JP4954468B2 - Winding electrode, manufacturing method thereof, and battery manufacturing method - Google Patents

Winding electrode, manufacturing method thereof, and battery manufacturing method Download PDF

Info

Publication number
JP4954468B2
JP4954468B2 JP2004358156A JP2004358156A JP4954468B2 JP 4954468 B2 JP4954468 B2 JP 4954468B2 JP 2004358156 A JP2004358156 A JP 2004358156A JP 2004358156 A JP2004358156 A JP 2004358156A JP 4954468 B2 JP4954468 B2 JP 4954468B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
resin
insulating layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004358156A
Other languages
Japanese (ja)
Other versions
JP2006164883A (en
JP2006164883A5 (en
Inventor
秀昭 片山
敏浩 阿部
光浩 岸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2004358156A priority Critical patent/JP4954468B2/en
Publication of JP2006164883A publication Critical patent/JP2006164883A/en
Publication of JP2006164883A5 publication Critical patent/JP2006164883A5/ja
Application granted granted Critical
Publication of JP4954468B2 publication Critical patent/JP4954468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、捲回電極およびその製造方法、並びに電池の製造方法に関する。   The present invention relates to a wound electrode, a method for manufacturing the same, and a method for manufacturing a battery.

近年、携帯電話、PDA、ノートパソコン等のモバイル機器の重要性が高まるとともにそれに搭載される電池の重要性もますます増大している。特に、環境への配慮から、繰り返し充電できる2次電池の重要性が増大している。2次電池は、自動車、電動自転車、家庭用電力貯蔵システム、または業務用電力貯蔵システム等への適用が検討されている。   In recent years, the importance of mobile devices such as mobile phones, PDAs, and notebook computers has increased, and the importance of batteries mounted on them has also increased. In particular, due to environmental considerations, the importance of secondary batteries that can be repeatedly charged is increasing. Application of secondary batteries to automobiles, electric bicycles, household power storage systems, commercial power storage systems, and the like has been studied.

電池を構成する1対の帯状の電極(正極、負極)は、通常、金属箔の両面に、活物質とバインダーとを含む活物質層が形成された構造をしている。正極と負極との間、および負極の正極側の反対側にはそれぞれ、セパレータと呼ばれる、例えば帯状のポリエチレン製微多孔膜が配置されている。正極と負極と2枚のセパレータとを含む積層体は、例えば、円筒状、または扁平状に捲回され、電解液と伴に容器内に収められている。上記セパレータは、正極と負極とを絶縁している。携帯電話等に通常用いられている角型のLiイオン電池では、缶の内部の体積を有効に利用するために、積層体が扁平状に捲回された捲回電極が用いられている。   A pair of strip-like electrodes (positive electrode and negative electrode) constituting a battery usually has a structure in which an active material layer containing an active material and a binder is formed on both surfaces of a metal foil. For example, a strip-shaped polyethylene microporous film called a separator is disposed between the positive electrode and the negative electrode, and on the opposite side of the negative electrode on the positive electrode side. The laminate including the positive electrode, the negative electrode, and the two separators is wound into, for example, a cylindrical shape or a flat shape, and is stored in the container together with the electrolytic solution. The separator insulates the positive electrode and the negative electrode. In a rectangular Li-ion battery normally used for a mobile phone or the like, a wound electrode in which a laminate is wound in a flat shape is used in order to effectively use the volume inside the can.

ところで、より薄いセパレータを用いることにより捲回体のうちのセパレータが占める体積を減らし、活物質の充填量を多くする(高容量化する)ことが提案されている。例えば、上記ポリエチレン製微多孔膜のような独立したフィルムに代えて、正極または負極のうちのいずれかの活物質層に絶縁性材料を塗布することにより形成された多孔性絶縁層をセパレータとして用いれば、セパレータの厚みをより薄くすることができる(例えば、特許文献1〜5参照)。
特開平1−167948号公報 特開平10−284065号公報 国際公開第98/38688号パンフレット 特開平11−288741号公報 特開2000−149906号公報
By the way, it has been proposed to use a thinner separator to reduce the volume occupied by the separator in the wound body and to increase the amount of active material filling (high capacity). For example, instead of an independent film such as the polyethylene microporous membrane, a porous insulating layer formed by applying an insulating material to an active material layer of either the positive electrode or the negative electrode can be used as a separator. For example, the thickness of the separator can be further reduced (see, for example, Patent Documents 1 to 5).
Japanese Patent Laid-Open No. 1-167948 JP-A-10-284065 WO 98/38688 pamphlet JP-A-11-288874 JP 2000-149906 A

しかし、捲回前の積層体において、2層の多孔性絶縁層がそれぞれ正極および負極のうちのいずれか一方の活物質層に一体化され、正極と負極とが非接合状態である場合、例えば、負極の両面にそれぞれ多孔性絶縁層が形成された一体化物と、正極とが非接合状態である場合、下記のような問題がある。   However, in the laminate before winding, when the two porous insulating layers are each integrated with one of the active material layers of the positive electrode and the negative electrode, and the positive electrode and the negative electrode are in a non-bonded state, When the integrated product in which the porous insulating layers are formed on both surfaces of the negative electrode and the positive electrode are in a non-bonded state, there are the following problems.

積層体を捲回する際に、曲率が大きい部分、特に捲回体の最内周近傍で、負極活物質層に割れが生じることがある。このような場合、負極に一体化された多孔性絶縁層にも割れが生じる。多孔性絶縁層に割れが生じると正極および負極間に短絡が生じる恐れがある。上記多孔性絶縁層の割れは、特に、捲回電極が扁平状である場合により一層起こり易い。従来の捲回電極の製造方法では、高容量化を可能としつつ、多孔性絶縁層の割れを抑制して短絡の発生を抑制することは困難であった。   When the laminate is wound, the negative electrode active material layer may be cracked in a portion having a large curvature, particularly in the vicinity of the innermost periphery of the wound body. In such a case, cracks also occur in the porous insulating layer integrated with the negative electrode. If a crack occurs in the porous insulating layer, a short circuit may occur between the positive electrode and the negative electrode. The cracking of the porous insulating layer is more likely to occur particularly when the wound electrode is flat. In the conventional method for manufacturing a wound electrode, it has been difficult to suppress the occurrence of a short circuit by suppressing the cracking of the porous insulating layer while enabling a high capacity.

本発明は、高容量化が可能であり、短絡の発生を抑制して、より信頼性の高い捲回電極および電池を容易に提供する。   The present invention can increase the capacity, suppress the occurrence of a short circuit, and easily provide a more reliable wound electrode and battery.

本発明の捲回電極の製造方法は、(a)1対の正極活物質層と、前記1対の正極活物質層の間に配置された正極集電体とを含む帯状の正極、および1対の負極活物質層と、前記1対の負極活物質層の間に配置された負極集電体とを含む帯状の負極のうちのいずれか一方に、第1の樹脂を含む第1の塗料を塗布して、第1の多孔性絶縁層を形成し、前記正極および前記負極のうちのいずれか一方に、前記第1の樹脂よりも軟化点が高い第2の樹脂を含む第2の塗料を塗布して、第2の多孔性絶縁層を形成し、前記正極と前記負極との間に前記第1の多孔性絶縁層が配置され、かつ前記第2の多孔性絶縁層が一方の最外層となるように前記正極と前記負極とを重ねて積層体を形成する工程と、(b)前記積層体を、加圧しながら、前記第1の樹脂の軟化点以上前記第2の樹脂の軟化点未満の温度で加熱して、前記第1の多孔性絶縁層を介して前記正極と前記負極とを接合する工程と、(c)前記工程(b)の後に前記積層体を捲回する工程と、を含む。   The method for producing a wound electrode according to the present invention includes: (a) a strip-shaped positive electrode including a pair of positive electrode active material layers and a positive electrode current collector disposed between the pair of positive electrode active material layers; A first paint containing a first resin on any one of a strip-like negative electrode including a pair of negative electrode active material layers and a negative electrode current collector disposed between the pair of negative electrode active material layers Is applied to form a first porous insulating layer, and one of the positive electrode and the negative electrode includes a second resin having a softening point higher than that of the first resin. Is applied to form a second porous insulating layer, the first porous insulating layer is disposed between the positive electrode and the negative electrode, and the second porous insulating layer is one of the outermost layers. A step of stacking the positive electrode and the negative electrode so as to form an outer layer; and (b) the first resin while pressing the laminate. Heating at a temperature not lower than the softening point and lower than the softening point of the second resin to bond the positive electrode and the negative electrode through the first porous insulating layer; and (c) the step (b). And winding the laminated body after.

本発明の電池の製造方法は、本発明の捲回電極の製造方法により作製された捲回電極と電解液とを、樹脂を含む容器内に入れ、前記容器を封止した後、前記容器の外側から、前記積層体を捲回して得た捲回体を加圧しながら加熱して、前記正極または前記負極と、前記第2の多孔性絶縁層とを接合する工程を含む。   The battery manufacturing method of the present invention includes a wound electrode and an electrolyte prepared by the wound electrode manufacturing method of the present invention in a container containing a resin, and after sealing the container, The method includes a step of joining the positive electrode or the negative electrode and the second porous insulating layer by heating the wound product obtained by winding the laminate from the outside while applying pressure.

尚、本明細書において、軟化点は、JIS K 7206に準拠して測定された値である。   In this specification, the softening point is a value measured in accordance with JIS K 7206.

本発明では、高容量化が可能で、短絡の発生が抑制された、より信頼性の高い捲回電極および電池を容易に提供できる。   According to the present invention, it is possible to easily provide a more reliable wound electrode and battery that can have a higher capacity and suppress the occurrence of a short circuit.

以下に、本発明の捲回電極およびその製造方法の一例、電池の製造方法の一例について図面を用いて説明する。   Hereinafter, an example of a wound electrode and a method for manufacturing the wound electrode according to the present invention and an example of a method for manufacturing a battery will be described with reference to the drawings.

(実施形態1)
本実施形態では、Liイオン電池を構成する捲回電極を例に挙げて説明する。
(Embodiment 1)
In the present embodiment, a wound electrode constituting a Li ion battery will be described as an example.

まず、図1Aに示すように、1対の正極活物質層4a,4bと、1対の正極活物質層4a,4bの間に配置された正極集電体4cとを含む帯状の正極4を作製する。   First, as shown in FIG. 1A, a strip-shaped positive electrode 4 including a pair of positive electrode active material layers 4a and 4b and a positive electrode current collector 4c disposed between the pair of positive electrode active material layers 4a and 4b. Make it.

一方で、図1Aに示すように、1対の負極活物質層3a,3bと、1対の負極活物質層3a,3bの間に配置された負極集電体3cとを含む帯状の負極3を作製する。   On the other hand, as shown in FIG. 1A, a strip-shaped negative electrode 3 including a pair of negative electrode active material layers 3a and 3b and a negative electrode current collector 3c disposed between the pair of negative electrode active material layers 3a and 3b. Is made.

次に、図1Bに示すように、負極活物質層3a上に、第1の樹脂を含む第1の塗料を塗布して、第1の多孔性絶縁層2aを形成する。   Next, as shown in FIG. 1B, a first paint containing a first resin is applied on the negative electrode active material layer 3a to form a first porous insulating layer 2a.

次に、図1Cに示すように、負極活物質層3b上に、第1の樹脂よりも軟化点が高い第2の樹脂を含む第2の塗料を塗布して、第2の多孔性絶縁層2bを形成する。   Next, as shown in FIG. 1C, a second coating material containing a second resin having a softening point higher than that of the first resin is applied onto the negative electrode active material layer 3b, so that a second porous insulating layer is formed. 2b is formed.

