WO2017047353A1 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2017047353A1
WO2017047353A1 PCT/JP2016/074939 JP2016074939W WO2017047353A1 WO 2017047353 A1 WO2017047353 A1 WO 2017047353A1 JP 2016074939 W JP2016074939 W JP 2016074939W WO 2017047353 A1 WO2017047353 A1 WO 2017047353A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
electrolyte secondary
secondary battery
separator
Prior art date
Application number
PCT/JP2016/074939
Other languages
French (fr)
Japanese (ja)
Inventor
優子 松木
邦彦 小山
山田 將之
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to JP2017539807A priority Critical patent/JP6754768B2/en
Publication of WO2017047353A1 publication Critical patent/WO2017047353A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention relates to a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries have been widely deployed not only for consumer devices such as mobile phones and laptop computers but also for industrial applications such as electric bicycles and power storage due to their high energy density.
  • the demand for robots such as drones and nursing aids has been greatly increasing in recent years.
  • Applications related to these robots do not require absolute battery capacity, but both high energy density and high input / output performance are required.
  • energy density per weight and load characteristics during discharge are required. It has become a situation.
  • suppression of heat generation during large current discharge is also an important issue.
  • Patent Document 1 discloses that high energy density and high discharge rate characteristics can be obtained by optimizing the arrangement configuration of current collecting tabs of positive and negative electrodes.
  • Patent Document 2 discloses a non-aqueous electrolyte secondary battery that can ensure high safety even if an internal short circuit occurs in an abnormal state in a system with high capacity and high output.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent high load characteristics and good charge / discharge cycle characteristics.
  • a flat electrode body having a pair of wide surfaces is housed in an exterior body, and the flat electrode body includes a long positive electrode and a long negative electrode.
  • the positive electrode and the negative electrode have a positive electrode current collecting tab and a negative electrode current collecting tab, respectively, and the positive electrode and the negative electrode are wound in a spiral shape.
  • At least one of the positive electrode and the negative electrode is 2
  • the positive electrode current collector tab and the negative electrode current collector tab are arranged so as not to overlap when the electrode body is viewed from the side of the wide surface. It is.
  • non-aqueous electrolyte secondary battery that has excellent high load characteristics and good charge / discharge cycle characteristics.
  • two or more current collecting tabs are arranged on at least one of the long positive electrode and the long negative electrode.
  • the current collecting tabs of the positive electrode and the negative electrode are arranged so as not to overlap, thereby increasing the battery thickness due to repeated charge / discharge and distortion of the electrode body. Therefore, it is possible to suppress the occurrence of charging / discharging reaction unevenness and to suppress deterioration of charging / discharging cycle characteristics.
  • two or more current collecting tabs are disposed on at least one of the long positive electrode and the long negative electrode.
  • the number of current collecting tabs is not limited as long as the current collecting tabs do not overlap, but from the viewpoint of workability, one electrode is used. On the other hand, 5 or less is preferable, and 2 is most preferable for one electrode.
  • the outer package can be applied to either a can or a film.
  • a flat bottomed cylindrical can is used for the outer package, that is, when a so-called rectangular battery is used, the outer can generally has a positive electrode.
  • the above arrangement is preferable because workability is improved.
  • aluminum including an aluminum alloy
  • FIG. 1 is a plan view of a long positive electrode before winding
  • FIG. 2 is a cross-sectional view taken along the line II of FIG.
  • the positive electrode 1 is provided with a strip-shaped positive current collector 11 and a positive electrode mixture layer 12 on both sides and partly on one side, and both ends of the positive current collector 11 are exposed to positive current collector exposed portions 11a and 11b, respectively.
  • Have The positive electrode current collecting tabs 13a and 13b are disposed on the positive electrode current collector exposed portions 11a and 11b, respectively, and are welded by, for example, resistance welding.
  • FIG. 3 is a plan view of the negative electrode of the strip-shaped elongated body before winding
  • FIG. 4 is a cross-sectional view taken along the line II-II in FIG.
  • the negative electrode 2 is provided with a strip-shaped elongated negative electrode current collector 21 and a negative electrode mixture layer 22 on both surfaces and partly on one surface.
  • the negative electrode current collector 21 has a negative electrode current collector exposed portion 21a at one end. .
  • the negative electrode current collector tab 23 is disposed on the negative electrode current collector exposed portion 21a and is welded by, for example, resistance welding.
  • FIG. 5 is a side view of an electrode body in which the positive electrode shown in FIGS. 1 and 2 and the negative electrode shown in FIGS. 3 and 4 are stacked via a separator and wound into a spiral shape to form a flat shape.
  • the electrode body 3 is wound with an insulating winding tape 31 after being wound.
  • the surface area can be increased as compared with a cylindrical electrode body having the same volume, so that heat dissipation can be improved.
  • the flat electrode body 3 has a pair of wide surfaces 30, two positive current collecting tabs 13 a and 13 b and one negative current collecting tab from one end in the winding axis direction of the electrode body 3. 23 protrudes. A current is supplied to the electrode body through these current collecting tabs to perform charging / discharging. As shown in FIG. 5, the positive electrode current collecting tab 13 a, the positive electrode current collecting tab 13 b, and the negative electrode current collecting tab 23 do not overlap with each other in a side view from the wide surface 30 side of the electrode body 3. This enhances the heat dissipation of the current collecting tab portion where heat tends to concentrate.
  • the length of the wide surface in the direction perpendicular to the winding axis direction is 20 to 90 mm. It is preferably 30 to 80 mm. This is because when the width is narrower than 30 mm, it is difficult to take out a plurality of current collecting tabs.
  • the width is wider than 80 mm, the ratio of the width and height of the electrode body greatly deviates from the actual value when considering the balance with the capacity described later (1.5 to 4.0 Ah). This is because it adversely affects sex. In general, in order to reduce the battery resistance, it is better to make the width of the electrode body smaller than the height. Therefore, from this viewpoint, the width of the electrode body is particularly preferably 80 mm or less.
  • the cross-sectional area per one current collecting tab is preferably 0.1 to 1.5 mm 2 , and particularly preferably 0.15 to 1.0 mm 2 . This is because when the cross-sectional area is smaller than 0.15 mm 2, the resistance derived from the current collecting tab increases, and it is difficult to obtain high load characteristics even if the current collecting tab is increased. Further, if the cross-sectional area is larger than 1.0 mm 2 , the current collecting tabs are too wide and thick, which causes problems in productivity such as weldability.
  • the electrode body it is preferable that 50 to 100% of the area of the portion where the current collecting tab overlaps the electrode of different polarity through the separator in a plan view is protected with a tape or a resin film. Since the portion where the current collecting tab is attached becomes thick as an electrode, there is a possibility of causing an internal short circuit when stress is applied from the outside. When the number of current collecting tabs is increased, the risk is increased. Therefore, in order to reduce the current collecting tabs, it is preferable that the current collecting tabs be attached so as to be 50 to 100% of the overlapping portion.
  • a positive electrode mixture layer containing a positive electrode active material, a conductive additive, a binder, etc. is used on one side or both sides of the current collector. it can.
  • the positive electrode active material used for the positive electrode is not particularly limited, and a generally usable active material such as a lithium-containing transition metal oxide may be used.
  • a lithium-containing transition metal oxide include, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1-y O 2. and Li x Ni 1-y M y O 2, Li x Mn y Ni z Co 1-y-z O 2, Li x Mn 2 O 4, Li x Mn 2-y M y O 4 and the like.
  • M is at least one metal element selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn, Al, Ti, Zr, Ge, and Cr. 0 ⁇ x ⁇ 1.1, 0 ⁇ y ⁇ 1.0, 2.0 ⁇ z ⁇ 1.0.
  • a layered compound containing lithium and cobalt generally formula LiCo 1-y M 2 y O 2 ; M 2 is at least one metal element selected from the above-mentioned group in which Co is removed from Co, y Is the same as described above.
  • thermoplastic resin and a thermosetting resin can be used as long as it is chemically stable in the battery.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PHFP polyhexafluoropropylene
  • SBR styrene-butadiene rubber
  • tetrafluoroethylene-hexafluoroethylene copolymer tetrafluoro Ethylene-hexafluoropropylene copolymer
  • FEP tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • ETFE polychlorotrifluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • ECTFE propylene- Tetrafluoroethylene copolymer
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • a conductive support agent used for the said positive electrode what is chemically stable should just be in a battery.
  • graphite such as natural graphite and artificial graphite
  • carbon black such as acetylene black, ketjen black (trade name), channel black, furnace black, lamp black and thermal black
  • conductive fibers such as carbon fiber and metal fiber
  • aluminum Metal powder such as powder
  • Conductive whisker made of carbon fluoride Zinc oxide; Potassium titanate
  • Conductive metal oxide such as titanium oxide
  • Organic conductive materials such as polyphenylene derivatives, etc.
  • highly conductive graphite and carbon black excellent in liquid absorption are preferable.
  • the form of the conductive auxiliary agent is not limited to primary particles, and secondary aggregates and aggregated forms such as chain structures can also be used. Such an assembly is easier to handle and has better productivity.
  • the current collector used for the positive electrode can be the same as that used for the positive electrode of a conventionally known non-aqueous electrolyte secondary battery.
  • an aluminum foil having a thickness of 10 to 30 ⁇ m can be used. preferable.
  • a paste-like or slurry-like positive electrode mixture-containing composition in which the positive electrode active material, the conductive auxiliary agent and the binder described above are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) is prepared.
  • NMP N-methyl-2-pyrrolidone
  • the binder may be dissolved in a solvent.
  • the total amount of the positive electrode active material is 92 to 95% by mass
  • the amount of the conductive assistant is 3 to 6% by mass
  • the amount of the binder is 3 to 6% by mass.
  • the thickness of the positive electrode mixture layer is preferably 20 to 70 ⁇ m per side. This is because, if the positive electrode mixture layer is thinned, the maximum distance along which lithium ions move during charge / discharge can be shortened, so that the internal resistance can be kept low.
  • the total area of the positive electrode mixture layer on the positive electrode current collector (the total area of the area occupied by the positive electrode mixture layer on one surface of the positive electrode current collector and the area occupied by the positive electrode mixture layer on the other surface) ) Is preferably 300 to 2000 cm 2 , particularly preferably 500 to 1600 cm 2 . This is because when the electrode area is smaller than 300 cm 2, the capacity is lowered from the balance with the electrode thickness described above, and the flowing current value is also reduced, so that the effect of increasing the current collecting tab is too small. This is because if the total area of the positive electrode mixture layer is larger than 2000 cm 2 , the energy density becomes too low due to the balance between the positive electrode mixture layer thickness and the capacity described above, and it becomes difficult to achieve both energy density.
  • the value obtained by dividing the battery capacity by the total area of the positive electrode mixture layer is preferably 2.0 to 3.5.
  • the current density is less than 2, the energy density is too low, and when it is more than 3.5, the polarization resistance at the time of high-load charge / discharge is increased, and the active material is easily deteriorated.
  • the negative electrode according to the non-aqueous electrolyte secondary battery of the present invention has, for example, a structure having a negative electrode mixture layer containing a negative electrode active material, a binder, and a conductive auxiliary agent if necessary on one side or both sides of a current collector. Things can be used.
  • the negative electrode active material is not particularly limited as long as it is a negative electrode active material used in conventionally known non-aqueous electrolyte secondary batteries, that is, a material capable of inserting and extracting lithium ions.
  • a negative electrode active material used in conventionally known non-aqueous electrolyte secondary batteries, that is, a material capable of inserting and extracting lithium ions.
  • carbon-based materials that can occlude and release lithium ions such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers.
  • MCMB mesocarbon microbeads
  • One kind or a mixture of two or more kinds is used as the negative electrode active material.
  • elements such as silicon (Si), tin (Sn), germanium (Ge), bismuth (Bi), antimony (Sb), indium (In), and alloys thereof, lithium such as lithium-containing nitride or lithium-containing oxide
  • a compound that can be charged and discharged at a low voltage close to that of a metal, or a lithium metal or a lithium / aluminum alloy can also be used as the negative electrode active material.
  • the negative electrode active material a mixture of a material represented by SiO x (0.5 ⁇ x ⁇ 1.5) containing silicon and oxygen as constituent elements and graphite is preferable.
  • the SiO x may contain Si microcrystal or amorphous phase.
  • the atomic ratio of Si and O is a ratio including Si microcrystal or amorphous phase Si. That is, SiO x includes a structure in which Si (for example, microcrystalline Si) is dispersed in an amorphous SiO 2 matrix, and this amorphous SiO 2 is dispersed in the SiO 2 matrix. It is only necessary that the atomic ratio x satisfies 0.5 ⁇ x ⁇ 1.5.
  • x 1, so that the structural formula is represented by SiO.
  • a material having such a structure for example, in X-ray diffraction analysis, a peak due to the presence of Si (microcrystalline Si) may not be observed, but when observed with a transmission electron microscope, the presence of fine Si Can be confirmed.
  • the SiO x is preferably a composite that is combined with a carbon material.
  • the surface of the SiO x is preferably covered with the carbon material.
  • a conductive material conductive aid
  • SiO x in the negative electrode is electrically conductive. It is necessary to form an excellent conductive network by making good mixing and dispersion with the conductive material. If complexes complexed with carbon material SiO x, for example, simply than with a material obtained by mixing a conductive material such as SiO x and the carbon material, good conductive network in the negative electrode Formed.
