount, pressing is performed so that the amount of active material at the start end portions 21A and 31A is larger than that at the end portions 21B and 31B. May be manufactured.

合剤を塗布する際には、リバースロール方式、ダイレクトロール方式、ブレード方式、ナイフ方式、ダイノズル方式、ディップ方式など、一般的な塗布方式を用いることができるが、塗布量を機械的に制御しやすいことから、ダイノズル方式により行うことが好ましい。   When applying the mixture, common application methods such as reverse roll method, direct roll method, blade method, knife method, die nozzle method, and dip method can be used, but the application amount is controlled mechanically. Since it is easy, it is preferable to carry out by a die nozzle method.

合剤層をプレスする際には、ロールの左右の力を変えてロールプレスしてもよいし、ロール間の距離を変えてロールプレスしてもよい。   When pressing the mixture layer, the right and left forces of the rolls may be changed and roll pressing may be performed, or the distance between the rolls may be changed and roll pressing may be performed.

上記方法によって得られた正極板20の長辺21A側と負極板30の長辺31B側とを、セパレータ16を挟んで対応させ、一方の短辺25、35を中心として巻回する巻回工程を経て巻回体とされ、発電要素15が製造される。正極板20および負極板30に接続されるリード端子23,33は巻回工程中に超音波溶接等の手段を用いて正極板20および負極板30の露出部24,34の端に取り付けられる。   A winding step in which the long side 21A side of the positive electrode plate 20 obtained by the above method and the long side 31B side of the negative electrode plate 30 are made to correspond with the separator 16 interposed therebetween, and winding is performed around one short side 25, 35. After that, the power generation element 15 is manufactured. The lead terminals 23 and 33 connected to the positive electrode plate 20 and the negative electrode plate 30 are attached to the ends of the exposed portions 24 and 34 of the positive electrode plate 20 and the negative electrode plate 30 using means such as ultrasonic welding during the winding process.

次に、巻回工程を終えて製造された発電要素15は電池ケース11に収容され、非水電解液を含浸させた後に容器を封止することで本実施形態の電池10が製造される。   Next, the power generation element 15 manufactured after finishing the winding process is accommodated in the battery case 11, impregnated with the non-aqueous electrolyte, and then sealed in the container to manufacture the battery 10 of the present embodiment.

本実施形態によれば、正極合剤層22および負極合剤層32の双方について、合剤層22,32の始端部21A,31Aの活物質量がその終端部21B,31Bよりも多いから、活物質の利用率の高い部分では活物質量が多く、活物質の利用率の低い部分では活物質量が少なくなっている。したがって、大電流による放電を行った際にも、活物質の利用率の高い部分でも電池反応に要する活物質が不足することがないので十分に高い放電容量が得られる。   According to the present embodiment, for both the positive electrode mixture layer 22 and the negative electrode mixture layer 32, the active material amount of the start end portions 21A and 31A of the mixture layers 22 and 32 is larger than the end portions 21B and 31B. The amount of the active material is large in the portion where the utilization factor of the active material is high, and the amount of the active material is small in the portion where the utilization factor of the active material is low. Therefore, even when discharging with a large current is performed, a sufficiently high discharge capacity can be obtained because the active material required for the battery reaction is not insufficient even in a portion where the active material utilization rate is high.

<実施例1〜5および比較例1>
以下、本発明の実施例および比較例を示すが本発明はこれに限定されるものではない。
1.電池の作製
実施例1〜5および比較例1では図1に示す実施形態1にかかる電池10を作製した。
(1)正極板の作製
LiCoO91重量部と、導電剤のアセチレンブラック3重量部と、結着剤のポリフッ化ビニリデン6重量部とを混合し、N−メチル−2−ピロリドンを適宜加えてペースト状にして正極活物質を含有する組成物(以下正極合剤組成物という)を調製した。
<Examples 1 to 5 and Comparative Example 1>
Examples of the present invention and comparative examples are shown below, but the present invention is not limited thereto.
1. Battery fabrication
In Examples 1 to 5 and Comparative Example 1, a battery 10 according to Embodiment 1 shown in FIG.
(1) Preparation of positive electrode plate 91 parts by weight of LiCoO 2 , 3 parts by weight of acetylene black as a conductive agent, and 6 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methyl-2-pyrrolidone was appropriately added. A composition containing a positive electrode active material (hereinafter referred to as a positive electrode mixture composition) was prepared in the form of a paste.

