JP2011081931A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2011081931A
JP2011081931A JP2009231193A JP2009231193A JP2011081931A JP 2011081931 A JP2011081931 A JP 2011081931A JP 2009231193 A JP2009231193 A JP 2009231193A JP 2009231193 A JP2009231193 A JP 2009231193A JP 2011081931 A JP2011081931 A JP 2011081931A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
mixture layer
electrode mixture
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009231193A
Other languages
Japanese (ja)
Inventor
Susumu Ishi
軍 石
Tetsuo Kawai
徹夫 川合
Katsunori Kojima
克典 児島
Hideaki Katayama
秀昭 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2009231193A priority Critical patent/JP2011081931A/en
Publication of JP2011081931A publication Critical patent/JP2011081931A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery, safe and with high energy density and output density. <P>SOLUTION: The lithium ion secondary battery has an electrode group body constituted of a negative electrode with an negative electrode mixture layer containing a negative electrode active material, a positive electrode with a positive electrode mixture layer containing a positive electrode active material, and a separator, and nonaqueous electrolyte. An average potential of the negative electrode active material is 1.0 V or more against Li/Li<SP>+</SP>, the positive electrode active material is a lithium-containing composite oxide of a spinel structure, a ratio of a capacity of the negative electrode to a capacity of the positive electrode is 1.0 to 1.2, and a shift width L between an end side of the positive electrode mixture layer and an end side of the negative electrode mixture layer facing each other through the separator is 1.5 mm or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、各種の電気機器や自動車などに用いられるリチウムイオン二次電池に関するものである。   The present invention relates to a lithium ion secondary battery used in various electric devices and automobiles.

近年、リチウムイオン二次電池では、特に自動車用途などにおいて、高エネルギー密度および高出力密度であることが要望されており、また、安全性の確保も重要視されている。   In recent years, lithium ion secondary batteries have been demanded to have high energy density and high output density, particularly in automotive applications, and securing safety is also regarded as important.

現在市販されているリチウムイオン二次電池では、リチウムの析出に起因する安全性の問題を回避するために、正極と負極とが対向する箇所において、正極に係る正極合剤層の存在位置には必ず負極に係る負極合剤層が対向するような構造としている。具体的には、負極に係る負極合剤層の面積を、対向する正極に係る正極合剤層の面積よりも大きくして、リチウムの析出による内部短絡の発生を防止している(例えば、特許文献1)。セパレーターを介して積層した正極と負極とを渦巻状に巻回して製造する巻回電極体の生産工程においては、巻きずれの発生の回避が困難であるが、前記の手法は、こうした巻きずれが生じても内部短絡が良好に防止できることから、電池業界において汎用されている。   In the lithium ion secondary battery currently on the market, in order to avoid the safety problem due to the precipitation of lithium, the position where the positive electrode mixture layer related to the positive electrode is present at the position where the positive electrode and the negative electrode face each other. A structure in which the negative electrode mixture layer related to the negative electrode is always opposed. Specifically, the area of the negative electrode mixture layer related to the negative electrode is made larger than the area of the positive electrode mixture layer related to the opposite positive electrode to prevent the occurrence of an internal short circuit due to lithium deposition (for example, patents) Reference 1). In the production process of a wound electrode body that is manufactured by winding a positive electrode and a negative electrode that are laminated via a separator in a spiral shape, it is difficult to avoid the occurrence of winding misalignment. Even if it occurs, the internal short circuit can be satisfactorily prevented, so that it is widely used in the battery industry.

しかしながら、負極合剤層の、対向する正極合剤層の面積よりも大きい部分は、電池の容量および出力に貢献せず、却って電池の質量およびサイズを増大させるため、電池のエネルギー密度および出力密度を低下させる原因となる。   However, the portion of the negative electrode mixture layer that is larger than the area of the opposing positive electrode mixture layer does not contribute to the capacity and output of the battery, but instead increases the mass and size of the battery, so the energy density and output density of the battery It will cause the decrease.

負極における余分な負極合剤を無くすと同時に内部短絡を良好に防止するために、正極の表面および/または負極の表面に、主体となる無機酸化物フィラーと結着剤とからなる多孔膜を形成し、これを用いて構成したリチウムイオン二次電池が提案されている(特許文献2)。   In order to eliminate the excess negative electrode mixture in the negative electrode and at the same time prevent internal short circuit well, a porous film composed of the main inorganic oxide filler and binder is formed on the positive electrode surface and / or the negative electrode surface And the lithium ion secondary battery comprised using this is proposed (patent document 2).

また、リチウムが析出しない電位でリチウムイオンを挿入および脱離することの可能なチタン酸リチウムを負極活物質に使用することで、充放電の繰り返しによるリチウムのデンドライトの形成を抑制し、これによる内部短絡の発生の防止を試みた技術も提案されている(特許文献3)。   In addition, by using lithium titanate, which can insert and desorb lithium ions at a potential at which lithium does not precipitate, as the negative electrode active material, the formation of lithium dendrites due to repeated charge and discharge is suppressed, and the internal A technique for trying to prevent the occurrence of a short circuit has also been proposed (Patent Document 3).

特許第3151726号公報Japanese Patent No. 3151726 特開2006−310010号公報JP 2006-310010 A 特許第3502118号公報Japanese Patent No. 3502118

本発明は、前記事情に鑑みてなされたものであり、従来の技術とは異なる手段によって、安全であり、かつエネルギー密度および出力密度の高いリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a lithium ion secondary battery that is safe and has high energy density and high output density by means different from conventional techniques.

前記目的を達成し得た本発明のリチウムイオン二次電池は、負極活物質を含有する負極合剤層を有する負極、正極活物質を含有する正極合剤層を有する正極、およびセパレーターを備えた電極体、並びに非水電解液を有するリチウムイオン二次電池であって、負極活物質の平均電位が、Li/Liに対して1.0V以上であり、正極活物質がスピネル構造のリチウム含有複合酸化物であり、正極の容量に対する負極の容量の比が1.0〜1.2であり、セパレーターを介して互いに対向する正極合剤層の端辺と負極合剤層の端辺とのずれの幅Lが、前記両端辺のいずれの点においても1.5mm以下であることを特徴とするものである。 The lithium ion secondary battery of the present invention that has achieved the above object includes a negative electrode having a negative electrode mixture layer containing a negative electrode active material, a positive electrode having a positive electrode mixture layer containing a positive electrode active material, and a separator. A lithium ion secondary battery having an electrode body and a non-aqueous electrolyte, wherein the negative electrode active material has an average potential of 1.0 V or more with respect to Li / Li + , and the positive electrode active material contains lithium having a spinel structure It is a composite oxide, the ratio of the capacity of the negative electrode to the capacity of the positive electrode is 1.0 to 1.2, and the edge of the positive electrode mixture layer and the edge of the negative electrode mixture layer facing each other through the separator The width L of the deviation is 1.5 mm or less at any point of the both end sides.

本発明によれば、安全であり、かつエネルギー密度および出力密度の高いリチウムイオン二次電池を提供することができる。   According to the present invention, it is possible to provide a lithium ion secondary battery that is safe and has high energy density and power density.

本発明のリチウムイオン二次電池に係る電極体の一例の要部を模式的に表す平面図である。It is a top view which represents typically the principal part of an example of the electrode body which concerns on the lithium ion secondary battery of this invention. 図1の断面図である。It is sectional drawing of FIG. 実施例1、2および比較例1のリチウムイオン二次電池の充放電サイクル特性の評価結果を示すグラフである。4 is a graph showing evaluation results of charge / discharge cycle characteristics of lithium ion secondary batteries of Examples 1 and 2 and Comparative Example 1. 実施例3、4および比較例3のリチウムイオン二次電池の充放電サイクル特性の評価結果を示すグラフである。4 is a graph showing evaluation results of charge / discharge cycle characteristics of lithium ion secondary batteries of Examples 3 and 4 and Comparative Example 3.

本発明のリチウムイオン二次電池は、負極活物質を含有する負極合剤層を、例えば集電体の片面または両面に形成した負極と、正極活物質を含有する正極合剤層を、例えば集電体の片面または両面に形成した正極と、セパレーターとで構成された電極体を有している。   The lithium ion secondary battery of the present invention includes a negative electrode mixture layer containing a negative electrode active material, for example, a negative electrode formed on one or both sides of a current collector, and a positive electrode mixture layer containing a positive electrode active material, for example. It has an electrode body composed of a positive electrode formed on one side or both sides of an electric body and a separator.

そして、前記電極体の、セパレーターを介して互いに対向する正極合剤層の端辺と負極合剤層の端辺とのずれの幅Lが、前記両端辺のいずれの点においても1.5mm以下である。   The width L of the deviation between the end of the positive electrode mixture layer and the end of the negative electrode mixture layer facing each other through the separator of the electrode body is 1.5 mm or less at any point of the both end sides. It is.

図1および図2に、本発明のリチウムイオン二次電池に係る電極体の一例の要部を模式的に示す。図1は平面図、図2は断面図である。なお、図1および図2は、正極1と負極2とが、セパレーター3を介して積層された構造の電極体(積層電極体)を例にとって、正極に係る正極合剤層と負極に係る負極合剤層との位置関係を説明するためのものであるが、これらの位置関係の理解を容易にするために、正極を、負極との対向面全面に正極合剤層が形成されているものとし、かつ負極を、正極との対向面全面に負極合剤層が形成されているものとして、正負極の集電体や、正極および負極と電池の端子とを接続するためのタブなどは省略しており、前記Lを分かりやすくするために、正極と負極との位置をずらして示している。   1 and 2 schematically show an essential part of an example of an electrode body according to the lithium ion secondary battery of the present invention. 1 is a plan view, and FIG. 2 is a cross-sectional view. FIGS. 1 and 2 illustrate, as an example, an electrode body (laminated electrode body) having a structure in which a positive electrode 1 and a negative electrode 2 are stacked with a separator 3 interposed therebetween, and a negative electrode layer related to a positive electrode and a negative electrode related to a negative electrode. This is for explaining the positional relationship with the mixture layer. In order to facilitate understanding of these positional relationships, the positive electrode is formed on the entire surface facing the negative electrode, and the positive electrode mixture layer is formed on the entire surface. Assuming that the negative electrode is a negative electrode mixture layer formed on the entire surface facing the positive electrode, the positive and negative current collectors and the tabs for connecting the positive and negative electrodes to the battery terminals are omitted. In order to make L easy to understand, the positions of the positive electrode and the negative electrode are shifted.