  • binder examples include polysaccharides such as starch, polyvinyl alcohol, polyacrylic acid, carboxymethyl cellulose (CMC), hydroxypropyl cellulose, regenerated cellulose, and diacetyl cellulose, and modified products thereof; polyvinyl chloride, polyvinyl pyrrolidone (PVP), Thermoplastic resins such as polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyamideimide, polyamide and their modified products; polyimide; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber ( SBR), butadiene rubber, polybutadiene, fluororubber, polyethylene oxide and other polymers having rubber-like elasticity, and modified products thereof. It can be used either alone or in combination.
  • EPDM ethylene-propylene-diene terpolymer
  • SBR sulfonated EP
  • a conductive material may be further added to the negative electrode mixture layer as a conductive aid.
  • a conductive material is not particularly limited as long as it does not cause a chemical change in the battery.
  • carbon black thermal black, furnace black, channel black, ketjen black, acetylene black, etc.
  • carbon black thermal black, furnace black, channel black, ketjen black, acetylene black, etc.
  • carbon It is possible to use one or more materials such as fiber, metal powder (powder of copper, nickel, aluminum, silver, etc.), metal fiber, polyphenylene derivative (described in JP-A-59-20971). it can.
  • carbon black is preferably used, and ketjen black and acetylene black are more preferable.
  • ⁇ Current collector> As the current collector, a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used, but a copper foil is usually used.
  • the upper limit of the thickness is preferably 30 ⁇ m, and the lower limit is 5 ⁇ m in order to ensure mechanical strength. Is desirable.
  • the negative electrode is prepared, for example, by preparing a paste-like or slurry-like negative electrode mixture-containing composition in which the above-described negative electrode active material and binder, and further, if necessary, a conductive additive dispersed in a solvent such as NMP or water. It can be manufactured through a step of applying a calender treatment as necessary after applying this to one or both sides of the current collector and drying it.
  • the manufacturing method of a negative electrode is not necessarily restricted to said manufacturing method, It can also manufacture with another manufacturing method.
  • the total amount of the negative electrode active material is 80 to 99% by mass and the amount of the binder is 1 to 20% by mass.
  • these conductive materials in the negative electrode mixture layer are used in such a range that the total amount of the negative electrode active material and the binder amount satisfy the above-described preferable values. It is preferable.
  • the thickness of the negative electrode mixture layer is preferably 20 to 70 ⁇ m per side. This is because, when the negative electrode mixture layer is thinned, the maximum distance that lithium ions move during charge / discharge can be shortened, so that the internal resistance can be kept low.
  • the material represented by SiO x can have a higher capacity than graphite, which is the most common negative electrode active material. Therefore, when the material represented by SiO x is contained in the negative electrode active material, the total amount of the negative electrode active material can be reduced, and thus the negative electrode mixture layer can be easily thinned.
  • Non-aqueous electrolyte For the non-aqueous electrolyte according to the non-aqueous electrolyte secondary battery of the present invention, a non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent can be used.
  • the lithium salt used in the non-aqueous electrolyte is not particularly limited as long as it dissociates in a solvent to form lithium ions and does not easily cause a side reaction such as decomposition in a voltage range used as a battery.
  • inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ⁇ n ⁇ 7), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group]; Can be used.
  • the concentration of this lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / L, more preferably 0.9 to 1.25 mol / L.
  • the organic solvent used in the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause side reactions such as decomposition in the voltage range used as a battery.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; chain esters such as methyl propionate; cyclic esters such as ⁇ -butyrolactone; dimethoxyethane, Chain ethers such as diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; nitriles such as acetonitrile, propionitrile and methoxypropionitrile; ethylene And sulfites such as glycol sulfit
  • the separator according to the non-aqueous electrolyte secondary battery has a property that the pores are closed at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower) (ie, shutdown function). It is preferable that a separator used in an ordinary nonaqueous electrolyte secondary battery, for example, a microporous membrane made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used.
  • the microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be.
  • the thickness of the separator is preferably larger than 6 ⁇ m and smaller than 20 ⁇ m.
  • the thickness of the separator is more preferably smaller than 16 ⁇ m and further preferably smaller than 14 ⁇ m from the viewpoint of improving the volumetric energy density of the battery.
  • remarkable heat generation occurs due to current concentration on the positive electrode current collecting tab portion, so there is a concern about internal short circuit due to thermal contraction of the separator at the location, and thermal contraction is prevented by increasing the thickness of the separator.
  • the present invention when two or more positive electrode current collecting tabs are provided, it is possible to prevent heat from concentrating on one positive electrode current collecting tab. Therefore, it is possible to use a separator thinner than the conventional one, and further contribute to the improvement of the volume energy density.
  • the thickness of the separator is more preferably larger than 8 ⁇ m because of ease of handling.
  • a separator for a non-aqueous electrolyte secondary battery includes a porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or less, a resin that does not melt at a temperature of 150 ° C. or less, or an inorganic filler having a heat resistant temperature of 150 ° C. or more. It is preferable to use a laminated separator having a porous layer (II) containing as a main component.
  • the “melting point” means the melting temperature measured using a differential scanning calorimeter (DSC) in accordance with the provisions of JIS K 7121. Further, “does not melt at a temperature of 150 ° C.
  • the melting temperature measured using DSC exceeds 150 ° C. according to the provisions of JIS K 7121, such as 150 ° C. or lower when the melting temperature is measured. This means that the melting behavior is not exhibited at the temperature.
  • the heat resistant temperature is 150 ° C. or higher” means that deformation such as softening is not observed at least at 150 ° C.
  • the porous layer (I) relating to the laminated separator is mainly for ensuring a shutdown function
  • the non-aqueous electrolyte secondary battery is a resin that is a main component of the porous layer (I).
  • the resin related to the porous layer (I) melts and closes the pores of the separator, thereby causing a shutdown that suppresses the progress of the electrochemical reaction.
  • Examples of the resin having a melting point of 140 ° C. or lower, which is the main component of the porous layer (I), include PE, and the form thereof includes a microporous membrane used as a separator for the above-described non-aqueous electrolyte secondary battery, and a nonwoven fabric. And the like obtained by applying a dispersion containing PE particles to a base material and drying the substrate.
  • the volume of the resin having a main melting point of 140 ° C. or less is 50% by volume or more, and more preferably 70% by volume or more.
  • the volume of the resin having a melting point of 140 ° C. or lower is 100% by volume.
  • the porous layer (II) according to the multilayer separator has a function of preventing a short circuit due to direct contact between the positive electrode and the negative electrode even when the internal temperature of the nonaqueous electrolyte secondary battery rises.
  • the function is secured by a resin that does not melt at a temperature of 150 ° C. or lower or an inorganic filler having a heat resistant temperature of 150 ° C. or higher. That is, when the battery becomes high temperature, even if the porous layer (I) shrinks, the porous layer (II) which does not easily shrink can directly generate positive and negative electrodes that can be generated when the separator is thermally contracted. It is possible to prevent a short circuit due to the contact. Moreover, since this heat-resistant porous layer (II) acts as a skeleton of the separator, the thermal contraction of the porous layer (I), that is, the thermal contraction of the entire separator itself can be suppressed.
  • the porous layer (II) is mainly formed of a resin that does not melt at a temperature of 150 ° C. or lower, for example, a microporous film formed of a resin that does not melt at a temperature of 150 ° C. or lower (for example, the aforementioned battery made of PP A microporous membrane for coating) is applied to the porous layer (I), and a dispersion containing resin particles that do not melt at a temperature of 150 ° C. or lower is applied to the porous layer (I) and dried to be porous.
  • An application lamination type form in which the porous layer (II) is formed on the surface of the layer (I) is exemplified.
  • Resins that do not melt at temperatures below 150 ° C include PP; crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polyimide, melamine resin, phenol resin, benzoguanamine-formaldehyde condensation And various crosslinked polymer fine particles; polysulfone; polyether sulfone; polyphenylene sulfide; polytetrafluoroethylene; polyacrylonitrile; aramid; polyacetal;
  • the average particle size is, for example, preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, It is preferably 10 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • the average particle diameter of the various particles referred to in the present specification is, for example, an average particle measured by dispersing these particles in a medium in which the particles are not dissolved using a laser scattering particle size distribution analyzer “LA-920” manufactured by Horiba, Ltd.
  • the diameter D is 50%.
  • porous layer (II) is mainly formed of an inorganic filler having a heat resistant temperature of 150 ° C. or higher, for example, a dispersion containing an inorganic filler having a heat resistant temperature of 150 ° C. or higher is applied to the porous layer (I).
  • a dispersion containing an inorganic filler having a heat resistant temperature of 150 ° C. or higher is applied to the porous layer (I).
  • the inorganic filler related to the porous layer (II) has a heat-resistant temperature of 150 ° C. or higher, is stable with respect to the non-aqueous electrolyte of the battery, and is electrochemically stable that is not easily oxidized or reduced in the battery operating voltage range.
  • fine particles are preferable from the viewpoint of dispersion, and alumina, silica, and boehmite are preferable.
  • Alumina, silica, and boehmite have high oxidation resistance, and the particle size and shape can be adjusted to the desired numerical values, making it easy to control the porosity of the porous layer (II) with high accuracy. It becomes.
  • an inorganic filler having a heat resistant temperature of 150 ° C. or higher may be used in combination with a resin that does not melt at a temperature of 150 ° C. or lower.
  • a substantially spherical shape (a true spherical shape is included), a substantially ellipsoid shape (an ellipsoid shape is included), a board
  • Various shapes such as shapes can be used.
  • the average particle diameter of the inorganic filler having a heat resistant temperature of 150 ° C. or higher related to the porous layer (II) is preferably 0.3 ⁇ m or more because the ion permeability is lowered if it is too small. More preferably, it is 5 ⁇ m or more.
  • the average particle diameter is preferably 5 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • the resin that does not melt at a temperature of 150 ° C. or lower and the inorganic filler having a heat resistant temperature of 150 ° C. or higher are mainly contained in the porous layer (II).
  • the porous layer (II) also contains an organic binder, in the porous layer (II) of a resin that does not melt at a temperature of 150 ° C. or less and an inorganic filler having a heat resistant temperature of 150 ° C. or more.
  • the amount is preferably 99.5% by volume or less in the total volume of the constituent components of the porous layer (II).
  • porous layer (II) a resin that does not melt at a temperature of 150 ° C. or less or an inorganic filler having a heat resistant temperature of 150 ° C. or higher is bound, or the porous layer (II) and the porous layer (I) It is preferable to contain an organic binder for integration.
  • Organic binders include ethylene-vinyl acetate copolymers (EVA, structural units derived from vinyl acetate of 20 to 35 mol%), ethylene-acrylic acid copolymers such as ethylene-ethyl acrylate copolymers, fluorine-based binders Examples include rubber, SBR, CMC, hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), cross-linked acrylic resin, polyurethane, and epoxy resin.
  • a heat-resistant binder having a heat-resistant temperature is preferably used.
  • the organic binder those exemplified above may be used singly or in combination of two or more.
  • highly flexible binders such as EVA, ethylene-acrylic acid copolymer, fluorine rubber, and SBR are preferable.
  • highly flexible organic binders include EVA “Evaflex Series” from Mitsui DuPont Polychemical Co., Ltd., EVA from Nippon Unicar Co., Ltd., and “Everflex-EEA Series” ethylene-acrylic acid copolymer from Mitsui DuPont Polychemical Co. ”EEA of Nihon Unicar Company,“ Daiel Latex Series ”of fluorine rubber of Daikin Industries, Ltd., SBR“ TRD-2001 ”of JSR Corporation, SBR“ BM-400B ”of Zeon Corporation.
  • the organic binder when used for the porous layer (II), it may be used in the form of an emulsion dissolved or dispersed in a solvent of a composition for forming the porous layer (II) described later.
  • the coating-laminated separator is, for example, a composition for forming a porous layer (II) containing a resin particle that does not melt at a temperature of 150 ° C. or lower, an inorganic filler having a heat resistant temperature of 150 ° C. or higher (liquid such as slurry).
  • the composition for forming the porous layer (II) contains resin particles that do not melt at a temperature of 150 ° C. or lower and / or an inorganic filler having a heat resistant temperature of 150 ° C. or higher, and an organic binder as necessary. Is dispersed in a solvent (including a dispersion medium; the same shall apply hereinafter). The organic binder can be dissolved in a solvent.
  • the solvent used in the composition for forming the porous layer (II) can uniformly disperse resin particles and inorganic filler that do not melt at a temperature of 150 ° C. or lower, and can dissolve or disperse the organic binder uniformly.
  • Common organic solvents such as aromatic hydrocarbons such as toluene; furans such as tetrahydrofuran; ketones such as methyl ethyl ketone and methyl isobutyl ketone; are preferably used.
  • alcohols ethylene glycol, propylene glycol, etc.
  • various propylene oxide glycol ethers such as monomethyl acetate may be appropriately added to these solvents.
  • water may be used as a solvent.
  • alcohols methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.
  • the composition for forming the porous layer (II) has a solid content containing, for example, a resin particle that does not melt at a temperature of 150 ° C. or lower and / or an inorganic filler having a heat resistant temperature of 150 ° C. or higher, and an organic binder. It is preferable to set it to 80 mass%.
  • the porous layer (I) and the porous layer (II) do not have to be one each, and a plurality of layers may be present in the separator.
  • the porous layer (I) may be configured on both sides of the porous layer (II), or the porous layer (II) may be disposed on both sides of the porous layer (I).
