JP6609946B2 - Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery - Google Patents

Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery Download PDF

Info

Publication number
JP6609946B2
JP6609946B2 JP2015054878A JP2015054878A JP6609946B2 JP 6609946 B2 JP6609946 B2 JP 6609946B2 JP 2015054878 A JP2015054878 A JP 2015054878A JP 2015054878 A JP2015054878 A JP 2015054878A JP 6609946 B2 JP6609946 B2 JP 6609946B2
Authority
JP
Japan
Prior art keywords
active material
particle size
electrode
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015054878A
Other languages
Japanese (ja)
Other versions
JP2016177876A (en
Inventor
晴菜 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2015054878A priority Critical patent/JP6609946B2/en
Publication of JP2016177876A publication Critical patent/JP2016177876A/en
Application granted granted Critical
Publication of JP6609946B2 publication Critical patent/JP6609946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リチウムイオン二次電池用電極、その製造方法及びリチウムイオン二次電池に関するものである。   The present invention relates to an electrode for a lithium ion secondary battery, a manufacturing method thereof, and a lithium ion secondary battery.

ノート型パーソナルコンピュータや携帯電話といったモバイル機器の電源としてすでに多く採用されているリチウムイオン二次電池は、近年、ハイブリッド車や電気自動車(EV)等に搭載される等、新たな分野で注目が集まっている。特に近年ハイブリッド車は種類が増加して市場が成長しており、それぞれの特徴に応じてリチウムイオン二次電池にも様々な性能が要求されている。例えば、マイクロハイブリッド(μHEV)用電池は、コスト競争力の他に回生エネルギーを効率よく回収するため、高速充放電性能つまりは高出力密度が特に重要視されている。   Lithium-ion secondary batteries, which are already widely used as power sources for mobile devices such as notebook personal computers and mobile phones, have recently attracted attention in new fields such as being installed in hybrid vehicles and electric vehicles (EV). ing. In particular, in recent years, the number of hybrid vehicles has increased and the market has grown, and various performances are also required for lithium ion secondary batteries according to their characteristics. For example, in a micro hybrid (μHEV) battery, high-speed charge / discharge performance, that is, high output density is particularly emphasized in order to efficiently recover regenerative energy in addition to cost competitiveness.

リチウムイオン二次電池は、通常、リチウムイオンを可逆に吸蔵、放出できるリチウム含有金属酸化物を含む正極活物質層を集電体上に形成した正極と、炭素やシリコン材料を含む負極活物質層を集電体に形成した負極とが、絶縁体であるセパレータを介して対向して金属缶やラミネートパック等の電池用外装材に収納される構成を有しており、そこに数種類のカーボネート系混合有機溶媒に六フッ化リン酸リチウム(LiPF)などのリチウム塩を溶解した非水電解液を添加し、含浸させて作製されている。 A lithium ion secondary battery is generally composed of a positive electrode in which a positive electrode active material layer containing a lithium-containing metal oxide capable of reversibly occluding and releasing lithium ions is formed on a current collector, and a negative electrode active material layer containing carbon or a silicon material And a negative electrode formed on a current collector facing each other through a separator which is an insulator, and stored in a battery case such as a metal can or a laminate pack, and there are several types of carbonates A non-aqueous electrolyte solution in which a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed organic solvent is added and impregnated.

電池用外装材への電極及びセパレータの収納方法は外装材の形状により異なるが、例えばある規格に打ち抜いた電極とセパレータとを交互にスタックする方法や、電極とセパレータとを交互に重ねて捲回する方法等がある。
従来、リチウムイオン二次電池の電極を製造する際には、活物質やバインダー、導電助剤等を含む活物質スラリーを調製し、これを集電体の表面に均一に塗布することによって、活物質層が形成されている。
The method of housing the electrode and separator in the battery outer material varies depending on the shape of the outer material. For example, a method of alternately stacking electrodes and separators punched out to a certain standard, or winding electrodes and separators alternately There are ways to do this.
Conventionally, when manufacturing an electrode of a lithium ion secondary battery, an active material slurry containing an active material, a binder, a conductive auxiliary agent, and the like is prepared and applied to the surface of a current collector uniformly. A material layer is formed.

このような従来の手法で作製された電極を備える電池では、それほど高くない出力で充放電を行う場合には均一な組成を有する活物質層においても均一に充放電反応が進行し得る。しかしながら、車載用の電池に要求されるような、より高い出力での充放電反応に対しては、従来の手法で作製された均一な組成を有する活物質層では、集電体から活物質への電子伝導性と電解液から活物質層へのリチウムイオンの伝導とが両立せず、十分な充放電反応が進行しないという問題がある。   In a battery including an electrode manufactured by such a conventional method, when charging / discharging is performed with an output not so high, the charging / discharging reaction can proceed uniformly even in an active material layer having a uniform composition. However, for charge / discharge reactions at a higher output as required for in-vehicle batteries, an active material layer having a uniform composition prepared by a conventional method is used to collect the current from the current collector. Therefore, there is a problem that the electron conductivity and the conduction of lithium ions from the electrolytic solution to the active material layer are not compatible, and sufficient charge / discharge reaction does not proceed.

以上の観点から、一般に活物質層の膜厚が薄い方が高出力でも十分な充放電反応を進行させることができる。しかしながら、電池パック内に収納されたリチウムイオン二次電池用電極では電解液は主に電極端部から含浸されていくため、電池容量を大きくするために大面積化した電極では膜厚を薄くするだけでは、集電体から活物質への電子伝導性と、電解液から活物質層へのリチウムイオンの伝導とが両立しない。   From the above viewpoints, a charge / discharge reaction can proceed sufficiently even when the active material layer having a thinner film thickness has a higher output. However, in the electrode for a lithium ion secondary battery housed in the battery pack, the electrolyte solution is mainly impregnated from the end of the electrode, so the electrode thickness is reduced in order to increase the battery capacity. As a result, the electronic conductivity from the current collector to the active material is not compatible with the conduction of lithium ions from the electrolytic solution to the active material layer.

集電体から活物質への電子伝導性を向上させるためには、活物質層を高密度化し、集電体と活物質や導電助剤との接点を増加させることが有効だが、活物質層の空孔体積が減少すると電解液が活物質層へ含浸しにくくなる。一方、空孔体積を十分に確保すると活物質層の電子伝導性が悪化するだけでなく、集電体への密着性が低下してサイクル特性が低下する他、電極が厚くなり電池としてのエネルギー密度が低下する。   In order to improve the electron conductivity from the current collector to the active material, it is effective to increase the density of the active material layer and increase the number of contacts between the current collector and the active material or conductive auxiliary agent. If the pore volume of the electrolyte is reduced, it becomes difficult for the electrolytic solution to impregnate the active material layer. On the other hand, if the hole volume is sufficiently secured, not only the electron conductivity of the active material layer is deteriorated, but also the adhesiveness to the current collector is lowered and the cycle characteristics are lowered. Density decreases.

そのため、例えば特許文献1では、活物質合剤がそれぞれ集電体に塗着された正負極板を備えた非水電解液二次電池において、正負極板の少なくとも一方は、活物質合剤の密度が面方向一側から他側へ向けてほぼ一定割合で変化する密度変化部分を設けている。このため、高密度の部分で活物質割合が大きくなりエネルギー密度を向上させることができると共に、低密度の部分で非水電解液の含浸する空隙が確保され出力特性を向上させることができる。   Therefore, for example, in Patent Document 1, in a non-aqueous electrolyte secondary battery including a positive and negative electrode plate in which an active material mixture is applied to a current collector, at least one of the positive and negative electrode plates is an active material mixture. A density changing portion is provided in which the density changes at a substantially constant rate from one side in the plane direction to the other side. For this reason, an active material ratio becomes large in a high-density part, and an energy density can be improved, and the space | gap which a nonaqueous electrolyte solution impregnates in a low-density part is ensured, and output characteristics can be improved.

また、特許文献2では、プレス後の活物質層の表面を基盤配列の針を有する剣山を用いて微細なチャネルを形成することにより、活物質層中の他の部分に比べて膜厚の薄い部分でリチウムイオン伝導性を向上させ、出力特性を向上させるようにしている。
また、例えば特許文献3では、活物質やバインダーと共に活物質平均粒径よりも大きな気孔形成材を添加した電極スラリーを集電体へ塗工し、圧縮した後、気孔形成材を加熱除去することにより、活物質層に活物質平均粒径よりも大きな空隙を形成して、電解液を貯留することで高い出力特性を確保している。
Further, in Patent Document 2, the surface of the active material layer after pressing is formed with a fine channel using a sword mountain having a base array of needles, so that the film thickness is thinner than other portions in the active material layer. The part improves lithium ion conductivity and improves output characteristics.
For example, in Patent Document 3, an electrode slurry to which a pore forming material larger than the active material average particle size is added together with an active material and a binder is applied to a current collector and compressed, and then the pore forming material is removed by heating. Thus, a void larger than the average particle size of the active material is formed in the active material layer, and high output characteristics are secured by storing the electrolytic solution.