この正極合剤組成物を、厚さが20μmのアルミニウム製の正極集電体21の両面に吐出量を調節しながら、ダイノズル方式で塗布した。このとき、実施例1〜4については、図2に示すように正極合剤層22の始端部21Aから終端部21Bに近づくに従い塗布量が徐々に少なくなるように正極合剤組成物を塗布し、実施例5および比較例1については始端部21Aから終端部21Bまで均一に正極合剤組成物を塗布した。   This positive electrode mixture composition was applied to both surfaces of an aluminum positive electrode current collector 21 having a thickness of 20 μm by a die nozzle method while adjusting the discharge amount. At this time, for Examples 1 to 4, the positive electrode mixture composition was applied so that the amount of application gradually decreased as it approached the end portion 21B from the start end portion 21A of the positive electrode mixture layer 22 as shown in FIG. In Example 5 and Comparative Example 1, the positive electrode mixture composition was uniformly applied from the start end 21A to the end end 21B.

塗布工程を経た正極板20を乾燥させた後、ロールプレスで厚みが均一になるように圧縮成形し、図3に示すように、所定の厚さの正極合剤層22と露出部24とを備え、正極合剤層22のうち、始端部21Aの単位容積当たりの合剤塗布重量を終端部21Bの単位容積当たりの合剤塗布重量で除した値が表1に示した値(以下、正極合剤重量比という)である正極板20を得た。ここで、正極合剤重量比が例えば1.1の場合には、始端部21Aの活物質量が終端部21Bの活物質量に対して10%多いことを示す。   After the positive electrode plate 20 that has undergone the coating process is dried, it is compression molded by a roll press so that the thickness is uniform, and as shown in FIG. 3, the positive electrode mixture layer 22 and the exposed portion 24 having a predetermined thickness are formed. In the positive electrode mixture layer 22, the value obtained by dividing the mixture application weight per unit volume of the start end portion 21A by the mixture application weight per unit volume of the end portion 21B is shown in Table 1 (hereinafter referred to as the positive electrode mixture layer). A positive electrode plate 20 having a mixture weight ratio) was obtained. Here, when the weight ratio of the positive electrode mixture is 1.1, for example, it indicates that the amount of the active material at the start end portion 21A is 10% larger than the amount of the active material at the end portion 21B.

(2)負極板の作製
黒鉛92重量部と、結着剤のポリフッ化ビニリデン8重量部とを混合し、N−メチル−2−ピロリドンを適宜加えてペースト状の負極活物質を含有する組成物(以下負極合剤組成物という)を調製した。
(2) Preparation of negative electrode plate Composition containing 92 parts by weight of graphite and 8 parts by weight of polyvinylidene fluoride as a binder, and appropriately adding N-methyl-2-pyrrolidone to contain a paste-like negative electrode active material (Hereinafter referred to as a negative electrode mixture composition) was prepared.

この負極合剤組成物を厚さが14μmの銅製の負極集電体31の両面に吐出量を調節しながら、ダイノズル方式で塗布した。このとき、実施例1,2,5については、図2に示すように負極合剤層32の始端部31Aから終端部31Bに近づくに従い塗布量が徐々に少なくなるように負極合剤組成物を塗布し、実施例3、4および比較例1については、始端部31Aから終端部31Bまで均一に負極合剤組成物を塗布した。   This negative electrode mixture composition was applied to both surfaces of a copper negative electrode current collector 31 having a thickness of 14 μm by a die nozzle method while adjusting the discharge amount. At this time, for Examples 1, 2, and 5, as shown in FIG. 2, the negative electrode mixture composition was formed so that the coating amount gradually decreased as the negative electrode mixture layer 32 approached the end portion 31B from the start end portion 31A. It applied and about Example 3, 4 and the comparative example 1, the negative mix composition was apply | coated uniformly from the end part 31A to the terminal part 31B.

塗布工程を経た負極板30を乾燥させた後、ロールプレスで圧縮成形し、所定の厚さの負極合剤層32と露出部34とを備え、負極合剤層32のうち、始端部31Aの単位容積当たりの合剤塗布重量を終端部31Bの単位容積当たりの合剤塗布重量で除した値が表1に示した値(以下、負極合剤重量比という)である負極板30を得た。ここで、負極合剤重量比が例えば1.1の場合には、始端部31Aの活物質量が終端部31Bの活物質量に対して10%多いことを示す。   After drying the negative electrode plate 30 that has undergone the coating process, the negative electrode plate 30 is compression-molded by a roll press, and includes a negative electrode mixture layer 32 and an exposed portion 34 of a predetermined thickness. A negative electrode plate 30 was obtained in which the value obtained by dividing the mixture coating weight per unit volume by the mixture coating weight per unit volume of the terminal portion 31B was the value shown in Table 1 (hereinafter referred to as the negative electrode mixture weight ratio). . Here, when the weight ratio of the negative electrode mixture is 1.1, for example, it indicates that the active material amount of the start end portion 31A is 10% larger than the active material amount of the end portion 31B.