次に、図1Dに示すように、正極4と負極3との間に第1の多孔性絶縁層2aが配置され、かつ第2の多孔性絶縁層2bが一方の最外層となるように正極4と負極3とを重ねて積層体を形成する。   Next, as shown in FIG. 1D, the first porous insulating layer 2a is disposed between the positive electrode 4 and the negative electrode 3, and the second porous insulating layer 2b is one outermost layer. 4 and the negative electrode 3 are stacked to form a laminate.

次に、積層体を、熱ロールプレス機等を用いて厚み方向に加圧しながら、第1の樹脂の軟化点以上第2の樹脂の軟化点未満の温度で加熱して、第1の多孔性絶縁層2aを介して正極4と負極3とを接合する。   Next, the laminate is heated at a temperature not lower than the softening point of the first resin and lower than the softening point of the second resin while being pressed in the thickness direction using a hot roll press or the like, so that the first porosity is obtained. The positive electrode 4 and the negative electrode 3 are joined via the insulating layer 2a.

積層体を加圧する際の圧力について特に制限はないが、1×106Pa〜1×109Paが適当である。加熱温度は、60℃以上200℃未満が好ましい。 Although there is no restriction | limiting in particular about the pressure at the time of pressurizing a laminated body, 1 * 10 < 6 > Pa-1 * 10 < 9 > Pa is suitable. The heating temperature is preferably 60 ° C. or higher and lower than 200 ° C.

次に、例えば、積層体の第2の多孔性絶縁層2b側の反対側、すなわち、図1Dに示した積層体では正極4側が内側となるように積層体を捲回して、捲回電極1とする(図3参照)。   Next, for example, the laminated body is wound so that the opposite side of the laminated body to the second porous insulating layer 2b side, that is, the positive electrode 4 side in the laminated body shown in FIG. (See FIG. 3).

本実施形態の捲回電極の製造方法では、塗料を塗布することにより第1の多孔性絶縁層2aと第2の多孔性絶縁層2bとを形成するので(図1B〜C参照)、例えば、独立に形成されたフィルムを接合することによって第1の多孔性絶縁層2aおよび第2の多孔性絶縁層2bを形成するよりも、薄い第1の多孔性絶縁層2aおよび第2の多孔性絶縁層2bを形成できる。そのため、捲回電極のうちの第1の多孔性絶縁層2aおよび第2の多孔性絶縁層2bが占める体積を減らして活物質の充填量を多くすることが可能となり、高容量化が可能となる。   In the manufacturing method of the wound electrode of this embodiment, since the 1st porous insulating layer 2a and the 2nd porous insulating layer 2b are formed by apply | coating a coating material (refer FIG. 1B-C), for example, Rather than forming the first porous insulating layer 2a and the second porous insulating layer 2b by bonding the independently formed films, the first porous insulating layer 2a and the second porous insulating layer are thinner. Layer 2b can be formed. Therefore, the volume occupied by the first porous insulating layer 2a and the second porous insulating layer 2b in the wound electrode can be reduced to increase the filling amount of the active material, and the capacity can be increased. Become.

また、本実施形態の捲回電極の製造方法では、正極4と第1の多孔性絶縁層2aと負極3とが、この順で配置され、これらが捲回前に一体化されているので、捲回に伴う第1の多孔性絶縁層2aの割れの発生を抑制でき、よって、正極4および負極3間の短絡の発生を抑制できる。これにより、捲回電極の信頼性を高めることができる。   Further, in the manufacturing method of the wound electrode of the present embodiment, the positive electrode 4, the first porous insulating layer 2a, and the negative electrode 3 are arranged in this order, and these are integrated before winding, The occurrence of cracks in the first porous insulating layer 2a due to winding can be suppressed, and thus the occurrence of a short circuit between the positive electrode 4 and the negative electrode 3 can be suppressed. Thereby, the reliability of the wound electrode can be increased.

さらに、第2の多孔性絶縁層2bに含まれる第2の樹脂の軟化点は、第1の多孔性絶縁層2aに含まれる第1の樹脂の軟化点よりも高いので、正極4と負極3との間に第1の多孔性絶縁層2aが配置され、かつ第2の多孔性絶縁層2bが一方の最外層となるように正極4と負極3とを重ねて得られる積層体に対して行う加圧加熱処理を、例えば、熱ロールプレス機や加熱プレス機等で直に行える。すなわち、本実施形態では、正極4と第1の多孔性絶縁層2aと負極3との一体化が、容易に行える。   Furthermore, since the softening point of the second resin contained in the second porous insulating layer 2b is higher than the softening point of the first resin contained in the first porous insulating layer 2a, the positive electrode 4 and the negative electrode 3 The first porous insulating layer 2a is disposed between the positive electrode 4 and the negative electrode 3 so that the second porous insulating layer 2b is one outermost layer. The pressurization heating process to be performed can be directly performed by, for example, a hot roll press machine or a heating press machine. That is, in the present embodiment, the positive electrode 4, the first porous insulating layer 2a, and the negative electrode 3 can be easily integrated.

以上のことより、本実施形態の捲回電極の製造方法によれば、高容量化が可能で、短絡の発生が抑制された、信頼性の高い捲回電極を容易に提供できる。   From the above, according to the method for manufacturing a wound electrode of the present embodiment, a highly reliable wound electrode capable of increasing the capacity and suppressing occurrence of a short circuit can be easily provided.

図1Aに示すように、正極4は、正極集電体4cと電池の正極端子とを電気接続するための正極集電タブ7を備えていてもよい。正極集電タブ7は、例えば、導電性接着剤(例えば、アルミペースト)等を用いて正極集電体4cへ接合できる。正極集電タブ7は、例えば、正極集電体4cの捲き始め側であって、正極活物質層4a,4bが形成されていない正極活物質層欠如部4c'に接合すると好ましい。   As shown in FIG. 1A, the positive electrode 4 may include a positive electrode current collecting tab 7 for electrically connecting the positive electrode current collector 4c and the positive electrode terminal of the battery. The positive electrode current collector tab 7 can be bonded to the positive electrode current collector 4c using, for example, a conductive adhesive (for example, aluminum paste). The positive electrode current collecting tab 7 is preferably bonded to, for example, a positive electrode active material layer lacking portion 4c ′ on the starting side of the positive electrode current collector 4c where the positive electrode active material layers 4a and 4b are not formed.

負極3は、負極集電体3cと電池の負極端子とを電気接続するための負極集電タブ8を備えていてもよい。負極集電タブ8は、例えば、導電性接着剤(例えば、銀ペースト)等を用いて負極集電体3cへ接合できる。負極集電タブ8は、例えば、負極集電体3cの捲き終わり側であって、負極活物質層3a,3bが形成されていない負極活物質層欠如部3c'に接合すると好ましい。   The negative electrode 3 may include a negative electrode current collecting tab 8 for electrically connecting the negative electrode current collector 3c and the negative electrode terminal of the battery. The negative electrode current collecting tab 8 can be bonded to the negative electrode current collector 3c using, for example, a conductive adhesive (for example, silver paste). The negative electrode current collecting tab 8 is preferably joined to, for example, the negative electrode active material layer lacking portion 3c ′ on the side where the negative electrode current collector 3c is rolled and on which the negative electrode active material layers 3a and 3b are not formed.

本実施形態の捲回電極の製造方法では、積層体を、加圧しながら加熱して、第1の多孔性絶縁層2aを介して正極4と負極3とを接合する際に、第1の多孔性絶縁層2aおよび第2の多孔性絶縁層2bの厚みを薄くしてもよい。加圧により第1の多孔性絶縁層2aおよび第2の多孔性絶縁層2bの厚みを薄くすれば、さらなる高容量化が可能となる。   In the manufacturing method of the wound electrode according to the present embodiment, when the laminate is heated while being pressurized and the positive electrode 4 and the negative electrode 3 are bonded via the first porous insulating layer 2a, the first porous body is formed. The thickness of the conductive insulating layer 2a and the second porous insulating layer 2b may be reduced. If the thickness of the first porous insulating layer 2a and the second porous insulating layer 2b is reduced by pressurization, the capacity can be further increased.

また、本実施形態の捲回電極の製造方法では、積層体を捲回して得た捲回体を、加圧しながら、第2の樹脂の軟化点以上の温度で加熱して、第2の多孔性絶縁層2bと正極4とを接合すると好ましい。第2の多孔性絶縁層2bと正極4とを接合して、捲回体を一体化すれば、捲回体(捲回電極)の取り扱い性が容易となり、捲回電極の容器内への収納が容易となる。   Moreover, in the manufacturing method of the wound electrode of this embodiment, the wound body obtained by winding the laminated body is heated at a temperature equal to or higher than the softening point of the second resin while being pressed, so that the second porous The conductive insulating layer 2b and the positive electrode 4 are preferably joined. If the 2nd porous insulating layer 2b and the positive electrode 4 are joined and a winding body is integrated, the handling property of a winding body (winding electrode) will become easy, and the winding electrode will be accommodated in the container. Becomes easy.

捲回体を加圧する際の圧力について特に制限はないが、圧力は、1×106Pa〜1×109Paが適当である。 Although there is no restriction | limiting in particular about the pressure at the time of pressurizing a winding body, 1 * 10 < 6 > Pa-1 * 10 < 9 > Pa is suitable for a pressure.

捲回体を加圧しながら加熱する温度(T3とする)は、200℃より低いと好ましい。第1の樹脂が結晶性樹脂、例えば、エチレン−酢酸ビニル共重合体(EVA)等である場合、加熱温度T3は、第1の多孔性絶縁層の多孔性を保持する観点からは、第1の樹脂の融点未満の温度であると好ましい。第1の樹脂が非結晶性樹脂である場合、例えば、シクロオレフィンポリマー(例えば、日本ゼオン(株)製、ゼオノア(登録商標)、三井化学(株)製、アペル(登録商標)等)である場合、第1の多孔性絶縁層の多孔性を保持する観点からは、加熱温度T3は、例えば、T3≦T1+20℃の関係を満たしていると好ましい。T1は、第1の樹脂の軟化点である。 The temperature at which the wound body is heated while being pressed (T 3 ) is preferably lower than 200 ° C. When the first resin is a crystalline resin, for example, ethylene-vinyl acetate copolymer (EVA) or the like, the heating temperature T 3 is determined from the viewpoint of maintaining the porosity of the first porous insulating layer. It is preferable that the temperature is lower than the melting point of one resin. When the first resin is an amorphous resin, for example, it is a cycloolefin polymer (for example, Nippon Zeon Co., Ltd., Zeonoa (registered trademark), Mitsui Chemicals, Inc., Appel (registered trademark), etc.). In this case, from the viewpoint of maintaining the porosity of the first porous insulating layer, it is preferable that the heating temperature T 3 satisfies the relationship of T 3 ≦ T 1 + 20 ° C., for example. T 1 is the softening point of the first resin.