特開2009−259502JP2009-259502A 特開2007−042386JP2007-042386 特開2011−204571JP 2011-204571 A

しかしながら、特許文献1では捲回された電極の巻き内巻き外での電解液の含浸性については検討されているが、電極の短辺方向の電解液含浸性については検討されておらず、出力特性の確保が十分ではない。また、特許文献2では電極全体に均一にチャネルが形成されてはいるが、面方向でのチャネル間のつながりが不足している。そのため、電極の中心にまで電解液を充填させるまでに時間がかかる可能性がある。同様に特許文献3においても、面方向での気孔のつながりが弱く、電流の極端な出力が行われると電極中心部で電解液が不足してしまう可能性がある。
そこで本発明は、高出力が要求されるリチウムイオン二次電池用電極において、電解液の含浸性を向上させることでリチウムイオン伝導性を十分に確保して、高出力特性を向上させうるリチウムイオン二次電池用電極及びリチウムイオン二次電池を提供することを目的としている。
However, in Patent Document 1, the impregnation property of the electrolyte solution inside and outside the wound electrode of the wound electrode has been studied, but the electrolyte solution impregnation property in the short side direction of the electrode has not been studied, and the output The characteristics are not sufficiently secured. Further, in Patent Document 2, although the channels are uniformly formed on the entire electrode, the connection between the channels in the plane direction is insufficient. Therefore, it may take time to fill the electrolyte solution up to the center of the electrode. Similarly, in Patent Document 3, the connection of pores in the surface direction is weak, and there is a possibility that the electrolyte is insufficient at the center of the electrode when an extreme output of current is performed.
Accordingly, the present invention provides a lithium ion secondary battery that is required to have a high output and can improve the high output characteristics by sufficiently ensuring the lithium ion conductivity by improving the impregnation of the electrolyte. It aims at providing the electrode for secondary batteries, and a lithium ion secondary battery.

本発明の一態様によれば、大粒径成分である第1の活物質、前記大粒径成分よりも粒径の小さい小粒径成分である第2の活物質、バインダー及び導電助剤を含む活物質層が集電体上に積層され、前記活物質層は前記第1の活物質と前記第2の活物質との重量比が30:70以上100:0以下である大粒径領域と、前記大粒径領域よりも前記第1の活物質の含有量が少ない小粒径領域とを有し、前記大粒径領域が、電極として非水電解液と接する端部寄りとなる前記集電体上の領域に形成されていることを特徴とするリチウムイオン二次電池用電極、が提供される。   According to one aspect of the present invention, a first active material that is a large particle size component, a second active material that is a small particle size component having a smaller particle size than the large particle size component, a binder, and a conductive auxiliary agent. A large particle size region in which an active material layer is stacked on a current collector, and the active material layer has a weight ratio of the first active material to the second active material of 30:70 to 100: 0 And a small particle size region in which the content of the first active material is smaller than that of the large particle size region, and the large particle size region is closer to an end portion in contact with the non-aqueous electrolyte as an electrode. Provided is an electrode for a lithium ion secondary battery, characterized by being formed in a region on a current collector.

本発明の他の態様によれば、大粒径成分である第1の活物質、前記大粒径成分よりも粒径の小さい小粒径成分である第2の活物質、バインダー及び導電助剤を含み、前記第1の活物質と前記第2の活物質との重量比が30:70以上100:0以下である第1の電極スラリーと、前記第1の活物質の含有量が前記第1の電極スラリーよりも少ない第2の電極スラリーとを、前記第1の電極スラリーが、電極として非水電解液と接する端部寄りとなるように集電体上に塗工する工程と、前記第1の電極スラリー及び前記第2の電極スラリーが塗工された集電体を、ロールプレスする工程と、を備えることを特徴とするリチウムイオン二次電池用電極の製造方法、が提供される。
また、本発明の他の態様によれば、少なくとも正極電極及び負極電極のいずれか一方として、上記態様のリチウムイオン二次電池用電極を備えることを特徴とするリチウムイオン二次電池、が提供される。
According to another aspect of the present invention, a first active material that is a large particle size component, a second active material that is a small particle size component having a smaller particle size than the large particle size component, a binder, and a conductive assistant. A first electrode slurry in which a weight ratio of the first active material to the second active material is 30:70 or more and 100: 0 or less, and a content of the first active material is the first active material Applying a second electrode slurry less than one electrode slurry onto a current collector such that the first electrode slurry is closer to an end in contact with the non-aqueous electrolyte as an electrode; And a step of roll-pressing a current collector coated with the first electrode slurry and the second electrode slurry. A method for producing an electrode for a lithium ion secondary battery is provided. .
According to another aspect of the present invention, there is provided a lithium ion secondary battery comprising the lithium ion secondary battery electrode of the above aspect as at least one of a positive electrode and a negative electrode. The

本発明の一態様によれば、大粒径成分である第1の活物質と大粒径成分よりも粒径の小さい小粒径成分である第2の活物質とを含み、活物質層を、第1の活物質と第2の活物質との重量比が30:70以上100:0以下である大粒径領域と、大粒径領域よりも第1の活物質の含有量が少ない小粒径領域とを含んで構成し、大粒径領域を、電極として非水電解液と接する端部寄りとなる集電体上の領域に形成することで、非水電解液の浸透性を向上させ、リチウムイオン伝導性を十分に確保することのできるリチウムムイオン二次電池用電極を実現することができ、このリチウムイオン二次電池用電極を有するリチウムイオン二次電池の出力特性を向上させることができる。   According to one embodiment of the present invention, the active material layer includes a first active material that is a large particle size component and a second active material that is a small particle size component having a smaller particle size than the large particle size component. , A large particle size region in which the weight ratio of the first active material to the second active material is 30:70 or more and 100: 0 or less, and the content of the first active material is smaller than the large particle size region Including the particle size region, the large particle size region is formed in the region on the current collector near the end in contact with the non-aqueous electrolyte as an electrode, thereby improving the permeability of the non-aqueous electrolyte. A lithium ion secondary battery electrode capable of sufficiently ensuring lithium ion conductivity, and improving the output characteristics of the lithium ion secondary battery having the lithium ion secondary battery electrode Can do.

本発明の一実施形態におけるリチウムイオン二次電池用電極における活物質層の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the active material layer in the electrode for lithium ion secondary batteries in one Embodiment of this invention. 本発明の一実施形態におけるリチウムイオン二次電池用電極の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the electrode for lithium ion secondary batteries in one Embodiment of this invention. 本発明の一実施形態におけるリチウムイオン二次電池用電極のその他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the electrode for lithium ion secondary batteries in one Embodiment of this invention. 本発明の一実施形態におけるリチウムイオン二次電池用電極を適用した円筒型リチウムイオン二次電池の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the cylindrical lithium ion secondary battery to which the electrode for lithium ion secondary batteries in one Embodiment of this invention is applied. 本発明の一実施形態におけるリチウムイオン二次電池用電極を適用した二次電池の放電容量維持率の一例である。It is an example of the discharge capacity maintenance factor of the secondary battery which applied the electrode for lithium ion secondary batteries in one embodiment of the present invention.

以下に、本発明の一実施形態に係るリチウムイオン二次電池用電極について説明する。
以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の細部について記載される。しかしながら、かかる特定の細部がなくても1つ以上の実施態様が実施できることは明らかである。他にも図面を簡潔にするために、周知の構造及び装置が略図で示されている。
また、本発明の一実施形態におけるリチウムイオン二次電池用電極は、以下に記載する実施形態に限定され得るものではなく、当業者の知識に基づいて設計の変更などの変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の実施形態の範囲に含まれ得るものである。
Below, the electrode for lithium ion secondary batteries which concerns on one Embodiment of this invention is demonstrated.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. It will be apparent, however, that one or more embodiments may be practiced without such specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
Further, the electrode for a lithium ion secondary battery in one embodiment of the present invention is not limited to the embodiment described below, and modifications such as design changes can be added based on the knowledge of those skilled in the art. Thus, embodiments to which such modifications are added can also be included in the scope of the embodiments of the present invention.

本発明者は鋭意検討を行なった結果、大粒径成分である第1の活物質と、大粒径成分よりも粒径の小さい小粒径成分である第2の活物質とを含み、第1の活物質と第2の活物質との重量比が30:70以上100:0以下である大粒径領域と、この大粒径領域よりも第1の活物質の含有量が少ない小粒径領域とを含んで活物質層を構成し、大粒径領域を、電極として非水電解液と接する端部寄りとなる集電体上の領域に形成することで、リチウムイオン二次電池用電極への非水電解液の浸透性を向上させることができることを見出した。   As a result of intensive studies, the present inventor includes a first active material that is a large particle size component, and a second active material that is a small particle size component having a smaller particle size than the large particle size component, A large particle size region in which the weight ratio of the first active material to the second active material is 30:70 or more and 100: 0 or less, and a small particle in which the content of the first active material is smaller than the large particle size region For the lithium ion secondary battery by forming an active material layer including a diameter region and forming a large particle size region in a region on the current collector that is close to the end in contact with the non-aqueous electrolyte as an electrode. It has been found that the permeability of the non-aqueous electrolyte to the electrode can be improved.

図1は、本発明の一実施形態における二次電池用電極の活物質層1の平面模式図である。
活物質層1は大粒径成分である第1の活物質2と、第1の活物質2の粒径よりも粒径の小さい小粒径成分である第2の活物質3と、図示しないバインダー及び導電助剤等の混合物とを含む。そして、活物質層1には、大粒径成分である第1の活物質2と小粒径成分である第2の活物質3との重量比が規定された大粒径領域4と、大粒径領域4よりも第1の活物質2の含有量が少ない小粒径領域5とが形成されている。
FIG. 1 is a schematic plan view of an active material layer 1 of a secondary battery electrode according to an embodiment of the present invention.
The active material layer 1 includes a first active material 2 which is a large particle size component, a second active material 3 which is a small particle size component whose particle size is smaller than the particle size of the first active material 2, and is not illustrated. And a mixture of a binder and a conductive aid. The active material layer 1 includes a large particle size region 4 in which a weight ratio of the first active material 2 that is a large particle size component and the second active material 3 that is a small particle size component is defined, and a large particle size region 4. A small particle size region 5 having a smaller content of the first active material 2 than the particle size region 4 is formed.