  • increasing the number of layers may increase the thickness of the separator and increase the internal resistance of the battery or decrease the energy density. Therefore, it is not preferable to increase the number of layers.
  • the total number of layers of the porous layer (I) and the porous layer (II) is preferably 5 or less.
  • the thickness of the entire separator can be reduced according to the present invention.
  • the effect of suppressing thermal shrinkage is extremely high, and therefore the thickness of the separator is further reduced. Is possible.
  • the thickness of the porous layer (I) can be 5 to 14 ⁇ m
  • the thickness of the porous layer (II) can be 1 to 5 ⁇ m
  • the total thickness can be 6 to 15 ⁇ m.
  • the porosity of the separator as a whole is preferably 30% or more in a dry state in order to ensure the amount of electrolyte retained and to improve ion permeability.
  • the separator porosity is preferably 70% or less in a dry state.
  • the porosity of the separator: P (%) can be calculated by obtaining the sum for each component i from the thickness of the separator, the mass per area, and the density of the constituent components using the following formula (1).
  • ai the ratio of the component i expressed in mass%
  • ⁇ i the density of the component i (g / cm 3 )
  • m mass per unit area of the separator (g / cm 2 )
  • T is the thickness (cm) of the separator.
  • m is the mass per unit area (g / cm 2 ) of the porous layer (I)
  • t is the thickness of the porous layer (I) ( cm)
  • the porosity: P (%) of the porous layer (I) can also be obtained using the formula (1).
  • the porosity of the porous layer (I) obtained by this method is preferably 30 to 70%.
  • the porosity of the porous layer (II) obtained by this method is preferably 20 to 60%.
  • the separator preferably has high mechanical strength.
  • the puncture strength is preferably 3N or more.
  • SiO x having a large volume change due to charge / discharge is used as the negative electrode active material, mechanical damage is also applied to the facing separator due to expansion / contraction of the entire negative electrode by repeating charge / discharge. If the piercing strength of the separator is 3N or more, good mechanical strength is ensured, and mechanical damage to the separator can be reduced.
  • Examples of the separator having a puncture strength of 3N or more include the above-described laminated separator, and in particular, an inorganic filler having a heat resistant temperature of 150 ° C. or higher in the porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower.
  • a separator in which a porous layer (II) containing as a main component is laminated is preferable. This is presumably because the mechanical strength of the separator can be increased by supplementing the mechanical strength of the porous layer (I) because the inorganic filler has high mechanical strength.
  • the piercing strength can be measured by the following method.
  • a separator is fixed on a plate having a hole with a diameter of 2 inches so as not to be wrinkled or bent, and a semicircular metal pin having a tip diameter of 1.0 mm is lowered onto a measurement sample at a speed of 120 mm / min.
  • an average value is calculated
  • the positive electrode, the negative electrode, and the separator are stacked in a spiral shape with a separator interposed between the positive electrode and the negative electrode. Used for the next battery.
  • a porous layer (II) mainly containing an inorganic filler having a heat resistant temperature of 150 ° C. or more in the porous separator (I) mainly comprising a resin having a melting point of 140 ° C. or less.
  • the porous layer (II) that includes an inorganic filler having a heat resistant temperature of 150 ° C. or more as a main component and more excellent in oxidation resistance faces the positive electrode, oxidation of the separator by the positive electrode can be better suppressed, It is possible to further improve the storage characteristics and charge / discharge cycle characteristics of the battery at high temperatures.
  • additives such as vinylene carbonate and cyclohexylbenzene can be added to the non-aqueous electrolyte to further improve various battery characteristics.
  • a film is formed on the positive electrode side.
  • the pores of the separator may be clogged and the battery characteristics may be deteriorated. Therefore, an effect of suppressing clogging of pores can be expected by causing the relatively porous porous layer (II) to face the positive electrode.
  • the non-aqueous electrolyte secondary battery of the present invention can be used with the upper limit voltage of charging being about 4.2 V as in the case of the conventional non-aqueous electrolyte secondary battery, but the upper limit voltage of charging is higher than this. It is also possible to use it by setting it to 3 V or more, so that it is possible to stably exhibit excellent characteristics even if it is repeatedly used over a long period of time while increasing the capacity. In addition, it is preferable that the upper limit voltage of charge of a nonaqueous electrolyte secondary battery is 4.7V or less.
  • the non-aqueous electrolyte secondary battery of the present invention can be applied to the same applications as conventionally known non-aqueous electrolyte secondary batteries. Since the present invention can minimize the increase in the number of parts in the battery, in particular, a device that requires a high capacity for a limited volume, for example, a mobile device, a small device, and a multi-cell combination. This is particularly effective when the volumetric energy density is 350 to 800 Wh / L, such as for robot applications. Further, the non-aqueous electrolyte secondary battery of the present invention is well characterized when the battery capacity is 1.0 to 5.0 Ah when measured under the conditions described later (described in the examples), particularly 1.5 to 4 Optimal characteristics in the range of 0.0 Ah. In applications such as robots, the battery capacity of the present invention is well suited because the absolute battery capacity does not need to be increased in consideration of its usage.
  • Example 1 Preparation of positive electrode> 100 parts by mass of a positive electrode active material obtained by mixing LiCoO 2 and Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2 at a ratio (mass ratio) of 8: 2, and 10 parts by mass of PVDF as a binder. 20 parts by weight of NMP solution contained at a concentration of 1%, 1 part by weight of artificial graphite and 1 part by weight of ketjen black, which are conductive assistants, are kneaded using a biaxial kneader, and NMP is added to adjust the viscosity. Thus, a positive electrode mixture-containing paste was prepared.
  • the positive electrode mixture-containing paste is applied to both surfaces and a part of one surface of an aluminum foil (positive electrode current collector) having a thickness of 12 ⁇ m, followed by vacuum drying at 120 ° C. for 12 hours. Then, a positive electrode mixture layer was formed on both surfaces of the aluminum foil. Then, the press process was performed and the thickness and density of the positive mix layer were adjusted.
  • the positive electrode mixture layer in the obtained positive electrode had a thickness of 40 ⁇ m on one side. As shown in FIGS.
  • ⁇ Production of negative electrode> A composite in which the surface of SiO having an average particle diameter D50% of 8 ⁇ m, which is a negative electrode active material, is coated with a carbon material (the amount of the carbon material in the composite is 10% by mass), and graphite having an average particle diameter D50% of 16 ⁇ m
  • the negative electrode mixture-containing paste was applied to both sides of a copper foil (negative electrode current collector) having a thickness of 8 ⁇ m as shown in FIGS. 3 and 4 and then vacuum-dried at 120 ° C. for 12 hours to obtain a copper foil.
  • a negative electrode mixture layer was formed on both sides and a part of one side.
  • press treatment is performed to adjust the thickness and density of the negative electrode mixture layer, and a negative electrode current collector tab made of nickel is welded to the exposed portion of the copper foil as shown in FIGS.
  • a strip-shaped negative electrode having a width of 990 mm and a width of 55 mm was produced.
  • the negative electrode mixture layer in the obtained negative electrode had a thickness per side of 45 ⁇ m.
  • LiPF 6 is dissolved at a concentration of 1.1 mol / L in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7, and vinylene carbonate in an amount of 2% by mass and fluoroethylene carbonate in an amount of 2% by mass are obtained.
  • vinylene carbonate in an amount of 2% by mass and fluoroethylene carbonate in an amount of 2% by mass are obtained.
  • Corona discharge treatment (discharge amount: 40 W ⁇ min / m 2) on one side of the porous layer (I) PE microporous film (thickness 10 ⁇ m, porosity 40%, average pore size 0.08 ⁇ m, PE melting point 135 ° C.)
  • the porous layer (II) forming slurry is applied to the treated surface with a micro gravure coater and dried to form a porous layer (II) having a thickness of 2 ⁇ m on one side of the separator.
  • a mold separator was produced.
  • the strip-shaped positive electrode is stacked on the strip-shaped negative electrode via the laminated separator (porosity: 42%), wound in a spiral shape, and then added to form a flat shape.
  • the electrode body was pressed to be fixed with an insulating tape made of polypropylene.
  • the flat electrode body was in a position where the current collecting tabs did not overlap in a side view from the wide surface as shown in FIG.
  • the wide surface dimensions of the electrode body at this time were 50 mm in the width direction (direction perpendicular to the winding axis direction) and 58 mm in the height direction (direction parallel to the winding axis direction).
  • the wound electrode body is inserted into a rectangular can made of aluminum alloy having an outer dimension of thickness 4.8 mm, width 57 mm, and height 60 mm, and the current collecting tab is welded to each other.
  • the plate was welded to the open end of the square can.
  • the non-aqueous electrolyte was injected from an inlet provided in the lid plate, and the inlet was sealed to obtain a non-aqueous electrolyte secondary battery 100 having an appearance shown in FIG.
  • the non-aqueous electrolyte secondary battery 100 has an outer can 111 and a cover plate 121, which also serve as a positive electrode terminal.
  • the outer can 111 includes a pair of side surfaces 112, a pair of wide surfaces 113, and a bottom surface.
  • the wide surface 113 has a cleavage groove 114 that operates as an explosion-proof mechanism when the internal pressure of the battery increases.
  • the lid 121 is inserted into the opening of the outer can 111, and the joint of the two is welded to seal the opening of the outer can 111 and seal the inside of the battery.
  • the lid 121 is provided with a non-aqueous electrolyte inlet, and the non-aqueous electrolyte inlet is welded and sealed by, for example, laser welding in a state where the sealing member 122 is inserted. Airtightness is ensured.
  • a stainless steel terminal 123 is attached to the lid 121 via an insulating packing 124 made of PP, and a lead plate is attached to the terminal 123 via an insulator inside the battery.
  • the positive electrode current collecting tab is directly welded to the lid body 121 so that the outer can 111 and the lid body 121 function as a positive electrode terminal, and the negative electrode current collecting tab is welded to a lead plate inside the battery.
  • the terminal 123 functions as a negative electrode terminal by conducting with the terminal 123 through the lead plate.
  • Example 2 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a PE microporous membrane (thickness 20 ⁇ m) was used as the separator.
  • Example 3 A strip-shaped positive electrode was produced in the same manner as in Example 1 except that the size was changed to 700 mm in length and 54 mm in width. The total area of the positive electrode mixture layer at this time was 660 cm 2 in total on both sides.
  • a strip-shaped negative electrode was produced in the same manner as in Example 1 except that the size was changed to 800 mm in length and 55 mm in width.
  • a flat electrode body was produced in the same manner as in Example 1 except that the belt-like positive electrode and the belt-like negative electrode were used.
  • the wide surface dimensions of the electrode body at this time were 35 mm in the width direction and 58 mm in the height direction.
  • nonaqueous electrolyte secondary battery was carried out in the same manner as in Example 1 except that the flat electrode body was inserted into an aluminum alloy rectangular can having a thickness of 4.8 mm, a width of 38 mm, and a height of 60 mm. Was made.
  • Example 4 A belt-like positive electrode was produced in the same manner as in Example 1 except that the size was changed to 1600 mm in length and 54 mm in width. The total area of the positive electrode mixture layer at this time was 1560 cm 2 in total on both sides.
  • a strip-shaped negative electrode was produced in the same manner as in Example 1 except that the size was changed to 1700 mm in length and 55 mm in width.
  • a flat electrode body was produced in the same manner as in Example 1 except that the belt-like positive electrode and the belt-like negative electrode were used.
  • the wide surface dimensions of the electrode body at this time were 75 mm in the width direction and 58 mm in the height direction.
  • nonaqueous electrolyte secondary battery was carried out in the same manner as in Example 1 except that the flat electrode body was inserted into a square can made of an aluminum alloy having a thickness of 4.8 mm, a width of 78 mm, and a height of 60 mm. Was made.
  • Comparative Example 1 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the electrode body was formed in a cylindrical shape and the exterior body was changed to a conventionally known cylindrical shape.
  • Comparative Example 2 A belt-like positive electrode was produced in the same manner as in Example 1 except that the positive electrode current collecting tab 13b was not provided, and this positive electrode was used. In addition, a PE microporous film (thickness 20 ⁇ m) was used. A non-aqueous electrolyte secondary battery was produced in the same manner as described above.
  • Comparative Example 3 The same belt-like positive electrode, belt-like negative electrode, and separator as used in Example 1 are stacked, and the positive electrode winding start position is changed to that of Example 1, and the positive electrode current collecting tab 213a on the outermost peripheral side of the electrode body, and the electrode A flat electrode body 203 was produced with the positive electrode current collecting tab 213b on the innermost peripheral side of the body arranged as shown in FIG.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this flat electrode body 203 was used.
  • Comparative Example 4 A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 3 except that the separator was changed to a PE microporous membrane (thickness 20 ⁇ m).
  • CCCV charging was performed again under the same conditions for each battery, and CC discharge was performed to a current value of 10 C to 2.75 V, and the discharge capacity and the surface temperature of the battery were evaluated.
  • ⁇ Measurement of battery thickness The thickness of each of the nonaqueous electrolyte secondary batteries in Examples and Comparative Examples was determined by using a thickness gauge (measurement part ⁇ 10 mm flat circle) manufactured by Mitutoyo Co., Ltd. It measured with the location corresponding to the current collection tab of an electrode body of a shape. Table 3 shows the maximum value of the thickness of the central portion and the thickness of the portion corresponding to the current collecting tab position.