なお、図1では、下側(図中奥行き方向)に負極2が、上側に正極1が配置されており、正極1と負極2との間にセパレーター3が介在している様子を表している。よって、図1では、負極2がセパレーター3の下に位置していることを分かりやすく表すために、負極2の端辺(負極合剤層の端辺)を点線で示している。   In FIG. 1, the negative electrode 2 is disposed on the lower side (in the depth direction in the drawing), the positive electrode 1 is disposed on the upper side, and the separator 3 is interposed between the positive electrode 1 and the negative electrode 2. . Therefore, in FIG. 1, the end side of the negative electrode 2 (the end side of the negative electrode mixture layer) is indicated by a dotted line in order to easily understand that the negative electrode 2 is positioned below the separator 3.

図1および図2において、1a、1bは、正極合剤層の端辺であり、2a、2bは負極合剤層の端辺である。「セパレーターを介して互いに対向する正極合剤層の端辺と負極合剤層の端辺とのずれの幅L」とは、正極と負極との対向面に平行な面における正極合剤層の端辺から負極合剤層の端辺までの最短距離、すなわち、正極合剤層の端辺1aと負極合剤層の端辺2aとの最短距離Lや、正極合剤層の端辺1bと負極合剤層の端辺2bとの最短距離Lを意味している。   In FIGS. 1 and 2, 1a and 1b are end sides of the positive electrode mixture layer, and 2a and 2b are end sides of the negative electrode mixture layer. “Width L of deviation between the edge of the positive electrode mixture layer and the edge of the negative electrode mixture layer facing each other via the separator” refers to the width of the positive electrode mixture layer in a plane parallel to the opposed surface of the positive electrode and the negative electrode. The shortest distance from the edge to the edge of the negative electrode mixture layer, that is, the shortest distance L between the edge 1a of the positive electrode mixture layer and the edge 2a of the negative electrode mixture layer, or the edge 1b of the positive electrode mixture layer It means the shortest distance L from the end side 2b of the negative electrode mixture layer.

前記の通り、従来のリチウムイオン二次電池では、充放電反応に伴うリチウムの析出に起因する内部短絡の発生を抑制するために、負極に係る負極合剤層の面積を、正極に係る正極合剤層の面積よりも大きくすることが通常であるが、負極合剤層における正極合剤層よりも大きい部分は、電池の容量および出力に貢献せず、却って電池の質量およびサイズを増大させるため、電池のエネルギー密度の向上や出力密度の向上の阻害要因となる。そこで、本発明のリチウムイオン二次電池では、セパレーターを介して互いに対向する正極合剤層の端辺と負極合剤層の端辺とのずれの幅Lを、電池内のいずれの箇所においても1.5mm以下とすることで、負極合剤層のうち、電池の容量および出力に貢献しない部分を可及的に小さくして、エネルギー密度および出力密度の向上を図っている。なお、このような効果をより良好に確保する観点からは、前記Lの値は、0.7mm以下であることがより好ましく、0mmであることが最も好ましい。   As described above, in the conventional lithium ion secondary battery, the area of the negative electrode mixture layer related to the negative electrode is set to the positive electrode composite related to the positive electrode in order to suppress the occurrence of an internal short circuit due to the precipitation of lithium accompanying the charge / discharge reaction. Usually, the area of the material layer is larger than the area of the material layer, but the portion larger than the material layer of the positive electrode material mixture layer does not contribute to the capacity and output of the battery, but rather increases the mass and size of the battery. This hinders improvement in the energy density and output density of the battery. Therefore, in the lithium ion secondary battery of the present invention, the deviation width L between the edge of the positive electrode mixture layer and the edge of the negative electrode mixture layer facing each other through the separator is set at any location in the battery. By setting the thickness to 1.5 mm or less, the portion of the negative electrode mixture layer that does not contribute to the capacity and output of the battery is made as small as possible to improve energy density and output density. In addition, from the viewpoint of ensuring such an effect better, the value of L is more preferably 0.7 mm or less, and most preferably 0 mm.

また、本発明のリチウムイオン二次電池では、正極の容量Pに対する負極の容量Nの比(N/P)を、安全性向上の観点から1.0以上とし、また、電池内に導入した負極活物質のうち、無駄になる部分を減らす観点から1.2以下とする。   In the lithium ion secondary battery of the present invention, the ratio (N / P) of the negative electrode capacity N to the positive electrode capacity P is set to 1.0 or more from the viewpoint of improving safety, and the negative electrode introduced into the battery From the viewpoint of reducing the portion of the active material that is wasted, 1.2 or less.

容量比N/Pの算出に用いる正極の容量Pは、電池内の正極に係る正極合剤層のうち、負極合剤層と対向している正極合剤層から求められる容量の合計値であり、また、負極の容量Nは、電池内の負極に係る負極合剤層のうち、正極合剤層と対向している負極合剤層から求められる容量の合計値である。正極の容量Pおよび負極の容量Nは、具体的には以下の方法によって求める。
正極の容量P:
正極活物質とカーボンブラックとポリテトラフルオロエチレンバインダとを、0.5:0.3:0.2の質量比で混合してシート状に成形し、10.5mmφの大きさに打ち抜いて電極を作製する。そして、この電極と、Li金属からなる対極とを用い、電解液に、プロピレンカーボネートと1,2−ジメトキシエタンとを体積比1:1で混合した溶媒に、LiPFを1Mの濃度で溶解させた溶液を用いてコイン形セルを作製する。このコイン形セルに、まず、0.5Cの定電流で4.3Vまで充電し、その後0.5Cの電流値で3.0Vまで放電させ、そのときの放電容量を電極中の正極活物質の質量で割り、0.5Cでの正極活物質の単位質量あたりの容量を算出する。また、前記と同じ条件でコイン形セルを充電し、1.0C、1.5C、2.0Cおよび2.5Cの放電電流値で3.0Vまで放電させたときの、それぞれの放電容量を求め、前記と同様にして各放電電流値での正極活物質の単位質量あたりの容量を算出する。これらのデータについて、横軸をレート(C)、縦軸を正極活物質の単位質量あたりの容量としてプロットし、最小二乗法によって前記データに最もよく当てはまる直線を算出し、この直線と、正極活物質の単位質量あたりの容量の軸(縦軸)との切片値を、正極活物質の単位質量あたりの容量とする。この「正極活物質の単位質量あたりの容量」に、電池に係る正極の正極合剤層中の正極活物質の質量を掛けることで、正極の容量Pを求める。
The capacity P of the positive electrode used for calculating the capacity ratio N / P is a total value of the capacities obtained from the positive electrode mixture layer facing the negative electrode mixture layer among the positive electrode mixture layers related to the positive electrode in the battery. Moreover, the capacity | capacitance N of a negative electrode is a total value of the capacity | capacitance calculated | required from the negative mix layer facing the positive mix layer among the negative mix layers which concern on the negative electrode in a battery. Specifically, the capacity P of the positive electrode and the capacity N of the negative electrode are obtained by the following method.
Positive electrode capacity P:
A positive electrode active material, carbon black, and a polytetrafluoroethylene binder are mixed at a mass ratio of 0.5: 0.3: 0.2 to form a sheet, and punched to a size of 10.5 mmφ to form an electrode. Make it. Then, using this electrode and a counter electrode made of Li metal, LiPF 6 was dissolved at a concentration of 1M in a solvent in which propylene carbonate and 1,2-dimethoxyethane were mixed at a volume ratio of 1: 1 in the electrolytic solution. A coin-shaped cell is prepared using the solution. This coin-shaped cell is first charged to 4.3 V with a constant current of 0.5 C, and then discharged to 3.0 V with a current value of 0.5 C, and the discharge capacity at that time is determined by the positive electrode active material in the electrode. Divide by mass to calculate the capacity per unit mass of the positive electrode active material at 0.5C. In addition, when the coin-shaped cell is charged under the same conditions as described above and discharged to 3.0 V at discharge current values of 1.0 C, 1.5 C, 2.0 C and 2.5 C, the respective discharge capacities are obtained. In the same manner as described above, the capacity per unit mass of the positive electrode active material at each discharge current value is calculated. For these data, the horizontal axis is plotted as the rate (C) and the vertical axis as the capacity per unit mass of the positive electrode active material, and a straight line that best fits the above data is calculated by the least squares method. The intercept value with the axis (vertical axis) of the capacity per unit mass of the substance is defined as the capacity per unit mass of the positive electrode active material. The “capacity per unit mass of the positive electrode active material” is multiplied by the mass of the positive electrode active material in the positive electrode mixture layer of the positive electrode according to the battery to obtain the capacity P of the positive electrode.

負極の容量N:
負極活物質とカーボンブラックとポリテトラフルオロエチレンバインダとを、0.5:0.3:0.2の質量比で混合してシート状に成形し、10.5mmφの大きさに打ち抜いて電極を作製する。そして、この電極を用いる以外は、正極の容量Pの測定の場合と同様にしてコイン形セルを作製する。このコイン形セルを、まず、0.5Cの定電流で1.0Vまで放電させ、そのときの放電容量を電極中の負極活物質の質量で割り、0.5Cでの負極活物質の単位質量あたりの容量を算出する。また、前記と同じ条件でコイン形セルを充電し、1.0C、1.5C、2.0Cおよび2.5Cの放電電流値で3.0Vまで放電させたときの、それぞれの放電容量を求め、前記と同様にして各放電電流値での負極活物質の単位質量あたりの容量を算出する。これらのデータについて、横軸をレート(C)、縦軸を負極活物質の単位質量あたりの容量としてプロットし、最小二乗法によって前記データに最もよく当てはまる直線を算出し、この直線と、負極活物質の単位質量あたりの容量の軸(縦軸)との切片値を、負極活物質の単位質量あたりの容量とする。この「負極活物質の単位質量あたりの容量」に、電池に係る負極の負極合剤層中の負極活物質の質量を掛けることで、負極の容量Nを求める。
Negative electrode capacity N:
A negative electrode active material, carbon black, and a polytetrafluoroethylene binder are mixed at a mass ratio of 0.5: 0.3: 0.2 to form a sheet, and punched to a size of 10.5 mmφ to form an electrode. Make it. Then, a coin-shaped cell is manufactured in the same manner as in the measurement of the positive electrode capacity P except that this electrode is used. First, the coin-shaped cell was discharged to 1.0 V with a constant current of 0.5 C, and the discharge capacity at that time was divided by the mass of the negative electrode active material in the electrode, and the unit mass of the negative electrode active material at 0.5 C Calculate the capacity per unit. In addition, when the coin-shaped cell is charged under the same conditions as described above and discharged to 3.0 V at discharge current values of 1.0 C, 1.5 C, 2.0 C and 2.5 C, the respective discharge capacities are obtained. In the same manner as described above, the capacity per unit mass of the negative electrode active material at each discharge current value is calculated. For these data, the horizontal axis represents the rate (C) and the vertical axis represents the capacity per unit mass of the negative electrode active material, and a straight line that best fits the above data was calculated by the least square method. The intercept value with the axis (vertical axis) of the capacity per unit mass of the substance is defined as the capacity per unit mass of the negative electrode active material. By multiplying the “capacity per unit mass of the negative electrode active material” by the mass of the negative electrode active material in the negative electrode mixture layer of the negative electrode according to the battery, the capacity N of the negative electrode is obtained.