大粒径領域4における第1の活物質2と第2の活物質3との重量比は、本発明の一実施形態では、30:70以上100:0以下であり、他の実施形態では、60:40以上100:0以下である。つまり、活物質層1は、第1の活物質2と第2の活物質3との両方を必ずしも含んでいなくともよく、小粒径成分である第2の活物質3を含んでいなくともよい。
大粒径領域4において、第1の活物質2が30wt%に満たない場合、大粒径領域4において空隙が十分に形成されず発明の効果を十分に得ることができないため、本発明の一実施形態では、大粒径領域4において第1の活物質2は30wt%以上である。
The weight ratio of the first active material 2 and the second active material 3 in the large particle size region 4 is 30:70 or more and 100: 0 or less in one embodiment of the present invention, and in other embodiments, 60:40 or more and 100: 0 or less. That is, the active material layer 1 does not necessarily include both the first active material 2 and the second active material 3, and does not include the second active material 3 that is a small particle size component. Also good.
If the first active material 2 is less than 30 wt% in the large particle size region 4, voids are not sufficiently formed in the large particle size region 4, and the effects of the invention cannot be sufficiently obtained. In the embodiment, the first active material 2 is 30 wt% or more in the large particle size region 4.

本発明の一実施形態では、第1の活物質2の平均粒径は第2の活物質3の平均粒径の1.2倍以上10倍以下であり、他の実施形態では、第1の活物質2の平均粒径は第2の活物質3の平均粒径の2倍以上5倍以下である。第1の活物質2の平均粒径が第2の活物質3の平均粒径の1.2倍よりも小さい場合には、第1の活物質2の平均粒径と第2の活物質3の平均粒径との差が小さすぎると、空隙が十分に形成されず発明の効果を十分に得ることができなくなってしまう。一方で、第1の活物質2の平均粒径が第2の活物質3の平均粒径の10倍よりも大きい場合には、第1の活物質2と第2の活物質3とで活物質内の電子及びリチウムイオンの拡散性に差がつきすぎてしまい、出力特性が低下する可能性があるため、本発明の一実施形態では、第1の活物質2の平均粒径は第2の活物質3の平均粒径の10倍以下である。   In one embodiment of the present invention, the average particle size of the first active material 2 is 1.2 times or more and 10 times or less than the average particle size of the second active material 3. The average particle diameter of the active material 2 is not less than 2 times and not more than 5 times the average particle diameter of the second active material 3. When the average particle size of the first active material 2 is smaller than 1.2 times the average particle size of the second active material 3, the average particle size of the first active material 2 and the second active material 3 If the difference from the average particle diameter is too small, the voids are not sufficiently formed, and the effects of the invention cannot be sufficiently obtained. On the other hand, when the average particle size of the first active material 2 is larger than 10 times the average particle size of the second active material 3, the first active material 2 and the second active material 3 are active. In an embodiment of the present invention, the average particle diameter of the first active material 2 is the second because the difference in the diffusibility of electrons and lithium ions in the material is too great and the output characteristics may be degraded. The average particle size of the active material 3 is 10 times or less.

第1の活物質2はリチウムイオンの吸蔵放出が可能なものであればよく、公知のリチウムイオン二次電池用の活物質を用いることができるが、第2の活物質3と比べて圧壊しにくい活物質であることが好ましい。例えば、第1の活物質2は単粒子であり、第2の活物質3が凝集体である、といった組み合わせが挙げられる。第1の活物質2が、第2の活物質3よりも圧壊しやすい場合には、後述の電極スラリーを塗布乾燥した塗膜をロールプレスするプレス工程で、第1の活物質2は第2の活物質3よりも先に粉砕されてしまい、所定の電極密度に成形した場合に十分な空隙を確保することができず、電解液の含浸が促されないため、出力特性が低下する場合がある。そのため、本発明の一実施形態では、第1の活物質2は、第2の活物質3よりも圧壊しにくいように形成されている。   The first active material 2 only needs to be capable of occluding and releasing lithium ions, and a known active material for a lithium ion secondary battery can be used, but it is crushed compared to the second active material 3. A hard active material is preferred. For example, a combination in which the first active material 2 is a single particle and the second active material 3 is an aggregate can be given. In the case where the first active material 2 is more easily crushed than the second active material 3, the first active material 2 is the second active material in the press step of roll-pressing a coating film coated and dried with an electrode slurry described later. The active material 3 is pulverized before the active material 3, and when it is molded to a predetermined electrode density, a sufficient gap cannot be secured and impregnation with the electrolytic solution is not promoted, so that output characteristics may be deteriorated. . Therefore, in one embodiment of the present invention, the first active material 2 is formed so as to be harder to crush than the second active material 3.

第1の活物質2の平均粒径は、本発明の一実施形態では、5μm以上20μm以下である。第1の活物質2の平均粒径が5μmよりも小さい場合には、活物質粒子間に十分な空隙が確保できなくなり電解液の浸透性が低下する可能性がある。第1の活物質2の平均粒径が20μmよりも大きい場合には、活物質内の電子及びリチウムイオンの拡散性が低下して出力特性が低下する可能性がある。   The average particle diameter of the first active material 2 is 5 μm or more and 20 μm or less in an embodiment of the present invention. When the average particle diameter of the first active material 2 is smaller than 5 μm, there is a possibility that sufficient voids cannot be secured between the active material particles and the permeability of the electrolytic solution is lowered. When the average particle diameter of the first active material 2 is larger than 20 μm, the diffusibility of electrons and lithium ions in the active material may be lowered, and output characteristics may be lowered.

第1の活物質2及び第2の活物質3として正極活物質を用いる場合は、公知のリチウムイオン二次電池用の正極活物質を用いることができる。例えば、リチウムマンガン酸化物、リチウムニッケル酸化物、リチウムコバルト酸化物、リチウム鉄酸化物及びリチウムニッケルマンガン酸化物、リチウムニッケルコバルト酸化物、リチウムニッケルマンガンコバルト酸化物、リチウム遷移金属リン酸化合物等を用いることができる。なお、正極活物質として、上記活物質を複数混合させて用いてもよい。   When a positive electrode active material is used as the first active material 2 and the second active material 3, a known positive electrode active material for a lithium ion secondary battery can be used. For example, lithium manganese oxide, lithium nickel oxide, lithium cobalt oxide, lithium iron oxide and lithium nickel manganese oxide, lithium nickel cobalt oxide, lithium nickel manganese cobalt oxide, lithium transition metal phosphate compound, etc. are used. be able to. Note that a plurality of the above active materials may be mixed and used as the positive electrode active material.

第1の活物質2及び第2の活物質3として負極活物質を用いる場合は、公知のリチウムイオン二次電池用の負極活物質を用いることができる。例えば、黒鉛系炭素材料、ハードカーボン、ソフトカーボン、活性炭等のカーボン材料、リチウムチタン酸化物等のリチウム金属酸化物、シリコン、スズ等のLi合金金属等を用いることができる。なお、負極活物質として、上記活物質を複数混合させて用いてもよい。   When a negative electrode active material is used as the first active material 2 and the second active material 3, a known negative electrode active material for a lithium ion secondary battery can be used. For example, carbon materials such as graphite-based carbon materials, hard carbon, soft carbon, activated carbon, lithium metal oxides such as lithium titanium oxide, Li alloy metals such as silicon and tin, and the like can be used. Note that a plurality of the above active materials may be mixed and used as the negative electrode active material.

図2は、図1に示す活物質層1を有する、リチウムイオン二次電池用電極10の概略構成を示す側面図の一例である。
例えば、後述の図4に示す円筒型リチウムイオン二次電池30にリチウムイオン二次電池用電極10が適用される場合には、図2において集電体6の延びる方向、つまり図2において上下方向が、図4に示す円筒型リチウムイオン二次電池30の長手方向となり、リチウムイオン二次電池用電極10は、図4のリチウムイオン二次電池用電極である正極10a、負極10bに示すように、円筒型リチウムイオン二次電池30の長手方向に沿って長い形状となる。以下、集電体6の延びる方向(図2において上下方向)を、リチウムイオン二次電池用電極10の長手方向という。
FIG. 2 is an example of a side view showing a schematic configuration of an electrode 10 for a lithium ion secondary battery having the active material layer 1 shown in FIG.
For example, when the lithium ion secondary battery electrode 10 is applied to a cylindrical lithium ion secondary battery 30 shown in FIG. 4 to be described later, the direction in which the current collector 6 extends in FIG. 2, that is, the vertical direction in FIG. Is the longitudinal direction of the cylindrical lithium ion secondary battery 30 shown in FIG. 4, and the electrode 10 for the lithium ion secondary battery is as shown in the positive electrode 10a and the negative electrode 10b which are electrodes for the lithium ion secondary battery in FIG. The cylindrical lithium ion secondary battery 30 has a long shape along the longitudinal direction. Hereinafter, the direction in which the current collector 6 extends (the vertical direction in FIG. 2) is referred to as the longitudinal direction of the electrode 10 for a lithium ion secondary battery.

図2において、集電体6上に形成された、リチウムイオン二次電池用電極10の活物質層1は、大粒径領域4と小粒径領域5とを含む。活物質層1は、大粒径領域4がリチウムイオン二次電池用電極10の長手方向における両端側の領域に形成され、小粒径領域5が、リチウムイオン二次電池用電極10の長手方向両端側に配置された2つの大粒径領域4の間に形成されていれば、大粒径領域4と小粒径領域5とはどのように配置されていてもよい。   In FIG. 2, the active material layer 1 of the lithium ion secondary battery electrode 10 formed on the current collector 6 includes a large particle size region 4 and a small particle size region 5. The active material layer 1 has a large particle size region 4 formed in regions on both ends in the longitudinal direction of the lithium ion secondary battery electrode 10 and a small particle size region 5 formed in the longitudinal direction of the lithium ion secondary battery electrode 10. The large particle size region 4 and the small particle size region 5 may be arranged in any manner as long as it is formed between the two large particle size regions 4 arranged on both ends.