  • the non-aqueous electrolyte secondary battery in which the electrode body is flat uses two positive electrode current collecting tabs, and is arranged at a position where the current collecting tabs do not overlap when viewed from the wide side. Since the impedance was low, the 10C / 0.2C discharge capacity ratio was high, and the temperature rise on the battery surface was also suppressed. In addition, the difference between the central thickness and the maximum thickness of the wide surface of the battery is small, and there is little unevenness in the thickness of the wide surface, so there is less distortion of the electrode body due to the bias in the electrode body during charging and discharging, resulting in high cycle capacity. A retention rate was obtained.
  • the battery of Comparative Example 1 having a cylindrical electrode body was poor in heat dissipation as compared with the battery of Example 1 having a flat electrode body, and the temperature increased during high load discharge. Further, the poor heat dissipation has a negative effect on the charge / discharge cycle characteristics.
  • the battery of Comparative Example 2 having one current collecting tab for both the positive electrode and the negative electrode has a high impedance, and thus has a small capacity during discharge under a high load.
  • the batteries of Comparative Examples 3 and 4 having the electrode bodies arranged so that the two positive electrode current collecting tabs overlap each other when viewed from the side have a low capacity retention rate when evaluating charge / discharge cycle characteristics. In the batteries of Comparative Examples 3 and 4, since the flat surface of the flat electrode body has a thickness unevenness, a charge / discharge capacity loss occurred while repeating the charge / discharge cycle, and the capacity retention rate was considered to be low.
  • This invention is applied to a non-aqueous electrolyte secondary battery.

Abstract

Provided is a nonaqueous electrolyte secondary battery which exhibits excellent high load characteristics, while having good charge and discharge cycle characteristics. A nonaqueous electrolyte secondary battery according to the present invention is characterized in that: a flattened electrode body having a pair of wide surfaces is contained in an outer case; the flattened electrode body is obtained by laminating a long positive electrode and a long negative electrode, with a separator being interposed therebetween, and winding the laminate into a coil; the positive electrode and the negative electrode respectively have a positive electrode collector tab and a negative electrode collector tab; at least one of the positive electrode and the negative electrode has two or more collector tabs; and the positive electrode collector tab and the negative electrode collector tab are arranged so as not to overlap with each other in a side view of the electrode body from a wide surface side.

Description

非水電解質二次電池Nonaqueous electrolyte secondary battery
 この発明は、非水電解質二次電池に関するものである。 This invention relates to a non-aqueous electrolyte secondary battery.
 非水電解質二次電池は、その高いエネルギー密度から携帯電話やノートパソコンなど民生機器だけではなく、電動自転車や電力貯蔵など産業用途にも広く展開されてきている。特に、ドローンや介護補助器具といったロボット用途は、近年、需要が大きく伸びつつある。これらロボットに関連した用途では、絶対的な電池容量は必要ないものの、高エネルギー密度と高入出力性能の両立が求められており、特に重量当たりのエネルギー密度と放電時の負荷特性の向上が必要な状況となっている。更に、大電流放電時の発熱抑制も重要な課題となっている。 Non-aqueous electrolyte secondary batteries have been widely deployed not only for consumer devices such as mobile phones and laptop computers but also for industrial applications such as electric bicycles and power storage due to their high energy density. In particular, the demand for robots such as drones and nursing aids has been greatly increasing in recent years. Applications related to these robots do not require absolute battery capacity, but both high energy density and high input / output performance are required. Especially, energy density per weight and load characteristics during discharge are required. It has become a situation. Furthermore, suppression of heat generation during large current discharge is also an important issue.
 特許文献1には、正負極の集電タブの配置構成を適正化することによって、高エネルギー密度、高い放電レート特性を併せて得られることが開示されている。また、特許文献2には、高容量化・高出力化された系において、異常時に内部短絡が生じても高い安全性を確保することが可能な非水電解質二次電池が開示されている。 Patent Document 1 discloses that high energy density and high discharge rate characteristics can be obtained by optimizing the arrangement configuration of current collecting tabs of positive and negative electrodes. Patent Document 2 discloses a non-aqueous electrolyte secondary battery that can ensure high safety even if an internal short circuit occurs in an abnormal state in a system with high capacity and high output.
特開2009-245839号公報JP 2009-245839 A 特開2014-225326号公報JP 2014-225326 A
 しかしながら、特許文献1および2に開示の電池は円筒形の鉄製外装缶を利用したものであるため、高負荷での充放電時における外装缶からの放熱は十分ではなかった。 However, since the batteries disclosed in Patent Documents 1 and 2 utilize a cylindrical iron outer can, heat dissipation from the outer can during charging and discharging under high load was not sufficient.
 本発明は、かかる問題を解決するためになされたものであり、その目的は、高負荷特性に優れ、充放電サイクル特性も良好な非水電解質二次電池を提供することにある。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent high load characteristics and good charge / discharge cycle characteristics.
 本発明の非水電解質二次電池は、一対の幅広面を持つ扁平形状の電極体が外装体内に収納されており、前記扁平形状の電極体は、長尺の正極と長尺の負極とがセパレータを介して積層されて渦巻き状に巻回されており、前記正極および前記負極は、それぞれ正極集電タブ、負極集電タブを有しており、前記正極および前記負極の少なくとも一方は、2以上の集電タブを有しており、前記正極集電タブおよび前記負極集電タブは、前記電極体を幅広面側から側面視した時に重ならないように配置されていることを特徴とするものである。 In the nonaqueous electrolyte secondary battery of the present invention, a flat electrode body having a pair of wide surfaces is housed in an exterior body, and the flat electrode body includes a long positive electrode and a long negative electrode. The positive electrode and the negative electrode have a positive electrode current collecting tab and a negative electrode current collecting tab, respectively, and the positive electrode and the negative electrode are wound in a spiral shape. At least one of the positive electrode and the negative electrode is 2 The positive electrode current collector tab and the negative electrode current collector tab are arranged so as not to overlap when the electrode body is viewed from the side of the wide surface. It is.
 本発明によれば、高負荷特性に優れ、充放電サイクル特性も良好な非水電解質二次電池を提供できる。 According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery that has excellent high load characteristics and good charge / discharge cycle characteristics.
本発明の非水電解質二次電池に係る正極の実施態様の一例を模式的に表す平面図である。It is a top view which represents typically an example of the embodiment of the positive electrode which concerns on the nonaqueous electrolyte secondary battery of this invention. 図1のI-I線断面図である。It is the II sectional view taken on the line of FIG. 本発明の非水電解質二次電池に係る負極の実施態様の一例を模式的に表す平面図である。It is a top view which represents typically an example of the embodiment of the negative electrode which concerns on the nonaqueous electrolyte secondary battery of this invention. 図3のII-II線断面図である。It is the II-II sectional view taken on the line of FIG. 本発明の非水電解質二次電池に係る扁平形状の電極体の実施態様の一例を模式的に表す側面図である。It is a side view which represents typically an example of the embodiment of the flat-shaped electrode body which concerns on the nonaqueous electrolyte secondary battery of this invention. 本発明の非水電解質二次電池の実施態様の一例を模式的に表す斜視図である。It is a perspective view which represents typically an example of the embodiment of the nonaqueous electrolyte secondary battery of this invention. 本発明の比較例である非水電解質二次電池に係る扁平形状の電極体を模式的に表す側面図である。It is a side view which represents typically the flat electrode body which concerns on the nonaqueous electrolyte secondary battery which is a comparative example of this invention.
 本発明の非水電解質二次電池では、長尺の正極および長尺の負極の少なくとも一方に、集電タブを2以上配置する。これにより、正極および/または負極での集電性を高めて電池の高負荷特性を向上させることができる。 In the nonaqueous electrolyte secondary battery of the present invention, two or more current collecting tabs are arranged on at least one of the long positive electrode and the long negative electrode. Thereby, the current collection property in a positive electrode and / or a negative electrode can be improved, and the high load characteristic of a battery can be improved.
 なお、長尺の正極および長尺の負極を渦巻き状に巻回する電極体では、充放電時に電流が集電タブへ集中することで発熱する。高負荷での充放電を行う場合は更に集電タブでの発熱が顕著になる。本発明では正極および負極の少なくとも一方において、集電タブを2以上設けることで、1つの集電タブへの電流集中を回避して、顕著な発熱を防止することも可能としている。更に、電極体を扁平形状にして外装体に収納された電池にすることで、円筒形の電池よりも同一体積あたりの表面積を増やすことができるため、放熱性を高めることが可能である。 In addition, in an electrode body in which a long positive electrode and a long negative electrode are wound in a spiral shape, heat is generated due to current being concentrated on the current collecting tab during charging and discharging. When charging / discharging at a high load, the heat generation at the current collecting tab is further remarkable. In the present invention, by providing two or more current collecting tabs in at least one of the positive electrode and the negative electrode, it is possible to avoid current concentration on one current collecting tab and prevent remarkable heat generation. Furthermore, since the electrode body is made flat and the battery is housed in the exterior body, the surface area per volume can be increased as compared with the cylindrical battery, so that heat dissipation can be improved.
 また、扁平形状の電極体の幅広面側から側面視した時に、正極、負極それぞれの集電タブが重ならないように配置することによって、充放電の繰り返しによる電池厚みの増加や電極体の歪みを低減することができ、これにより充放電反応ムラの発生を抑制し、充放電サイクル特性低下を抑えることが可能となる。 In addition, when viewed from the wide side of the flat electrode body, the current collecting tabs of the positive electrode and the negative electrode are arranged so as not to overlap, thereby increasing the battery thickness due to repeated charge / discharge and distortion of the electrode body. Therefore, it is possible to suppress the occurrence of charging / discharging reaction unevenness and to suppress deterioration of charging / discharging cycle characteristics.
 本発明では、長尺の正極および長尺の負極の少なくとも一方に、集電タブを2以上配置する。後述するように、扁平形状の電極体を幅広面側から側面視した時に、集電タブが重ならない位置になれば集電タブは何本でも構わないが、作業性の観点から一つの電極に対して5本以下が好ましく、一つの電極に対して2本が最も好ましい。 In the present invention, two or more current collecting tabs are disposed on at least one of the long positive electrode and the long negative electrode. As will be described later, when the flat electrode body is viewed from the wide surface side, the number of current collecting tabs is not limited as long as the current collecting tabs do not overlap, but from the viewpoint of workability, one electrode is used. On the other hand, 5 or less is preferable, and 2 is most preferable for one electrode.
 また、扁平形状の電極体であれば外装体は缶でもフィルムでも適用可能である。外装体に扁平形状の有底筒状の缶を用いた場合、つまり、いわゆる角形電池とする場合は、外装缶が正電極を帯びているのが一般的であるため、正極集電タブを2以上配置すると作業性が向上し好ましい。更に、外装缶にアルミニウム(アルミニウム合金を含む)を採用できるため、重量エネルギー密度および放熱性の観点からも好ましい。 Further, as long as the electrode body has a flat shape, the outer package can be applied to either a can or a film. When a flat bottomed cylindrical can is used for the outer package, that is, when a so-called rectangular battery is used, the outer can generally has a positive electrode. The above arrangement is preferable because workability is improved. Furthermore, since aluminum (including an aluminum alloy) can be used for the outer can, it is preferable from the viewpoint of weight energy density and heat dissipation.
 以下、図面を参照しながら説明する。図1~5は、本発明の実施態様の一例として、正極集電タブが2本、負極集電タブが1本の態様に係る構成要素を模式的に表す図面である。図1は巻回前の長尺の状態の正極の平面図であり、図2は図1のI-I線断面図である。正極1は、帯状長尺体の正極集電体11に、正極合剤層12を両面および一部片面に設けており、正極集電体11の両端はそれぞれ正極集電体露出部11a、11bを有する。正極集電タブ13a、13bは、それぞれ、正極集電体露出部11a、11b上に配置され、例えば抵抗溶接により溶接される。 Hereinafter, description will be made with reference to the drawings. 1 to 5 are drawings schematically showing components according to an embodiment of the present invention having two positive electrode current collecting tabs and one negative electrode current collecting tab. FIG. 1 is a plan view of a long positive electrode before winding, and FIG. 2 is a cross-sectional view taken along the line II of FIG. The positive electrode 1 is provided with a strip-shaped positive current collector 11 and a positive electrode mixture layer 12 on both sides and partly on one side, and both ends of the positive current collector 11 are exposed to positive current collector exposed portions 11a and 11b, respectively. Have The positive electrode current collecting tabs 13a and 13b are disposed on the positive electrode current collector exposed portions 11a and 11b, respectively, and are welded by, for example, resistance welding.
 図3は巻回前の帯状長尺体の負極の平面図であり、図4は図3のII-II線断面図である。負極2は帯状長尺体の負極集電体21に、負極合剤層22を両面および一部片面に設けており、負極集電体21は一方の端は負極集電体露出部21aを有する。負極集電タブ23は、負極集電体露出部21a上に配置され、例えば抵抗溶接により溶接される。 FIG. 3 is a plan view of the negative electrode of the strip-shaped elongated body before winding, and FIG. 4 is a cross-sectional view taken along the line II-II in FIG. The negative electrode 2 is provided with a strip-shaped elongated negative electrode current collector 21 and a negative electrode mixture layer 22 on both surfaces and partly on one surface. The negative electrode current collector 21 has a negative electrode current collector exposed portion 21a at one end. . The negative electrode current collector tab 23 is disposed on the negative electrode current collector exposed portion 21a and is welded by, for example, resistance welding.