図2に示すように、負極3は、正極4よりも幅広であり、負極3の幅方向の両縁部3fが正極4からはみでるように、負極3と正極4とを重ねると好ましい。リチウムイオン電池では、電池の使用に伴って負極3の周縁部に析出するリチウムデンドライトが、第1の多孔性絶縁層2aまたは第2の多孔性絶縁層2bを突き破って正極4に接触し、短絡を引き起こし、電池を短寿命化してしまうという問題がある。負極3の幅を、正極4のそれよりも大きくし、負極3の幅方向の両縁部3fが正極4からはみでるように、正極4と負極3とを配置すれば、負極の両縁部3fにおけるリチウムデンドライトの析出を抑制でき、その結果、短絡をより一層抑制できる。   As shown in FIG. 2, the negative electrode 3 is wider than the positive electrode 4, and the negative electrode 3 and the positive electrode 4 are preferably overlapped so that both edges 3 f in the width direction of the negative electrode 3 protrude from the positive electrode 4. In the lithium ion battery, the lithium dendrite deposited on the peripheral edge of the negative electrode 3 with the use of the battery penetrates the first porous insulating layer 2a or the second porous insulating layer 2b and contacts the positive electrode 4 to cause a short circuit. This causes a problem that the battery life is shortened. If the positive electrode 4 and the negative electrode 3 are arranged so that the width of the negative electrode 3 is larger than that of the positive electrode 4 and both edge portions 3f in the width direction of the negative electrode 3 protrude from the positive electrode 4, both edge portions 3f of the negative electrode 3f. Precipitation of lithium dendrite in can be suppressed, and as a result, short circuit can be further suppressed.

負極3の幅が、正極4のそれより大きい場合、第1の多孔性絶縁層2aおよび第2の多孔性絶縁層2bは負極3に形成すると好ましい。この場合、正極4の幅よりも幅広の第1の多孔性絶縁層2aおよび第2の多孔性絶縁層2bを形成できるので、負極3と正極4との絶縁をより確実に行えるからである。   When the width of the negative electrode 3 is larger than that of the positive electrode 4, the first porous insulating layer 2 a and the second porous insulating layer 2 b are preferably formed on the negative electrode 3. In this case, since the first porous insulating layer 2a and the second porous insulating layer 2b wider than the width of the positive electrode 4 can be formed, the negative electrode 3 and the positive electrode 4 can be more reliably insulated.

負極3に第1の多孔性絶縁層2aおよび第2の多孔性絶縁層を形成する場合であって、積層体を正極3が内側となるように捲回する場合、積層体を捲回して得られる捲回体の最外周が、正極4の捲き終り部分からなるように、長手方向の長さが負極3のそれよりも長い正極4を用いると好ましい。捲回体の最外周が、正極4の捲き終り部分からなれば、捲回体を加圧しながら加熱して一体化する際に、加熱プレス機等によって捲回体を直に挟んでも、第2の樹脂が加熱プレス機に付着する等の問題が生じないので、捲回体の一体化が容易に行える。   When the first porous insulating layer 2a and the second porous insulating layer are formed on the negative electrode 3, and the laminate is wound so that the positive electrode 3 is inside, the laminate is wound. It is preferable to use the positive electrode 4 whose length in the longitudinal direction is longer than that of the negative electrode 3 so that the outermost periphery of the wound body is formed from the end of the positive electrode 4. If the outermost periphery of the wound body is the end portion of the positive electrode 4, even if the wound body is directly sandwiched by a heating press or the like when the wound body is heated and integrated while being pressed, the second Therefore, the winding body can be easily integrated.

正極集電体4cの材料としては、特に制限はないが、例えば、Al箔である。   The material of the positive electrode current collector 4c is not particularly limited, and is, for example, an Al foil.

正極活物質層4a,4bは、例えば、正極活物質とバインダーとを混合したスラリーを、正極集電体4cに塗布した後、正極集電体4cに塗布されたスラリーを乾燥し、次いで、厚み方向にプレスすることで形成できる。スラリーの塗布は、例えば、ドクターブレード法や、スプレー塗布等の方法により行える。上記スラリーは、必要に応じて導電性材料をさらに含んでいてもよい。   The positive electrode active material layers 4a and 4b are formed by, for example, applying a slurry obtained by mixing a positive electrode active material and a binder to the positive electrode current collector 4c, drying the slurry applied to the positive electrode current collector 4c, and then adding a thickness. It can be formed by pressing in the direction. The slurry can be applied by, for example, a doctor blade method or a spray coating method. The slurry may further contain a conductive material as necessary.

正極活物質としては、例えば、LiCoO2、LiNiO2、LiMn24、LiNi1/3Co1/3Mn1/3O、LiFePo4等の無機酸化物を用いることができる。 As the positive electrode active material, for example, an inorganic oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O, LiFePo 4, or the like can be used.

バインダーとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂、スチレンブタジエンゴム(SBR)、エチレンプロピレンジエンマルチブロックポリマー等のゴム系樹脂、カルボキシメチルセルロース(CMC)等のセルロース系樹脂等が挙げられる。これらのバインダーは、単独または混合して用いることができる。   Examples of binders include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), rubber resins such as styrene butadiene rubber (SBR) and ethylene propylene diene multiblock polymer, and carboxymethyl cellulose (CMC). Cellulose-type resin etc. are mentioned. These binders can be used alone or in combination.

導電性材料としては、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛、非晶質炭素等の炭素材料が挙げられる。これらの導電性材料は、単独または混合して用いることができる。   Examples of the conductive material include carbon materials such as acetylene black (AB), ketjen black (KB), graphite, and amorphous carbon. These conductive materials can be used alone or in combination.

正極集電タブ7の材料としては、特に制限はないが、例えば、Al,Ni等が挙げられる。正極集電タブ7の形状について特に制限はないが、例えば、短冊状である。   The material of the positive electrode current collecting tab 7 is not particularly limited, and examples thereof include Al and Ni. Although there is no restriction | limiting in particular about the shape of the positive electrode current collection tab 7, For example, it is strip shape.

負極集電体3cの材料としては、特に制限はないが、例えば、Cu箔である。   The material of the negative electrode current collector 3c is not particularly limited, and is, for example, Cu foil.

負極活物質層3a,3bは、例えば、負極活物質とバインダーとを混合したスラリーを、負極集電体3cに塗布した後、負極集電体3cに塗布されたスラリーを乾燥し、次いで、厚み方向にプレスすることで形成できる。スラリーの塗布は、例えば、ドクターブレード法や、スプレー塗布等の方法により行える。上記スラリーは、必要に応じて導電性材料をさらに含んでいてもよい。   The negative electrode active material layers 3a and 3b are formed by, for example, applying a slurry obtained by mixing a negative electrode active material and a binder to the negative electrode current collector 3c, then drying the slurry applied to the negative electrode current collector 3c, and then the thickness. It can be formed by pressing in the direction. The slurry can be applied by, for example, a doctor blade method or a spray coating method. The slurry may further contain a conductive material as necessary.

負極活物質としては、例えば、Sn、Si等のLiと合金化可能な金属、金属リチウム、LiAl合金、非晶質炭素、人造黒鉛、天然黒鉛、フラーレン、ナノチューブ等のリチウムを吸蔵放出可能な炭素系材料、Li4Ti512、Li2Ti37等のリチウムを吸蔵放出可能なチタン酸リチウム等を用いることができる。 Examples of the negative electrode active material include metals that can be alloyed with Li such as Sn and Si, metallic lithium, LiAl alloy, amorphous carbon, artificial graphite, natural graphite, fullerene, and carbon that can occlude and release lithium. Lithium titanate that can occlude and release lithium, such as a system material, Li 4 Ti 5 O 12 , Li 2 Ti 3 O 7, etc. can be used.

バインダーとしては、PVDF、PTFE、SBR、カルボキシメチルセルロース(CMC)等が挙げられる。これらのバインダーは、単独または混合して用いることができる。   Examples of the binder include PVDF, PTFE, SBR, carboxymethyl cellulose (CMC) and the like. These binders can be used alone or in combination.

導電性材料としては、AB、KB、非晶質炭素等の炭素材料が挙げられる。これらの導電性材料は、単独または混合して用いることができる。   Examples of the conductive material include carbon materials such as AB, KB, and amorphous carbon. These conductive materials can be used alone or in combination.

負極集電タブ8の材料としては、特に制限はないが、例えば、Cu、SUS等が挙げられる。負極集電タブ8の形状について特に制限はないが、例えば、短冊状である。   The material of the negative electrode current collecting tab 8 is not particularly limited, and examples thereof include Cu and SUS. Although there is no restriction | limiting in particular about the shape of the negative electrode current collection tab 8, For example, it is a strip shape.

第1の塗料に含まれる第1の樹脂としては、軟化点が60℃以上200℃未満であるものが好ましい。第1の樹脂の軟化点が低すぎると、捲回電極の使用の際に、第1の樹脂が軟化し、電池特性を劣化させてしまう恐れがある。第1の樹脂の軟化点が高すぎると、第1の多孔性絶縁層2aを介して正極4と負極3とを接合する際の加熱温度が高くなりすぎる。上記加熱温度が高すぎると、負極活物質層3a,3bや正極活物質層4a,4bに含まれるバインダーが劣化し、負極活物質層3a,3bが負極集電体3cから、正極活物質層4a,4bが正極集電体4cから剥離する等の問題が生じ、電極特性を劣化させてしまう恐れがある。第1の樹脂の軟化点が、後述する第2の樹脂の軟化点よりも低く、かつ60℃以上200℃未満の範囲内にあれば、積層体を60℃以上200℃未満の温度で加熱することにより、熱による電極特性の劣化を抑制しながら、第1の多孔性絶縁層2aを介して正極4と負極3とを接合できる。   As the first resin contained in the first paint, one having a softening point of 60 ° C. or higher and lower than 200 ° C. is preferable. If the softening point of the first resin is too low, the first resin may be softened and the battery characteristics may be deteriorated when the wound electrode is used. If the softening point of the first resin is too high, the heating temperature when joining the positive electrode 4 and the negative electrode 3 through the first porous insulating layer 2a becomes too high. If the heating temperature is too high, the binder contained in the negative electrode active material layers 3a and 3b and the positive electrode active material layers 4a and 4b deteriorates, and the negative electrode active material layers 3a and 3b are separated from the negative electrode current collector 3c. There arises a problem that 4a and 4b are peeled off from the positive electrode current collector 4c, and the electrode characteristics may be deteriorated. If the softening point of the first resin is lower than the softening point of the second resin to be described later and is in the range of 60 ° C. or higher and lower than 200 ° C., the laminate is heated at a temperature of 60 ° C. or higher and lower than 200 ° C. Thus, the positive electrode 4 and the negative electrode 3 can be joined via the first porous insulating layer 2a while suppressing deterioration of the electrode characteristics due to heat.

第2の塗料に含まれる第2の樹脂としては、軟化点が第1の樹脂の軟化点よりも高ければ特に限定されないが、軟化点が200℃より低いものが好ましい。第2の樹脂の軟化点が高すぎると、捲回体を加圧しながら加熱して、捲回体を一体化する際に、負極活物質層3a,3bや、正極活物質層4a,4bに含まれるバインダーが劣化し、負極活物質層3a,3bが負極集電体3cから、正極活物質層4a,4bが正極集電体4cから剥離する等の問題が生じ、電極特性を劣化させてしまう恐れがあるからである。第2の樹脂の軟化点が、200℃よりも低ければ、捲回体を200℃より低い温度で加熱することにより、熱による電極特性の劣化を抑制しながら、捲回体を一体化できる。   The second resin contained in the second paint is not particularly limited as long as the softening point is higher than the softening point of the first resin, but those having a softening point lower than 200 ° C. are preferable. When the softening point of the second resin is too high, the negative electrode active material layers 3a and 3b and the positive electrode active material layers 4a and 4b are heated when the wound body is heated while being pressed to integrate the wound body. The contained binder deteriorates, causing problems such as separation of the negative electrode active material layers 3a and 3b from the negative electrode current collector 3c and separation of the positive electrode active material layers 4a and 4b from the positive electrode current collector 4c. This is because there is a risk of it. If the softening point of the second resin is lower than 200 ° C, the wound body can be integrated while suppressing deterioration of electrode characteristics due to heat by heating the wound body at a temperature lower than 200 ° C.