例えば、図2に示すように、大粒径領域4は、リチウムイオン二次電池用電極10の長手方向における両端側の領域にのみ形成されていてもよく、図3に示すように、リチウムイオン二次電池用電極10の長手方向における両端側の領域と、長手方向中央部近傍の領域とに大粒径領域4が形成されていてもよく、大粒径領域4が長手方向に複数間隔を空けて配置されていてもよい。   For example, as shown in FIG. 2, the large particle size region 4 may be formed only in the regions on both ends in the longitudinal direction of the lithium ion secondary battery electrode 10, and as shown in FIG. The large particle size region 4 may be formed in a region on both ends in the longitudinal direction of the secondary battery electrode 10 and a region in the vicinity of the central portion in the longitudinal direction, and the large particle size region 4 has a plurality of intervals in the longitudinal direction. It may be arranged in a space.

リチウムイオン二次電池用電極10の長手方向両端側の領域に大粒径領域4が形成されておらず、長手方向両端側の領域に小粒径領域5が形成されている場合には、長手方向両端から活物質層1への電解液の含浸が不足して、リチウムイオン二次電池用電極10の長手方向中央部付近で電解液が不足し、十分なリチウムイオン伝導性が確保されず、出力特性が低下する場合がある。   When the large particle size region 4 is not formed in the region on both ends in the longitudinal direction of the electrode 10 for the lithium ion secondary battery and the small particle region 5 is formed in the region on both ends in the longitudinal direction, Insufficient impregnation of the electrolyte into the active material layer 1 from both ends in the direction, the electrolyte is insufficient in the vicinity of the center in the longitudinal direction of the electrode 10 for the lithium ion secondary battery, and sufficient lithium ion conductivity is not ensured, Output characteristics may deteriorate.

本発明の一実施形態では、大粒径領域4は、第1の活物質2と第2の活物質3との重量比が30:70以上100:0以下であり、小粒径領域5は、大粒径領域4よりも第1の活物質2の含有量が少なければよく、組成は特に限定されない。大粒径領域4において、第1の活物質2の割合が小さすぎると、空隙が十分に形成されず、電解液の含浸が促されない可能性がある。   In one embodiment of the present invention, the large particle size region 4 has a weight ratio of the first active material 2 and the second active material 3 of 30:70 or more and 100: 0 or less, and the small particle size region 5 is As long as the content of the first active material 2 is smaller than that of the large particle size region 4, the composition is not particularly limited. If the ratio of the first active material 2 is too small in the large particle size region 4, there is a possibility that voids are not sufficiently formed and impregnation with the electrolytic solution is not promoted.

活物質層1を構成する大粒径領域4の表面積は特に限定されず、小粒径領域5の表面積と比較して小さければよい。小粒径領域5の表面積と比べて大粒径領域4の表面積が同等、またはそれより大きい場合には、活物質層1の目付けが一定以上であれば弊害が少ないが、活物質層1の目付けが少ない場合には活物質や導電助剤及びバインダーが偏在しやすく、十分な電子伝導性を確保できなくなる場合がある。   The surface area of the large particle size region 4 constituting the active material layer 1 is not particularly limited as long as it is smaller than the surface area of the small particle size region 5. When the surface area of the large particle size region 4 is equal to or larger than the surface area of the small particle size region 5, there is less harmful effect if the basis weight of the active material layer 1 is a certain level or more. When the basis weight is small, the active material, the conductive auxiliary agent and the binder are likely to be unevenly distributed, so that sufficient electronic conductivity may not be ensured.

活物質層1の膜厚としては、本発明の一実施形態では、10μm以上100μm以下であり、他の実施形態では、10μm以上50μm以下である。活物質層1の膜厚が10μmより小さい場合は、活物質層1の目付けが小さくなりすぎ、エネルギー密度の点から不利になり、また、プレス工程において大粒径成分である第1の活物質2が圧壊されやすくなるため、電解液が浸透するための十分な空隙を確保することができなくなる。また、100μmよりも大きい場合には、活物質層1の厚み方向で電解液の含浸性が悪くなり、リチウムイオン伝導性が低下する。   The film thickness of the active material layer 1 is 10 μm or more and 100 μm or less in one embodiment of the present invention, and 10 μm or more and 50 μm or less in another embodiment. When the thickness of the active material layer 1 is smaller than 10 μm, the basis weight of the active material layer 1 becomes too small, which is disadvantageous in terms of energy density, and the first active material which is a large particle size component in the pressing process Since 2 becomes easy to be crushed, it becomes impossible to ensure a sufficient space for the electrolyte to penetrate. Moreover, when larger than 100 micrometers, the impregnation property of electrolyte solution becomes bad in the thickness direction of the active material layer 1, and lithium ion conductivity falls.

集電体6としては、二次電池用の集電体材料として従来用いられている材料を適宜採用すればよい。例えば、アルミニウム、ニッケル、銅、鉄、ステンレス鋼(SUS)、チタン等を採用することができる。集電体6としてどの材料を採用するかは、集電体6にかかる電池作動電位や電子伝導性を考慮して選択すればよい。こうした集電体6の一般的な厚さは、8μm以上30μm以下である。集電体6の厚さが8μmに満たない場合には、集電体の強度が低く取り扱いが困難になるため製造コストが増加する可能性がある。30μmよりも厚い場合には、電極体積が増加するため電池の体積あたりの容量が低下する。   As the current collector 6, a material conventionally used as a current collector material for a secondary battery may be appropriately employed. For example, aluminum, nickel, copper, iron, stainless steel (SUS), titanium, or the like can be used. What material should be adopted as the current collector 6 may be selected in consideration of the battery operating potential and the electronic conductivity applied to the current collector 6. The general thickness of the current collector 6 is 8 μm or more and 30 μm or less. If the thickness of the current collector 6 is less than 8 μm, the strength of the current collector is low and handling becomes difficult, which may increase the manufacturing cost. If it is thicker than 30 μm, the electrode volume increases and the capacity per battery volume decreases.

本発明のリチウムイオン二次電池用電極10は、導電助剤を含有していてもよい。導電助剤としては、カーボンブラックや天然黒鉛、人造黒鉛、さらには、酸化チタンや酸化ルテニウム等の金属酸化物、金属ファイバー等が使用できる。本発明の一実施形態では、ストラクチャー構造を呈するカーボンブラックが用いられ、他の実施形態では、特に、カーボンブラックの一種であるファーネスブラックやケッチェンブラック、アセチレンブラック(AB)が用いられる。なお、導電助剤として、カーボンブラックとその他の導電助剤、例えば、気相成長炭素繊維(VGCF)との混合系を用いることも可能である。
上記導電助剤の含有量は、本発明の一実施形態では、活物質重量に対して、1重量%以上90重量%未満である。導電助剤の含有量が活物質重量に対して、1重量%未満であると、導電性が不足して電極抵抗が増加する場合があり、90重量%以上であると、活物質量が不足してリチウム吸蔵容量が低下してしまうことがある。
The electrode 10 for lithium ion secondary batteries of this invention may contain the conductive support agent. As the conductive aid, carbon black, natural graphite, artificial graphite, metal oxides such as titanium oxide and ruthenium oxide, metal fibers, and the like can be used. In one embodiment of the present invention, carbon black having a structure structure is used, and in other embodiments, furnace black, ketjen black, and acetylene black (AB), which are a kind of carbon black, are used. In addition, it is also possible to use a mixed system of carbon black and other conductive assistants such as vapor grown carbon fiber (VGCF) as the conductive assistant.
In one embodiment of the present invention, the content of the conductive assistant is 1% by weight or more and less than 90% by weight with respect to the weight of the active material. If the content of the conductive assistant is less than 1% by weight with respect to the weight of the active material, the conductivity may be insufficient and the electrode resistance may increase, and if it is 90% by weight or more, the amount of the active material is insufficient. As a result, the lithium storage capacity may decrease.

本発明の一実施形態におけるリチウムイオン二次電池用電極10は、バインダーを含有していてもよい。バインダーとしては、活物質と導電助剤との混合物を集電体へ密着できれば特に限定されず、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素含有バインダーや合成ゴム系バインダー等を用いることができる。
リチウムイオン二次電池用電極10に含まれるバインダーは、本発明の一実施形態では、全活物質重量に対し、3重量%以上40重量%以下である。バインダーが全活物質重量に対し、3重量%より少ない場合、十分な結着をすることできず、40重量%より大きい場合には、電極体積あたりの容量が大きく低下する。本発明の他の実施形態では、バインダーが全活物質重量に対し、3重量%以上25重量%以下である。
The electrode 10 for lithium ion secondary batteries in one embodiment of the present invention may contain a binder. The binder is not particularly limited as long as the mixture of the active material and the conductive additive can be adhered to the current collector. For example, a fluorine-containing binder such as polyvinylidene fluoride or polytetrafluoroethylene, a synthetic rubber binder, or the like may be used. it can.
The binder contained in the electrode 10 for lithium ion secondary batteries is 3 to 40 weight% with respect to the weight of all active materials in one Embodiment of this invention. When the binder is less than 3% by weight with respect to the total weight of the active material, sufficient binding cannot be achieved, and when the binder is more than 40% by weight, the capacity per electrode volume is greatly reduced. In another embodiment of the present invention, the binder is 3% by weight or more and 25% by weight or less based on the total weight of the active material.

次に、本発明の一実施形態に係るリチウムイオン二次電池用電極10の製造方法の一例を説明する。
本発明の一実施形態におけるリチウムイオン二次電池用電極10は、大粒径成分である第1の活物質2、小粒径成分である第2の活物質3、バインダー及び導電助剤を含み、第1の活物質2と前記第2の活物質3との重量比が30:70以上100:0以下である第1の電極スラリーと、同様に、第1の活物質2、第2の活物質3、バインダー及び導電助剤を含み、第1の活物質2の含有量が第1の電極スラリーよりも少ない第2の電極スラリーとを、集電体上に塗布乾燥し、ロールプレスして作製される。
Next, an example of the manufacturing method of the electrode 10 for lithium ion secondary batteries which concerns on one Embodiment of this invention is demonstrated.
The electrode 10 for a lithium ion secondary battery in one embodiment of the present invention includes a first active material 2 that is a large particle size component, a second active material 3 that is a small particle size component, a binder, and a conductive additive. The first electrode slurry in which the weight ratio of the first active material 2 and the second active material 3 is 30:70 or more and 100: 0 or less, similarly, the first active material 2 and the second active material 2 A second electrode slurry containing an active material 3, a binder, and a conductive auxiliary agent, and containing less content of the first active material 2 than the first electrode slurry, is applied onto a current collector, dried, and roll-pressed. Produced.