(3)電池の作製
(1)で得られた正極板20と、厚さ25μmの微多孔性ポリエチレンフィルム製のセパレータ16と、(2)で得られた負極板30とを順に重ね合わせ、これをポリエチレン製の長方形状の巻芯の周囲に長円渦状に巻回して発電要素15とした。このとき、発電要素15の巻回中心軸は前記巻芯の長辺と平行になるようにした。巻回工程中にアルミニウム製のリード端子23を正極板20の露出部24に、銅製のリード端子33を負極板30の露出部34に超音波溶着した。このようにして得られた発電要素15を電池ケース11に収納し、電解液を注液した。このとき、発電要素15の巻回中心軸が電池ケース11の開口面に対して垂直となるようにした。公称容量は5Ahとした。
(3) Fabrication of battery The positive electrode plate 20 obtained in (1), the separator 16 made of a microporous polyethylene film having a thickness of 25 μm, and the negative electrode plate 30 obtained in (2) were sequentially stacked. Was wound around an oblong spiral core made of polyethylene into an ellipse to form a power generation element 15. At this time, the winding center axis of the power generation element 15 was made parallel to the long side of the core. During the winding process, the lead terminal 23 made of aluminum was ultrasonically welded to the exposed portion 24 of the positive electrode plate 20, and the lead terminal 33 made of copper was ultrasonically welded to the exposed portion 34 of the negative electrode plate 30. The power generation element 15 obtained in this way was housed in the battery case 11 and an electrolyte was injected. At this time, the winding central axis of the power generation element 15 was set to be perpendicular to the opening surface of the battery case 11. The nominal capacity was 5 Ah.

2.電池性能試験
上記方法により得られた実施例1〜5および比較例1の電池について下記の性能試験を行い、その結果を表1に示した。
(1)40A放電時の容量保持率(高率放電特性)
実施例1〜5および比較例1の電池10について、25℃において、5Aの定電流で4.2Vまで充電し、続いて4.2Vの定電圧で合計3時間充電した後、5Aの電流で2.7Vまで放電し、5A放電時の放電容量を測定した。次に、放電電圧を40Aとしたこと以外は同様にして40A放電時の放電容量を測定した。そして、5A放電時の容量に対する40A放電時の容量の割合(百分率表示)を、40A放電時の容量保持率とし、この値が大きいほど高率放電特性が高いことを示す。
上記試験結果と正極合剤密度比と負極合剤密度比とを対応させて表1に示す。
2. Battery performance test The batteries of Examples 1 to 5 and Comparative Example 1 obtained by the above method were subjected to the following performance tests, and the results are shown in Table 1.
(1) Capacity retention during 40 A discharge (high rate discharge characteristics)
The batteries 10 of Examples 1 to 5 and Comparative Example 1 were charged at a constant current of 5 A to 4.2 V at 25 ° C., then charged at a constant voltage of 4.2 V for a total of 3 hours, and then at a current of 5 A. It discharged to 2.7V and measured the discharge capacity at the time of 5A discharge. Next, the discharge capacity at 40 A discharge was measured in the same manner except that the discharge voltage was 40 A. And the ratio (percentage display) of the capacity | capacitance at the time of 40A discharge with respect to the capacity | capacitance at the time of 5A discharge is made into the capacity | capacitance retention at the time of 40A discharge, and it shows that a high rate discharge characteristic is so high that this value is large.
The test results, the positive electrode mixture density ratio, and the negative electrode mixture density ratio are shown in Table 1 in correspondence.