本発明のリチウムイオン二次電池に係る負極は、例えば、集電体となるアルミニウム箔や銅箔などの片面または両面に、負極活物質やバインダー、更には、必要に応じて用いられる導電助剤などを含有する負極合剤を、溶媒に溶解・分散させた負極合剤層形成用組成物(ペースト、スラリーなど)を塗布し、乾燥させることによって負極合剤層を形成し、更に加圧成形をする工程を経て製造できる。ただし、本発明に係る負極の製造方法は、前記の方法に限定される訳ではない。   The negative electrode according to the lithium ion secondary battery of the present invention is, for example, a negative electrode active material, a binder, and a conductive auxiliary agent used as necessary on one or both sides of an aluminum foil or copper foil as a current collector. A negative electrode mixture layer is formed by applying a composition for forming a negative electrode mixture layer (paste, slurry, etc.) in which a negative electrode mixture containing, for example, is dissolved and dispersed in a solvent, followed by drying. It can be manufactured through a process. However, the method for producing a negative electrode according to the present invention is not limited to the above method.

本発明に係る負極では、負極活物質に、平均電位がLi/Liに対して1.0V以上のものを使用する。このような負極活物質であれば、後述する正極活物質(スピネル構造のリチウム含有複合酸化物)と組み合わせて電池を構成した場合に、充放電に伴うリチウムの析出を良好に抑制でき、安全性の高い電池とすることができる。 In the negative electrode according to the present invention, a negative electrode active material having an average potential of 1.0 V or higher with respect to Li / Li + is used. If such a negative electrode active material is used in combination with a positive electrode active material (a lithium-containing composite oxide having a spinel structure), which will be described later, it is possible to satisfactorily suppress lithium deposition associated with charge and discharge, and safety. High battery.

前記の平均電位を有する負極活物質としては、リチウムチタン複合酸化物が挙げられる。リチウムチタン複合酸化物の具体例としては、LiTi12、LiTiなどの組成で代表される酸化物が挙げられ、特にLiTi12に代表されるスピネル構造を有するものが好ましく用いられる。 Examples of the negative electrode active material having the average potential include lithium titanium composite oxide. Specific examples of the lithium titanium composite oxide include oxides represented by compositions such as Li 4 Ti 5 O 12 and LiTi 2 O 4 , and in particular, have a spinel structure typified by Li 4 Ti 5 O 12. Those are preferably used.

また、ラムスデライト型結晶構造を有するリチウムチタン複合酸化物を使用することもできる。このようなリチウムチタン複合酸化物としては、例えば、LiTi、LiTi12などの組成で代表される酸化物が挙げられ、特にLiTiで表されるものが好ましく用いられる。 A lithium titanium composite oxide having a ramsdellite type crystal structure can also be used. Examples of such lithium-titanium composite oxide include oxides represented by compositions such as Li 2 Ti 3 O 7 and Li 4 Ti 5 O 12, and are particularly represented by Li 2 Ti 3 O 7. Those are preferably used.

前記いずれのリチウムチタン複合酸化物も、その構成元素の一部が他の元素、例えば、Ca、Mg、Sr、Sc、Zr、V、Nb、W、Cr、Mo、Mn、Fe、Co、Ni、Cu、Zn、Al、Si、Ga、Ge、Snなどの元素で置換されていてもよい。この場合の他の元素による置換量は、置換される元素の10mol%以下とすることが好ましい。   In any of the lithium titanium composite oxides, some of the constituent elements are other elements such as Ca, Mg, Sr, Sc, Zr, V, Nb, W, Cr, Mo, Mn, Fe, Co, Ni. , Cu, Zn, Al, Si, Ga, Ge, Sn and the like may be substituted. In this case, the substitution amount with other elements is preferably 10 mol% or less of the element to be substituted.

前記の各リチウムチタン複合酸化物は、1種のみを用いてもよく、2種以上を併用してもよい。   Each said lithium titanium complex oxide may use only 1 type, and may use 2 or more types together.

リチウムチタン複合酸化物は、BET比表面積が、1.5〜20.0m/g以上であることが好ましい。 The lithium titanium composite oxide preferably has a BET specific surface area of 1.5 to 20.0 m 2 / g or more.

本明細書でいうリチウムチタン複合酸化物のBET比表面積は、窒素吸着法による比表面積測定装置(Mountech社製「Macsorb HM modele−1201」)を用いて得た値である。   The BET specific surface area of the lithium-titanium composite oxide referred to in the present specification is a value obtained using a specific surface area measurement apparatus (“Macsorb HM model-1201” manufactured by Mounttech) using a nitrogen adsorption method.

なお、リチウムチタン複合酸化物は導電性が乏しいため、リチウムチタン複合酸化物を負極活物質に使用する場合には、負極合剤層の導電性向上などのために導電助剤を使用することが好ましい。   In addition, since lithium titanium composite oxide has poor conductivity, when lithium titanium composite oxide is used as a negative electrode active material, a conductive additive may be used to improve the conductivity of the negative electrode mixture layer. preferable.

導電助剤としては、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、繊維状炭素、黒鉛などの炭素粉末;ニッケル粉末などの金属粉末;などの導電性粉末が挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。   Examples of the conductive aid include conductive powders such as carbon powder such as carbon black, ketjen black, acetylene black, fibrous carbon and graphite; metal powder such as nickel powder; May be used alone, or two or more of them may be used in combination.

また、負極合剤層にはバインダーを使用する。バインダーとしては、例えば、ポリオレフィン(ポリエチレンなど)およびそれらの誘導体、ポリエチレンオキサイド(PEO)、アクリルポリマー(ポリメタクリレートなど)、ポリアクリロニトリル(PAN)、カルボキシメチルセルロース(CMC)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVDF−HEP)などのポリマー;スチレン−ブタジエンゴム(SBR)などの合成ゴム;などが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。   A binder is used for the negative electrode mixture layer. Examples of the binder include polyolefin (polyethylene and the like) and derivatives thereof, polyethylene oxide (PEO), acrylic polymer (polymethacrylate and the like), polyacrylonitrile (PAN), carboxymethylcellulose (CMC), polyvinylidene fluoride (PVDF), poly Polymers such as tetrafluoroethylene (PTFE) and vinylidene fluoride-hexafluoropropylene copolymer (PVDF-HEP); synthetic rubbers such as styrene-butadiene rubber (SBR); and the like, only one of these Or two or more of them may be used in combination.

なお、負極活物質にリチウムチタン複合酸化物を使用する場合、特にリチウムチタン複合酸化物の使用による効果をより良好に確保する観点から、負極合剤層におけるリチウムチタン複合酸化物の量は、85〜97質量%であることが好ましく、また、負極合剤層における導電助剤の量は、4〜9質量%であることが好ましく、更に、負極合剤層におけるバインダーの量は、5〜9質量%であることが好ましい。また、負極合剤層の厚みは、負極集電体の片面あたり、10〜40μmであることが好ましく、負極集電体の厚みは、8〜20μmであることが好ましい。   In the case of using a lithium titanium composite oxide for the negative electrode active material, the amount of the lithium titanium composite oxide in the negative electrode mixture layer is 85 in particular from the viewpoint of securing a better effect due to the use of the lithium titanium composite oxide. It is preferable that it is -97 mass%, and it is preferable that the quantity of the conductive support agent in a negative mix layer is 4-9 mass%, Furthermore, the quantity of the binder in a negative mix layer is 5-9. It is preferable that it is mass%. Moreover, it is preferable that the thickness of a negative mix layer is 10-40 micrometers per single side | surface of a negative electrode collector, and it is preferable that the thickness of a negative electrode collector is 8-20 micrometers.

本発明のリチウムイオン二次電池に係る正極は、例えば、集電体となるアルミニウム箔などの片面または両面に、正極活物質や導電助剤、バインダーなどを含有する正極合剤を、溶媒に溶解・分散させた正極合剤層形成用組成物(ペースト、スラリーなど)を塗布し、乾燥させることによって正極合剤層を形成し、更に加圧成形をする工程を経て製造できる。ただし、本発明に係る正極の製造方法は、前記の方法に限定される訳ではない。   In the positive electrode according to the lithium ion secondary battery of the present invention, for example, a positive electrode mixture containing a positive electrode active material, a conductive additive, a binder, etc. is dissolved in a solvent on one side or both sides of an aluminum foil or the like as a current collector. -It can manufacture through the process of forming the positive mix layer by apply | coating the dispersed composition for positive mix layer formation (paste, slurry, etc.), and making it dry, and also press-molding. However, the manufacturing method of the positive electrode according to the present invention is not limited to the above method.

本発明に係る正極では、正極活物質に、リチウムが90%まで脱離しても安定性を保ち得るスピネル構造のリチウム含有複合酸化物を使用する。スピネル構造のリチウム含有複合酸化物としては、一般式LiMnOで表されるマンガン酸リチウムや、一般式Li1+xMn2−x−y(ただし、Mは、Co、Ni、Al、Mg、ZrおよびTiより選択される少なくとも1種の元素であり、−0.05≦x≦0.1、0≦y≦0.3)で表されるリチウム含有複合酸化物などのリチウムマンガン酸化物(スピネル構造のリチウムマンガン酸化物)が好ましい。 In the positive electrode according to the present invention, a lithium-containing composite oxide having a spinel structure that can maintain stability even when lithium is desorbed to 90% is used as the positive electrode active material. As the lithium-containing composite oxide having a spinel structure, lithium manganate represented by the general formula LiMnO 4 , or a general formula Li 1 + x Mn 2−xy M y O 4 (where M is Co, Ni, Al, Lithium manganese oxidation such as lithium-containing composite oxide which is at least one element selected from Mg, Zr and Ti and represented by −0.05 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.3) (A lithium manganese oxide having a spinel structure) is preferable.