ここで、第1の樹脂の軟化点をT1、第2の樹脂の軟化点をT2とすると、T2がT1よりも大きければ、T2とT1との差について特に制限はない。しかし、第1の多孔性絶縁層2aを介して正極4と負極3とを接合する際の加熱温度、および捲回体を一体化する際の加熱温度の設定の容易性の観点からは、T2とT1との差が20℃以上となるように第1の樹脂と第2の樹脂とを選択することが好ましい。 Here, T 1 the softening point of the first resin, the softening point of the second resin and T 2, if T 2 is greater than T 1, no particular limitation for the difference between T 2 and T 1 . However, from the viewpoint of ease of setting the heating temperature when the positive electrode 4 and the negative electrode 3 are bonded via the first porous insulating layer 2a and the heating temperature when the wound body is integrated, T It is preferable to select the first resin and the second resin so that the difference between 2 and T 1 is 20 ° C. or more.

第1の多孔性絶縁層2aおよび第2の多孔体絶縁層2bは、例えば、有機微粒子と必要の応じてバインダーとを含む塗料を、例えば、負極活物質層3a,3bに塗布することにより形成できる。塗布は、ドクターブレード法、またはスプレー塗布等の方法で行える。第1の多孔性絶縁層2aおよび第2の多孔体絶縁層2bは、いわゆるシャットダウン機能を有していると好ましい。シャットダウン機能とは、電池内部の温度が上昇しすぎた際に、第1の多孔性絶縁層2aおよび第2の多孔性絶縁層2bの細孔を塞いで、第1の多孔性絶縁層2aおよび第2の多孔性絶縁層2bのイオン伝導性を消失させる機能のことをいう。   The first porous insulating layer 2a and the second porous insulating layer 2b are formed by, for example, applying a paint containing organic fine particles and a binder as necessary to the negative electrode active material layers 3a and 3b. it can. The application can be performed by a doctor blade method or a spray application method. It is preferable that the first porous insulating layer 2a and the second porous insulating layer 2b have a so-called shutdown function. The shutdown function means that when the temperature inside the battery rises too much, the pores of the first porous insulating layer 2a and the second porous insulating layer 2b are blocked, and the first porous insulating layer 2a and It refers to the function of eliminating the ionic conductivity of the second porous insulating layer 2b.

有機微粒子の材料としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−アクリル酸エチル共重合体(EEA)、ポリ乳酸等の熱可塑性樹脂が挙げられる。   Examples of the organic fine particle material include thermoplastic resins such as polyethylene (PE), polypropylene (PP), ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), and polylactic acid. Can be mentioned.

上記塗料は、無機微粒子をさらに含んでいてもよい。無機微粒子としては、例えば、アルミナやシリカ等の無機酸化物が挙げられる。また、有機微粒子は、上記熱可塑性樹脂と無機酸化物とを含む複合材からなる微粒子であってもよい。   The paint may further contain inorganic fine particles. Examples of the inorganic fine particles include inorganic oxides such as alumina and silica. The organic fine particles may be fine particles made of a composite material containing the thermoplastic resin and an inorganic oxide.

塗料に含まれるバインダーとしては、例えば、PVDF、PTFE、SBR等が挙げられる。尚、有機微粒子自体が接着性を有する場合、例えば、有機微粒子の材料がEVA等である場合、バインダーは、必ずしも必要ではない。   Examples of the binder contained in the paint include PVDF, PTFE, SBR, and the like. In addition, when the organic fine particle itself has adhesiveness, for example, when the material of the organic fine particle is EVA or the like, the binder is not always necessary.

第1の多孔性絶縁層2aおよび第2の多孔体絶縁層2bは、下記の方法で形成することもできる。(1)樹脂が溶媒(良溶媒)に溶解された樹脂溶液を、例えば、負極活物質層3a,3bに塗布した後、塗布された樹脂溶液を乾燥させる前に貧溶媒中に浸漬して、微多孔構造の樹脂塗膜(第1の多孔性絶縁層2aおよび第2の多孔体絶縁層2b)を凝集析出させる。   The first porous insulating layer 2a and the second porous insulating layer 2b can also be formed by the following method. (1) A resin solution in which a resin is dissolved in a solvent (good solvent) is applied to, for example, the negative electrode active material layers 3a and 3b, and is then immersed in a poor solvent before the applied resin solution is dried. A microporous resin coating film (first porous insulating layer 2a and second porous insulating layer 2b) is coagulated and precipitated.

(2)上記樹脂溶液に貧溶媒または無機塩等をさらに混合し、得られた塗料を例えば負極活物質層3a,3bに塗布する。次に、負極活物質層3a,3bに塗布された塗料から良溶媒を乾燥除去し、次いで、乾燥または抽出等の方法により貧溶媒または無機塩を除去して、第1の多孔性絶縁層2aおよび第2の多孔体絶縁層2bを得る。   (2) The resin solution is further mixed with a poor solvent or an inorganic salt, and the obtained paint is applied to, for example, the negative electrode active material layers 3a and 3b. Next, the good solvent is dried and removed from the paint applied to the negative electrode active material layers 3a and 3b, and then the poor solvent or inorganic salt is removed by a method such as drying or extraction, whereby the first porous insulating layer 2a. And the 2nd porous body insulating layer 2b is obtained.

樹脂溶液中の樹脂としては、例えば、EVA、EEA、塩素化PP等を、良溶媒としては、例えば、トルエン、テトラヒドロフラン(THF)等を、貧溶媒としては、例えば、水、アルコール等を、無機塩としては、例えば、LiBr、LiI等を用いることができる。上記樹脂、良溶媒、貧溶媒、無機塩は、それぞれ、2種以上を混合して用いてもよい。   Examples of the resin in the resin solution include EVA, EEA, and chlorinated PP, examples of the good solvent include toluene and tetrahydrofuran (THF), and examples of the poor solvent include water, alcohol, and the like. As the salt, for example, LiBr, LiI or the like can be used. The above resin, good solvent, poor solvent, and inorganic salt may be used in combination of two or more.

第1の塗料および第2の塗料が、上述した、有機微粒子と必要に応じてバインダーとを含む塗料である場合、第1の樹脂および第2の樹脂は、上記有機微粒子に含まれる樹脂である。第1の塗料および第2の塗料が、上述した、樹脂が溶媒(良溶媒)に溶解された樹脂溶液(貧溶媒または無機塩等が添加されたものも含む)である場合、第1の樹脂および第2の樹脂は、上記樹脂溶液中の樹脂である。   When the first coating material and the second coating material are the above-described coating materials including organic fine particles and a binder as necessary, the first resin and the second resin are resins contained in the organic fine particles. . When the first paint and the second paint are the above-described resin solution in which the resin is dissolved in a solvent (good solvent) (including those containing a poor solvent or an inorganic salt added), the first resin The second resin is a resin in the resin solution.

上記第1の樹脂および第2の樹脂の組み合わせは、負極活物質層および正極活物質層に含まれるバインダーの耐熱性等が考慮された上で、第1の樹脂の軟化点よりも第2の樹脂の軟化点が高ければ特に制限はない。   The combination of the first resin and the second resin has a second resistance higher than the softening point of the first resin in consideration of the heat resistance of the binder contained in the negative electrode active material layer and the positive electrode active material layer. There is no particular limitation as long as the softening point of the resin is high.

一般に、樹脂が共重合体である場合、その軟化点は、共重合体を構成する2種のモノマーの配合割合を調整することにより調整できる。例えば、エチレン−酢酸ビニル共重合体(EVA)では、酢酸ビニルの配合割合を多くすれば、軟化点が低くなる。したがって、例えば、酢酸ビニルの配合量が異なる2種のEVAのうち、相対的に酢酸ビニルの配合量が多いEVAを第1の樹脂とし、相対的に酢酸ビニルの配合量が少ないEVAを第2の樹脂として選択すればよい。   In general, when the resin is a copolymer, the softening point can be adjusted by adjusting the blending ratio of two types of monomers constituting the copolymer. For example, in an ethylene-vinyl acetate copolymer (EVA), the softening point decreases as the blending ratio of vinyl acetate is increased. Therefore, for example, of two types of EVA having different vinyl acetate content, EVA having a relatively large vinyl acetate content is used as the first resin, and EVA having a relatively small vinyl acetate content is the second. The resin may be selected.

また、第1の樹脂および第2の樹脂のうちの少なくとも一方は、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−アクリル酸エチル共重合体(EEA)、ポリ乳酸および塩素化PPからなる群から選ばれる少なくとも1種の樹脂と、ポリスルホン、ポリエーテルスルホンおよびポリフェニルスルホンからなる群から選ばれる少なくとも1種の耐熱性樹脂とを含むポリマーブレンドであってもよい。第1の樹脂および第2の樹脂のうちの少なくとも一方は、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−アクリル酸エチル共重合体(EEA)、ポリ乳酸および塩素化PPからなる群から選ばれる少なくとも1種の樹脂と、石油炭化水素樹脂(petroleum hydrocarbon resin)、例えば、芳香族修飾脂肪族炭化水素樹脂とを含むポリマーブレンドであってもよい。また、ポリマーブレンドは、耐熱性樹脂、石油炭化水素樹脂の両方を含んでいてもよい。上記ポリマーブレンドの軟化点は、ポリマーブレンドに含まれる耐熱性樹脂や石油炭化水素樹脂の配合割合や種類等を選択することにより、調整できる。   In addition, at least one of the first resin and the second resin is polyethylene (PE), polypropylene (PP), ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA). A polymer blend comprising at least one resin selected from the group consisting of polylactic acid and chlorinated PP, and at least one heat-resistant resin selected from the group consisting of polysulfone, polyethersulfone and polyphenylsulfone. Also good. At least one of the first resin and the second resin is polyethylene (PE), polypropylene (PP), ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), poly It may be a polymer blend containing at least one resin selected from the group consisting of lactic acid and chlorinated PP and a petroleum hydrocarbon resin, such as an aromatic modified aliphatic hydrocarbon resin. The polymer blend may contain both a heat resistant resin and a petroleum hydrocarbon resin. The softening point of the polymer blend can be adjusted by selecting the blending ratio and type of the heat resistant resin and petroleum hydrocarbon resin contained in the polymer blend.

尚、図1B〜Cでは、第1の多孔性絶縁層2aおよび第2の多孔性絶縁層2bを、負極3に形成しているが、本実施形態の捲回電極の製造方法はこれに制限されない。第1の多孔性絶縁層2aおよび第2の多孔性絶縁層2bのうちの少なくとも一方を正極4に形成してもよい。第2の多孔性絶縁層2bが正極4に形成される場合、積層体を捲回して得た捲回体を、加圧しながら、第2の樹脂の軟化点以上の温度で加熱すると、第2の多孔性絶縁層2bと負極3とが接合されることとなる。   1B to 1C, the first porous insulating layer 2a and the second porous insulating layer 2b are formed on the negative electrode 3. However, the method for manufacturing the wound electrode according to this embodiment is limited to this. Not. At least one of the first porous insulating layer 2 a and the second porous insulating layer 2 b may be formed on the positive electrode 4. When the second porous insulating layer 2b is formed on the positive electrode 4, when the wound body obtained by winding the laminate is heated at a temperature equal to or higher than the softening point of the second resin while being pressed, the second The porous insulating layer 2b and the negative electrode 3 are joined.