 図5は、図1および図2に示す正極と図3および図4に示す負極とをセパレータを介して積層し、渦巻き状に巻回して扁平形状とした電極体の側面図である。電極体3は、巻回された後に絶縁性の巻止めテープ31で巻止めされている。図5に示すように電極体3を扁平形状とすることで、同一の体積の円筒形の電極体と比較して表面積を大きくすることができるため、放熱性を高めることが可能となる。 FIG. 5 is a side view of an electrode body in which the positive electrode shown in FIGS. 1 and 2 and the negative electrode shown in FIGS. 3 and 4 are stacked via a separator and wound into a spiral shape to form a flat shape. The electrode body 3 is wound with an insulating winding tape 31 after being wound. As shown in FIG. 5, since the electrode body 3 has a flat shape, the surface area can be increased as compared with a cylindrical electrode body having the same volume, so that heat dissipation can be improved.
 扁平形状の電極体3は一対の幅広面30を有し、電極体3の巻回軸方向の一方の端から2本の正極集電タブ2本13a、13bと、1本の負極集電タブ23とが突出している。これらの集電タブを介して電極体へ電流を流し、充放電を行う。図5に示す通り、電極体3の幅広面30側からの側面視で、正極集電タブ13a、正極集電タブ13bおよび負極集電タブ23は、互いに重なっていない。これによって、熱が集中しやすい集電タブ部の放熱性を高めている。また、各集電タブをこのように配置することで、扁平形状の電極体全体の厚み(一方の幅広面から他方の幅広面までの距離)のバラつきが抑えられることから、充放電の繰り返しによる電極体の厚みムラの発生を抑制し、厚みムラによる充放電反応ムラの発生も抑制することができるため、サイクル特性の劣化を抑えることが可能となる。 The flat electrode body 3 has a pair of wide surfaces 30, two positive current collecting tabs 13 a and 13 b and one negative current collecting tab from one end in the winding axis direction of the electrode body 3. 23 protrudes. A current is supplied to the electrode body through these current collecting tabs to perform charging / discharging. As shown in FIG. 5, the positive electrode current collecting tab 13 a, the positive electrode current collecting tab 13 b, and the negative electrode current collecting tab 23 do not overlap with each other in a side view from the wide surface 30 side of the electrode body 3. This enhances the heat dissipation of the current collecting tab portion where heat tends to concentrate. In addition, by arranging the current collecting tabs in this way, variation in the thickness of the entire flat electrode body (distance from one wide surface to the other wide surface) can be suppressed, and therefore by repeated charge and discharge Since the occurrence of unevenness in the thickness of the electrode body can be suppressed and the occurrence of charge / discharge reaction unevenness due to the unevenness in thickness can also be suppressed, it is possible to suppress deterioration in cycle characteristics.
 前記電極体においては、幅広面の巻回軸方向と垂直な方向の長さ(集電タブと垂直な方向の長さ。以下、この長さを「幅」という。)が20~90mmであることが好ましく、30~80mmであることが特に好ましい。30mmよりも幅が狭くなると、複数の集電タブを取り出すことが困難となるためである。また、80mmよりも幅が広くなると、後述する容量とのバランス(1.5~4.0Ah)を考慮した際に、電極体の幅と高さの比率が現実的な値から大きく外れ、生産性などに悪影響を及ぼすためである。一般的に、電池抵抗を小さくするには、電極体の幅は高さよりも小さくした方がよいことから、この観点でも電極体の幅は80mm以下であることが特に好ましい。 In the electrode body, the length of the wide surface in the direction perpendicular to the winding axis direction (length in the direction perpendicular to the current collecting tab; hereinafter, this length is referred to as “width”) is 20 to 90 mm. It is preferably 30 to 80 mm. This is because when the width is narrower than 30 mm, it is difficult to take out a plurality of current collecting tabs. In addition, when the width is wider than 80 mm, the ratio of the width and height of the electrode body greatly deviates from the actual value when considering the balance with the capacity described later (1.5 to 4.0 Ah). This is because it adversely affects sex. In general, in order to reduce the battery resistance, it is better to make the width of the electrode body smaller than the height. Therefore, from this viewpoint, the width of the electrode body is particularly preferably 80 mm or less.
 前記集電タブ1本あたりの断面積は、0.1~1.5mmであることが好ましく、0.15~1.0mmであることが特に好ましい。0.15mmよりも断面積が小さくなると、集電タブに由来する抵抗が大きくなり、集電タブを増やしても高負荷特性を得るのが難しいためである。また、1.0mmよりも断面積が大きくなると、集電タブの幅や厚みが大きくなりすぎて、溶接性などの生産性に問題が発生するためである。 The cross-sectional area per one current collecting tab is preferably 0.1 to 1.5 mm 2 , and particularly preferably 0.15 to 1.0 mm 2 . This is because when the cross-sectional area is smaller than 0.15 mm 2, the resistance derived from the current collecting tab increases, and it is difficult to obtain high load characteristics even if the current collecting tab is increased. Further, if the cross-sectional area is larger than 1.0 mm 2 , the current collecting tabs are too wide and thick, which causes problems in productivity such as weldability.
 また、前記電極体においては、平面視で前記集電タブがセパレータを介して極性の異なる電極と重なる箇所の面積の50~100%はテープまたは樹脂膜で保護されていることが好ましい。集電タブを取り付けた部分は電極としての厚みが厚くなるため、外部から応力が加わった際に内部短絡の原因となる可能性がある。集電タブを増やすとそのリスクが高まるため、それを低減するために保護のためのテープなどを重なっている部分の50~100%となるように貼り付けることが好ましい。 Further, in the electrode body, it is preferable that 50 to 100% of the area of the portion where the current collecting tab overlaps the electrode of different polarity through the separator in a plan view is protected with a tape or a resin film. Since the portion where the current collecting tab is attached becomes thick as an electrode, there is a possibility of causing an internal short circuit when stress is applied from the outside. When the number of current collecting tabs is increased, the risk is increased. Therefore, in order to reduce the current collecting tabs, it is preferable that the current collecting tabs be attached so as to be 50 to 100% of the overlapping portion.
〔正極〕
 本発明の非水電解質二次電池に係る正極には、例えば、正極活物質、導電助剤、バインダなどを含有する正極合剤層を、集電体の片面または両面に有する構造のものが使用できる。
[Positive electrode]
For the positive electrode according to the nonaqueous electrolyte secondary battery of the present invention, for example, a positive electrode mixture layer containing a positive electrode active material, a conductive additive, a binder, etc. is used on one side or both sides of the current collector. it can.
<正極活物質> 
 上記正極に用いる正極活物質は、特に限定されず、リチウム含有遷移金属酸化物などの一般に用いることのできる活物質を使用すればよい。リチウム含有遷移金属酸化物の具体例としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMnNiCo1-y-z、LiMn、LiMn2-yなどが挙げられる。ただし、上記の各構造式中において、Mは、Mg、Mn、Fe、Co、Ni、Cu、Zn、Al、Ti、Zr、GeおよびCrよりなる群から選ばれる少なくとも1種の金属元素であり、0≦x≦1.1、0<y<1.0、2.0<z<1.0である。エネルギー密度の観点から、リチウムとコバルトを含有する層状化合物(一般式LiCo1-y ;Mは上述のMからCoを抜いた群から選ばれる少なくとも1種の金属元素、yは上述と同じ)が特に好ましい。
<Positive electrode active material>
The positive electrode active material used for the positive electrode is not particularly limited, and a generally usable active material such as a lithium-containing transition metal oxide may be used. Specific examples of the lithium-containing transition metal oxide include, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1-y O 2. and Li x Ni 1-y M y O 2, Li x Mn y Ni z Co 1-y-z O 2, Li x Mn 2 O 4, Li x Mn 2-y M y O 4 and the like. However, in each structural formula above, M is at least one metal element selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn, Al, Ti, Zr, Ge, and Cr. 0 ≦ x ≦ 1.1, 0 <y <1.0, 2.0 <z <1.0. From the viewpoint of energy density, a layered compound containing lithium and cobalt (general formula LiCo 1-y M 2 y O 2 ; M 2 is at least one metal element selected from the above-mentioned group in which Co is removed from Co, y Is the same as described above.
<バインダ>
 上記正極に用いるバインダとしては、電池内で化学的に安定なものであれば、熱可塑性樹脂、熱硬化性樹脂のいずれも使用できる。例えば、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロプロピレン(PHFP)、スチレン・ブタジエンゴム(SBR)、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、又は、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸メチル共重合体及びそれら共重合体のNaイオン架橋体などの1種または2種以上を使用できる。
<Binder>
As the binder used for the positive electrode, any of a thermoplastic resin and a thermosetting resin can be used as long as it is chemically stable in the battery. For example, polyvinylidene fluoride (PVDF), polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyhexafluoropropylene (PHFP), styrene-butadiene rubber (SBR), tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoro Ethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), propylene- Tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTFE), ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, Len - methyl acrylate copolymer, ethylene - methyl methacrylate copolymer and the one or more such as Na ion crosslinked product thereof copolymer can be used.
<導電助剤>
 上記正極に用いる導電助剤としては、電池内で化学的に安定なものであればよい。例えば、天然黒鉛、人造黒鉛などのグラファイト;アセチレンブラック、ケッチェンブラック(商品名)、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック;炭素繊維、金属繊維などの導電性繊維;アルミニウム粉などの金属粉末;フッ化炭素;酸化亜鉛;チタン酸カリウムなどからなる導電性ウィスカー;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。これらの中でも、導電性の高いグラファイトと、吸液性に優れたカーボンブラックが好ましい。また、導電助剤の形態としては、一次粒子に限定されず、二次凝集体や、チェーンストラクチャーなどの集合体の形態のものも用いることができる。このような集合体の方が、取り扱いが容易であり、生産性が良好となる。
<Conductive aid>
As a conductive support agent used for the said positive electrode, what is chemically stable should just be in a battery. For example, graphite such as natural graphite and artificial graphite; carbon black such as acetylene black, ketjen black (trade name), channel black, furnace black, lamp black and thermal black; conductive fibers such as carbon fiber and metal fiber; aluminum Metal powder such as powder; Conductive whisker made of carbon fluoride; Zinc oxide; Potassium titanate; Conductive metal oxide such as titanium oxide; Organic conductive materials such as polyphenylene derivatives, etc. You may use independently and may use 2 or more types together. Among these, highly conductive graphite and carbon black excellent in liquid absorption are preferable. Further, the form of the conductive auxiliary agent is not limited to primary particles, and secondary aggregates and aggregated forms such as chain structures can also be used. Such an assembly is easier to handle and has better productivity.
<集電体>
 上記正極に用いる集電体としては、従来から知られている非水電解質二次電池の正極に使用されているものと同様のものが使用でき、例えば、厚さが10~30μmのアルミニウム箔が好ましい。
<Current collector>
The current collector used for the positive electrode can be the same as that used for the positive electrode of a conventionally known non-aqueous electrolyte secondary battery. For example, an aluminum foil having a thickness of 10 to 30 μm can be used. preferable.
 <正極の製造方法>
 上記正極は、例えば、前述した正極活物質、導電助剤およびバインダを、N-メチル-2-ピロリドン(NMP)などの溶剤に分散させたペースト状やスラリー状の正極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい。)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダ処理を施す工程を経て製造することができる。正極の製造方法は、上記の方法に制限されるわけではなく、他の製造方法で製造することもできる。
<Method for producing positive electrode>
For the positive electrode, for example, a paste-like or slurry-like positive electrode mixture-containing composition in which the positive electrode active material, the conductive auxiliary agent and the binder described above are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) is prepared. (However, the binder may be dissolved in a solvent.) After applying this to one or both sides of the current collector and drying, it can be produced through a process of calendering if necessary. . The manufacturing method of a positive electrode is not necessarily restricted to said method, It can also manufacture with another manufacturing method.
 <正極合剤層>
 上記正極合剤層においては、正極活物質の総量を92~95質量%とし、導電助剤の量を3~6質量%とし、バインダの量を3~6質量%とすることが好ましい。また、高負荷での放電特性を向上させるために、正極合剤層の厚みは片面あたり20~70μmであることが好ましい。正極合剤層を薄くすると、充放電時にリチウムイオンが移動する最大距離を短くすることができるため、内部抵抗を低く抑えられるからである。
<Positive electrode mixture layer>
In the positive electrode mixture layer, it is preferable that the total amount of the positive electrode active material is 92 to 95% by mass, the amount of the conductive assistant is 3 to 6% by mass, and the amount of the binder is 3 to 6% by mass. In order to improve the discharge characteristics under a high load, the thickness of the positive electrode mixture layer is preferably 20 to 70 μm per side. This is because, if the positive electrode mixture layer is thinned, the maximum distance along which lithium ions move during charge / discharge can be shortened, so that the internal resistance can be kept low.