正極合剤層に用い得る導電助剤およびバインダーとしては、負極合剤層に用い得るものとして先に例示した各種導電助剤および各種バインダーが挙げられる。   As a conductive support agent and binder which can be used for a positive mix layer, the various conductive support agents and various binders which were illustrated previously as what can be used for a negative mix layer are mentioned.

なお、正極合剤層において、正極活物質(スピネル構造のリチウム含有複合酸化物)の量は85〜97質量%であることが好ましく、導電助剤の量は4〜9質量%であることが好ましく、バインダーの量は5〜9質量%であることが好ましい。また、正極合剤層の厚みは、正極集電体の片面あたり、10〜40μmであることが好ましく、正極集電体の厚みは、8〜20μmであることが好ましい。   In the positive electrode mixture layer, the amount of the positive electrode active material (lithium-containing composite oxide having a spinel structure) is preferably 85 to 97% by mass, and the amount of the conductive auxiliary agent is 4 to 9% by mass. Preferably, the amount of the binder is 5 to 9% by mass. In addition, the thickness of the positive electrode mixture layer is preferably 10 to 40 μm per side of the positive electrode current collector, and the thickness of the positive electrode current collector is preferably 8 to 20 μm.

本発明のリチウムイオン二次電池は、前記の正極と前記の負極とを、セパレーターを介して重ね合わせて構成した積層電極体や、正極と負極とをセパレーターを介して重ね合わせた後に、渦巻き状に巻回した巻回電極体を、非水電解液と共に外装体内に収容して構成することができる。   The lithium ion secondary battery of the present invention comprises a laminated electrode body formed by stacking the positive electrode and the negative electrode with a separator interposed therebetween, and a spiral shape after the positive electrode and the negative electrode are stacked with a separator interposed therebetween. The wound electrode body wound around can be configured to be accommodated in the exterior body together with the non-aqueous electrolyte.

電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、ラミネートフィルムを外装体に用いたラミネート形電池(ソフトパッケージ電池)とすることもできる。   Examples of the form of the battery include a tubular shape (such as a rectangular tube shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the laminated battery (soft package battery) which used the laminate film for the exterior body.

セパレーターには、十分な強度を有し、かつ非水電解液を多く保持できるものがよく、このような観点から、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体などのポリオレフィンで構成された微多孔膜や不織布で、厚みが10〜50μm、空孔率が30〜70%のものを用いることが好ましい。   The separator preferably has sufficient strength and can hold a large amount of the non-aqueous electrolyte. From this point of view, for example, a fine particle made of polyolefin such as polyethylene, polypropylene, and ethylene-propylene copolymer is used. It is preferable to use a porous film or a nonwoven fabric having a thickness of 10 to 50 μm and a porosity of 30 to 70%.

非水電解液としては、例えば、有機溶媒などの非水溶媒にリチウム塩などの電解質塩を溶解させた汎用の非水電解液を用いることができる。   As the non-aqueous electrolyte, for example, a general-purpose non-aqueous electrolyte obtained by dissolving an electrolyte salt such as a lithium salt in a non-aqueous solvent such as an organic solvent can be used.

非水電解液に係る非水溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチル、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、エチレングリコールサルファイト、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。   Examples of the non-aqueous solvent for the non-aqueous electrolyte include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propionate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, ethylene glycol sulfite, 1,2- Examples include dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran, diethyl ether and the like, and only one of these may be used, or two or more may be used in combination.

非水電解液に係る電解質塩としては、例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。なお、非水電解液中の電解質塩の濃度としては、0.3〜1.7mol/lであることが好ましく、0.5〜1.5mol/lであることがより好ましい。 As an electrolyte salt according to the non-aqueous electrolyte solution, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group], etc. Only one of these may be used, or two or more may be used in combination. In addition, as a density | concentration of the electrolyte salt in a non-aqueous electrolyte, it is preferable that it is 0.3-1.7 mol / l, and it is more preferable that it is 0.5-1.5 mol / l.

また、非水電解液には、電池の充放電サイクル特性や貯蔵特性の向上のために、ビニレンカーボネートおよびその誘導体、アルキルベンゼン類(シクロヘキシルベンゼン、tert−ブチルベンゼンなど)、ビフェニル、環状スルトン(プロパンスルトンなど)、スルフィド類(ジフェニルジスルフィドなど)などの添加剤を添加してもよい。これらの添加剤の非水電解液における添加量は、例えば、好ましくは0.1質量%以上、より好ましくは0.5質量%以上であって、好ましくは10質量%以下、より好ましくは5質量%以下である。   Non-aqueous electrolytes include vinylene carbonate and derivatives thereof, alkylbenzenes (such as cyclohexylbenzene and tert-butylbenzene), biphenyl, and cyclic sultone (propane sultone) in order to improve battery charge / discharge cycle characteristics and storage characteristics. Etc.) and additives such as sulfides (diphenyl disulfide, etc.) may be added. The amount of these additives added to the non-aqueous electrolyte is, for example, preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and preferably 10% by mass or less, more preferably 5% by mass. % Or less.

本発明のリチウムイオン二次電池は、エネルギー密度および出力密度が高く、かつ安全性が優れていることから、これらの特性を生かして、各種の電気機器や自動車用途を始めとして、従来から知られているリチウムイオン二次電池で適用されている各種用途に好ましく用いることができる。   Since the lithium ion secondary battery of the present invention has high energy density and high output density and is excellent in safety, it has been known in the past, including various electric devices and automobile applications, taking advantage of these characteristics. It can be preferably used for various applications applied in the lithium ion secondary battery.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではない。なお、後記の各実施例および比較例では、以下のようにして作製した負極および正極を使用した。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention. In each example and comparative example described later, a negative electrode and a positive electrode manufactured as follows were used.

<負極の作製>
負極活物質であるBET比表面積が11.0m/gのチタン酸リチウム(LiTi12)粉末:85質量部と、導電助剤であるアセチレンブラック:9質量部と、バインダーであるPVDF:6質量部とを用い、溶媒にN−メチル−2−ピロリドン(NMP)を使用し、これらを混合してスラリー状の負極合剤含有ペーストを調製した。得られた負極合剤含有ペーストを、厚みが15μmのアルミニウム箔からなる集電体の片面または両面に、集電体の一部が露出するように残しつつ塗布し、乾燥して負極合剤層を形成後、ローラーで負極合剤層を加圧成形して、負極合剤層を片面にのみ有する負極と、負極合剤層を両面に有する負極とを作製した。なお、負極の負極合剤層の厚みは、集電体の片面あたり、20μmとした。
<Production of negative electrode>
The negative electrode active material is a lithium titanate (Li 4 Ti 5 O 12 ) powder having a BET specific surface area of 11.0 m 2 / g: 85 parts by mass, acetylene black as a conductive auxiliary agent: 9 parts by mass, and a binder. PVDF: 6 parts by mass, N-methyl-2-pyrrolidone (NMP) was used as a solvent, and these were mixed to prepare a slurry-like negative electrode mixture-containing paste. The obtained negative electrode mixture-containing paste was applied to one side or both sides of a current collector made of aluminum foil having a thickness of 15 μm while leaving a part of the current collector exposed, and dried to form a negative electrode mixture layer After forming, the negative electrode mixture layer was pressure-molded with a roller to prepare a negative electrode having the negative electrode mixture layer only on one side and a negative electrode having the negative electrode mixture layer on both sides. The thickness of the negative electrode mixture layer of the negative electrode was 20 μm per one side of the current collector.

<正極の作製>
正極活物質であるBET比表面積が3.0m/gのスピネル構造のマンガン酸リチウム(LiMn)粉末:85質量部と、導電助剤であるアセチレンブラック:9質量部と、バインダーであるPVDF:6質量部とを用い、溶媒にNMPを使用し、これらを混合してスラリー状の正極合剤含有ペーストを調製した。得られた正極合剤含有ペーストを、厚みが15μmのアルミニウム箔からなる集電体の両面に、集電体の一部が露出するように残しつつ塗布し、乾燥して正極合剤層を形成後、ローラーで正極合剤層を加圧成形して正極を作製した。なお、正極の正極合剤層の厚みは、集電体の片面あたり、20μmとした。
<Preparation of positive electrode>
A lithium manganate (LiMn 2 O 4 ) powder having a spinel structure with a BET specific surface area of 3.0 m 2 / g as a positive electrode active material: 85 parts by mass, acetylene black as a conductive auxiliary agent: 9 parts by mass, and a binder A certain PVDF: 6 parts by mass, NMP was used as a solvent, and these were mixed to prepare a slurry-like positive electrode mixture-containing paste. The resulting positive electrode mixture-containing paste was applied to both sides of a current collector made of aluminum foil having a thickness of 15 μm while leaving a part of the current collector exposed, and dried to form a positive electrode mixture layer Thereafter, the positive electrode mixture layer was pressure-formed with a roller to produce a positive electrode. Note that the thickness of the positive electrode mixture layer of the positive electrode was 20 μm per one side of the current collector.

実施例1
前記の負極を、負極合剤層のサイズが19.7cm×10.9cmとなり、かつ集電タブとなる負極集電体の露出部を含むように裁断したものを6枚(負極合剤層を片面にのみ有する負極2枚、負極合剤層を両面に有する負極4枚)用意し、また、前記の正極を、正極合剤層のサイズが負極合剤層のサイズと同じ19.7cm×10.9cmとなり、かつ集電タブとなる正極集電体の露出部を含むように裁断したものを5枚用意した。これらを、セパレーター(ポリプロピレン/ポリエチレン/ポリプロピレンの3層構造の微多孔膜で、ポリプロピレンの融点が165℃、ポリエチレンの融点が135℃であり、厚みが26μm)を介しつつ交互に重ねて積層電極体を作製した。なお、積層電極体の上下両端は、いずれも負極合剤層を片面にのみ有する負極となるようにし、全ての正極と負極とは、それぞれの正極合剤層の端辺と負極合剤層の端辺とが全て同じ位置に重なるように積層した。すなわち、前記積層電極体では、セパレーターを介して互いに対向する正極合剤層の端辺と負極合剤層の端辺とのずれの幅Lが、電池内のいずれの箇所においても0.5mm以下であった。
Example 1
Six pieces of the negative electrode were cut so that the size of the negative electrode mixture layer was 19.7 cm × 10.9 cm and the exposed portion of the negative electrode current collector serving as a current collecting tab was included (the negative electrode mixture layer was 2 negative electrodes having only one side and 4 negative electrodes having a negative electrode mixture layer on both sides), and the positive electrode was prepared in such a manner that the size of the positive electrode mixture layer was the same as the size of the negative electrode mixture layer 19.7 cm × 10 Five sheets were prepared that were cut to include an exposed portion of a positive electrode current collector that was .9 cm and that would serve as a current collecting tab. These are alternately laminated with separators (polypropylene / polyethylene / polypropylene three-layer microporous film having a melting point of polypropylene of 165 ° C., a melting point of polyethylene of 135 ° C. and a thickness of 26 μm). Was made. Note that both the upper and lower ends of the laminated electrode body are negative electrodes having a negative electrode mixture layer only on one side, and all the positive electrodes and negative electrodes are the edges of the respective positive electrode mixture layers and the negative electrode mixture layers. Lamination was performed so that all the edges overlapped at the same position. That is, in the laminated electrode body, the width L of the deviation between the edge of the positive electrode mixture layer and the edge of the negative electrode mixture layer facing each other via the separator is 0.5 mm or less at any location in the battery. Met.