上記以外の電極スラリーの組成は特に限定されず、第1の活物質2及び第2の活物質3はそれぞれ1種類の活物質からなっていても複数種類の活物質の混合であってもよい。
つまり、大粒径領域4となる第1の電極スラリーは、第1の活物質2と第2の活物質3とバインダー及び導電助剤を含んでいればよく、小粒径領域5となる第2の電極スラリーは、第1の活物質2及び第2の活物質3または第1の活物質2と、バインダー及び導電助剤を含んでいればよい。第2の電極スラリーに含まれる第1の活物質2及び第2の活物質3は、第1の電極スラリーに含まれる第1の活物質2及び第2の活物質3と粒径の異なる同一の物質であればよい。第2の電極スラリーに含まれるバインダー及び導電助剤は、第1の電極スラリーに含まれるバインダー及び導電助剤と同一であってもよく、異なる物質であってもよい。
The composition of the electrode slurry other than the above is not particularly limited, and each of the first active material 2 and the second active material 3 may be composed of one type of active material or a mixture of a plurality of types of active materials. .
That is, the first electrode slurry that becomes the large particle size region 4 only needs to contain the first active material 2, the second active material 3, the binder, and the conductive additive, and the first electrode slurry that becomes the small particle size region 5. 2 electrode slurry should just contain the 1st active material 2, the 2nd active material 3, or the 1st active material 2, the binder, and the conductive support agent. The first active material 2 and the second active material 3 included in the second electrode slurry have the same particle size as the first active material 2 and the second active material 3 included in the first electrode slurry. Any substance may be used. The binder and conductive additive contained in the second electrode slurry may be the same as or different from the binder and conductive aid contained in the first electrode slurry.

また、第1の活物質2及び第2の活物質3は、複数種類の活物質からなる場合には、第1の活物質2に含まれる全ての活物質それぞれと第2の活物質3に含まれる全ての活物質それぞれとが、上述の各種条件を満足するようにすればよい。
第1の電極スラリーと第2の電極スラリーとは同じ溶媒で調整されていることが好ましい。上記溶媒は上記バインダー樹脂を溶解可能であれば、特に限定されず、N−メチルピロリドン、N,N−ジメチルホルムアミド等の有機溶剤や水を用いることができる。
In addition, when the first active material 2 and the second active material 3 are composed of a plurality of types of active materials, all of the active materials included in the first active material 2 and the second active material 3 All the active materials included may satisfy the above-described various conditions.
The first electrode slurry and the second electrode slurry are preferably adjusted with the same solvent. The solvent is not particularly limited as long as it can dissolve the binder resin, and organic solvents such as N-methylpyrrolidone and N, N-dimethylformamide and water can be used.

電極スラリーを集電体6上に塗布する手段としては、第1の電極スラリーと第2の電極スラリーとを同時に集電体上に塗布できれば特に限定はされず、例えば多層同時塗工が可能なスリット型ダイコータ等を使用することができる。
電極スラリーを塗布乾燥した塗膜をプレスすることで、小粒径領域5に合わせて電極密度を調整した場合に、大粒径領域4では活物質粒子間に空隙が残るため、電解液の含浸を促すことができる。活物質層1をプレスする手段としては、特に限定はされず、平板プレス機やロールプレス機等、一般的に用いられる手段を用いることができる。
The means for applying the electrode slurry onto the current collector 6 is not particularly limited as long as the first electrode slurry and the second electrode slurry can be simultaneously applied onto the current collector. For example, simultaneous multi-layer coating is possible. A slit die coater or the like can be used.
When the electrode density is adjusted in accordance with the small particle size region 5 by pressing the coating film on which the electrode slurry is applied and dried, voids remain between the active material particles in the large particle size region 4, so that the electrolyte solution is impregnated. Can be encouraged. The means for pressing the active material layer 1 is not particularly limited, and generally used means such as a flat plate press and a roll press can be used.

次に、図4を参照して、本発明の一実施形態に係るリチウムイオン二次電池について説明する。
図4は、本発明におけるリチウムイオン二次電池用電極10を適用した円筒型リチウムイオン二次電池30の一例を示す断面模式図である。
本発明を適用した円筒型リチウムイオン二次電池30は、電池容器としてニッケルメッキを施された鉄製の有底円筒状電池缶11を有している。電池缶11には、帯状の集電体6上に、集電体6の幅方向の両端に大粒径領域4が形成され、両端の2つの大粒径領域4の間に小粒径領域5が形成されてなる正極10a及び負極10bと、セパレータ12とが、断面渦巻状に捲回されて収容されている。
Next, with reference to FIG. 4, the lithium ion secondary battery which concerns on one Embodiment of this invention is demonstrated.
FIG. 4 is a schematic cross-sectional view showing an example of a cylindrical lithium ion secondary battery 30 to which the electrode 10 for lithium ion secondary batteries according to the present invention is applied.
The cylindrical lithium ion secondary battery 30 to which the present invention is applied has a bottomed cylindrical battery can 11 made of iron and plated with nickel as a battery container. In the battery can 11, a large particle size region 4 is formed on both ends of the current collector 6 in the width direction on the strip-shaped current collector 6, and a small particle size region is provided between the two large particle size regions 4 on both ends. The positive electrode 10a and the negative electrode 10b in which 5 is formed, and the separator 12 are wound and accommodated in a spiral cross section.

セパレータ12は、対向配置された正極10aと負極10bとの間に配置されており、セパレータ12によって正極10aと負極10bとは電気的に絶縁されている。セパレータ12としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン製の微孔膜、芳香族ポリアミド樹脂製の微孔膜、不織布、無機セラミック粉末を含む多孔質の樹脂コート等を用いることができる。   The separator 12 is disposed between the positive electrode 10a and the negative electrode 10b disposed to face each other, and the positive electrode 10a and the negative electrode 10b are electrically insulated by the separator 12. As the separator 12, for example, a microporous film made of polyolefin such as polyethylene or polypropylene, a microporous film made of aromatic polyamide resin, a nonwoven fabric, a porous resin coat containing inorganic ceramic powder, or the like can be used.

正極10a、負極10b及びセパレータ12の捲回群の一端側(図4において上端側)には、一端を正極集電体6aに固定されたリボン状のアルミニウム製正極タブ端子13が導出されている。正極タブ端子13の他端は、電池缶11の上部に配置され正極外部端子となる円盤状の上蓋14の下面に超音波溶接で接合されている。一方、捲回群の他端側(図4において下端側)には、一端を負極集電体6bに固定されたリボン状のニッケル製負極タブ端子15が導出されている。負極タブ端子15の他端は、電池缶11の内底面に抵抗溶接で接合されている。すなわち、正極タブ端子13及び負極タブ端子15は、それぞれ捲回群の両端から互いに逆側に導出されている。また、図示はされていないが捲回群の上下両側には樹脂製の絶縁板がそれぞれ配されているほか、捲回群の外周面全周にも絶縁被覆が施されている。   On one end side (upper end side in FIG. 4) of the winding group of the positive electrode 10a, the negative electrode 10b, and the separator 12, a ribbon-shaped aluminum positive electrode tab terminal 13 having one end fixed to the positive electrode current collector 6a is led out. . The other end of the positive electrode tab terminal 13 is ultrasonically welded to the lower surface of a disk-shaped upper lid 14 that is disposed on the upper portion of the battery can 11 and serves as a positive electrode external terminal. On the other hand, a ribbon-like nickel negative electrode tab terminal 15 having one end fixed to the negative electrode current collector 6b is led out to the other end side (the lower end side in FIG. 4) of the wound group. The other end of the negative electrode tab terminal 15 is joined to the inner bottom surface of the battery can 11 by resistance welding. That is, the positive electrode tab terminal 13 and the negative electrode tab terminal 15 are led out from the opposite ends of the wound group, respectively. Although not shown, resin insulating plates are arranged on both the upper and lower sides of the wound group, respectively, and an insulating coating is also applied to the entire outer peripheral surface of the wound group.

電池缶11の上部にはグルービングが施されている。上蓋14は、グルービング部分に嵌合するように設計されたガスケット16を介して電池缶11の上部にカシメ固定されている。このため、円筒型リチウムイオン二次電池30の内部は密封されている。
ガスケット16は、短絡防止や電解液の漏出を防止するための部材であり、ポリプロピレン等の絶縁性の物質を用いることができる。
Grooving is applied to the upper part of the battery can 11. The upper lid 14 is caulked and fixed to the upper portion of the battery can 11 via a gasket 16 designed to fit into the grooving portion. For this reason, the inside of the cylindrical lithium ion secondary battery 30 is sealed.
The gasket 16 is a member for preventing a short circuit and preventing leakage of the electrolytic solution, and an insulating material such as polypropylene can be used.

また、電池缶11内には、溶媒及び電解質から構成された非水電解液が充填されている。本発明の一実施形態における円筒型リチウムイオン二次電池30に用いる電解液の溶媒には、低粘度の鎖状炭酸エステル、高誘電率の環状炭酸エステル、γ‐ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、メチルアセテート、メチルプロピオネート、ビニレンカーボネート、ジメチルホルムアミド、スルホランのうちのいずれか、又はこれらの混合溶媒等を用いることができる。低粘度の鎖状炭酸エステルとしては、ジメチルカーボネート、ジエチルカーボネート等が挙げられる。高誘電率の環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、及びブチレンカーボネート等が挙げられる。   In addition, the battery can 11 is filled with a non-aqueous electrolyte composed of a solvent and an electrolyte. Examples of the solvent of the electrolytic solution used for the cylindrical lithium ion secondary battery 30 in the embodiment of the present invention include low-viscosity chain carbonate ester, high dielectric constant cyclic carbonate ester, γ-butyrolactone, 1,2-dimethoxyethane. , Tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, methyl propionate, vinylene carbonate, dimethylformamide, sulfolane, or a mixed solvent thereof can be used. Examples of the low viscosity chain carbonate ester include dimethyl carbonate and diethyl carbonate. Examples of the high dielectric constant cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and the like.