 また、正極集電体上の正極合剤層の総面積(正極集電体の一方の面での正極合剤層の占める面積と、他方の面での正極合剤層の占める面積の合計面積)は300~2000cmであることが好ましく、500~1600cmであることが特に好ましい。電極面積が300cmより小さくなると上述した電極厚みとのバランスから容量が低くなり、流れる電流値も小さくなるため、集電タブを増やす効果が小さくなりすぎるためである。正極合剤層の総面積が2000cmより大きくなると上述した正極合剤層厚みと容量とのバランスからエネルギー密度が低くなりすぎ、エネルギー密度との両立が困難となるためである。 Further, the total area of the positive electrode mixture layer on the positive electrode current collector (the total area of the area occupied by the positive electrode mixture layer on one surface of the positive electrode current collector and the area occupied by the positive electrode mixture layer on the other surface) ) Is preferably 300 to 2000 cm 2 , particularly preferably 500 to 1600 cm 2 . This is because when the electrode area is smaller than 300 cm 2, the capacity is lowered from the balance with the electrode thickness described above, and the flowing current value is also reduced, so that the effect of increasing the current collecting tab is too small. This is because if the total area of the positive electrode mixture layer is larger than 2000 cm 2 , the energy density becomes too low due to the balance between the positive electrode mixture layer thickness and the capacity described above, and it becomes difficult to achieve both energy density.
 電池容量を上述した正極合材層の総面積で除した値(本明細書では「電流密度」と呼ぶ)は、2.0~3.5が好ましい。電流密度が2より小さいとエネルギー密度が低くなりすぎ、3.5より大きいと、高負荷充放電時の分極抵抗が大きくなり、活物質の劣化が進行しやすくなる。 The value obtained by dividing the battery capacity by the total area of the positive electrode mixture layer (referred to herein as “current density”) is preferably 2.0 to 3.5. When the current density is less than 2, the energy density is too low, and when it is more than 3.5, the polarization resistance at the time of high-load charge / discharge is increased, and the active material is easily deteriorated.
 〔負極〕
 本発明の非水電解質二次電池に係る負極には、例えば、負極活物質、バインダおよび必要に応じて導電助剤などを含む負極合剤層を、集電体の片面または両面に有する構造のものが使用できる。
[Negative electrode]
The negative electrode according to the non-aqueous electrolyte secondary battery of the present invention has, for example, a structure having a negative electrode mixture layer containing a negative electrode active material, a binder, and a conductive auxiliary agent if necessary on one side or both sides of a current collector. Things can be used.
 <負極活物質>
 上記負極活物質は、従来から知られている非水電解質二次電池に用いられている負極活物質、すなわち、リチウムイオンを吸蔵・放出可能な材料であれば特に制限はない。例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムイオンを吸蔵・放出可能な炭素系材料の1種または2種以上の混合物が負極活物質として用いられる。また、シリコン(Si)、スズ(Sn)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)、インジウム(In)などの元素およびその合金、リチウム含有窒化物またはリチウム含有酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。中でも、負極活物質としては、シリコンと酸素とを構成元素に含むSiO(0.5≦x≦1.5)で表される材料と黒鉛との混合体が好ましい。
<Negative electrode active material>
The negative electrode active material is not particularly limited as long as it is a negative electrode active material used in conventionally known non-aqueous electrolyte secondary batteries, that is, a material capable of inserting and extracting lithium ions. For example, carbon-based materials that can occlude and release lithium ions, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers. One kind or a mixture of two or more kinds is used as the negative electrode active material. In addition, elements such as silicon (Si), tin (Sn), germanium (Ge), bismuth (Bi), antimony (Sb), indium (In), and alloys thereof, lithium such as lithium-containing nitride or lithium-containing oxide A compound that can be charged and discharged at a low voltage close to that of a metal, or a lithium metal or a lithium / aluminum alloy can also be used as the negative electrode active material. Among these, as the negative electrode active material, a mixture of a material represented by SiO x (0.5 ≦ x ≦ 1.5) containing silicon and oxygen as constituent elements and graphite is preferable.
 SiOは、Siの微結晶又は非晶質相を含んでいてもよく、この場合、SiとOの原子比は、Siの微結晶又は非晶質相のSiを含めた比率となる。すなわち、SiOには、非晶質のSiOマトリックス中に、Si(例えば、微結晶Si)が分散した構造のものが含まれ、この非晶質のSiOと、その中に分散しているSiを合わせて、上記原子比xが0.5≦x≦1.5を満足していればよい。例えば、非晶質のSiOマトリックス中に、Siが分散した構造で、SiOとSiのモル比が1:1の材料の場合、x=1であるので、構造式としてはSiOで表記される。このような構造の材料の場合、例えば、X線回折分析では、Si(微結晶Si)の存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると、微細なSiの存在が確認できる。 The SiO x may contain Si microcrystal or amorphous phase. In this case, the atomic ratio of Si and O is a ratio including Si microcrystal or amorphous phase Si. That is, SiO x includes a structure in which Si (for example, microcrystalline Si) is dispersed in an amorphous SiO 2 matrix, and this amorphous SiO 2 is dispersed in the SiO 2 matrix. It is only necessary that the atomic ratio x satisfies 0.5 ≦ x ≦ 1.5. For example, in the case of a material in which Si is dispersed in an amorphous SiO 2 matrix and the material has a molar ratio of SiO 2 to Si of 1: 1, x = 1, so that the structural formula is represented by SiO. The In the case of a material having such a structure, for example, in X-ray diffraction analysis, a peak due to the presence of Si (microcrystalline Si) may not be observed, but when observed with a transmission electron microscope, the presence of fine Si Can be confirmed.
 上記SiOは、炭素材料と複合化した複合体であることが好ましく、例えば、SiOの表面が炭素材料で被覆されていることが望ましい。通常、SiOは導電性が乏しいため、これを負極活物質として用いる際には、良好な電池特性確保の観点から、導電性材料(導電助剤)を使用し、負極内におけるSiOと導電性材料との混合・分散を良好にして、優れた導電ネットワークを形成する必要がある。SiOを炭素材料と複合化した複合体であれば、例えば、単にSiOと炭素材料などの導電性材料とを混合して得られた材料を用いた場合よりも、負極における導電ネットワークが良好に形成される。 The SiO x is preferably a composite that is combined with a carbon material. For example, the surface of the SiO x is preferably covered with the carbon material. Usually, since SiO x has poor conductivity, when using it as a negative electrode active material, from the viewpoint of ensuring good battery characteristics, a conductive material (conductive aid) is used, and SiO x in the negative electrode is electrically conductive. It is necessary to form an excellent conductive network by making good mixing and dispersion with the conductive material. If complexes complexed with carbon material SiO x, for example, simply than with a material obtained by mixing a conductive material such as SiO x and the carbon material, good conductive network in the negative electrode Formed.
 <バインダ>
 上記バインダとしては、例えば、でんぷん、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロースなどの多糖類やそれらの変成体;ポリビニルクロリド、ポリビニルピロリドン(PVP)、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリアミドイミド、ポリアミドなどの熱可塑性樹脂やそれらの変成体;ポリイミド;エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシドなどのゴム状弾性を有するポリマーやそれらの変成体;などが挙げられ、これらの1種または2種以上を用いることができる。
<Binder>
Examples of the binder include polysaccharides such as starch, polyvinyl alcohol, polyacrylic acid, carboxymethyl cellulose (CMC), hydroxypropyl cellulose, regenerated cellulose, and diacetyl cellulose, and modified products thereof; polyvinyl chloride, polyvinyl pyrrolidone (PVP), Thermoplastic resins such as polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyamideimide, polyamide and their modified products; polyimide; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber ( SBR), butadiene rubber, polybutadiene, fluororubber, polyethylene oxide and other polymers having rubber-like elasticity, and modified products thereof. It can be used either alone or in combination.
 <導電助剤>
 上記負極合剤層には、更に導電助剤として導電性材料を添加してもよい。このような導電性材料としては、電池内において化学変化を起こさないものであれば特に限定されず、例えば、カーボンブラック(サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック、アセチレンブラックなど)、炭素繊維、金属粉(銅、ニッケル、アルミニウム、銀などの粉末)、金属繊維、ポリフェニレン誘導体(特開昭59-20971号公報に記載のもの)などの材料を、1種または2種以上用いることができる。これらの中でも、カーボンブラックを用いることが好ましく、ケッチェンブラックやアセチレンブラックがより好ましい。
<Conductive aid>
A conductive material may be further added to the negative electrode mixture layer as a conductive aid. Such a conductive material is not particularly limited as long as it does not cause a chemical change in the battery. For example, carbon black (thermal black, furnace black, channel black, ketjen black, acetylene black, etc.), carbon It is possible to use one or more materials such as fiber, metal powder (powder of copper, nickel, aluminum, silver, etc.), metal fiber, polyphenylene derivative (described in JP-A-59-20971). it can. Among these, carbon black is preferably used, and ketjen black and acetylene black are more preferable.
 <集電体>
 上記集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するために下限は5μmであることが望ましい。
<Current collector>
As the current collector, a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is 5 μm in order to ensure mechanical strength. Is desirable.
 <負極の製造方法>
 上記負極は、例えば、前述した負極活物質およびバインダ、更には必要に応じて導電助剤を、NMPや水などの溶剤に分散させたペースト状やスラリー状の負極合剤含有組成物を調製し、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダ処理を施す工程を経て製造することができる。負極の製造方法は、上記の製法に制限されるわけではなく、他の製造方法で製造することもできる。
<Method for producing negative electrode>
The negative electrode is prepared, for example, by preparing a paste-like or slurry-like negative electrode mixture-containing composition in which the above-described negative electrode active material and binder, and further, if necessary, a conductive additive dispersed in a solvent such as NMP or water. It can be manufactured through a step of applying a calender treatment as necessary after applying this to one or both sides of the current collector and drying it. The manufacturing method of a negative electrode is not necessarily restricted to said manufacturing method, It can also manufacture with another manufacturing method.
 <負極合剤層>
 上記負極合剤層においては、負極活物質の総量を80~99質量%とし、バインダの量を1~20質量%とすることが好ましい。また、別途導電助剤として導電性材料を使用する場合には、負極合剤層におけるこれらの導電性材料は、負極活物質の総量およびバインダ量が、上記の好適値を満足する範囲で使用することが好ましい。
<Negative electrode mixture layer>
In the negative electrode mixture layer, it is preferable that the total amount of the negative electrode active material is 80 to 99% by mass and the amount of the binder is 1 to 20% by mass. In addition, when a conductive material is separately used as a conductive auxiliary agent, these conductive materials in the negative electrode mixture layer are used in such a range that the total amount of the negative electrode active material and the binder amount satisfy the above-described preferable values. It is preferable.
 高負荷での放電特性を向上させるために、負極合剤層の厚みは片面あたり20~70μmであることが好ましい。負極合剤層を薄くすると、充放電時にリチウムイオンが移動する最大距離を短くすることができるため、内部抵抗が低く抑えられるからである。SiOで表される材料は負極活物質として最も一般的な黒鉛と比較して、高容量化が可能となる。そのため、SiOで表される材料を負極活物質に含有させると、負極活物質の合計量を少なくすることができるため、負極合剤層の薄膜化が容易になる。 In order to improve discharge characteristics under high load, the thickness of the negative electrode mixture layer is preferably 20 to 70 μm per side. This is because, when the negative electrode mixture layer is thinned, the maximum distance that lithium ions move during charge / discharge can be shortened, so that the internal resistance can be kept low. The material represented by SiO x can have a higher capacity than graphite, which is the most common negative electrode active material. Therefore, when the material represented by SiO x is contained in the negative electrode active material, the total amount of the negative electrode active material can be reduced, and thus the negative electrode mixture layer can be easily thinned.
〔非水電解質〕
 本発明の非水電解質二次電池に係る非水電解質には、リチウム塩を有機溶媒に溶解した非水電解液を使用できる。
[Non-aqueous electrolyte]
For the non-aqueous electrolyte according to the non-aqueous electrolyte secondary battery of the present invention, a non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent can be used.
 上記非水電解液に用いるリチウム塩としては、溶媒中で解離してリチウムイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限はない。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩;LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(2≦n≦7)、LiN(RfOSO〔ここで、Rfはフルオロアルキル基〕などの有機リチウム塩;などを用いることができる。 The lithium salt used in the non-aqueous electrolyte is not particularly limited as long as it dissociates in a solvent to form lithium ions and does not easily cause a side reaction such as decomposition in a voltage range used as a battery. For example, inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ≦ n ≦ 7), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group]; Can be used.
 このリチウム塩の非水電解液中の濃度としては、0.5~1.5mol/Lとすることが好ましく、0.9~1.25mol/Lとすることがより好ましい。 The concentration of this lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / L, more preferably 0.9 to 1.25 mol / L.
 上記非水電解液に用いる有機溶媒としては、上記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ-ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類など;が挙げられ、これらは2種以上混合して用いることもできる。より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒などのような、高い導電率を得ることができる組み合わせで用いることが望ましい。 The organic solvent used in the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause side reactions such as decomposition in the voltage range used as a battery. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; chain esters such as methyl propionate; cyclic esters such as γ-butyrolactone; dimethoxyethane, Chain ethers such as diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; nitriles such as acetonitrile, propionitrile and methoxypropionitrile; ethylene And sulfites such as glycol sulfite, and the like. These may be used as a mixture of two or more. In order to obtain a battery with better characteristics, it is desirable to use a combination such as a mixed solvent of ethylene carbonate and chain carbonate that can obtain high conductivity.
 〔セパレータ〕
 非水電解質二次電池に係るセパレータには、80℃以上(より好ましくは100℃以上)170℃以下(より好ましくは150℃以下)において、その孔が閉塞する性質(すなわちシャットダウン機能)を有していることが好ましく、通常の非水電解質二次電池などで使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。
[Separator]
The separator according to the non-aqueous electrolyte secondary battery has a property that the pores are closed at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower) (ie, shutdown function). It is preferable that a separator used in an ordinary nonaqueous electrolyte secondary battery, for example, a microporous membrane made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used. The microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be.