前記の積層電極体を、外装体となるアルミニウムラミネートフィルム袋内に挿入し、積層電極体の各正極および各負極を、それぞれリード体を介して外部端子と接続し、更に、非水電解液(エチレンカーボネートとジメチルカーボネートとを体積比で1:2の割合で混合した溶媒中に、LiPFを1.2mol/lの濃度で溶解し、更にビニレンカーボネートを2質量%添加して調製した非水電解液)を外装体内に注入した後、外装体内を減圧した状態で、正負極の外部端子の一部を外装体から外へ引き出しつつ外装体を封止して、ラミネート形リチウムイオン二次電池を作製した。なお、このラミネート形リチウムイオン二次電池では、前記の方法により求めた正極の容量(合計容量)Pおよび負極の容量(合計容量)Nは、P=1.0Ah、N=1.1Ahであり、N/P=1.1であった。 The laminated electrode body is inserted into an aluminum laminated film bag serving as an exterior body, and each positive electrode and each negative electrode of the laminated electrode body is connected to an external terminal via a lead body, and further, a non-aqueous electrolyte ( A non-aqueous solution prepared by dissolving LiPF 6 at a concentration of 1.2 mol / l in a solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2, and further adding 2% by mass of vinylene carbonate. After injecting the electrolyte solution into the exterior body, the exterior body is decompressed, and the exterior body is sealed while pulling out a part of the external terminals of the positive and negative electrodes from the exterior body, and the laminated lithium ion secondary battery Was made. In this laminated lithium ion secondary battery, the positive electrode capacity (total capacity) P and the negative electrode capacity (total capacity) N determined by the above method are P = 1.0 Ah and N = 1.1 Ah. N / P = 1.1.

実施例2
実施例1と同じサイズに裁断した負極6枚(負極合剤層を片面にのみ有する負極2枚、負極合剤層を両面に有する負極4枚)および正極5枚を用い、負極合剤層の短辺(長さ10.9cmの辺)と正極合剤層の短辺(長さ10.9cmの辺)とが重なるようにし、負極合剤層の長辺(長さ19.7cmの辺)と正極合剤層の長辺(長さ19.7cmの辺)とが1mmずれるように(ただし、全ての負極合剤層の長辺同士、および全ての正極合剤層の長辺同士は重なるように)した以外は、実施例1と同様にして積層電極体を作製した。この積層電極体では、セパレーターを介して互いに対向する正極合剤層の端辺と負極合剤層の端辺とのずれの幅Lが、電池内のいずれの箇所においても1mm以下であった。
Example 2
Using 6 negative electrodes cut to the same size as in Example 1 (2 negative electrodes having a negative electrode mixture layer only on one side, 4 negative electrodes having a negative electrode mixture layer on both sides) and 5 positive electrodes, The short side (side with a length of 10.9 cm) and the short side (side with a length of 10.9 cm) of the positive electrode mixture layer are overlapped, and the long side of the negative electrode mixture layer (side with a length of 19.7 cm) And the long sides of the positive electrode mixture layer (sides having a length of 19.7 cm) are shifted by 1 mm (however, the long sides of all negative electrode mixture layers and the long sides of all positive electrode mixture layers overlap) A laminated electrode body was produced in the same manner as in Example 1 except that. In this laminated electrode body, the width L of the deviation between the edge of the positive electrode mixture layer and the edge of the negative electrode mixture layer facing each other with the separator interposed therebetween was 1 mm or less in any part of the battery.

前記の積層電極体を用いた以外は、実施例1と同様にしてラミネート形リチウムイオン二次電池を作製した。   A laminated lithium ion secondary battery was produced in the same manner as in Example 1 except that the above laminated electrode body was used.

比較例1
前記の負極を、負極合剤層のサイズが20.5cm×11.7cmとなり、かつ集電タブとなる負極集電体の露出部を含むように裁断したものを6枚(負極合剤層を片面にのみ有する負極2枚、負極合剤層を両面に有する負極4枚)用意し、また、前記の正極を、正極合剤層のサイズが19.7cm×10.9cmとなり、かつ集電タブとなる正極集電体の露出部を含むように裁断したものを5枚用意した。これらの正極および負極を、負極合剤層の各端辺が、それぞれ正極合剤層の各端辺よりも0.4cm外側にはみ出すように配置した以外は、実施例1と同様にして積層電極体を作製した。この積層電極体では、セパレーターを介して互いに対向する正極合剤層の端辺と負極合剤層の端辺とのずれの幅Lが、1.5mmを超えていた。
Comparative Example 1
Six negative electrodes were cut so that the size of the negative electrode mixture layer was 20.5 cm × 11.7 cm and the exposed portion of the negative electrode current collector serving as a current collecting tab was included (the negative electrode mixture layer was 2 negative electrodes only on one side and 4 negative electrodes having a negative electrode mixture layer on both sides), and the positive electrode has a positive electrode mixture layer size of 19.7 cm × 10.9 cm and a current collecting tab Five sheets were cut so as to include the exposed portion of the positive electrode current collector. A laminated electrode in the same manner as in Example 1 except that the positive electrode and the negative electrode were arranged so that each end side of the negative electrode mixture layer protruded 0.4 cm outward from each end side of the positive electrode mixture layer. The body was made. In this laminated electrode body, the width L of the deviation between the end side of the positive electrode mixture layer and the end side of the negative electrode mixture layer facing each other via the separator exceeded 1.5 mm.

前記の積層電極体を用いた以外は、実施例1と同様にしてラミネート形リチウムイオン二次電池を作製した。なお、このラミネート形リチウムイオン二次電池では、前記の方法により求めた正極の容量(合計容量)Pおよび負極の容量(合計容量)Nは、P=1.0Ah、N=1.1Ahであり、N/P=1.1であった。   A laminated lithium ion secondary battery was produced in the same manner as in Example 1 except that the above laminated electrode body was used. In this laminated lithium ion secondary battery, the positive electrode capacity (total capacity) P and the negative electrode capacity (total capacity) N determined by the above method are P = 1.0 Ah and N = 1.1 Ah. N / P = 1.1.

比較例2
負極合剤層の密度を変更した以外は実施例1に用いたものと同様にして負極(負極合剤層を集電体の片面にのみ有する負極、および負極合剤層を集電体の両面に有する負極)を作製し、これらの負極を用いて負極の容量(合計容量)Nを0.9Ahとなるようにして、N/Pを0.9とした以外は、実施例1と同様にしてラミネート形リチウムイオン二次電池を作製した。
Comparative Example 2
Except for changing the density of the negative electrode mixture layer, the negative electrode (the negative electrode having the negative electrode mixture layer only on one side of the current collector and the negative electrode mixture layer on both sides of the current collector) was the same as that used in Example 1. Except that the negative electrode capacity (total capacity) N is 0.9 Ah and N / P is 0.9. Thus, a laminated lithium ion secondary battery was produced.

実施例1、2および比較例1、2のラミネート形リチウムイオン二次電池を、それぞれ15個ずつ用意し、化成処理、初回放電および電池容量の確認を行った後、表1に示すステップ1からステップ9の条件で順次充放電を繰り返して、各電池の出力測定を行った。なお、前記の各充放電では、充電上限電圧を2.9Vとし、放電終止電圧を1.0Vとした。   Fifteen laminated lithium ion secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were prepared, respectively, and after performing chemical conversion treatment, initial discharge and confirmation of battery capacity, from Step 1 shown in Table 1 Charging / discharging was repeated sequentially under the conditions of step 9, and the output of each battery was measured. In each of the above charging / discharging operations, the charging upper limit voltage was 2.9 V, and the discharge end voltage was 1.0 V.

Figure 2011081931
Figure 2011081931

そして、得られた出力から、各電池のエネルギー密度(電池の質量あたりの電力量)および出力密度(電池の質量あたりの電力)を求めた。これらの結果を、各電池の質量と合わせて表2に示すが、表2に示す結果は、それぞれ、15個の電池の平均値である。   And from the obtained output, the energy density (electric power per mass of the battery) and the output density (electric power per mass of the battery) of each battery were determined. These results are shown in Table 2 together with the mass of each battery. The results shown in Table 2 are average values of 15 batteries, respectively.

Figure 2011081931
Figure 2011081931

表2から明らかなように、実施例1、2の電池はエネルギー密度および出力密度が、比較例1の電池に比べて高い。なお、実施例1、2および比較例1の電池は、出力測定を行った各15個の全てで内部短絡の発生が認められなかったが、比較例2の電池は、15個中2個の電池で内部短絡が発生し(内部短絡発生率13.3%)、安全性が劣っていることが判明したため、表2に示すエネルギー密度および出力密度の評価は行っていない。なお、比較例2の電池における内部短絡の発生は、容量比N/Pが0.9と低いためであると推測される。   As is clear from Table 2, the batteries of Examples 1 and 2 have higher energy density and output density than the battery of Comparative Example 1. In addition, in the batteries of Examples 1 and 2 and Comparative Example 1, the occurrence of an internal short circuit was not observed in all 15 of each of which the output was measured, but the battery of Comparative Example 2 was 2 out of 15 batteries. Since internal short circuit occurred in the battery (internal short circuit occurrence rate: 13.3%) and the safety was found to be inferior, the energy density and output density shown in Table 2 were not evaluated. The occurrence of an internal short circuit in the battery of Comparative Example 2 is presumed to be because the capacity ratio N / P is as low as 0.9.