図1Bでは、第1の多孔性絶縁層2aを、負極3aの負極活物質層3a上にのみ形成しているが、第1の多孔性絶縁層2aは、負極集電体3cの負極活物質層3a側の面のうちの負極活物質層3aが形成されていない部分の一部または全部をさらに覆うように形成してもよい。同様に、図1Cに示した第2の多孔性絶縁層2bは、負極集電体3cの負極活物質層3b側の面のうちの負極活物質層3bが形成されていない部分の一部または全部をさらに覆うように形成してもよい。   In FIG. 1B, the first porous insulating layer 2a is formed only on the negative electrode active material layer 3a of the negative electrode 3a. However, the first porous insulating layer 2a is formed of the negative electrode active material of the negative electrode current collector 3c. You may form so that a part or all of the part in which the negative electrode active material layer 3a of the surface by the side of the layer 3a is not formed may further be covered. Similarly, the second porous insulating layer 2b shown in FIG. 1C is a part of the surface of the negative electrode current collector 3c on the negative electrode active material layer 3b side where the negative electrode active material layer 3b is not formed or You may form so that all may be covered further.

また、図1Dを用いて説明した例では、積層体を正極4側が内側となるように捲回して捲回電極を得ているが、本実施形態の捲回電極の製造方法はこれに制限されない。積層体の第2の多孔性絶縁層側の反対側が内側となるのであれば、積層体を負極3が内側となるように捲回してもよい。   Moreover, in the example demonstrated using FIG. 1D, although the laminated body is wound so that the positive electrode 4 side may become an inner side, the winding electrode is obtained, However, The manufacturing method of the winding electrode of this embodiment is not restrict | limited to this. . If the opposite side of the laminate from the second porous insulating layer side is on the inside, the laminate may be wound so that the negative electrode 3 is on the inside.

図3に、本実施形態の捲回電極の製造方法により作製された捲回電極を示している。本実施形態の捲回電極は、帯状の正極4と、帯状の負極3と、正極4と負極3の間に配置された帯状の第1の多孔性絶縁層2aと、積層体の一方の最外層となるように配置された帯状の第2の多孔性絶縁層2bとを含む積層体が、例えば、積層体の第2の多孔性絶縁層2b側の反対側が内側となるように捲回されている。第1の多孔性絶縁層2aは、第1の樹脂を含む第1の塗料を塗布することにより形成されており、第2の多孔性絶縁層2bは、第2の樹脂を含む第2の塗料を塗布することにより形成されている。第1の多孔性絶縁層2aは、正極4および負極3に接合されており、第2の樹脂の軟化点は、第1の樹脂の軟化点よりも高い。   FIG. 3 shows a wound electrode manufactured by the method for manufacturing a wound electrode according to this embodiment. The wound electrode of this embodiment includes a strip-shaped positive electrode 4, a strip-shaped negative electrode 3, a strip-shaped first porous insulating layer 2 a disposed between the positive electrode 4 and the negative electrode 3, and one of the laminated bodies. A laminated body including the band-shaped second porous insulating layer 2b arranged to be an outer layer is wound, for example, so that the opposite side of the laminated body to the second porous insulating layer 2b side is inside. ing. The first porous insulating layer 2a is formed by applying a first paint containing a first resin, and the second porous insulating layer 2b is a second paint containing a second resin. It is formed by apply | coating. The first porous insulating layer 2a is bonded to the positive electrode 4 and the negative electrode 3, and the softening point of the second resin is higher than the softening point of the first resin.

本実施形態の捲回電極は、本実施形態の捲回電極の製造方法により作製されているので、信頼性が高い。   Since the wound electrode of this embodiment is produced by the method for manufacturing a wound electrode of this embodiment, the reliability is high.

本実施形態の捲回電極では、正極4と第2の多孔性絶縁層2bとが接合されていてもよい。   In the wound electrode of this embodiment, the positive electrode 4 and the second porous insulating layer 2b may be joined.

次に、本実施形態の電池について図面を用いて説明する。   Next, the battery of this embodiment will be described with reference to the drawings.

図4に、上記製造方法により作製された捲回電極1が、電解液とともに容器内に収められた電池の一例(断面図)を示している。尚、図4において、捲回電極1は、図示の都合上簡略して記載しておりハッチングも省略している。図4において、3は負極、4は正極である。   FIG. 4 shows an example (cross-sectional view) of a battery in which the wound electrode 1 manufactured by the above manufacturing method is housed in a container together with an electrolytic solution. In FIG. 4, the wound electrode 1 is simply illustrated for convenience of illustration, and hatching is also omitted. In FIG. 4, 3 is a negative electrode and 4 is a positive electrode.

図4に示すように、本実施形態の電池では、蓋体9aを含む容器9が、アルミニウム(Al)等の金属で形成されている。容器9の底部にはPTFEシート等の合成樹脂からなる絶縁体5が配置されている。蓋体9aには、PP等の合成樹脂製の絶縁パッキング10を介してステンレス鋼等の金属端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼等の金属製のリード板13が取り付けられている。   As shown in FIG. 4, in the battery according to the present embodiment, the container 9 including the lid 9a is formed of a metal such as aluminum (Al). An insulator 5 made of a synthetic resin such as a PTFE sheet is disposed at the bottom of the container 9. A metal terminal 11 made of stainless steel or the like is attached to the lid 9a via an insulating packing 10 made of synthetic resin such as PP, and a metal lead plate such as stainless steel is attached to the terminal 11 via an insulator 12. 13 is attached.

尚、図4に示した例では、正極集電タブ7が蓋体9aに直接溶接されることによって、容器が正極端子として機能している。また、負極集電気タブ8がリード板13に溶接され、リード板13を介して負極集電気タブ8と端子11とが導通されている。端子11は負極端子として機能している。尚、容器の材質によっては、端子の正負が逆になる場合もある。容器は、例えば、ステンレス(SUS)製であってもよいし、後述する実施形態2において用いられる容器のように、樹脂を含んでいてもよい。   In the example shown in FIG. 4, the positive electrode current collecting tab 7 is directly welded to the lid body 9 a, so that the container functions as a positive electrode terminal. Further, the negative electrode current collecting tab 8 is welded to the lead plate 13, and the negative electrode current collecting tab 8 and the terminal 11 are electrically connected via the lead plate 13. The terminal 11 functions as a negative terminal. Depending on the material of the container, the sign of the terminal may be reversed. The container may be made of, for example, stainless steel (SUS), or may contain a resin as in the container used in Embodiment 2 described later.

電解液としては、特に制限はないが、電池がLiイオン電池である場合、例えば、Li塩が有機溶媒に溶解されたものが用いられる。Li塩としては、有機溶媒中で解離してLi+イオンを生成可能であり、電解液を構成要素とする電池の電圧範囲で分解等の副反応を起こさないものであれば特に制限されない。 Although there is no restriction | limiting in particular as electrolyte solution, When a battery is a Li ion battery, what melt | dissolved Li salt in the organic solvent is used, for example. The Li salt is not particularly limited as long as it can be dissociated in an organic solvent to generate Li + ions and does not cause a side reaction such as decomposition in the voltage range of a battery having an electrolytic solution as a component.

Li塩には、例えば、LiPF6、LiBF4、LiAsF6、LiClO4等の無機化合物、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF23、LiC(SO2253、LiPF6-n(C25n(nは1から6までの整数)、LiSO3CF3、LiSO325、LiSO348等の有機化合物等を用いることができる。 Examples of the Li salt include inorganic compounds such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ). (SO 2 C 4 F 9 ), LiC (SO 2 CF 2 ) 3 , LiC (SO 2 C 2 F 5 ) 3 , LiPF 6-n (C 2 F 5 ) n (n is an integer from 1 to 6) Organic compounds such as LiSO 3 CF 3 , LiSO 3 C 2 F 5 , and LiSO 3 C 4 F 8 can be used.

有機溶媒は、Li塩を溶解でき、電池の電圧範囲で分解等の副反応を起こさないものであれば制限されない。有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート、γ−ブチロラクトン等の環状エステル、ジメトキシエタン、ジグライム、トリグライム、テトラグライム等の鎖状エーテル、ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル、アセトニトリル、プロピオニトリル、メトキシプロピオニトリル、エトキシプロピオニトリル等のニトリル類等が挙げられる。これらの有機溶媒は、単独又は混合して用いることができる。   The organic solvent is not limited as long as it can dissolve the Li salt and does not cause side reactions such as decomposition in the voltage range of the battery. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, cyclic esters such as γ-butyrolactone, dimethoxyethane, and diglyme. And chain ethers such as triglyme and tetraglyme, cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran, and nitriles such as acetonitrile, propionitrile, methoxypropionitrile and ethoxypropionitrile. These organic solvents can be used alone or in combination.

なかでも、有機溶媒は、エチレンカーボネートと鎖状カーボネートとの混合溶媒が好ましい。上記混合溶媒を用いれば、高い導電率が得られ、良好な電池特性を実現できる。   Among these, the organic solvent is preferably a mixed solvent of ethylene carbonate and chain carbonate. By using the above mixed solvent, high electrical conductivity can be obtained and good battery characteristics can be realized.

電解液には、安全性、サイクル性、高温貯蔵性等の特性を向上する目的で、適宜、ビニレンカーボネート類、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキサン、ビフェニル、フルオロベンゼン、t−ブチルベンゼン等の添加剤が含まれていてもよい。   For the purpose of improving characteristics such as safety, cycleability, and high-temperature storage properties, the electrolyte solution is appropriately vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, cyclohexane, biphenyl, fluorobenzene, t-butyl. Additives such as benzene may be included.

また、電解液は、有機溶媒に代えて、エチル−メチルイミダゾリウムトリフルオロメチルスルホニウムイミド、へプチル−トリメチルアンモニウムトリフルオロメチルスルホニウムイミド、ピリジニウムトリフルオロメチルスルホニウムイミド、グアジニウムトリフルオロメチルスルホニウムイミド等の常温溶融塩を含んでいてもよい。   In addition, the electrolytic solution is replaced with an organic solvent, such as ethyl-methylimidazolium trifluoromethylsulfonium imide, heptyl-trimethylammonium trifluoromethylsulfonium imide, pyridinium trifluoromethylsulfonium imide, guanidinium trifluoromethylsulfonium imide, etc. Of room temperature molten salt.

また、電解液は、下記のホストポリマーによりゲル化されていてもよい。ホストホリマーとしては、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、エチレンオキシド−プロピレンオキシド共重合体、主鎖または側鎖にエチレンオキシド鎖を含む架橋ポリマー、光及び熱により架橋可能であり側鎖にオキセタン化合物や脂環式エポキシ化合物を有する(メタ)アクリレート共重合体等が挙げられる。   Further, the electrolytic solution may be gelled with the following host polymer. The host polymer includes polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyacrylonitrile, polyethylene oxide, polypropylene oxide, ethylene oxide-propylene oxide copolymer, crosslinked polymer containing an ethylene oxide chain in the main chain or side chain, photo And a (meth) acrylate copolymer which can be cross-linked by heat and has an oxetane compound or an alicyclic epoxy compound in the side chain.

(実施形態2)
本実施形態では、本発明の電池の製造方法の一例について説明する。
(Embodiment 2)
In the present embodiment, an example of the battery manufacturing method of the present invention will be described.

本実施形態の電池の製造方法では、積層体を得た後、その積層体を捲回する工程までは実施形態1の捲回電極の製造方法と同様である。したがって、本実施形態の電池の製造方法においても、実施形態1の捲回電極の製造方法と同様の効果を有する。   In the manufacturing method of the battery of this embodiment, after obtaining a laminated body, it is the same as that of the winding electrode manufacturing method of Embodiment 1 until the process of winding the laminated body. Therefore, the battery manufacturing method of the present embodiment also has the same effect as the winding electrode manufacturing method of the first embodiment.