電解液に含まれる電解質は特に制限がなく、LiClO、LiBF、LiAsF、LiPF、LiCFSO、LiN(CFSO、LiI、及びLiAlCl等のうちのいずれか、又はこれらの混合物等を用いることができる。好ましくはLiBF、LiPF、のうちの1種又は2種以上を混合したリチウム塩がよい。
なお、上記実施形態においては、リチウムイオン二次電池用電極として捲回構造を有する場合について説明したが、積層構造を有する場合であっても適用することができる。
The electrolyte contained in the electrolytic solution is not particularly limited, and any one of LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiI, and LiAlCl 4, etc. Alternatively, a mixture thereof or the like can be used. A lithium salt obtained by mixing one or more of LiBF 4 and LiPF 6 is preferable.
In addition, in the said embodiment, although the case where it had a winding structure as an electrode for lithium ion secondary batteries was demonstrated, even if it has a laminated structure, it is applicable.

以上、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の別の実施形態も明らかである。したがって、特許請求の範囲は、本発明の範囲及び要旨に含まれるこれらの変形例又は実施形態も網羅すると解すべきである。   Although the present invention has been described above with reference to specific embodiments, the present invention is not limited to these descriptions. From the description of the invention, other embodiments of the invention will be apparent to persons skilled in the art, along with various variations of the disclosed embodiments. Therefore, it is to be understood that the claims encompass these modifications and embodiments that fall within the scope and spirit of the present invention.

以下に、本発明に係るリチウムイオン二次電池用電極10及びその製造方法について、具体的な実施例及び比較例を挙げて説明する。なお、本発明は下記実施例によって制限されるものではない。
<正極の作製>
(実施例1)
活物質として平均粒径(D50)が5μmのリチウムマンガン複合酸化物と、導電助剤としてアセチレンブラックと、バインダーとしてポリフッ化ビニリデン(PVdF)と、をそれぞれ86:8:6の比率で混合してプラネタリーミキサーで混練し、溶媒としてN−メチル−2−ピロリドンを適量添加して粘度調整を施して、第1の正極スラリーを得た。
活物質として平均粒径(D50:メジアン径)が13μmのリチウムマンガン複合酸化物を使用したこと以外は第一の電極スラリーと同様に調整して、第2の正極スラリーを得た。
つまり、第1の正極スラリーは平均粒径が5μmの活物質のみを用い、第2の正極スラリーは平均粒径が13μmの活物質のみを用いた。
Below, the specific example and comparative example are given and demonstrated about the electrode 10 for lithium ion secondary batteries which concerns on this invention, and its manufacturing method. In addition, this invention is not restrict | limited by the following Example.
<Preparation of positive electrode>
Example 1
A lithium manganese composite oxide having an average particle diameter (D50) of 5 μm as an active material, acetylene black as a conductive additive, and polyvinylidene fluoride (PVdF) as a binder are mixed at a ratio of 86: 8: 6, respectively. A first positive electrode slurry was obtained by kneading with a planetary mixer and adding an appropriate amount of N-methyl-2-pyrrolidone as a solvent to adjust the viscosity.
A second positive electrode slurry was obtained in the same manner as the first electrode slurry except that a lithium manganese composite oxide having an average particle diameter (D50: median diameter) of 13 μm was used as the active material.
That is, only the active material having an average particle diameter of 5 μm was used for the first positive electrode slurry, and only the active material having an average particle diameter of 13 μm was used for the second positive electrode slurry.

得られた第1の正極スラリー及び第2の正極スラリーを同時多層塗布が可能なダイコータにて正極集電体へ塗布し、乾燥させて塗膜を得た。第1の正極スラリーは約100mm幅で塗布し、第2の正極スラリーは、第1の正極スラリーの流れ方向両端部(つまり、正極集電体の長手方向の両端部に約10mmずつ塗布されるよう、ダイコータ内の流路を設計して塗布した。
塗膜の乾燥後の膜厚は50μmであり、正極集電体としてはアルミニウム箔(15μm厚)を使用した。得られた正極塗膜を、第1の正極スラリーから形成された塗膜の電極密度が2.8g/cmとなるようロールプレスし、正極を完成させた。
The obtained first positive electrode slurry and second positive electrode slurry were applied to a positive electrode current collector with a die coater capable of simultaneous multi-layer application, and dried to obtain a coating film. The first positive electrode slurry is applied with a width of about 100 mm, and the second positive electrode slurry is applied to both ends in the flow direction of the first positive electrode slurry (that is, about 10 mm at both ends in the longitudinal direction of the positive electrode current collector). Thus, the flow path in the die coater was designed and applied.
The film thickness after drying of the coating film was 50 μm, and an aluminum foil (15 μm thickness) was used as the positive electrode current collector. The obtained positive electrode coating film was roll-pressed so that the electrode density of the coating film formed from the first positive electrode slurry was 2.8 g / cm 3 to complete the positive electrode.

(実施例2)
第1の正極スラリーの活物質として、平均粒径(D50)が13μmのリチウムマンガン複合酸化物と平均粒径(D50)が5μmのリチウムマンガン複合酸化物とを重量比70:30で混合したものを使用したこと以外は実施例1と同様とした。
すなわち、小粒径領域は平均粒径が5μmと13μmの活物質を重量比70:30で混合して形成し、大粒径領域は平均粒径が13μmの活物質のみで形成した。
(Example 2)
As an active material of the first positive electrode slurry, a lithium manganese composite oxide having an average particle diameter (D50) of 13 μm and a lithium manganese composite oxide having an average particle diameter (D50) of 5 μm are mixed at a weight ratio of 70:30. The same procedure as in Example 1 was carried out except that was used.
That is, the small particle size region was formed by mixing active materials having an average particle size of 5 μm and 13 μm at a weight ratio of 70:30, and the large particle size region was formed only by an active material having an average particle size of 13 μm.

(実施例3)
第1の正極スラリー及び第2の正極スラリーを同時多層塗布が可能なダイコータにて正極集電体へ塗布する際に、第1の正極スラリーを、約10mmの余白を空けて約45mm幅2条で塗工し、第2の正極スラリーを、第1の正極スラリーの流れ方向両端部に約10mmずつと第1の正極スラリーの余白とに塗布されるようダイコータ内の流路を設計して塗布したこと以外は実施例1と同様とした。
(実施例4)
第2の正極スラリーの活物質として、平均粒径(D50)が13μmのリチウムマンガン複合酸化物と平均粒径(D50)が5μmのリチウムマンガン複合酸化物とを重量比40:60で混合したものを使用したこと以外は実施例1と同様とした。
Example 3
When the first positive electrode slurry and the second positive electrode slurry are applied to the positive electrode current collector with a die coater capable of simultaneous multi-layer application, the first positive electrode slurry is separated into two strips having a width of about 45 mm with a margin of about 10 mm. The flow path in the die coater is designed and applied so that the second positive electrode slurry is applied to both ends of the first positive electrode slurry in the flow direction by about 10 mm and the first positive electrode slurry. Except for this, the procedure was the same as in Example 1.
(Example 4)
A mixture of lithium manganese composite oxide having an average particle diameter (D50) of 13 μm and lithium manganese composite oxide having an average particle diameter (D50) of 5 μm in a weight ratio of 40:60 as the active material of the second positive electrode slurry. The same procedure as in Example 1 was carried out except that was used.

(比較例1)
活物質として平均粒径(D50)が13μmのリチウムマンガン複合酸化物と平均粒径(D50)が5μmのリチウムマンガン複合酸化物とを重量比70:30で混合したこと以外は実施例1の第1の正極スラリーと同様に調整して、第1の正極スラリーを得た。第1の正極スラリーをダイコータにて正極集電体へ均一に塗布乾燥し、得られた塗膜を電極密度が2.8g/cm3となるようロールプレスしたこと以外は実施例1と同様に正極を完成させた。すなわち、正極集電体上に、大粒径領域と小粒径領域とを形成せずに小粒径領域のみを形成した。
(Comparative Example 1)
Example 1 of Example 1 except that a lithium manganese composite oxide having an average particle diameter (D50) of 13 μm and a lithium manganese composite oxide having an average particle diameter (D50) of 5 μm were mixed as the active material at a weight ratio of 70:30. The first positive electrode slurry was prepared in the same manner as the first positive electrode slurry. The first positive electrode slurry was uniformly applied to the positive electrode current collector with a die coater and dried, and the obtained coating film was roll-pressed so that the electrode density was 2.8 g / cm 3. Was completed. That is, only the small particle size region was formed on the positive electrode current collector without forming the large particle size region and the small particle size region.

(比較例2)
第1の正極スラリー及び第2の正極スラリーを同時多層塗布が可能なダイコータにて正極集電体へ塗布する際に、第1の正極スラリーを約20mmの余白を空けて約65mm幅2条で塗工し、第2の正極スラリーを、第1の正極スラリーどうしの間に塗布されるようダイコータ内の流路を設計して塗布したこと以外は、実施例1と同様に正極を完成させた。つまり、大粒径領域を正極集電体の端部に設けなかった。
(Comparative Example 2)
When the first positive electrode slurry and the second positive electrode slurry are applied to the positive electrode current collector with a die coater capable of simultaneous multi-layer application, the first positive electrode slurry is about 65 mm wide with two strips with a margin of about 20 mm. The positive electrode was completed in the same manner as in Example 1 except that the coating was applied and the flow path in the die coater was designed so that the second positive electrode slurry was applied between the first positive electrode slurries. . That is, the large particle size region was not provided at the end of the positive electrode current collector.