また、短絡の発生が認められなかった実施例1、2および比較例1の各電池について、終止電圧を2.9Vとする10Aの定電流での充電と、終止電圧を1.0Vとする10Aの定電流での放電とを1000回繰り返し行う充放電サイクル試験を実施し、各サイクルでの放電容量を求め、初期放電容量(1サイクル目の放電容量)に対する割合である容量維持率を算出した。これらの結果を図3に示す。図3は、横軸にサイクル数を、縦軸に容量維持率を示したグラフであり、それぞれ、15個の電池の平均値を示している。   Further, for each of the batteries of Examples 1 and 2 and Comparative Example 1 in which no short circuit was observed, charging at a constant current of 10 A with a final voltage of 2.9 V and 10 A with a final voltage of 1.0 V A charge / discharge cycle test in which the discharge at a constant current was repeated 1000 times, the discharge capacity in each cycle was obtained, and the capacity maintenance ratio, which is the ratio to the initial discharge capacity (discharge capacity at the first cycle), was calculated. . These results are shown in FIG. FIG. 3 is a graph in which the horizontal axis represents the number of cycles and the vertical axis represents the capacity retention rate, and each represents an average value of 15 batteries.

図3から明らかなように、実施例1、2の電池の充放電サイクル特性は、安全性向上の観点から、負極合剤層の面積を正極合剤層の面積よりも、かなり大きくして構成した比較例1の電池と、ほぼ同等である。なお、充放電サイクル特性の評価後に各電池を分解して、正極、負極およびセパレーターを観察すると、リチウムデンドライトの形成は認められなかった。よって、実施例1、2の電池は、エネルギー密度および出力密度を高めつつ、高い安全性を確保できていることが分かる。   As is clear from FIG. 3, the charge / discharge cycle characteristics of the batteries of Examples 1 and 2 were configured by making the area of the negative electrode mixture layer considerably larger than the area of the positive electrode mixture layer from the viewpoint of improving safety. The battery of Comparative Example 1 is almost equivalent. In addition, when each battery was decomposed | disassembled after evaluation of charging / discharging cycling characteristics, and the positive electrode, the negative electrode, and the separator were observed, formation of lithium dendrite was not recognized. Therefore, it can be seen that the batteries of Examples 1 and 2 can ensure high safety while increasing the energy density and the output density.

実施例3
前記の負極(負極合剤層を集電体の両面に有する負極)を、内周側となる負極合剤層のサイズが48.95cm×4.2cmとなり、外周側となる負極合剤層のサイズが42.45×4.2cmとなり、かつ集電タブとなる負極集電体の露出部を含むように裁断し、また、前記の正極を、正極合剤層の面積が44.65cm×4.2cmとなり、かつ集電タブとなる正極集電体の露出部を含むように裁断した。この正極と負極とを、実施例1で用いたものと同じセパレーターを介しつつ重ね合わせた。なお、その際には、巻き始め端となる側において、正極合剤層の短辺(長さ4.2cmの辺)と負極合剤層の短辺(長さ4.2cmの辺)とが重なるようにし、正極合剤層の長辺(長さ44.65cmの辺)のそれぞれと、負極合剤層の長辺(長さ48.95cmの辺、および長さ42.45cmの辺)のそれぞれとが重なるようにした。そして、この正極、セパレーターおよび負極の積層体を、前記の巻き始め端側から渦巻き状に巻回し、巻き終わり端をテープで固定して巻回電極体とした。なお、この巻回電極体では、セパレーターを介して互いに対向する正極合剤層の端辺と負極合剤層の端辺とのずれの幅Lが、電池内のいずれの箇所においても0.5mm以下であった。
Example 3
The size of the negative electrode mixture layer on the inner peripheral side of the negative electrode (negative electrode having negative electrode mixture layers on both sides of the current collector) is 48.95 cm × 4.2 cm, and the negative electrode mixture layer on the outer peripheral side The size is 42.45 × 4.2 cm, and it is cut so as to include the exposed portion of the negative electrode current collector that becomes a current collecting tab. The positive electrode has an area of the positive electrode mixture layer of 44.65 cm × 4. It cut | disconnected so that it might become 2 cm and may contain the exposed part of the positive electrode electrical power collector used as a current collection tab. The positive electrode and the negative electrode were superposed through the same separator as that used in Example 1. In this case, the short side (side with a length of 4.2 cm) of the positive electrode mixture layer and the short side (side with a length of 4.2 cm) of the positive electrode mixture layer are formed on the winding start side. Each of the long side of the positive electrode mixture layer (side having a length of 44.65 cm) and the long side of the negative electrode mixture layer (side having a length of 48.95 cm and side having a length of 42.45 cm) Each one overlapped. And the laminated body of this positive electrode, a separator, and a negative electrode was wound in the shape of a spiral from the said winding start end side, and the winding end end was fixed with the tape, and it was set as the winding electrode body. In this wound electrode body, the deviation width L between the end of the positive electrode mixture layer and the end of the negative electrode mixture layer facing each other through the separator is 0.5 mm at any location in the battery. It was the following.

前記の巻回電極体を単三型電池用金属缶内に挿入し、負極のリード線を缶底に溶接し、正極のリード線をキャップに溶接した後に、金属缶内を減圧しながら加熱乾燥した。その後、アルゴンガス中で金属缶内に非水電解液(実施例1で使用したものと同じ非水電解液)を注入し、クリッピング、封口を経て、円筒形リチウムイオン二次電池を作製した。なお、この円筒形リチウムイオン二次電池では、前記の方法により求めた正極の容量(合計容量)Pおよび負極の容量(合計容量)Nは、P=0.55Ah、N=0.605Ahであり、N/P=1.1であった。   Insert the wound electrode body into a metal can for AA batteries, weld the negative lead wire to the bottom of the can, weld the positive lead wire to the cap, and then heat dry while reducing the pressure inside the metal can did. Thereafter, a non-aqueous electrolyte (the same non-aqueous electrolyte as used in Example 1) was injected into a metal can in an argon gas, and after clipping and sealing, a cylindrical lithium ion secondary battery was produced. In this cylindrical lithium ion secondary battery, the positive electrode capacity (total capacity) P and the negative electrode capacity (total capacity) N obtained by the above method are P = 0.55 Ah and N = 0.605 Ah. N / P = 1.1.

実施例4
セパレーターを介して正極と負極とを重ねる際に、巻き始め端となる側において、正極合剤層の短辺(長さ4.2cmの辺)と負極合剤層の短辺(長さ4.2cmの辺)とが、正負極の長尺方向に1mmずれるようにした以外は、実施例3と同様にして巻回電極体を作製した。この巻回電極体では、セパレーターを介して互いに対向する正極合剤層の端辺と負極合剤層の端辺とのずれの幅Lが、電池内のいずれの箇所においても1.5mm以下であった。
Example 4
When the positive electrode and the negative electrode are stacked via the separator, the short side (length of 4.2 cm) of the positive electrode mixture layer and the short side of the negative electrode mixture layer (length 4. A spirally wound electrode body was produced in the same manner as in Example 3 except that the side of 2 cm was shifted by 1 mm in the longitudinal direction of the positive and negative electrodes. In this wound electrode body, the width L of the deviation between the edge of the positive electrode mixture layer and the edge of the negative electrode mixture layer facing each other through the separator is 1.5 mm or less in any part of the battery. there were.

前記の巻回電極体を用いた以外は、実施例3と同様にして円筒形リチウムイオン二次電池を作製した。   A cylindrical lithium ion secondary battery was produced in the same manner as in Example 3 except that the above wound electrode body was used.

比較例3
前記の負極(負極合剤層を集電体の両面に有する負極)を、内周側となる負極合剤層のサイズが49.1cm×4.2cmとなり、外周側となる負極合剤層のサイズが42.6×4.2cmとなり、かつ集電タブとなる負極集電体の露出部を含むように裁断し、また、前記の正極を、正極合剤層の面積が44.5cm×4.2cmとなり、かつ集電タブとなる正極集電体の露出部を含むように裁断した。この正極と負極とを、実施例1で用いたものと同じセパレーターを介しつつ重ね合わせた。なお、その際には、巻き始め端となる側において、負極合剤層の短辺(長さ4.2cmの辺)が、正極合剤層の短辺(長さ4.2cmの辺)よりも正負極の長尺方向に2mmはみ出すようにし、かつ負極合剤層の長辺(長さ49.1cmの辺、および長さ42.6cmの辺)のそれぞれが、正極合剤層の長辺(長さ44.5cmの辺)のそれぞれから、正負極の長尺方向に直交する方向に1mmずつはみ出すようにした。そして、この正極、セパレーターおよび負極の積層体を、前記の巻き始め端側から渦巻き状に巻回し、巻き終わり端をテープで固定して巻回電極体とした。なお、この巻回電極体では、その巻き終わり端側においても、負極合剤層の短辺(長さ4.2cmの辺)が、正極合剤層の短辺(長さ4.2cmの辺)よりも正負極の長尺方向に2mmはみ出していた。そして、この巻回電極体では、セパレーターを介して互いに対向する正極合剤層の端辺と負極合剤層の端辺とのずれの幅Lが、1.5mmを超えていた。
Comparative Example 3
The size of the negative electrode mixture layer on the inner peripheral side of the negative electrode (negative electrode having negative electrode mixture layers on both sides of the current collector) is 49.1 cm × 4.2 cm, and the negative electrode mixture layer on the outer peripheral side The size is 42.6 × 4.2 cm, and it is cut so as to include the exposed portion of the negative electrode current collector that becomes the current collecting tab. The positive electrode has an area of the positive electrode mixture layer of 44.5 cm × 4. It cut | disconnected so that it might become 2 cm and may contain the exposed part of the positive electrode electrical power collector used as a current collection tab. The positive electrode and the negative electrode were superposed through the same separator as that used in Example 1. In that case, the short side (side with a length of 4.2 cm) of the negative electrode mixture layer is shorter than the short side (side with a length of 4.2 cm) of the negative electrode mixture layer on the winding start end side. Also, the long side of the negative electrode mixture layer (the side having a length of 49.1 cm and the side having a length of 42.6 cm) is protruded by 2 mm in the longitudinal direction of the positive and negative electrodes. Each of (sides of 44.5 cm in length) protruded by 1 mm in a direction perpendicular to the longitudinal direction of the positive and negative electrodes. And the laminated body of this positive electrode, a separator, and a negative electrode was wound in the shape of a spiral from the said winding start end side, and the winding end end was fixed with the tape, and it was set as the winding electrode body. In this wound electrode body, the short side (length of 4.2 cm) of the negative electrode mixture layer is also the short side (length of 4.2 cm) of the positive electrode mixture layer on the winding end side. ) Protruded 2 mm in the longitudinal direction of the positive and negative electrodes. In this spirally wound electrode body, the deviation width L between the end side of the positive electrode mixture layer and the end side of the negative electrode mixture layer facing each other through the separator exceeded 1.5 mm.