Figure 2007172879
Figure 2007172879

3.試験結果と考察
本発明の電池(実施例1〜5)については、比較例1の電池と比較して高率放電特性が高かった。この結果について考察すると、実施例1〜5の電池においては、正極合剤層22および負極板合剤層32のうち少なくとも一方は、そのリード端子23,33側の活物質量が反対側の活物質量よりも多くなるように形成されている。すなわち、合剤層22,32のうち活物質の利用率の高い部分で活物質量が多く、活物質の利用率の低い部分では活物質量が少なくなっているから、大電流放電時に、電池反応に要する活物質が不足することがなく十分に高い放電容量が得られたと考えられる。
3. Test Results and Discussion The batteries of the present invention (Examples 1 to 5) had higher high rate discharge characteristics than the battery of Comparative Example 1. Considering this result, in the batteries of Examples 1 to 5, at least one of the positive electrode mixture layer 22 and the negative electrode plate mixture layer 32 has an active material amount on the side opposite to the lead terminals 23 and 33 side. It is formed to be larger than the amount of substance. That is, in the mixture layers 22 and 32, the amount of the active material is large in the portion where the utilization factor of the active material is high, and the amount of the active material is small in the portion where the utilization factor of the active material is low. It is considered that a sufficiently high discharge capacity was obtained without a shortage of active material required for the reaction.

特に正極合剤層22と負極合剤層32の双方について始端部21A,31Aの密度を高くしたもの(実施例1、2)については高率放電特性が高くなった。これは、双方の電極板20,30について活物質利用率にあわせた合剤層22,32を設けたことにより、さらに高い放電容量を得ることができたからであると考えられる。   In particular, the high-rate discharge characteristics were high for the positive electrode mixture layer 22 and the negative electrode mixture layer 32 in which the densities of the start end portions 21A and 31A were increased (Examples 1 and 2). This is considered to be because a higher discharge capacity could be obtained by providing the mixture layers 22 and 32 in accordance with the active material utilization rate for both the electrode plates 20 and 30.

また、正極合剤層22のみについて始端部21Aの密度を高くしたもの(実施例3,4)と負極合剤層32のみについて始端部31Aの密度を高くしたもの(実施例5)とを比較すると、前者の方が高率放電特性が高くなった。これは、正極合剤層22と負極合剤層32とを比較すると、正極合剤層22の方が使用される活物質などの性質を考慮すると電気的抵抗が大きいので、活物質の利用率にあわせた合剤層を形成した効果がより顕著に現れたと考えられる。   Further, the density of the starting end portion 21A only for the positive electrode mixture layer 22 (Examples 3 and 4) and the density of the starting end portion 31A for only the negative electrode mixture layer 32 (Example 5) are compared. As a result, the former had higher high-rate discharge characteristics. This is because when the positive electrode mixture layer 22 and the negative electrode mixture layer 32 are compared, the positive electrode mixture layer 22 has a higher electrical resistance in consideration of the properties of the active material and the like used. It is considered that the effect of forming the mixture layer in accordance with was more prominent.

4.まとめ
以上より、本発明によれば、高い高率放電特性を有する非水電解質二次電池を提供することができる。
4). Summary As described above, according to the present invention, a nonaqueous electrolyte secondary battery having high high rate discharge characteristics can be provided.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.

(1)本発明においては、非水電解液のみならず固体電解質を用いてもよく、両者を併用することもできる。固体電解質としては、公知の固体電解質を用いることができ、例えば無機固体電解質、ポリマー固体電解質を用いることができる。また、ゲル状の高分子固体電解質を用いる場合には、ゲルを構成する電解液と、電極板の活物質の細孔中などに含有されている電解液とが異なっていてもよい。また、合成樹脂微多孔膜と高分子固体電解質等を組み合わせて使用することもできる。   (1) In the present invention, not only a nonaqueous electrolytic solution but also a solid electrolyte may be used, or both may be used in combination. As the solid electrolyte, a known solid electrolyte can be used. For example, an inorganic solid electrolyte or a polymer solid electrolyte can be used. When a gel polymer solid electrolyte is used, the electrolyte constituting the gel may be different from the electrolyte contained in the pores of the active material of the electrode plate. A synthetic resin microporous membrane and a polymer solid electrolyte can also be used in combination.

(2)実施形態1においては円柱形の電池ケースを使用したが、電池ケースは長円形や袋形のものであってもよいし素材も金属ラミネート樹脂フィルムなどであってもよい。   (2) Although a cylindrical battery case is used in the first embodiment, the battery case may be oval or bag-shaped, and the material may be a metal laminate resin film.