 セパレータの厚みは、6μmより大きく20μmより小さいことが好ましい。 The thickness of the separator is preferably larger than 6 μm and smaller than 20 μm.
 また、セパレータの厚みは、電池の体積エネルギー密度を向上させる観点から、16μmより小さいことがより好ましく、14μmより小さいことが更に好ましい。従来では、正極集電タブ部分への電流集中による顕著な発熱が起こるため、当該箇所でのセパレータの熱収縮による内部短絡を懸念し、セパレータの厚みを大きくすることで熱収縮を防止していた。本発明において、正極集電タブを2以上設けている場合には、1つの正極集電タブに熱が集中するのを防止することができる。そのため従来よりも薄いセパレータを用いることができ、更に体積エネルギー密度の向上に寄与することが可能となった。 Further, the thickness of the separator is more preferably smaller than 16 μm and further preferably smaller than 14 μm from the viewpoint of improving the volumetric energy density of the battery. Conventionally, remarkable heat generation occurs due to current concentration on the positive electrode current collecting tab portion, so there is a concern about internal short circuit due to thermal contraction of the separator at the location, and thermal contraction is prevented by increasing the thickness of the separator. . In the present invention, when two or more positive electrode current collecting tabs are provided, it is possible to prevent heat from concentrating on one positive electrode current collecting tab. Therefore, it is possible to use a separator thinner than the conventional one, and further contribute to the improvement of the volume energy density.
 また、セパレータの厚みは、取扱いやすさから8μmより大きいことが更に好ましい。 Further, the thickness of the separator is more preferably larger than 8 μm because of ease of handling.
 非水電解質二次電池に係るセパレータには、融点が140℃以下の樹脂を主体とした多孔質層(I)と、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)とを有する積層型のセパレータを使用することが好ましい。ここで、「融点」とはJIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度を意味している。また、「150℃以下の温度で溶融しない」とは、JIS K 7121の規定に準じて、DSCを用いて測定される融解温度が150℃を超えているなど、前記融解温度測定時に150℃以下の温度で融解挙動を示さないことを意味している。更に、「耐熱温度が150℃以上」とは、少なくとも150℃において軟化などの変形が見られないことを意味している。 A separator for a non-aqueous electrolyte secondary battery includes a porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or less, a resin that does not melt at a temperature of 150 ° C. or less, or an inorganic filler having a heat resistant temperature of 150 ° C. or more. It is preferable to use a laminated separator having a porous layer (II) containing as a main component. Here, the “melting point” means the melting temperature measured using a differential scanning calorimeter (DSC) in accordance with the provisions of JIS K 7121. Further, “does not melt at a temperature of 150 ° C. or lower” means that the melting temperature measured using DSC exceeds 150 ° C. according to the provisions of JIS K 7121, such as 150 ° C. or lower when the melting temperature is measured. This means that the melting behavior is not exhibited at the temperature. Furthermore, “the heat resistant temperature is 150 ° C. or higher” means that deformation such as softening is not observed at least at 150 ° C.
 前記積層型のセパレータに係る多孔質層(I)は、主にシャットダウン機能を確保するためのものであり、非水電解質二次電池が多孔質層(I)の主体となる成分である樹脂の融点以上に達したときには、多孔質層(I)に係る樹脂が溶融してセパレータの空孔を塞ぎ、電気化学反応の進行を抑制するシャットダウンを生じる。 The porous layer (I) relating to the laminated separator is mainly for ensuring a shutdown function, and the non-aqueous electrolyte secondary battery is a resin that is a main component of the porous layer (I). When the temperature exceeds the melting point, the resin related to the porous layer (I) melts and closes the pores of the separator, thereby causing a shutdown that suppresses the progress of the electrochemical reaction.
 多孔質層(I)の主体となる融点が140℃以下の樹脂としては、例えばPEが挙げられ、その形態としては、前述の非水電解質二次電池のセパレータとして用いられる微多孔膜や、不織布などの基材にPEの粒子を含む分散液を塗布し、乾燥するなどして得られるものが挙げられる。ここで、多孔質層(I)の全構成成分中において、主体となる融点が140℃以下の樹脂の体積は、50体積%以上であり、70体積%以上であることがより好ましい。例えば、多孔質層(I)を前記PEの微多孔膜で形成する場合は、融点が140℃以下の樹脂の体積が100体積%となる。 Examples of the resin having a melting point of 140 ° C. or lower, which is the main component of the porous layer (I), include PE, and the form thereof includes a microporous membrane used as a separator for the above-described non-aqueous electrolyte secondary battery, and a nonwoven fabric. And the like obtained by applying a dispersion containing PE particles to a base material and drying the substrate. Here, in all the constituent components of the porous layer (I), the volume of the resin having a main melting point of 140 ° C. or less is 50% by volume or more, and more preferably 70% by volume or more. For example, when the porous layer (I) is formed of the microporous film of PE, the volume of the resin having a melting point of 140 ° C. or lower is 100% by volume.
 前記積層型のセパレータに係る多孔質層(II)は、非水電解質二次電池の内部温度が上昇した際にも正極と負極との直接の接触による短絡を防止する機能を備えたものであり、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラーによって、その機能を確保している。すなわち、電池が高温となった場合には、喩え多孔質層(I)が収縮しても、収縮し難い多孔質層(II)によって、セパレータが熱収縮した場合に発生し得る正負極の直接の接触による短絡を防止することができる。また、この耐熱性の多孔質層(II)がセパレータの骨格として作用するため、多孔質層(I)の熱収縮、すなわちセパレータ全体の熱収縮自体も抑制できる。 The porous layer (II) according to the multilayer separator has a function of preventing a short circuit due to direct contact between the positive electrode and the negative electrode even when the internal temperature of the nonaqueous electrolyte secondary battery rises. The function is secured by a resin that does not melt at a temperature of 150 ° C. or lower or an inorganic filler having a heat resistant temperature of 150 ° C. or higher. That is, when the battery becomes high temperature, even if the porous layer (I) shrinks, the porous layer (II) which does not easily shrink can directly generate positive and negative electrodes that can be generated when the separator is thermally contracted. It is possible to prevent a short circuit due to the contact. Moreover, since this heat-resistant porous layer (II) acts as a skeleton of the separator, the thermal contraction of the porous layer (I), that is, the thermal contraction of the entire separator itself can be suppressed.
 多孔質層(II)を150℃以下の温度で溶融しない樹脂を主体として形成する場合、例えば、150℃以下の温度で溶融しない樹脂で形成された微多孔膜(例えば、前述のPP製の電池用微多孔膜)を多孔質層(I)に積層させる形態や、150℃以下の温度で溶融しない樹脂の粒子などを含む分散液を多孔質層(I)に塗布し、乾燥して多孔質層(I)の表面に多孔質層(II)を形成する塗布積層型の形態が挙げられる。 When the porous layer (II) is mainly formed of a resin that does not melt at a temperature of 150 ° C. or lower, for example, a microporous film formed of a resin that does not melt at a temperature of 150 ° C. or lower (for example, the aforementioned battery made of PP A microporous membrane for coating) is applied to the porous layer (I), and a dispersion containing resin particles that do not melt at a temperature of 150 ° C. or lower is applied to the porous layer (I) and dried to be porous. An application lamination type form in which the porous layer (II) is formed on the surface of the layer (I) is exemplified.
 150℃以下の温度で溶融しない樹脂としては、PP;架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物などの各種架橋高分子微粒子;ポリスルフォン;ポリエーテルスルフォン;ポリフェニレンスルフィド;ポリテトラフルオロエチレン;ポリアクリロニトリル;アラミド;ポリアセタール;などが挙げられる。 Resins that do not melt at temperatures below 150 ° C include PP; crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polyimide, melamine resin, phenol resin, benzoguanamine-formaldehyde condensation And various crosslinked polymer fine particles; polysulfone; polyether sulfone; polyphenylene sulfide; polytetrafluoroethylene; polyacrylonitrile; aramid; polyacetal;
 150℃以下の温度で溶融しない樹脂の粒子を使用する場合、その粒径は、平均粒子径で、例えば、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、また、10μm以下であることが好ましく、2μm以下であることがより好ましい。本明細書でいう各種粒子の平均粒子径は、例えば、堀場製作所製のレーザー散乱粒度分布計「LA-920」を用い、粒子を溶解しない媒体に、これらの粒子を分散させて測定した平均粒子径D50%である。 When using resin particles that do not melt at a temperature of 150 ° C. or lower, the average particle size is, for example, preferably 0.01 μm or more, more preferably 0.1 μm or more, It is preferably 10 μm or less, and more preferably 2 μm or less. The average particle diameter of the various particles referred to in the present specification is, for example, an average particle measured by dispersing these particles in a medium in which the particles are not dissolved using a laser scattering particle size distribution analyzer “LA-920” manufactured by Horiba, Ltd. The diameter D is 50%.
 多孔質層(II)を耐熱温度が150℃以上の無機フィラーを主体として形成する場合、例えば、耐熱温度が150℃以上の無機フィラーなどを含む分散液を、多孔質層(I)に塗布し、乾燥して多孔質層(II)を形成する塗布積層型の形態が挙げられる。 When the porous layer (II) is mainly formed of an inorganic filler having a heat resistant temperature of 150 ° C. or higher, for example, a dispersion containing an inorganic filler having a heat resistant temperature of 150 ° C. or higher is applied to the porous layer (I). Examples of the coating-laminated type in which the porous layer (II) is formed by drying.
 多孔質層(II)に係る無機フィラーは、耐熱温度が150℃以上で、電池の有する非水電解質に対して安定であり、更に電池の作動電圧範囲において酸化還元されにくい電気化学的に安定なものであればよいが、分散などの点から微粒子であることが好ましく、また、アルミナ、シリカ、ベーマイトが好ましい。アルミナ、シリカ、ベーマイトは、耐酸化性が高く、粒径や形状を所望の数値などに調整することが可能であるため、多孔質層(II)の空孔率を精度よく制御することが容易となる。耐熱温度が150℃以上の無機フィラーは、例えば前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。また、耐熱温度が150℃以上の無機フィラーを、前述の150℃以下の温度で溶融しない樹脂と併用しても差し支えない。 The inorganic filler related to the porous layer (II) has a heat-resistant temperature of 150 ° C. or higher, is stable with respect to the non-aqueous electrolyte of the battery, and is electrochemically stable that is not easily oxidized or reduced in the battery operating voltage range. However, fine particles are preferable from the viewpoint of dispersion, and alumina, silica, and boehmite are preferable. Alumina, silica, and boehmite have high oxidation resistance, and the particle size and shape can be adjusted to the desired numerical values, making it easy to control the porosity of the porous layer (II) with high accuracy. It becomes. As the inorganic filler having a heat resistant temperature of 150 ° C. or higher, for example, one of the above-mentioned examples may be used alone, or two or more may be used in combination. Further, an inorganic filler having a heat resistant temperature of 150 ° C. or higher may be used in combination with a resin that does not melt at a temperature of 150 ° C. or lower.
 多孔質層(II)に係る耐熱温度が150℃以上の無機フィラーの形状については特に制限はなく、略球状(真球状を含む。)、略楕円体状(楕円体状を含む。)、板状などの各種形状のものを使用できる。 There is no restriction | limiting in particular about the shape of the inorganic filler whose heat resistant temperature which concerns on porous layer (II) is 150 degreeC or more, A substantially spherical shape (a true spherical shape is included), a substantially ellipsoid shape (an ellipsoid shape is included), a board Various shapes such as shapes can be used.
 また、多孔質層(II)に係る耐熱温度が150℃以上の無機フィラーの平均粒子径は、小さすぎるとイオンの透過性が低下することから、0.3μm以上であることが好ましく、0.5μm以上であることがより好ましい。また、耐熱温度が150℃以上の無機フィラーが大きすぎると、電気特性が劣化しやすくなることから、その平均粒子径は、5μm以下であることが好ましく、2μm以下であることがより好ましい。 Further, the average particle diameter of the inorganic filler having a heat resistant temperature of 150 ° C. or higher related to the porous layer (II) is preferably 0.3 μm or more because the ion permeability is lowered if it is too small. More preferably, it is 5 μm or more. In addition, if the inorganic filler having a heat resistant temperature of 150 ° C. or higher is too large, the electrical characteristics are likely to be deteriorated. Therefore, the average particle diameter is preferably 5 μm or less, and more preferably 2 μm or less.
 多孔質層(II)において、150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーは、多孔質層(II)に主体として含まれるものであるため、これらの多孔質層(II)における量〔多孔質層(II)が150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーのうちのいずれか一方のみを含有する場合は、その量であり、両者を含有する場合は、それらの合計量。150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーの多孔質層(II)における量について、以下同じ。〕は、多孔質層(II)の構成成分の全体積中、50体積%以上であり、70体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることが更に好ましい。多孔質層(II)中の耐熱材料を前記のように高含有量とすることで、非水電解質二次電池が高温となった際にも、セパレータ全体の熱収縮を良好に抑制することができ、正極と負極との直接の接触による短絡の発生をより良好に抑制することができる。 In the porous layer (II), the resin that does not melt at a temperature of 150 ° C. or lower and the inorganic filler having a heat resistant temperature of 150 ° C. or higher are mainly contained in the porous layer (II). The amount in (II) [when the porous layer (II) contains only one of a resin that does not melt at a temperature of 150 ° C. or less and an inorganic filler that has a heat resistant temperature of 150 ° C. or more, is the amount, If both are included, the total amount. The same applies hereinafter in the porous layer (II) of the resin that does not melt at a temperature of 150 ° C. or lower and the inorganic filler having a heat resistant temperature of 150 ° C. or higher. ] Is 50% by volume or more in the total volume of the constituent components of the porous layer (II), preferably 70% by volume or more, more preferably 80% by volume or more, and 90% by volume or more. More preferably it is. By making the heat-resistant material in the porous layer (II) high as described above, it is possible to satisfactorily suppress the thermal contraction of the entire separator even when the nonaqueous electrolyte secondary battery becomes high temperature. And the occurrence of a short circuit due to direct contact between the positive electrode and the negative electrode can be more effectively suppressed.