本実施形態の電池の製造方法では、図5Aに示すように、樹脂を含む容器91内に、上記積層体を捲回して得た捲回体1と、電解液とを入れ、容器を封止する。その後、図5Bに示すように、容器91の外側から、加熱プレス機14等で捲回体1を加圧しながら加熱して、第2の多孔性絶縁層を介して正極と負極とを接合し、捲回体1を一体化する。   In the battery manufacturing method of the present embodiment, as shown in FIG. 5A, the wound body 1 obtained by winding the laminated body and the electrolytic solution are placed in a container 91 containing a resin, and the container is sealed. To do. Thereafter, as shown in FIG. 5B, from the outside of the container 91, the wound body 1 is heated while being pressurized with a heating press 14 or the like, and the positive electrode and the negative electrode are joined through the second porous insulating layer. The winding body 1 is integrated.

容器91に含まれる樹脂は、熱溶着等により容器91の開口部を封じることができる材料、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを含んでいると好ましい。容器は、上記樹脂と金属箔とを含むラミネート構造をしていてもよい。   The resin contained in the container 91 preferably contains a material capable of sealing the opening of the container 91 by heat welding or the like, for example, a polyolefin such as polyethylene or polypropylene. The container may have a laminate structure including the resin and the metal foil.

容器91の外側から捲回体1を加圧する際の圧力について特に制限はないが、1×106Pa〜1×109Paが適当である。 Although there is no restriction | limiting in particular about the pressure at the time of pressurizing the winding body 1 from the outer side of the container 91, 1 * 10 < 6 > Pa-1 * 10 < 9 > Pa is suitable.

容器の外側から捲回体を加熱する際の加熱温度(T4とする)は、実施形態1と同様に、200℃未満が好ましい。熱による電極特性の劣化を抑制しながら捲回体を一体化できるからである。第1の樹脂が結晶性樹脂、例えば、エチレン−酢酸ビニル共重合体(EVA)である場合、加熱温度T4は、第1の多孔性絶縁層の多孔性を保持する観点からは、第1の樹脂の融点未満の温度であると好ましい。第1の樹脂が非結晶性樹脂である場合、例えば、シクロオレフィンポリマー等である場合、第1の多孔性絶縁層の多孔性を保持する観点からは、加熱温度T4は、例えば、T4≦T1+20℃の関係を満たしていると好ましい。T1は、第1の樹脂の軟化点である。 The heating temperature (referred to as T 4 ) when heating the wound body from the outside of the container is preferably less than 200 ° C. as in the first embodiment. This is because the wound body can be integrated while suppressing deterioration of the electrode characteristics due to heat. When the first resin is a crystalline resin, for example, ethylene-vinyl acetate copolymer (EVA), the heating temperature T 4 is the first from the viewpoint of maintaining the porosity of the first porous insulating layer. The temperature is preferably lower than the melting point of the resin. When the first resin is an amorphous resin, for example, a cycloolefin polymer or the like, the heating temperature T 4 is, for example, T 4 from the viewpoint of maintaining the porosity of the first porous insulating layer. ≦ T 1 + 20 ° C. is preferably satisfied. T 1 is the softening point of the first resin.

正極、負極、第1の多孔性絶縁層および第2の多孔性絶縁層の材料および製造方法は、実施形態1と同様であり、電解液の材料についても、実施形態1と同様である。   The materials and manufacturing methods of the positive electrode, the negative electrode, the first porous insulating layer, and the second porous insulating layer are the same as those of the first embodiment, and the material of the electrolytic solution is also the same as that of the first embodiment.

捲回体1と電解液とを容器91内に封入した後、捲回体1を加圧しながら加熱することにより、電解液に含まれる有機溶媒が所定の温度以上になると、第2の多孔性絶縁層に含まれる第2の樹脂は、有機溶媒に溶解し始める。第2の樹脂の有機溶媒への溶解の程度が大きくなると、より低い加熱温度で捲回体1を一体化することが可能となる。第2の樹脂と電解液に含まれる有機溶媒の組み合わせは、第2の樹脂の軟化点より低い温度で捲回体1を加熱しても、捲回体1の一体化が可能な組み合わせであることが好ましい。熱による電極特性の劣化をさらに抑制できるからである。   After enclosing the wound body 1 and the electrolytic solution in the container 91, when the wound body 1 is heated while being pressurized, when the organic solvent contained in the electrolytic solution exceeds a predetermined temperature, the second porosity The second resin contained in the insulating layer starts to dissolve in the organic solvent. When the degree of dissolution of the second resin in the organic solvent is increased, the wound body 1 can be integrated at a lower heating temperature. The combination of the second resin and the organic solvent contained in the electrolyte is a combination that allows the winding body 1 to be integrated even when the winding body 1 is heated at a temperature lower than the softening point of the second resin. It is preferable. This is because deterioration of electrode characteristics due to heat can be further suppressed.

具体的には、第2の樹脂が、EVAと、ポリスルホン等の耐熱性樹脂と、芳香族修飾脂肪族炭化水素樹脂等の石油炭化水素樹脂とを含むポリマーブレンドである場合、有機溶媒は、エチレンカーボネート、プロピレンカーボネート等の環状カーボネートと、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートとの混合溶媒であると好ましい。   Specifically, when the second resin is a polymer blend containing EVA, a heat-resistant resin such as polysulfone, and a petroleum hydrocarbon resin such as an aromatic modified aliphatic hydrocarbon resin, the organic solvent is ethylene. A mixed solvent of a cyclic carbonate such as carbonate or propylene carbonate and a chain carbonate such as dimethyl carbonate, ethylmethyl carbonate, or diethyl carbonate is preferable.

以下に、本発明の一例を、実施例を用いて更に詳細に説明する。   Hereinafter, an example of the present invention will be described in more detail with reference to examples.

(正極の作製)
LiCoO2粉末(正極活物質)と、グラファイト粉末(導電性材料)と、ポリフッ化ビニリデン(バインダー)と、N−メチル−2−ピロリドン(溶媒)とを混合し、スラリー状の正極活物質合剤を得た。このスラリーをドクターブレード法によりアルミニウム箔(正極集電体、厚さ:20μm)の両面に塗布し、乾燥した。この状態で、正極集電体の両面に塗布された正極活物質合剤の厚みはそれぞれ50μmであった。次いで、これらをプレス機で厚み方向に加圧し、真空オーブン中で熱処理することにより正極活物質合剤中の水分を除去して、1対の正極活物質層の間に正極集電体が配置された構造の正極を作製した。
(Preparation of positive electrode)
LiCoO 2 powder (positive electrode active material), graphite powder (conductive material), polyvinylidene fluoride (binder), and N-methyl-2-pyrrolidone (solvent) are mixed to form a slurry-like positive electrode active material mixture Got. This slurry was applied to both surfaces of an aluminum foil (positive electrode current collector, thickness: 20 μm) by a doctor blade method and dried. In this state, the thickness of the positive electrode active material mixture applied to both surfaces of the positive electrode current collector was 50 μm. Next, these are pressurized in the thickness direction with a press machine and heat-treated in a vacuum oven to remove moisture in the positive electrode active material mixture, and a positive electrode current collector is disposed between a pair of positive electrode active material layers A positive electrode having the above structure was produced.

(負極の作製)
黒鉛粉末(負極活物質)と、ポリフッ化ビニリデン樹脂(結着剤)と、N−メチル−2−ピロリドン(溶媒)とを混合し、スラリー状の負極活物質合剤を得た。このスラリーをドクターブレード法により銅箔(負極集電体、厚さ:20μm)の両面に塗布し、乾燥した。この状態で、負極集電体の両面に塗布された負極活物質合剤の厚みはそれぞれ50μmであった。次いで、これらをプレス機で厚み方向に加圧し、真空オーブン中で熱処理することにより負極活物質合剤中の水分を除去して、1対の負極活物質層の間に負極集電体が配置された構造の負極を作製した。
(Preparation of negative electrode)
Graphite powder (negative electrode active material), polyvinylidene fluoride resin (binder), and N-methyl-2-pyrrolidone (solvent) were mixed to obtain a slurry-like negative electrode active material mixture. This slurry was applied to both sides of a copper foil (negative electrode current collector, thickness: 20 μm) by a doctor blade method and dried. In this state, the thickness of the negative electrode active material mixture applied to both surfaces of the negative electrode current collector was 50 μm. Next, pressurize them in the thickness direction with a press machine and heat-treat them in a vacuum oven to remove moisture in the negative electrode active material mixture, and a negative electrode current collector is placed between a pair of negative electrode active material layers A negative electrode having the above structure was produced.

(第1の多孔性絶縁層の作製)
負極の片面に、エチレン−酢酸ビニル共重合体(三井・ディポンケミカル(株)製、P1905、酢酸ビニル量:19%、MFR値:2.5g/10min、軟化点:58℃、融点:84℃、以下「EVA1」と略する。)を原料として高圧乳化装置を用いて作製したエマルジョン(平均粒径:2μm)をドクターブレード法により、厚さが10μmとなるように塗布し、それを乾燥した。
(Preparation of the first porous insulating layer)
On one side of the negative electrode, an ethylene-vinyl acetate copolymer (Mitsui / Dipon Chemical Co., Ltd., P1905, vinyl acetate content: 19%, MFR value: 2.5 g / 10 min, softening point: 58 ° C., melting point: 84 The emulsion (average particle size: 2 μm) prepared using a high-pressure emulsification apparatus with a temperature of 0.1 ° C. (hereinafter abbreviated as “EVA1”) was applied by a doctor blade method to a thickness of 10 μm and dried. did.

(第2の多孔性絶縁層の作製)
負極の他方の面に、エチレン−酢酸ビニル共重合体(日本ユニカー(株)製、NUC−5491、酢酸ビニル量:6%、MFR値:5.5g/10min、軟化点:78℃、以下「EVA2」と略する。)を原料として高圧乳化装置を用いて作製したエマルジョン(平均粒径:2μm)をドクターブレード法により、厚さ10μmとなるように塗布し、それを乾燥した。
(Preparation of the second porous insulating layer)
On the other side of the negative electrode, an ethylene-vinyl acetate copolymer (manufactured by Nippon Unicar Co., Ltd., NUC-5491, vinyl acetate amount: 6%, MFR value: 5.5 g / 10 min, softening point: 78 ° C., hereinafter “ Emulsion (average particle size: 2 μm) prepared using a high-pressure emulsifier using a raw material of “EVA2”) as a raw material was applied to a thickness of 10 μm by the doctor blade method and dried.

次に、負極と第1の多孔性絶縁層と第2の多孔性絶縁層とからなる一体化物(幅44mm)と、正極(幅:43mm)とを、正極と負極との間に第1の多孔性絶縁層が配置され、かつ第2の多孔性絶縁層が一方の最外層となるように重ねて積層体を形成した。次に、積層体を加熱プレス機により、5MPaで加圧しながら、65℃で1分間加熱した。次いで、正極集電タブを正極集電体に、負極集電タブを負極集電体に取り付けた。   Next, an integrated product (width 44 mm) composed of the negative electrode, the first porous insulating layer, and the second porous insulating layer, and the positive electrode (width: 43 mm) are placed between the positive electrode and the negative electrode. A laminated body was formed such that a porous insulating layer was disposed and the second porous insulating layer was one outermost layer. Next, the laminate was heated at 65 ° C. for 1 minute while being pressurized at 5 MPa by a hot press. Next, the positive electrode current collector tab was attached to the positive electrode current collector, and the negative electrode current collector tab was attached to the negative electrode current collector.