(比較例3)
第1の正極スラリー及び第2の正極スラリーを同時多層塗布が可能なダイコータにて正極集電体へ塗布し、乾燥させて塗膜を得た。正極集電体の、リチウムイオン二次電池用電極10の長手方向の長さは150mmであり、第1の正極スラリーは約50mm幅で塗布し、第2の正極スラリーは、第1の正極スラリーの流れ方向両端部に約50mmずつ塗布されるよう、ダイコータ内の流路を設計して塗布したこと以外は、実施例1と同様に正極を完成させた。
(Comparative Example 3)
The first positive electrode slurry and the second positive electrode slurry were applied to the positive electrode current collector with a die coater capable of simultaneous multi-layer application, and dried to obtain a coating film. The length of the positive electrode current collector in the longitudinal direction of the electrode 10 for the lithium ion secondary battery is 150 mm, the first positive electrode slurry is applied with a width of about 50 mm, and the second positive electrode slurry is the first positive electrode slurry. A positive electrode was completed in the same manner as in Example 1 except that the flow path in the die coater was designed and applied so as to be applied to both ends in the flow direction of about 50 mm each.

(比較例4)
第1の正極スラリーの活物質として、平均粒径(D50)が10μmのリチウムマンガン複合酸化物を使用し、第2の正極スラリーの活物質として平均粒径(D50)が11μmのリチウムマンガン複合酸化物を使用したこと以外は実施例1と同様とした。
(比較例5)
第2の正極スラリーの活物質として、平均粒径(D50)が1μmのリチウムマンガン複合酸化物を増粒して得られた凝集粒子を使用したこと以外は実施例1と同様とした。凝集粒子の平均粒径(D50)は10μmであった。
(Comparative Example 4)
A lithium manganese composite oxide having an average particle size (D50) of 10 μm is used as the active material of the first positive electrode slurry, and a lithium manganese composite oxide having an average particle size (D50) of 11 μm as the active material of the second positive electrode slurry. The procedure was the same as Example 1 except that the product was used.
(Comparative Example 5)
The same procedure as in Example 1 was performed except that aggregated particles obtained by increasing the lithium manganese composite oxide having an average particle size (D50) of 1 μm were used as the active material for the second positive electrode slurry. The average particle diameter (D50) of the aggregated particles was 10 μm.

<負極の作製>
負極活物質として天然黒鉛、導電助剤としてアセチレンブラック、バインダーとしてスチレンブタジエンゴム、増粘材としてカルボキシメチルセルロースをそれぞれ90:8:1:1の比率で混合してディスパーで混練し、溶媒として純水を適量添加して粘度調整を施して、リチウムイオン二次電池用負極スラリーを得た。
得られた負極スラリーを負極集電体へダイコータにて塗布し、乾燥させて塗膜を得た。負極集電体としては銅箔(10μm厚)を使用した。負極活物質層は正極活物質層の容量と比較して、1.1倍になるように目付け量を調整して塗布した。
<Production of negative electrode>
Natural graphite as the negative electrode active material, acetylene black as the conductive additive, styrene butadiene rubber as the binder, and carboxymethyl cellulose as the thickener are mixed in a ratio of 90: 8: 1: 1, kneaded with a disper, and pure water as the solvent. Was added to adjust the viscosity to obtain a negative electrode slurry for a lithium ion secondary battery.
The obtained negative electrode slurry was applied to the negative electrode current collector with a die coater and dried to obtain a coating film. A copper foil (10 μm thick) was used as the negative electrode current collector. The negative electrode active material layer was applied with the basis weight adjusted to 1.1 times the capacity of the positive electrode active material layer.

<セルの作製>
上述の手順で得られた正極と負極とを、セパレータ(型番2200、セルガード製)を介して対向させて捲回し、タブ付けして電池缶へ封入した。電解液は、エチレンカーボネート(EC)とジエチルカーボネート(DMC)との3:7(体積比)の混合溶液に、LiPFを1Mとなるように加え、さらにビニレンカーボネート(VC)を2重量%添加したものを使用した。
<Production of cell>
The positive electrode and the negative electrode obtained by the above-described procedure were wound with a separator (model number 2200, manufactured by Celgard) facing each other, tabbed, and sealed in a battery can. The electrolyte was added to a 3: 7 (volume ratio) mixed solution of ethylene carbonate (EC) and diethyl carbonate (DMC) so that LiPF 6 would be 1 M, and further 2% by weight of vinylene carbonate (VC) was added. We used what we did.

<評価>
各実施例および比較例で作製したリチルムイオン二次電池に対して、放電レート試験を行った。充放電時の電圧は3.0V〜4.2Vとした。初めに初期放電容量評価として0.2Cでの定電流充放電を1回行い、続いて1C、5C、10C、20Cで放電レート試験を行った。放電レート試験時の充電はすべて0.2Cで行った。
各実施例および比較例で作製した電池に対して、初期放電容量評価における放電容量を100%としたときの放電容量維持率を、図5に示す。図5において、横軸は放電レート〔C〕、縦軸は、0.2Cで充電したときの、放電容量維持率〔% VS.0.2C〕である。
<Evaluation>
The discharge rate test was done with respect to the lithium ion secondary battery produced by each Example and the comparative example. The voltage at the time of charging / discharging was 3.0V-4.2V. First, constant current charge / discharge at 0.2 C was performed once as an initial discharge capacity evaluation, and subsequently, discharge rate tests were performed at 1 C, 5 C, 10 C, and 20 C. All charging during the discharge rate test was performed at 0.2C.
FIG. 5 shows the discharge capacity maintenance ratio when the discharge capacity in the initial discharge capacity evaluation is set to 100% for the batteries produced in the respective examples and comparative examples. In FIG. 5, the horizontal axis is the discharge rate [C], and the vertical axis is the discharge capacity retention rate [% VS. 0.2C].

放電レートが1C及び2Cにおいては、実施例1〜4及び比較例1〜5で大きな差は見られないが、4C以上の高出力条件では実施例1〜4は比較例1〜5よりも放電容量維持率が良好であることがわかった。
電極端部に大粒径領域を有する実施例1〜4は、電極面内に大粒径領域を有しない比較例1や大粒径領域が端部に存在しない比較例2よりも、電極端部から電解液が含浸しやすくリチウムイオン伝導性が確保されていると考えられる。また、比較例3は電極端部に大粒径領域を有するが、大粒径領域が大粒径領域外の面積よりも大きいため、活物質が偏在して十分な電子伝導性を確保できなかったと考えられる。さらに比較例4では大粒径活物質と他の小粒径活物質の平均粒径の差が小さいため、プレス後の大粒径領域と小粒径領域における密度や空隙率の違いが小さく、電極端部おいて電解液を浸透させるために十分な空隙が確保できなかったと考えられる。同様に、比較例5では大粒径の凝集体活物質がプレス工程で圧壊されたため、電極端部おいて電解液を浸透させるために十分な空隙が確保できなかったと考えられる。以上より本発明の効果が確認できた。
When the discharge rates are 1C and 2C, there is no significant difference between Examples 1 to 4 and Comparative Examples 1 to 5, but Examples 1 to 4 discharge more than Comparative Examples 1 to 5 under high output conditions of 4C or higher. It was found that the capacity retention rate was good.
Examples 1-4 which have a large particle diameter area | region in an electrode edge part are electrode ends rather than the comparative example 1 which does not have a large particle diameter area | region in an electrode surface, and the comparative example 2 which does not have a large particle diameter area | region in an edge part. It is considered that the electrolytic solution is easily impregnated from the part and lithium ion conductivity is ensured. In addition, Comparative Example 3 has a large particle size region at the end of the electrode. However, since the large particle size region is larger than the area outside the large particle size region, the active material is unevenly distributed and sufficient electron conductivity cannot be ensured. It is thought. Furthermore, in Comparative Example 4, since the difference in average particle size between the large particle size active material and other small particle size active materials is small, the difference in density and porosity in the large particle size region after pressing and the small particle size region is small, It is considered that a sufficient gap could not be secured to allow the electrolytic solution to permeate at the electrode end. Similarly, in Comparative Example 5, since the aggregate active material having a large particle size was crushed in the pressing step, it is considered that sufficient voids could not be secured to allow the electrolytic solution to permeate at the electrode end. From the above, the effect of the present invention was confirmed.

本発明の一実施形態によれば、大粒径成分である第1の活物質と小粒径成分である第2の活物質を含み、第1の活物質と第2の活物質の重量比が30:70以上100:0以下である大粒径領域と、前記大粒径領域よりも第1の活物質の含有量が少ない小粒径領域とを含む活物質層を設け、大粒径領域を、電極として非水電解質と接する端部側となる領域に形成することで、空隙率の大きい領域を形成し電解液の浸透性を向上させられる、すなわち電極面方向のリチウムイオン伝導性を十分に確保できるため出力特性が向上するという効果を奏するので、産業上の利用価値が高い。したがって、本発明のリチウムイオン二次電池用負極は高耐久性が要求される電気自動車の駆動用蓄電池や各種エネルギーの蓄電設備、家庭用蓄電設備などの蓄電池として好適に活用することができる。   According to one embodiment of the present invention, the weight ratio of the first active material and the second active material includes the first active material that is the large particle size component and the second active material that is the small particle size component. Is provided with an active material layer including a large particle size region having a particle size of 30:70 or more and 100: 0 or less and a small particle size region in which the content of the first active material is smaller than that of the large particle size region. By forming the region in the region on the end side in contact with the non-aqueous electrolyte as an electrode, it is possible to form a region with a large porosity and improve the electrolyte permeability, that is, to improve the lithium ion conductivity in the electrode surface direction. Since the output characteristic is improved because it can be sufficiently secured, the industrial utility value is high. Therefore, the negative electrode for a lithium ion secondary battery of the present invention can be suitably used as a storage battery for a drive battery of an electric vehicle, a power storage facility for various energy, a home power storage facility, etc. that require high durability.