前記の巻回電極体を用いた以外は、実施例3と同様にして円筒形リチウムイオン二次電池を作製した。なお、この円筒形リチウムイオン二次電池では、前記の方法により求めた正極の容量(合計容量)Pおよび負極の容量(合計容量)Nは、P=0.55Ah、N=0.605Ahであり、N/P=1.1であった。   A cylindrical lithium ion secondary battery was produced in the same manner as in Example 3 except that the above wound electrode body was used. In this cylindrical lithium ion secondary battery, the positive electrode capacity (total capacity) P and the negative electrode capacity (total capacity) N obtained by the above method are P = 0.55 Ah and N = 0.605 Ah. N / P = 1.1.

比較例4
負極合剤層の密度を変更した以外は実施例1に用いたものと同様にして負極(負極合剤層を集電体の両面に有する負極)を作製し、これらの負極を用いて、負極の容量(合計容量)Nを0.495Ahとなるようにして、N/Pを0.9とした以外は、実施例3と同様にして円筒形リチウムイオン二次電池を作製した。
Comparative Example 4
A negative electrode (a negative electrode having a negative electrode mixture layer on both sides of the current collector) was prepared in the same manner as that used in Example 1, except that the density of the negative electrode mixture layer was changed. A cylindrical lithium ion secondary battery was fabricated in the same manner as in Example 3 except that the capacity (total capacity) of N was 0.495 Ah and N / P was 0.9.

実施例3、4および比較例3、4の円筒形リチウムイオン二次電池を、それぞれ15個ずつ用意し、化成処理、初回放電および電池容量の確認を行った後、表3に示すステップ1からステップ7の条件で順次充放電を繰り返して、各電池の出力測定を行った。なお、前記の各充放電では、充電上限電圧を2.9Vとし、放電終止電圧を1.0Vとした。   Fifteen cylindrical lithium ion secondary batteries of Examples 3 and 4 and Comparative Examples 3 and 4 were prepared, respectively, and after performing chemical conversion treatment, initial discharge and battery capacity confirmation, from Step 1 shown in Table 3 Charging / discharging was repeated sequentially under the conditions of step 7, and the output of each battery was measured. In each of the above charging / discharging operations, the charging upper limit voltage was 2.9 V, and the discharge end voltage was 1.0 V.

Figure 2011081931
Figure 2011081931

そして、得られた出力から、各電池のエネルギー密度(電池の質量あたりの電力量)および出力密度(電池の質量あたりの電力)を求めた。これらの結果を、各電池の質量と合わせて表4に示すが、表4に示す結果は、それぞれ、15個の電池の平均値である。   And from the obtained output, the energy density (electric power per mass of the battery) and the output density (electric power per mass of the battery) of each battery were determined. These results are shown in Table 4 together with the mass of each battery. The results shown in Table 4 are average values of 15 batteries, respectively.

Figure 2011081931
Figure 2011081931

表4から明らかなように、実施例3、4の電池はエネルギー密度および出力密度が、比較例3の電池に比べて高い。なお、実施例3、4および比較例3の電池は、出力測定を行った各15個の全てで内部短絡の発生が認められなかったが、比較例4の電池は、15個中3個の電池で内部短絡が発生し(内部短絡発生率20%)、安全性が劣っていることが判明したため、表4に示すエネルギー密度および出力密度の評価は行っていない。なお、比較例4の電池における内部短絡の発生も、比較例2の電池と同様に容量比N/Pが0.9と低いためであると推測される。   As is clear from Table 4, the batteries of Examples 3 and 4 have higher energy density and output density than the battery of Comparative Example 3. In addition, in the batteries of Examples 3 and 4 and Comparative Example 3, the occurrence of an internal short circuit was not observed in all 15 of each of which the output measurement was performed, but the battery of Comparative Example 4 was 3 out of 15 batteries. Since it was found that internal short circuit occurred in the battery (internal short circuit occurrence rate 20%) and the safety was inferior, the energy density and output density shown in Table 4 were not evaluated. The occurrence of an internal short circuit in the battery of Comparative Example 4 is presumed to be because the capacity ratio N / P is as low as 0.9 as in the battery of Comparative Example 2.

また、短絡の発生が認められなかった実施例3、4および比較例3の各電池について、終止電圧を2.9Vとする0.55Aの定電流での充電と、終止電圧を1.0Vとする0.55Aの定電流での放電とを1000回繰り返し行う充放電サイクル試験を実施し、各サイクルでの放電容量を求め、初期放電容量(1サイクル目の放電容量)に対する割合である容量維持率を算出した。これらの結果を図4に示す。図4は、横軸にサイクル数を、縦軸に容量維持率を示したグラフであり、それぞれ、15個の電池の平均値を示している。   In addition, for each of the batteries of Examples 3 and 4 and Comparative Example 3 where no short circuit was observed, charging at a constant current of 0.55 A with a final voltage of 2.9 V, and a final voltage of 1.0 V Conduct a charge / discharge cycle test in which the discharge at a constant current of 0.55A is repeated 1000 times, determine the discharge capacity in each cycle, and maintain the capacity that is a ratio to the initial discharge capacity (discharge capacity at the first cycle) The rate was calculated. These results are shown in FIG. FIG. 4 is a graph in which the horizontal axis represents the number of cycles and the vertical axis represents the capacity retention rate, and each shows an average value of 15 batteries.

図4から明らかなように、実施例3、4の電池の充放電サイクル特性は、安全性向上の観点から、負極合剤層の面積を正極合剤層の面積よりも、かなり大きくして構成した比較例3の電池と、ほぼ同等である。なお、充放電サイクル特性の評価後に各電池を分解して、正極、負極およびセパレーターを観察すると、リチウムデンドライトの形成は認められなかった。よって、実施例3、4の電池も、実施例1、2の電池と同様に、エネルギー密度および出力密度を高めつつ、高い安全性を確保できていることが分かる。   As is clear from FIG. 4, the charge / discharge cycle characteristics of the batteries of Examples 3 and 4 were configured by making the area of the negative electrode mixture layer considerably larger than the area of the positive electrode mixture layer from the viewpoint of improving safety. The battery of Comparative Example 3 is almost equivalent. In addition, when each battery was decomposed | disassembled after evaluation of charging / discharging cycling characteristics, and the positive electrode, the negative electrode, and the separator were observed, formation of lithium dendrite was not recognized. Therefore, it can be seen that the batteries of Examples 3 and 4 can secure high safety while increasing the energy density and the output density, similarly to the batteries of Examples 1 and 2.

1 正極
1a、1b 正極合剤層の端辺
2 負極
2a、2b 負極合剤層の端辺
3 セパレーター
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a, 1b Edge of positive mix layer 2 Negative electrode 2a, 2b End of negative mix layer 3 Separator

Claims (5)

負極活物質を含有する負極合剤層を有する負極、正極活物質を含有する正極合剤層を有する正極、およびセパレーターを備えた電極体、並びに非水電解液を有するリチウムイオン二次電池であって、
負極活物質の平均電位が、Li/Liに対して1.0V以上であり、
正極活物質がスピネル構造のリチウム含有複合酸化物であり、
正極の容量に対する負極の容量の比が1.0〜1.2であり、
セパレーターを介して互いに対向する正極合剤層の端辺と負極合剤層の端辺とのずれの幅Lが、前記両端辺のいずれの点においても1.5mm以下であることを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery having a negative electrode having a negative electrode mixture layer containing a negative electrode active material, a positive electrode having a positive electrode mixture layer containing a positive electrode active material, a separator, and a non-aqueous electrolyte. And
The average potential of the negative electrode active material is 1.0 V or more with respect to Li / Li + ,
The positive electrode active material is a spinel-structure lithium-containing composite oxide,
The ratio of the capacity of the negative electrode to the capacity of the positive electrode is 1.0 to 1.2,
The width L of the deviation between the edge of the positive electrode mixture layer and the edge of the negative electrode mixture layer facing each other through the separator is 1.5 mm or less at any point of the both ends. Lithium ion secondary battery.
負極活物質が、リチウムチタン複合酸化物である請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the negative electrode active material is a lithium titanium composite oxide. 正極活物質が、スピネル構造のリチウムマンガン酸化物である請求項1または2に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the positive electrode active material is a lithium manganese oxide having a spinel structure. 正極、負極およびセパレーターを備えた電極体が、積層電極体である請求項1〜3のいずれかに記載のリチウムイオン二次電池。   The lithium ion secondary battery according to any one of claims 1 to 3, wherein the electrode body including the positive electrode, the negative electrode, and the separator is a laminated electrode body. 正極、負極およびセパレーターを備えた電極体が、巻回電極体である請求項1〜3のいずれかに記載のリチウムイオン二次電池。   The lithium ion secondary battery according to any one of claims 1 to 3, wherein the electrode body including the positive electrode, the negative electrode, and the separator is a wound electrode body.
JP2009231193A 2009-10-05 2009-10-05 Lithium ion secondary battery Pending JP2011081931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009231193A JP2011081931A (en) 2009-10-05 2009-10-05 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231193A JP2011081931A (en) 2009-10-05 2009-10-05 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2011081931A true JP2011081931A (en) 2011-04-21