次に、積層体をその正極側が内側となるように扁平状に捲回して捲回体を得た。次に、得られた捲回体を、加熱プレス機を用いて、3MPaで加圧しながら、80℃で2分間加熱して、厚さ3.6mm、幅32mm、長さ46mmの、一体化された捲回電極を得た。   Next, the laminate was wound in a flat shape so that the positive electrode side was on the inside to obtain a wound body. Next, the obtained wound body was heated at 80 ° C. for 2 minutes while being pressurized at 3 MPa using a heating press, and integrated with a thickness of 3.6 mm, a width of 32 mm, and a length of 46 mm. A wound electrode was obtained.

次に、捲回体を、厚さ4mm、幅34mm、長さ50mmのアルミニウム缶に挿入し、正極集タブを正極端子に、負極集電機タブを負極端子にそれぞれ溶接した。   Next, the wound body was inserted into an aluminum can having a thickness of 4 mm, a width of 34 mm, and a length of 50 mm, and the positive electrode collector tab was welded to the positive electrode terminal, and the negative electrode collector tab was welded to the negative electrode terminal.

次に、エチレンカーボネートとエチルメチルカーボネートとが1対2の質量比で混合された混合溶媒に、LiPF6を、その濃度が1mol/リットルとなるように溶解して電解液を得た。この電解液をアルミニウム缶に注入した後、アルミニウム缶に蓋をし、レーザー封止装置を用いて封止して、角型電池を得た。 Next, LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a mass ratio of 1: 2 so that the concentration thereof was 1 mol / liter to obtain an electrolytic solution. After pouring this electrolyte solution into an aluminum can, the aluminum can was covered and sealed using a laser sealing device to obtain a square battery.

(比較例1)
加熱プレス機による積層体および捲回体の加熱プレスを行わないこと以外は実施例1と同様にして角型電池を作製した。
(Comparative Example 1)
A prismatic battery was produced in the same manner as in Example 1 except that the laminated body and the wound body were not heated and pressed by a hot press machine.

実施例1と同様にして正極および負極を作製した。   A positive electrode and a negative electrode were produced in the same manner as in Example 1.

(第1の多孔性絶縁層の作製)
負極の一方の負極活物質層に、実施例1で用いた「EVA1」(軟化点:58℃、融点:84℃)を原料として高圧乳化装置を用いて作製したエマルジョン(平均粒径2μm)をドクターブレード法により厚さ10μmとなるように塗布し、それを乾燥して、第1の多孔性絶縁層を得た。
(Preparation of the first porous insulating layer)
On one negative electrode active material layer of the negative electrode, an emulsion (average particle size 2 μm) prepared using a high-pressure emulsifier using “EVA1” (softening point: 58 ° C., melting point: 84 ° C.) used in Example 1 as a raw material. It apply | coated so that it might become thickness 10 micrometers by the doctor blade method, it was dried, and the 1st porous insulating layer was obtained.

(第2の多孔性絶縁層の作製)
エチレン−酢酸ビニル共重合体(Exxon−MobilChemical Co.,製、ESCORENE(登録商標)ULTRA、UL7840、酢酸ビニル量33%、MFR値:4.3g/10min、融点:105℃)0.9g、Escorez(登録商標)2596(芳香族修飾脂肪族炭化水素樹脂)(Exxon−MobilChemical Co.,製)0.36g、およびポリスルホン(Scientific Polymer Products Inc.,製、重量平均分子量(Mw):80,000)4.14gを、テトラヒドロフラン(THF)40gに溶解した。得られた溶液に、ヒュームドシリカ1.00gを添加し、この混合物を一晩攪拌して、スラリーを得た。次に、このスラリーに臭化リチウム(LiBr)7.00gを添加して溶解した。次に、得られたスラリーをドクターブレード法により厚さ15μmとなるように負極の他方の負極活物質層に塗布し、塗布されたスラリーを室温下に放置してTHFを自然乾燥した。次いで、乾燥されたスラリーを直ぐに水中に1時間浸漬して、LiBrを除去し、エチレン−酢酸ビニル共重合体と、芳香族修飾脂肪族炭化水素樹脂と、ポリスルホンとを含むポリマーブレンド(軟化点:125℃)を含む第2の絶縁性多孔層を得た。
(Preparation of the second porous insulating layer)
Ethylene-vinyl acetate copolymer (manufactured by Exxon-Mobil Chemical Co., ESCORENE (registered trademark) ULTRA, UL 7840, vinyl acetate amount 33%, MFR value: 4.3 g / 10 min, melting point: 105 ° C.) 0.9 g, Escorez (Registered trademark) 2596 (aromatically modified aliphatic hydrocarbon resin) (manufactured by Exxon-Mobil Chemical Co., Ltd.) 0.36 g, and polysulfone (manufactured by Scientific Polymer Products Inc., weight average molecular weight (Mw): 80,000) 4.14 g was dissolved in 40 g of tetrahydrofuran (THF). To the obtained solution, 1.00 g of fumed silica was added, and the mixture was stirred overnight to obtain a slurry. Next, 7.00 g of lithium bromide (LiBr) was added to the slurry and dissolved. Next, the obtained slurry was applied to the other negative electrode active material layer of the negative electrode by a doctor blade method so as to have a thickness of 15 μm, and the applied slurry was left at room temperature to dry the THF naturally. Next, the dried slurry is immediately immersed in water for 1 hour to remove LiBr, and a polymer blend containing an ethylene-vinyl acetate copolymer, an aromatic modified aliphatic hydrocarbon resin, and polysulfone (softening point: A second insulating porous layer containing 125 ° C.) was obtained.

次に、負極と第1と多孔性絶縁層と第2の多孔性絶縁層とからなる一体化物(幅44mm)と、正極(幅43mm)とを、正極と負極との間に第1と多孔性絶縁層が配置され、かつ第2の多孔性絶縁層が一方の最外層となるように重ねて積層体を形成した。次に、積層体を加熱プレス機により、3MPaで加圧しながら、75℃で1分間加熱した。次いで、正極集電タブを正極集電体に、負極集電タブを負極集電体に取り付けた。   Next, an integrated product (width 44 mm) composed of the negative electrode, the first porous insulating layer, and the second porous insulating layer, and the positive electrode (width 43 mm) are arranged between the first and the negative electrodes. The laminated body was formed such that the conductive insulating layer was disposed and the second porous insulating layer was one outermost layer. Next, the laminate was heated at 75 ° C. for 1 minute while being pressurized at 3 MPa by a hot press. Next, the positive electrode current collector tab was attached to the positive electrode current collector, and the negative electrode current collector tab was attached to the negative electrode current collector.

次に、積層体をその正極側が内側となるように扁平状に捲回して捲回体を得た。捲回体の厚みは3.6mmであり、幅は32mmであり、長さは46mmであった。この捲回体を電解液と伴に、三層構造のラミネートフィルム(ポリエステル−アルミニウム−変性ポリオレフィン)を用いて作製された容器内に収め、容器を熱により封止した。次いで、加熱プレス機を用いて、容器の外側から、捲回体を、1.5MPaで加圧しながら、80℃で10分間加熱して、電池を得た。電解液には、実施例1で用いた電解液と同じものを用いた。   Next, the laminate was wound in a flat shape so that the positive electrode side was on the inside to obtain a wound body. The wound body had a thickness of 3.6 mm, a width of 32 mm, and a length of 46 mm. This wound body was placed in a container made of a laminate film (polyester-aluminum-modified polyolefin) having a three-layer structure together with the electrolytic solution, and the container was sealed with heat. Next, using a hot press machine, the wound body was heated at 80 ° C. for 10 minutes while pressing at 1.5 MPa from the outside of the container to obtain a battery. The same electrolyte solution used in Example 1 was used as the electrolyte solution.

(比較例2)
加熱プレス機による積層体および捲回体の加熱プレスを、行なわないこと以外は実施例2と同様にして電池を作製した。
(Comparative Example 2)
A battery was fabricated in the same manner as in Example 2 except that the laminated body and the wound body were not hot-pressed by a hot press machine.

実施例1および2、比較例1および2の電池をそれぞれ10個作製し、それらについて下記の方法に従って充放電特性を調べた。実施例1および2の電池では、正常な充放電が行え、充放電を100サイクル行っても、短絡等の異状は見られなかった。一方、比較例1の電池は、10個中5個が内部短絡を起こして充放電できなかった。比較例2の電池では、初回の充放電を行った際に、10個中3個が短絡し、30サイクル目の充放電で残り7個のうちの4個が短絡した。これらの結果より、実施例1および2の電池は、比較例1および2の電池よりも、短絡が抑制されており、信頼性が高いことが確認できた。   Ten batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were prepared, respectively, and the charge / discharge characteristics were examined according to the following method. In the batteries of Examples 1 and 2, normal charging / discharging was possible, and no abnormality such as a short circuit was observed even after 100 cycles of charging / discharging. On the other hand, 5 of 10 batteries in Comparative Example 1 caused an internal short circuit and could not be charged / discharged. In the battery of Comparative Example 2, when the first charge / discharge was performed, 3 out of 10 were short-circuited, and 4 of the remaining 7 were short-circuited during the 30th charge / discharge. From these results, it was confirmed that the batteries of Examples 1 and 2 were more reliable than the batteries of Comparative Examples 1 and 2 because the short circuit was suppressed.

[充放電試験]
25℃の雰囲気下で、500mAの定電流で電池電圧が4.2Vとなるまで充電した後、電流値が10mAとなるまで定電圧方式で充電した。その後、500mAの定電流で電池電圧が3Vとなるまで放電した。これを1サイクルとして、充放電を100サイクル行った。
[Charge / discharge test]
In an atmosphere of 25 ° C., the battery was charged at a constant current of 500 mA until the battery voltage reached 4.2 V, and then charged by a constant voltage method until the current value reached 10 mA. Thereafter, the battery was discharged at a constant current of 500 mA until the battery voltage reached 3V. With this as one cycle, 100 cycles of charge / discharge were performed.

本発明では、高容量化が可能であり、短絡が抑制された、信頼性の高い捲回電極および電池を提供できるので、本発明の捲回電極およびその製造方法、並びに電池の製造方法は、有用である。   In the present invention, since it is possible to provide a highly reliable wound electrode and battery capable of increasing the capacity and suppressing short-circuiting, the wound electrode and the manufacturing method thereof, and the manufacturing method of the battery of the present invention include: Useful.

A〜Dは、本発明の捲回電極の製造方法の一例を示す工程別断面図AD is sectional drawing according to process which shows an example of the manufacturing method of the winding electrode of this invention. 図1Dに示した積層体の概略平面図Schematic plan view of the laminate shown in FIG. 1D 本発明の捲回電極の一例を示す断面図Sectional drawing which shows an example of the wound electrode of this invention 本発明の捲回電極の一例を用いた電池の断面図Sectional drawing of the battery using an example of the wound electrode of this invention A〜Bは、本発明の電池の製造方法の一例を示す工程別断面図AB is sectional drawing according to process which shows an example of the manufacturing method of the battery of this invention.