1 活物質層
2 第1の活物質
3 第2の活物質
4 大粒径領域
5 小粒径領域
6 集電体
6a 正極集電体
6b 負極集電体
10 リチウムイオン二次電池用電極
10a 正極
10b 負極
12 セパレータ
30 円筒型リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 1 Active material layer 2 1st active material 3 2nd active material 4 Large particle diameter area | region 5 Small particle diameter area | region 6 Current collector 6a Positive electrode collector 6b Negative electrode collector 10 Electrode 10a for lithium ion secondary batteries Positive electrode 10b Negative electrode 12 Separator 30 Cylindrical lithium ion secondary battery

Claims (9)

大粒径成分である第1の活物質、前記大粒径成分よりも粒径の小さい小粒径成分である第2の活物質、バインダー及び導電助剤を含む活物質層が集電体上に積層され、
前記活物質層は、前記第1の活物質と前記第2の活物質とを含み、前記第1の活物質と前記第2の活物質との重量比が30:70以上である大粒径領域と、前記大粒径領域よりも前記第1の活物質の含有量が少ない小粒径領域とを有し、
前記集電体の延びる方向を長手方向とした場合に、前記大粒径領域が、前記長手方向に位置し、且つ電極として非水電解液と接する端部となる領域に、前記集電体と接触して形成されていることを特徴とするリチウムイオン二次電池用電極。
An active material layer containing a first active material that is a large particle size component, a second active material that is a small particle size component having a smaller particle size than the large particle size component, a binder, and a conductive assistant is present on the current collector. Laminated to
The active material layer includes a said first active material and the second active material, the weight ratio of the first active material and the second active material is on 30:70 than large A diameter region, and a small particle size region having a smaller content of the first active material than the large particle size region,
When the direction in which the current collector extends is the longitudinal direction, the large particle size region is located in the longitudinal direction, and the current collector is in an area that is an end in contact with the non-aqueous electrolyte as an electrode. An electrode for a lithium ion secondary battery, wherein the electrode is formed in contact .
両端が前記非水電解液に接するリチウムイオン二次電池用電極であって、
前記大粒径領域が、前記長手方向に位置し、且つ前記非水電解液と接する端部となる前記集電体の2つの領域それぞれに、前記集電体と接触して形成され、
前記小粒径領域が、前記集電体と接触して形成された一方の前記大粒径領域と他方の前記大粒径領域との間に形成されていることを特徴とする請求項1に記載のリチウムイオン二次電池用電極。
Both ends are electrodes for a lithium ion secondary battery in contact with the non-aqueous electrolyte,
The large particle size region is formed in contact with the current collector in each of the two regions of the current collector that are located in the longitudinal direction and are end portions in contact with the non-aqueous electrolyte,
The small particle size region is formed between one large particle size region formed in contact with the current collector and the other large particle size region. The electrode for lithium ion secondary batteries as described.
前記第1の活物質の平均粒径が前記第2の活物質の平均粒径の1.2倍以上、10倍以下であることを特徴とする請求項1又は請求項2に記載のリチウムイオン二次電池用電極。   3. The lithium ion according to claim 1, wherein an average particle diameter of the first active material is 1.2 times or more and 10 times or less of an average particle diameter of the second active material. Secondary battery electrode. 前記第1の活物質が前記第2の活物質よりも圧壊しにくい活物質であることを特徴とする請求項1から請求項3のいずれか1項に記載のリチウムイオン二次電池用電極。   4. The electrode for a lithium ion secondary battery according to claim 1, wherein the first active material is an active material that is less likely to be crushed than the second active material. 5. 前記活物質層における前記大粒径領域の表面積は前記小粒径領域の表面積よりも小さいことを特徴とする請求項1から請求項4のいずれか1項に記載のリチウムイオン二次電池用電極。   5. The electrode for a lithium ion secondary battery according to claim 1, wherein a surface area of the large particle size region in the active material layer is smaller than a surface area of the small particle size region. . 前記第1の活物質の平均粒径が5μm以上20μm以下であることを特徴とする請求項1から請求項5のうちのいずれか1項に記載のリチウムイオン二次電池用電極。   6. The electrode for a lithium ion secondary battery according to claim 1, wherein an average particle diameter of the first active material is 5 μm or more and 20 μm or less. 大粒径成分である第1の活物質、前記大粒径成分よりも粒径の小さい小粒径成分である第2の活物質、バインダー及び導電助剤を含み、前記第1の活物質と前記第2の活物質との重量比が30:70以上である第1の電極スラリーと、前記第1の活物質の含有量が前記第1の電極スラリーよりも少ない第2の電極スラリーとを、前記第1の電極スラリーが、集電体の延びる方向である長手方向であって、電極として非水電解液と接する端部となるように、前記集電体に接触させて塗工する工程と、
前記第1の電極スラリー及び前記第2の電極スラリーが塗工された集電体を、ロールプレスする工程と、を備えることを特徴とするリチウムイオン二次電池用電極の製造方法。
A first active material that is a large particle size component; a second active material that is a small particle size component having a smaller particle size than the large particle size component; a binder and a conductive assistant; first electrode slurry weight ratio of the second active material is on 30:70 than, a second electrode slurry content is less than the first electrode slurry of the first active material the said first electrode slurry, and a longitudinal direction is the direction of extension of the collector, so that the end portion side in contact with the non-aqueous electrolyte solution as an electrode, is brought into contact with the current collector coating And a process of
And roll pressing the current collector coated with the first electrode slurry and the second electrode slurry. A method for producing an electrode for a lithium ion secondary battery, comprising:
少なくとも正極電極及び負極電極のいずれか一方として、請求項1から請求項6のいずれか1項に記載のリチウムイオン二次電池用電極を備えることを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising the electrode for a lithium ion secondary battery according to any one of claims 1 to 6 as at least one of a positive electrode and a negative electrode. 活物質層が積層された集電体を重ねて捲回することにより、前記正極電極及び前記負極電極が成形され、
成形された前記正極電極及び前記負極電極の両端が非水電解液に接するようになっていることを特徴とする請求項8に記載のリチウムイオン二次電池。
The positive electrode and the negative electrode are formed by stacking and winding the current collector on which the active material layer is laminated,
9. The lithium ion secondary battery according to claim 8, wherein both ends of the formed positive electrode and negative electrode are in contact with a non-aqueous electrolyte.
JP2015054878A 2015-03-18 2015-03-18 Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery Active JP6609946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054878A JP6609946B2 (en) 2015-03-18 2015-03-18 Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054878A JP6609946B2 (en) 2015-03-18 2015-03-18 Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016177876A JP2016177876A (en) 2016-10-06
JP6609946B2 true JP6609946B2 (en) 2019-11-27

Family

ID=57069317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054878A Active JP6609946B2 (en) 2015-03-18 2015-03-18 Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6609946B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6804052B2 (en) * 2017-03-31 2020-12-23 株式会社村田製作所 Lithium ion secondary battery
JP7037716B2 (en) * 2017-04-10 2022-03-17 トヨタ自動車株式会社 Lithium ion secondary battery
KR102426797B1 (en) 2018-04-04 2022-07-29 주식회사 엘지에너지솔루션 Negative electrode active material for lithium secondary battery, method of manufacturing the same, negative electrode for lithium secondry battery and lithium secondary battery comprising the same
WO2023074427A1 (en) * 2021-10-28 2023-05-04 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN116885097B (en) * 2023-09-06 2023-11-07 天津力神电池股份有限公司 Positive plate, preparation method thereof and battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963588A (en) * 1995-08-23 1997-03-07 Hitachi Maxell Ltd Organic electrolyte secondary battery
JP2011070976A (en) * 2009-09-28 2011-04-07 Toyota Motor Corp Lithium ion secondary battery, vehicle, and battery loading equipment
JP2013065468A (en) * 2011-09-16 2013-04-11 Panasonic Corp Lithium ion secondary battery
JP2013251213A (en) * 2012-06-04 2013-12-12 Hitachi Ltd Negative electrode for lithium ion secondary battery, lithium ion secondary battery with negative electrode for lithium ion secondary battery, and manufacturing method thereof
WO2014128946A1 (en) * 2013-02-25 2014-08-28 株式会社 日立製作所 Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell
JP2015191879A (en) * 2014-03-31 2015-11-02 株式会社日立製作所 Wound type secondary battery

Also Published As

Publication number Publication date
JP2016177876A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP5076464B2 (en) Lithium ion secondary battery
JP5218808B2 (en) Lithium ion battery
JP5472759B2 (en) Lithium secondary battery
JPWO2016035289A1 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2016058247A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2011081931A (en) Lithium ion secondary battery
CN109997253B (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6609946B2 (en) Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery
JP2014179240A (en) Positive electrode and battery
US9917296B2 (en) Nonaqueous electrolyte secondary battery
CN111971769A (en) Incorporation of lithium ion source materials into activated carbon electrodes for capacitor-assisted batteries
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
CN113097446A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2012147647A1 (en) Lithium ion secondary cell
JP2014035963A (en) Positive electrode material, lithium ion power storage device, and method of manufacturing the same
JP2010225366A (en) Nonaqueous electrolyte secondary battery
JP2013246900A (en) Secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP6083289B2 (en) Lithium ion secondary battery
JP2013197052A (en) Lithium ion power storage device
US20190067729A1 (en) Lithium ion electrochemical devices having excess electrolyte capacity to improve lifetime
WO2015049775A1 (en) Positive electrode for lithium ion secondary batteries, lithium ion secondary battery using positive electrode for lithium ion secondary batteries, and method for producing positive electrode for lithium ion secondary batteries
JP2007172878A (en) Battery and its manufacturing method
JP2004296305A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R150 Certificate of patent or registration of utility model

Ref document number: 6609946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250