Family

ID=44075802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231193A Pending JP2011081931A (en) 2009-10-05 2009-10-05 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2011081931A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157873A1 (en) * 2012-04-18 2013-10-24 주식회사 엘지화학 Electrode for secondary battery, and secondary battery comprising same
WO2013157863A1 (en) * 2012-04-18 2013-10-24 주식회사 엘지화학 Electrode and secondary battery including same
WO2013157854A1 (en) * 2012-04-17 2013-10-24 주식회사 엘지화학 Lithium secondary battery exhibiting excellent performance
CN103959540A (en) * 2012-11-23 2014-07-30 株式会社Lg化学 Method for manufacturing electrode assembly and electrode assembly manufactured using same
KR101501439B1 (en) * 2012-04-18 2015-03-12 주식회사 엘지화학 The Electrodes For Secondary Battery and the Secondary Battery Comprising the Same
JP2015512131A (en) * 2012-04-16 2015-04-23 エルジー・ケム・リミテッド ELECTRODE ASSEMBLY WITH DIFFERENT SHAPE SHAPE OF POSITIVE AND NEGATIVE ELECTRODE AND SECONDARY BATTERY INCLUDING THE SAME
JP2015513190A (en) * 2012-04-20 2015-04-30 エルジー・ケム・リミテッド Electrode assembly, battery cell and device including the same
JP2015529954A (en) * 2012-11-13 2015-10-08 エルジー・ケム・リミテッド Electrode assembly having a step structure
US9159997B2 (en) 2011-09-20 2015-10-13 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, electrode for the same, and battery pack
US9236631B2 (en) 2012-11-22 2016-01-12 Lg Chem, Ltd. Electrode assembly including electrode units having the same width and different lengths, and battery cell and device including the electrode assembly
WO2016132436A1 (en) * 2015-02-16 2016-08-25 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
EP2924794A4 (en) * 2012-11-22 2016-09-21 Lg Chemical Ltd Electrode assembly comprising electrode units with equal lengths and different widths, and battery cell and device comprising same
US9478773B2 (en) 2012-03-16 2016-10-25 Lg Chem, Ltd. Battery cell of asymmetric structure and battery pack employed with the same
US9484560B2 (en) 2013-02-13 2016-11-01 Lg Chem, Ltd. Electric device having a round corner and including a secondary battery
US9548517B2 (en) 2012-04-05 2017-01-17 Lg Chem, Ltd. Battery cell of stair-like structure
US9620789B2 (en) 2012-03-08 2017-04-11 Lg Chem, Ltd. Battery pack of the stair-like structure
US9685679B2 (en) 2012-05-29 2017-06-20 Lg Chem, Ltd. Stepwise electrode assembly having variously-shaped corner and secondary battery, battery pack and device comprising the same
US9774060B2 (en) 2012-02-07 2017-09-26 Lg Chem, Ltd. Method for manufacturing battery cell of novel structure
US9786874B2 (en) 2013-03-08 2017-10-10 Lg Chem, Ltd. Electrode having round corner
US9954203B2 (en) 2013-03-08 2018-04-24 Lg Chem, Ltd. Stepped electrode group stack
CN111386622A (en) * 2017-11-30 2020-07-07 松下知识产权经营株式会社 Cylindrical secondary battery
EP3951994A4 (en) * 2019-03-25 2022-03-23 Kabushiki Kaisha Toshiba Electrode group, battery, and battery pack
WO2022094466A1 (en) * 2020-11-02 2022-05-05 24M Technologies, Inc. Electrochemical cells with dendrite prevention mechanisms and methods of making the same
US11942654B2 (en) 2019-06-27 2024-03-26 24M Technologies, Inc. Dual electrolyte electrochemical cells, systems, and methods of manufacturing the same

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9159997B2 (en) 2011-09-20 2015-10-13 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, electrode for the same, and battery pack
US9774060B2 (en) 2012-02-07 2017-09-26 Lg Chem, Ltd. Method for manufacturing battery cell of novel structure
US9620789B2 (en) 2012-03-08 2017-04-11 Lg Chem, Ltd. Battery pack of the stair-like structure
US9478773B2 (en) 2012-03-16 2016-10-25 Lg Chem, Ltd. Battery cell of asymmetric structure and battery pack employed with the same
US9548517B2 (en) 2012-04-05 2017-01-17 Lg Chem, Ltd. Battery cell of stair-like structure
JP2015512131A (en) * 2012-04-16 2015-04-23 エルジー・ケム・リミテッド ELECTRODE ASSEMBLY WITH DIFFERENT SHAPE SHAPE OF POSITIVE AND NEGATIVE ELECTRODE AND SECONDARY BATTERY INCLUDING THE SAME
US10103385B2 (en) 2012-04-16 2018-10-16 Lg Chem, Ltd. Electrode assembly including cathode and anode having different welding portion shapes and secondary battery including the same
JP2015513773A (en) * 2012-04-17 2015-05-14 エルジー・ケム・リミテッド High performance lithium secondary battery
US9899663B2 (en) 2012-04-17 2018-02-20 Lg Chem, Ltd. Lithium secondary battery with excellent performance
WO2013157854A1 (en) * 2012-04-17 2013-10-24 주식회사 엘지화학 Lithium secondary battery exhibiting excellent performance
CN104185915A (en) * 2012-04-18 2014-12-03 株式会社Lg化学 Electrode for secondary battery, and secondary battery comprising same
WO2013157873A1 (en) * 2012-04-18 2013-10-24 주식회사 엘지화학 Electrode for secondary battery, and secondary battery comprising same
US9786916B2 (en) 2012-04-18 2017-10-10 Lg Chem, Ltd. Electrode and secondary battery including the same
KR101495301B1 (en) * 2012-04-18 2015-02-25 주식회사 엘지화학 The Electrodes For Secondary Battery and the Secondary Battery Comprising the Same
KR101501439B1 (en) * 2012-04-18 2015-03-12 주식회사 엘지화학 The Electrodes For Secondary Battery and the Secondary Battery Comprising the Same
JP2015515722A (en) * 2012-04-18 2015-05-28 エルジー・ケム・リミテッド Electrode and secondary battery including the same
US10153480B2 (en) 2012-04-18 2018-12-11 Lg Chem, Ltd. Electrode for secondary battery and secondary battery including the same
WO2013157863A1 (en) * 2012-04-18 2013-10-24 주식회사 엘지화학 Electrode and secondary battery including same
US9508993B2 (en) 2012-04-18 2016-11-29 Lg Chem, Ltd. Electrode for secondary battery and secondary battery including the same
JP2015513190A (en) * 2012-04-20 2015-04-30 エルジー・ケム・リミテッド Electrode assembly, battery cell and device including the same
US9431674B2 (en) 2012-04-20 2016-08-30 Lg Chem, Ltd. Balanced stepped electrode assembly, and battery cell and device comprising the same
US9263760B2 (en) 2012-04-20 2016-02-16 Lg Chem, Ltd. Stepped electrode assembly having predetermined a reversible capacitance ratio in the interface between electrode units, battery cell and device comprising the same
US9627708B2 (en) 2012-04-20 2017-04-18 Lg Chem, Ltd. Stepped electrode assembly having predetermined a thickness ratio in the interface between electrode units, battery cell and device comprising the same
US9685679B2 (en) 2012-05-29 2017-06-20 Lg Chem, Ltd. Stepwise electrode assembly having variously-shaped corner and secondary battery, battery pack and device comprising the same
US10026994B2 (en) 2012-11-13 2018-07-17 Lg Chem, Ltd. Stepped electrode assembly
JP2015529954A (en) * 2012-11-13 2015-10-08 エルジー・ケム・リミテッド Electrode assembly having a step structure
EP2924794A4 (en) * 2012-11-22 2016-09-21 Lg Chemical Ltd Electrode assembly comprising electrode units with equal lengths and different widths, and battery cell and device comprising same
US9236631B2 (en) 2012-11-22 2016-01-12 Lg Chem, Ltd. Electrode assembly including electrode units having the same width and different lengths, and battery cell and device including the electrode assembly
CN103959540A (en) * 2012-11-23 2014-07-30 株式会社Lg化学 Method for manufacturing electrode assembly and electrode assembly manufactured using same
JP2015504591A (en) * 2012-11-23 2015-02-12 エルジー ケム. エルティーディ. Electrode assembly manufacturing method and electrode assembly manufactured using the same
US9343779B2 (en) 2012-11-23 2016-05-17 Lg Chem, Ltd. Method of preparing electrode assembly and electrode assembly prepared using the method
US9484560B2 (en) 2013-02-13 2016-11-01 Lg Chem, Ltd. Electric device having a round corner and including a secondary battery
US9786874B2 (en) 2013-03-08 2017-10-10 Lg Chem, Ltd. Electrode having round corner
US9954203B2 (en) 2013-03-08 2018-04-24 Lg Chem, Ltd. Stepped electrode group stack
WO2016132436A1 (en) * 2015-02-16 2016-08-25 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
US9947923B2 (en) 2015-02-16 2018-04-17 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
JPWO2016132436A1 (en) * 2015-02-16 2017-04-27 株式会社東芝 Nonaqueous electrolyte battery and battery pack
CN111386622A (en) * 2017-11-30 2020-07-07 松下知识产权经营株式会社 Cylindrical secondary battery
CN111386622B (en) * 2017-11-30 2023-07-18 松下知识产权经营株式会社 Cylindrical secondary battery
EP3951994A4 (en) * 2019-03-25 2022-03-23 Kabushiki Kaisha Toshiba Electrode group, battery, and battery pack
US11942654B2 (en) 2019-06-27 2024-03-26 24M Technologies, Inc. Dual electrolyte electrochemical cells, systems, and methods of manufacturing the same
WO2022094466A1 (en) * 2020-11-02 2022-05-05 24M Technologies, Inc. Electrochemical cells with dendrite prevention mechanisms and methods of making the same

Similar Documents

Publication Publication Date Title
JP2011081931A (en) Lithium ion secondary battery
JP4072126B2 (en) Electrode active material, electrode, lithium ion secondary battery, method for producing electrode active material, and method for producing lithium ion secondary battery
JP2019016483A (en) Nonaqueous electrolyte secondary battery
JP6275694B2 (en) Nonaqueous electrolyte secondary battery
JP2013201077A (en) Nonaqueous electrolytic secondary battery
JP2013229307A (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP2019009112A (en) Lithium secondary battery
US9893350B2 (en) Lithium secondary battery
US11444271B2 (en) Lithium-ion battery including electrode with tab section having substrate-exposed portion
JP2012181978A (en) Nonaqueous electrolyte battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP5298815B2 (en) Lithium ion secondary battery manufacturing method, electrolytic solution, and lithium ion secondary battery
JP6897228B2 (en) Active material, electrodes and lithium-ion secondary battery
WO2015129376A1 (en) Rolled electrode set and nonaqueous-electrolyte battery
JP5782869B2 (en) Nonaqueous electrolyte secondary battery and current collector for nonaqueous electrolyte secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2014049292A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP6567442B2 (en) Lithium secondary battery charge / discharge method
JP2007172878A (en) Battery and its manufacturing method
JP7199157B2 (en) Electrolyte solution containing lithium iodide, and lithium ion battery using the same
JP7017108B2 (en) Active materials, electrodes and lithium-ion secondary batteries
WO2015037522A1 (en) Nonaqueous secondary battery
WO2015037115A1 (en) Negative-electrode material for use in lithium-ion secondary batteries
JP2020167000A (en) Electrode and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110520

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526