実施形態1の電池の全体図Overall view of the battery of Embodiment 1 正極板と負極板の平面図Plan view of positive and negative plates プレス工程前の正極板と負極板の短辺方向の断面図Cross-sectional view in the short side direction of the positive electrode plate and negative electrode plate before the pressing process プレス工程後の正極板と負極板の短辺方向の断面図Cross-sectional view in the short side direction of the positive electrode plate and negative electrode plate after the pressing process

符号の説明Explanation of symbols

10…電池
20…正極板
21…正極集電体
21A…始端部
21B…終端部
22…正極合剤層
23…正極リード端子
24…露出部
30…負極板
31…負極集電体
31A…始端部
31B…終端部
32…負極合剤層
33…負極リード端子
34…露出部
DESCRIPTION OF SYMBOLS 10 ... Battery 20 ... Positive electrode plate 21 ... Positive electrode collector 21A ... Start part 21B ... Termination part 22 ... Positive electrode mixture layer 23 ... Positive electrode lead terminal 24 ... Exposed part 30 ... Negative electrode plate 31 ... Negative electrode collector 31A ... Start end part 31B ... Terminal part 32 ... Negative electrode mixture layer 33 ... Negative electrode lead terminal 34 ... Exposed part

Claims (4)

一対の長辺及び短辺によって囲まれた帯状をなす集電体上に活物質を含有する合剤層を形成してなる正極板と負極板とを、セパレータを挟んで重ねて巻回して構成した発電要素を電池ケースに収容した電池において、
前記集電体にはその一方の長辺側の側縁部に前記合剤層が形成されていない露出部が設けられ、その露出部にリード端子が接続されると共に、
前記正極板および前記負極板の前記合剤層のうち少なくとも一方の合剤層においては、前記集電体の巻回軸に平行な断面においてその幅方向の前記リード端子側の活物質量が、その反対側における活物質量よりも多いことを特徴とする電池。
A structure in which a positive electrode plate and a negative electrode plate formed by forming a mixture layer containing an active material on a current collector having a band shape surrounded by a pair of long sides and short sides are overlapped and wound with a separator interposed therebetween. In the battery that houses the generated power generation element in the battery case,
The current collector is provided with an exposed portion where the mixture layer is not formed on the side edge portion on one long side thereof, and a lead terminal is connected to the exposed portion,
In at least one of the mixture layers of the positive electrode plate and the negative electrode plate, the amount of active material on the lead terminal side in the width direction in a cross section parallel to the winding axis of the current collector, A battery characterized by having a larger amount of active material on the opposite side.
前記正極板および前記負極板の双方の合剤層において、前記集電体の前記巻回軸に平行な断面においてその幅方向の前記リード端子側の活物質量が、その反対側における活物質量よりも多いことを特徴とする請求項1に記載の電池。 In the mixture layer of both the positive electrode plate and the negative electrode plate, the active material amount on the lead terminal side in the width direction in the cross section parallel to the winding axis of the current collector is the active material amount on the opposite side. The battery according to claim 1, wherein the battery is more than. 前記リード端子側における合剤層の活物質量は、その反対側における活物質量に対して3%〜20%多いことを特徴とする請求項1または請求項2に記載の電池。 3. The battery according to claim 1, wherein the active material amount of the mixture layer on the lead terminal side is 3% to 20% more than the active material amount on the opposite side. 一対の長辺及び短辺によって囲まれた帯状をなす集電体上に活物質を含有する合剤層が形成されると共に、前記合剤層の形成されていない露出部にリード端子が接続されている正極板と負極板とを、セパレータを挟んで重ねて巻回して構成した発電要素を電池ケースに収容した電池の製造方法において、
前記集電体の一方の長辺側の側縁部を前記露出部とし、
前記正極板および前記負極板のうち少なくとも一方の合剤層は、巻回軸に平行な断面においてその幅方向の前記リード端子側の活物質量がその反対側における活物質量よりも多くなるように前記集電体に合剤を塗布した後、
前記合剤層の前記リード端子側の活物質の密度が前記反対側における活物質の密度よりも高くなるように形成されると共に前記合剤層が前記集電体上で均一な厚みを有するようにプレスするプレス工程を経て製造されることを特徴とする電池の製造方法。
A mixture layer containing an active material is formed on a current collector having a strip shape surrounded by a pair of long sides and short sides, and lead terminals are connected to exposed portions where the mixture layer is not formed. In the method of manufacturing a battery in which a power generation element configured by stacking and winding a positive electrode plate and a negative electrode plate sandwiched between separators in a battery case,
A side edge portion on one long side of the current collector is the exposed portion,
In at least one of the positive electrode plate and the negative electrode plate, the amount of the active material on the lead terminal side in the width direction is larger than the amount of the active material on the opposite side in the cross section parallel to the winding axis. After applying the mixture to the current collector,
It is formed so that the density of the active material on the lead terminal side of the mixture layer is higher than the density of the active material on the opposite side, and the mixture layer has a uniform thickness on the current collector A battery manufacturing method, wherein the battery is manufactured through a pressing step.
JP2005365048A 2005-12-19 2005-12-19 Battery and its manufacturing method Pending JP2007172879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005365048A JP2007172879A (en) 2005-12-19 2005-12-19 Battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005365048A JP2007172879A (en) 2005-12-19 2005-12-19 Battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007172879A true JP2007172879A (en) 2007-07-05