符号の説明Explanation of symbols

1 捲回電極
2a 第1の多孔性絶縁層
2b 第2の多孔性絶縁層
3 負極
3a,3b 負極活物質層
3c 負極集電体
4 正極
4a,4b 正極活物質層
4c 正極集電体
7 正極集電タブ
8 負極集電タブ
9、91 容器

DESCRIPTION OF SYMBOLS 1 Winding electrode 2a 1st porous insulating layer 2b 2nd porous insulating layer 3 Negative electrode 3a, 3b Negative electrode active material layer 3c Negative electrode collector 4 Positive electrode 4a, 4b Positive electrode active material layer 4c Positive electrode collector 7 Positive electrode Current collecting tab 8 Negative current collecting tab 9, 91 Container

Claims (14)

(a)1対の正極活物質層と、前記1対の正極活物質層の間に配置された正極集電体とを含む帯状の正極、および1対の負極活物質層と、前記1対の負極活物質層の間に配置された負極集電体とを含む帯状の負極のうちのいずれか一方に、第1の樹脂を含む第1の塗料を塗布して、第1の多孔性絶縁層を形成し、前記正極および前記負極のうちのいずれか一方に、前記第1の樹脂よりも軟化点が高い第2の樹脂を含む第2の塗料を塗布して、第2の多孔性絶縁層を形成し、前記正極と前記負極との間に前記第1の多孔性絶縁層が配置され、かつ前記第2の多孔性絶縁層が一方の最外層となるように前記正極と前記負極とを重ねて積層体を形成する工程と、
(b)前記積層体を、加圧しながら、前記第1の樹脂の軟化点以上前記第2の樹脂の軟化点未満の温度で加熱して、前記第1の多孔性絶縁層を介して前記正極と前記負極とを接合する工程と、
(c)前記工程(b)の後に、前記積層体を捲回する工程と、を含む捲回電極の製造方法。
(A) a strip-shaped positive electrode including a pair of positive electrode active material layers and a positive electrode current collector disposed between the pair of positive electrode active material layers, a pair of negative electrode active material layers, and the one pair A first paint containing a first resin is applied to any one of a strip-like negative electrode including a negative electrode current collector disposed between the negative electrode active material layers of the first porous insulating material Forming a layer, and applying a second paint containing a second resin having a softening point higher than that of the first resin to one of the positive electrode and the negative electrode to form a second porous insulation Forming a layer, the first porous insulating layer is disposed between the positive electrode and the negative electrode, and the positive electrode and the negative electrode are arranged such that the second porous insulating layer is one outermost layer. Forming a laminate by stacking,
(B) heating the laminated body at a temperature not lower than the softening point of the first resin and lower than the softening point of the second resin while applying pressure to the positive electrode via the first porous insulating layer; And joining the negative electrode;
(C) After the step (b), a step of winding the laminate, and a method for manufacturing a wound electrode.
前記工程(c)において、前記積層体を偏平状に捲回する請求項1に記載の捲回電極の製造方法。   The method for manufacturing a wound electrode according to claim 1, wherein in the step (c), the laminate is wound in a flat shape. 前記工程(c)において、前記積層体を捲回して得た捲回体を、加圧しながら、前記第2の樹脂の軟化点以上の温度で加熱して、前記正極または前記負極と、前記第2の多孔性絶縁層とを接合する請求項1に記載の捲回電極の製造方法。   In the step (c), the wound body obtained by winding the laminate is heated at a temperature equal to or higher than the softening point of the second resin while being pressurized, and the positive electrode or the negative electrode, The method for manufacturing a wound electrode according to claim 1, wherein two porous insulating layers are joined. 前記工程(c)において、前記積層体を捲回して得た捲回体を、加圧しながら、前記第2の樹脂の軟化点以上前記第1の樹脂の融点未満の温度で加熱して、前記正極または前記負極と、前記第2の多孔性絶縁層とを接合する請求項1に記載の捲回電極の製造方法。   In the step (c), the wound body obtained by winding the laminate is heated at a temperature not lower than the melting point of the first resin and higher than the softening point of the second resin, while applying pressure. The manufacturing method of the winding electrode of Claim 1 which joins a positive electrode or the said negative electrode, and a said 2nd porous insulating layer. 前記負極は、前記正極よりも幅広であり、
前記工程(a)において、前記負極の幅方向の両縁部が前記正極からはみでるように、前記負極と前記正極とを重ねる請求項1に記載の捲回電極の製造方法。
The negative electrode is wider than the positive electrode;
The method for producing a wound electrode according to claim 1, wherein in the step (a), the negative electrode and the positive electrode are overlapped so that both edges in the width direction of the negative electrode protrude from the positive electrode.
前記工程(a)において、前記第1の多孔性絶縁層および前記第2の多孔性絶縁層を前記負極に形成する請求項5に記載の捲回電極の製造方法。   The method for producing a wound electrode according to claim 5, wherein in the step (a), the first porous insulating layer and the second porous insulating layer are formed on the negative electrode. 前記積層体を捲回して得られる捲回体の最外周が前記正極の捲き終り部分からなるように、前記工程(a)において、長手方向の長さが前記負極のそれよりも長い前記正極を用意し、
前記工程(c)において、前記積層体を前記正極が内側となるように捲回する請求項6に記載の捲回電極の製造方法。
In the step (a), in the step (a), the positive electrode having a longer length in the longitudinal direction than that of the negative electrode is formed so that the outermost periphery of the wound body obtained by winding the laminate is composed of the end portion of the positive electrode. Prepare
The manufacturing method of the winding electrode of Claim 6 which winds the said laminated body so that the said positive electrode may become an inner side in the said process (c).
前記工程(b)において、前記積層体を、60℃以上200℃未満の温度で加熱する請求項1に記載の捲回電極の製造方法。   The manufacturing method of the winding electrode of Claim 1 which heats the said laminated body at the temperature of 60 degreeC or more and less than 200 degreeC in the said process (b). 前記工程(c)において、前記捲回体を、200℃より低い温度で加熱する請求項3に記載の捲回電極の製造方法。   The manufacturing method of the winding electrode of Claim 3 which heats the said winding body at the temperature lower than 200 degreeC in the said process (c). 前記工程(b)において、前記積層体を、加圧しながら加熱することにより、前記第1の多孔性絶縁層および第2の多孔性絶縁層の厚みを薄くする請求項1に記載の捲回電極の製造方法。   2. The wound electrode according to claim 1, wherein in the step (b), the laminate is heated while being pressed to reduce the thickness of the first porous insulating layer and the second porous insulating layer. Manufacturing method. 前記第1の塗料または前記第2の塗料が、さらに無機微粒子を含む請求項1に記載の捲回電極の製造方法。   The method for manufacturing a wound electrode according to claim 1, wherein the first paint or the second paint further contains inorganic fine particles. 請求項1に記載の捲回電極の製造方法により作製された捲回電極と、電解液とを、樹脂を含む容器内に入れ、前記容器を封止した後、前記容器の外側から、前記積層体を捲回して得た捲回体を加圧しながら加熱して、前記正極または前記負極と、前記第2の多孔性絶縁層とを接合する工程を含むことを特徴とする電池の製造方法。   The wound electrode produced by the method for producing a wound electrode according to claim 1 and an electrolytic solution are placed in a container containing a resin, and after sealing the container, the laminate is formed from the outside of the container. A method for producing a battery, comprising: heating a wound body obtained by winding a body while applying pressure to join the positive electrode or the negative electrode and the second porous insulating layer. 前記第2の樹脂の軟化点より低い温度で、前記捲回体を加熱する請求項12に記載の電池の製造方法。   The battery manufacturing method according to claim 12, wherein the wound body is heated at a temperature lower than a softening point of the second resin. 前記第1の樹脂の融点より低い温度で、前記捲回体を加熱する請求項13に記載の電池の製造方法。
The battery manufacturing method according to claim 13, wherein the wound body is heated at a temperature lower than the melting point of the first resin.
JP2004358156A 2004-12-10 2004-12-10 Winding electrode, manufacturing method thereof, and battery manufacturing method Active JP4954468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004358156A JP4954468B2 (en) 2004-12-10 2004-12-10 Winding electrode, manufacturing method thereof, and battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004358156A JP4954468B2 (en) 2004-12-10 2004-12-10 Winding electrode, manufacturing method thereof, and battery manufacturing method

Publications (3)

Publication Number Publication Date
JP2006164883A JP2006164883A (en) 2006-06-22
JP2006164883A5 JP2006164883A5 (en) 2007-12-27
JP4954468B2 true JP4954468B2 (en) 2012-06-13

Family

ID=36666630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004358156A Active JP4954468B2 (en) 2004-12-10 2004-12-10 Winding electrode, manufacturing method thereof, and battery manufacturing method

Country Status (1)

Country Link
JP (1) JP4954468B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210135861A (en) 2020-05-06 2021-11-16 주식회사 엘지에너지솔루션 Manufacturing method for secondary battery having improved resistance

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292252B1 (en) 2010-03-08 2013-08-01 히다치 막셀 가부시키가이샤 Lithium-ion secondary battery
JP6066254B2 (en) * 2011-09-27 2017-01-25 株式会社Gsユアサ Electric storage element and method for manufacturing electric storage element
JP6703485B2 (en) * 2014-09-29 2020-06-03 リンテック株式会社 Base material for semiconductor wafer processing sheet, semiconductor wafer processing sheet, and method for manufacturing semiconductor device
JP2017069147A (en) * 2015-10-02 2017-04-06 トヨタ自動車株式会社 Electrode body and method for manufacturing electrode body
DE102016215338A1 (en) * 2016-08-17 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft METHOD FOR PRODUCING AN ELECTRODE FOR AN ELECTROCHEMICAL ENERGY STORAGE CELL, ELECTROCHEMICAL ENERGY STORAGE CELL AND VEHICLE
JP6938128B2 (en) * 2016-10-14 2021-09-22 東洋鋼鈑株式会社 Battery current collector and battery
EP4040551A1 (en) * 2019-09-26 2022-08-10 Guangdong Mic-power New Energy Co., Ltd. Electrode pad for battery roll core, and cylindrical or button battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005493B2 (en) * 1997-04-24 2000-01-31 日本電気株式会社 Method for manufacturing prismatic battery
JPH10321220A (en) * 1997-05-22 1998-12-04 Nippon Glass Fiber Co Ltd Manufacture of rolled electrode body for secondary battery
JP2002025526A (en) * 2000-07-07 2002-01-25 Sony Corp Nonaqueous electrolytic solution battery
JP2003077546A (en) * 2001-09-03 2003-03-14 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210135861A (en) 2020-05-06 2021-11-16 주식회사 엘지에너지솔루션 Manufacturing method for secondary battery having improved resistance

Also Published As

Publication number Publication date
JP2006164883A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP5593454B2 (en) Battery cell manufacturing method and battery cell manufactured by the manufacturing method
JP5526488B2 (en) Electrochemical devices
KR100841905B1 (en) Secondary cell and method for preparation thereof
JP5195341B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
WO2010131401A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4549992B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
US20090169986A1 (en) Non-aqueous secondary battery and method for producing the same
EP2696394A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP5239445B2 (en) Electrochemical devices
WO2017047353A1 (en) Nonaqueous electrolyte secondary battery
US10547090B2 (en) Battery cell including electrode lead containing gas adsorbent
JP5005935B2 (en) Nonaqueous electrolyte secondary battery
JP4992203B2 (en) Lithium ion secondary battery
JP2017073328A (en) Nonaqueous electrolyte secondary battery
JP6243666B2 (en) Lithium ion secondary battery separator and method for producing the same, lithium ion secondary battery and method for producing the same
KR20100101626A (en) Battery
JP4815845B2 (en) Polymer battery
JP6303871B2 (en) Separator and lithium ion secondary battery
JP2017073330A (en) Nonaqueous electrolyte secondary battery
JP4954468B2 (en) Winding electrode, manufacturing method thereof, and battery manufacturing method
JP4802217B2 (en) Nonaqueous electrolyte secondary battery
WO2013038702A1 (en) Nonaqueous electrolyte secondary cell
JP2007172879A (en) Battery and its manufacturing method
JP2014022245A (en) Lithium ion secondary battery and manufacturing method thereof
JP4617682B2 (en) Lithium ion battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4954468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250