Family

ID=38299186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005365048A Pending JP2007172879A (en) 2005-12-19 2005-12-19 Battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007172879A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020802A (en) * 2011-07-11 2013-01-31 Hitachi Ltd Storage battery, battery pack, battery pack installing method, electrode group, and electrode group manufacturing method
KR20170043240A (en) * 2015-10-13 2017-04-21 주식회사 엘지화학 Electrode Assembly Comprising Electrode Having High Loading Amount of Active Material at Middle of Current Collector
CN112086621A (en) * 2020-09-29 2020-12-15 珠海冠宇电池股份有限公司 Negative plate and laminated lithium ion battery comprising same
CN114270592A (en) * 2019-08-28 2022-04-01 三洋电机株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP7411161B2 (en) 2020-03-31 2024-01-11 株式会社Gsユアサ Energy storage element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020802A (en) * 2011-07-11 2013-01-31 Hitachi Ltd Storage battery, battery pack, battery pack installing method, electrode group, and electrode group manufacturing method
KR101522449B1 (en) * 2011-07-11 2015-05-21 가부시키가이샤 히타치세이사쿠쇼 Secondary battery, assembled battery, assembled battery settings, electrodes, and production method of electrodes
KR20170043240A (en) * 2015-10-13 2017-04-21 주식회사 엘지화학 Electrode Assembly Comprising Electrode Having High Loading Amount of Active Material at Middle of Current Collector
KR102082467B1 (en) * 2015-10-13 2020-02-27 주식회사 엘지화학 Electrode Assembly Comprising Electrode Having High Loading Amount of Active Material at Middle of Current Collector
CN114270592A (en) * 2019-08-28 2022-04-01 三洋电机株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP7411161B2 (en) 2020-03-31 2024-01-11 株式会社Gsユアサ Energy storage element
CN112086621A (en) * 2020-09-29 2020-12-15 珠海冠宇电池股份有限公司 Negative plate and laminated lithium ion battery comprising same
CN112086621B (en) * 2020-09-29 2021-07-06 珠海冠宇电池股份有限公司 Negative plate and laminated lithium ion battery comprising same

Similar Documents

Publication Publication Date Title
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
KR101313437B1 (en) Positive electrode for lithium ion battery, fabrication method thereof, and lithium ion battery using the same
JP5472759B2 (en) Lithium secondary battery
JP3619125B2 (en) Nonaqueous electrolyte secondary battery
JP4236308B2 (en) Lithium ion battery
JP2011081931A (en) Lithium ion secondary battery
JP4380201B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR20170053674A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
CN110710031A (en) Method of pre-lithiating negative electrode of lithium secondary battery and lithium metal laminate for use in the method
JP4992203B2 (en) Lithium ion secondary battery
WO2011016183A1 (en) Non-aqueous electrolyte secondary battery
JP6609946B2 (en) Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP2003115324A (en) Nonaqueous electrolyte battery
JP5782869B2 (en) Nonaqueous electrolyte secondary battery and current collector for nonaqueous electrolyte secondary battery
JP3968772B2 (en) Non-aqueous electrolyte battery
JP6457272B2 (en) Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery
JP2007172878A (en) Battery and its manufacturing method
JP7003775B2 (en) Lithium ion secondary battery
JP4954468B2 (en) Winding electrode, manufacturing method thereof, and battery manufacturing method
JP2007172881A (en) Battery and its manufacturing method
JP4830295B2 (en) Non-aqueous electrolyte secondary battery
WO2003067688A1 (en) Nonaqueous electrolyte secondary cell
JP4082103B2 (en) Method for producing non-aqueous electrolyte secondary battery