 後述するように、多孔質層(II)には有機バインダも含有させることが好ましいため、150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーの多孔質層(II)における量は、多孔質層(II)の構成成分の全体積中、99.5体積%以下であることが好ましい。 As will be described later, since it is preferable that the porous layer (II) also contains an organic binder, in the porous layer (II) of a resin that does not melt at a temperature of 150 ° C. or less and an inorganic filler having a heat resistant temperature of 150 ° C. or more. The amount is preferably 99.5% by volume or less in the total volume of the constituent components of the porous layer (II).
 多孔質層(II)には、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラー同士を結着したり、多孔質層(II)と多孔質層(I)との一体化したりするなどのために、有機バインダを含有させることが好ましい。有機バインダとしては、エチレン-酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20~35モル%のもの)、エチレン-エチルアクリレート共重合体などのエチレン-アクリル酸共重合体、フッ素系ゴム、SBR、CMC、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられるが、特に、150℃以上の耐熱温度を有する耐熱性のバインダが好ましく用いられる。有機バインダは、前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。 In the porous layer (II), a resin that does not melt at a temperature of 150 ° C. or less or an inorganic filler having a heat resistant temperature of 150 ° C. or higher is bound, or the porous layer (II) and the porous layer (I) It is preferable to contain an organic binder for integration. Organic binders include ethylene-vinyl acetate copolymers (EVA, structural units derived from vinyl acetate of 20 to 35 mol%), ethylene-acrylic acid copolymers such as ethylene-ethyl acrylate copolymers, fluorine-based binders Examples include rubber, SBR, CMC, hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), cross-linked acrylic resin, polyurethane, and epoxy resin. A heat-resistant binder having a heat-resistant temperature is preferably used. As the organic binder, those exemplified above may be used singly or in combination of two or more.
 前記例示の有機バインダの中でも、EVA、エチレン-アクリル酸共重合体、フッ素系ゴム、SBRなどの柔軟性の高いバインダが好ましい。このような柔軟性の高い有機バインダには、三井デュポンポリケミカル社のEVA「エバフレックスシリーズ」、日本ユニカー社のEVA、三井デュポンポリケミカル社のエチレン-アクリル酸共重合体「エバフレックス-EEAシリーズ」、日本ユニカー社のEEA、ダイキン工業社のフッ素ゴム「ダイエルラテックスシリーズ」、JSR社のSBR「TRD-2001」、日本ゼオン社のSBR「BM-400B」などがある。 Among the organic binders exemplified above, highly flexible binders such as EVA, ethylene-acrylic acid copolymer, fluorine rubber, and SBR are preferable. Examples of such highly flexible organic binders include EVA “Evaflex Series” from Mitsui DuPont Polychemical Co., Ltd., EVA from Nippon Unicar Co., Ltd., and “Everflex-EEA Series” ethylene-acrylic acid copolymer from Mitsui DuPont Polychemical Co. ”EEA of Nihon Unicar Company,“ Daiel Latex Series ”of fluorine rubber of Daikin Industries, Ltd., SBR“ TRD-2001 ”of JSR Corporation, SBR“ BM-400B ”of Zeon Corporation.
 前記有機バインダを多孔質層(II)に使用する場合には、後述する多孔質層(II)形成用の組成物の溶媒に溶解させるか、または分散させたエマルジョンの形態で用いればよい。 When the organic binder is used for the porous layer (II), it may be used in the form of an emulsion dissolved or dispersed in a solvent of a composition for forming the porous layer (II) described later.
 前記塗布積層型のセパレータは、例えば、150℃以下の温度で溶融しない樹脂の粒子や耐熱温度が150℃以上の無機フィラーなどを含有する多孔質層(II)形成用組成物(スラリーなどの液状組成物など)を、多孔質層(I)を構成するための膜(微多孔膜、不織布など)の表面に塗布し、所定の温度で乾燥して多孔質層(II)を形成することにより製造することができる。 The coating-laminated separator is, for example, a composition for forming a porous layer (II) containing a resin particle that does not melt at a temperature of 150 ° C. or lower, an inorganic filler having a heat resistant temperature of 150 ° C. or higher (liquid such as slurry). By applying the composition, etc.) to the surface of the membrane (microporous membrane, nonwoven fabric, etc.) constituting the porous layer (I) and drying at a predetermined temperature to form the porous layer (II) Can be manufactured.
 多孔質層(II)形成用組成物は、150℃以下の温度で溶融しない樹脂の粒子および/または耐熱温度が150℃以上の無機フィラーの他、必要に応じて有機バインダなどを含有し、これらを溶媒(分散媒を含む。以下同じ。)に分散させたものである。有機バインダについては溶媒に溶解させることもできる。多孔質層(II)形成用組成物に用いられる溶媒は、150℃以下の温度で溶融しない樹脂の粒子や無機フィラーなどを均一に分散でき、また、有機バインダを均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素;テトラヒドロフランなどのフラン類;メチルエチルケトン、メチルイソブチルケトンなどのケトン類;など、一般的な有機溶媒が好適に用いられる。これらの溶媒に、界面張力を制御する目的で、アルコール類(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、有機バインダが水溶性である場合、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適宜加えて界面張力を制御することもできる。 The composition for forming the porous layer (II) contains resin particles that do not melt at a temperature of 150 ° C. or lower and / or an inorganic filler having a heat resistant temperature of 150 ° C. or higher, and an organic binder as necessary. Is dispersed in a solvent (including a dispersion medium; the same shall apply hereinafter). The organic binder can be dissolved in a solvent. The solvent used in the composition for forming the porous layer (II) can uniformly disperse resin particles and inorganic filler that do not melt at a temperature of 150 ° C. or lower, and can dissolve or disperse the organic binder uniformly. Common organic solvents such as aromatic hydrocarbons such as toluene; furans such as tetrahydrofuran; ketones such as methyl ethyl ketone and methyl isobutyl ketone; are preferably used. For the purpose of controlling the interfacial tension, alcohols (ethylene glycol, propylene glycol, etc.) or various propylene oxide glycol ethers such as monomethyl acetate may be appropriately added to these solvents. In addition, when the organic binder is water-soluble or used as an emulsion, water may be used as a solvent. In this case, alcohols (methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.) are appropriately added. It is also possible to control the interfacial tension.
 多孔質層(II)形成用組成物は、150℃以下の温度で溶融しない樹脂の粒子および/または耐熱温度が150℃以上の無機フィラー、更には有機バインダなどを含む固形分含量を、例えば10~80質量%とすることが好ましい。 The composition for forming the porous layer (II) has a solid content containing, for example, a resin particle that does not melt at a temperature of 150 ° C. or lower and / or an inorganic filler having a heat resistant temperature of 150 ° C. or higher, and an organic binder. It is preferable to set it to 80 mass%.
 前記積層型のセパレータにおいて、多孔質層(I)と多孔質層(II)とは、それぞれ1層ずつである必要はなく、複数の層がセパレータ中にあってもよい。例えば、多孔質層(II)の両面に多孔質層(I)を配置した構成としたり、多孔質層(I)の両面に多孔質層(II)を配置した構成としたりしてもよい。ただし、層数を増やすことで、セパレータの厚みを増やして電池の内部抵抗の増加やエネルギー密度の低下を招く虞があるので、層数を多くしすぎるのは好ましくなく、前記積層型のセパレータ中の多孔質層(I)と多孔質層(II)との合計層数は5層以下であることが好ましい。 In the laminated separator, the porous layer (I) and the porous layer (II) do not have to be one each, and a plurality of layers may be present in the separator. For example, the porous layer (I) may be configured on both sides of the porous layer (II), or the porous layer (II) may be disposed on both sides of the porous layer (I). However, increasing the number of layers may increase the thickness of the separator and increase the internal resistance of the battery or decrease the energy density. Therefore, it is not preferable to increase the number of layers. The total number of layers of the porous layer (I) and the porous layer (II) is preferably 5 or less.
 本発明によってセパレータ全体の厚みを薄くすることができることは上述した通りであるが、前記積層型セパレータを用いる場合においては、熱収縮を抑える作用が非常に高いため、セパレータの厚みを更に薄くすることが可能となる。 As described above, the thickness of the entire separator can be reduced according to the present invention. However, when the laminated separator is used, the effect of suppressing thermal shrinkage is extremely high, and therefore the thickness of the separator is further reduced. Is possible.
 具体的には、多孔質層(I)の厚みを5~14μm、多孔質層(II)の厚みを1~5μmとすることができ、厚みの合計を6~15μmとすることができる。これにより、更にセパレータの全体の厚みを薄くすることが可能になり、正負極間距離を短くすることができるので、電池の内部抵抗を低く抑えることができる。 Specifically, the thickness of the porous layer (I) can be 5 to 14 μm, the thickness of the porous layer (II) can be 1 to 5 μm, and the total thickness can be 6 to 15 μm. As a result, the thickness of the separator can be further reduced, and the distance between the positive and negative electrodes can be shortened, so that the internal resistance of the battery can be kept low.
 セパレータ全体の空孔率としては、電解液の保液量を確保してイオン透過性を良好にするために、乾燥した状態で、30%以上であることが好ましい。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、乾燥した状態で、70%以下であることが好ましい。セパレータの空孔率:P(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、下記式(1)を用いて各成分iについての総和を求めることにより計算できる。 The porosity of the separator as a whole is preferably 30% or more in a dry state in order to ensure the amount of electrolyte retained and to improve ion permeability. On the other hand, from the viewpoint of securing separator strength and preventing internal short circuit, the separator porosity is preferably 70% or less in a dry state. The porosity of the separator: P (%) can be calculated by obtaining the sum for each component i from the thickness of the separator, the mass per area, and the density of the constituent components using the following formula (1).
 P={1-m/(Σaiρi×t)}×100 (1) P = {1-m / (Σaiρi × t)} × 100 mm (1)
 ここで、前記式(1)中、ai:質量%で表した成分iの比率、ρi:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:セパレータの厚み(cm)である。 Here, in the formula (1), ai: the ratio of the component i expressed in mass%, ρi: the density of the component i (g / cm 3 ), m: mass per unit area of the separator (g / cm 2 ) , T is the thickness (cm) of the separator.
 また、前記積層型のセパレータの場合、前記式(1)において、mを多孔質層(I)の単位面積あたりの質量(g/cm)とし、tを多孔質層(I)の厚み(cm)とすることで、前記式(1)を用いて多孔質層(I)の空孔率:P(%)を求めることもできる。この方法により求められる多孔質層(I)の空孔率は、30~70%であることが好ましい。 In the case of the multilayer separator, in the formula (1), m is the mass per unit area (g / cm 2 ) of the porous layer (I), and t is the thickness of the porous layer (I) ( cm), the porosity: P (%) of the porous layer (I) can also be obtained using the formula (1). The porosity of the porous layer (I) obtained by this method is preferably 30 to 70%.
 更に、前記積層型のセパレータの場合、前記式(1)において、mを多孔質層(II)の単位面積あたりの質量(g/cm)とし、tを多孔質層(II)の厚み(cm)とすることで、前記式(1)を用いて多孔質層(II)の空孔率:P(%)を求めることもできる。この方法により求められる多孔質層(II)の空孔率は、20~60%であることが好ましい。 Further, in the case of the laminated separator, in the formula (1), m is the mass per unit area (g / cm 2 ) of the porous layer (II), and t is the thickness of the porous layer (II) ( cm), the porosity: P (%) of the porous layer (II) can also be obtained using the formula (1). The porosity of the porous layer (II) obtained by this method is preferably 20 to 60%.
 前記セパレータとしては、機械的な強度の高いものが好ましく、例えば突き刺し強度が3N以上であることが好ましい。例えば、充放電に伴う体積変化の大きなSiOを負極活物質に使用した場合、充放電を繰り返すことで、負極全体の伸縮によって、対面させたセパレータにも機械的なダメージが加わることになる。セパレータの突き刺し強度が3N以上であれば、良好な機械的強度が確保され、セパレータの受ける機械的ダメージを緩和することができる。 The separator preferably has high mechanical strength. For example, the puncture strength is preferably 3N or more. For example, when SiO x having a large volume change due to charge / discharge is used as the negative electrode active material, mechanical damage is also applied to the facing separator due to expansion / contraction of the entire negative electrode by repeating charge / discharge. If the piercing strength of the separator is 3N or more, good mechanical strength is ensured, and mechanical damage to the separator can be reduced.
 突き刺し強度が3N以上のセパレータとしては、前述した積層型のセパレータが挙げられ、特に、融点が140℃以下の樹脂を主体とした多孔質層(I)に、耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)を積層したセパレータが好適である。それは、前記無機フィラーの機械的強度が高いため、多孔質層(I)の機械的強度を補って、セパレータ全体の機械的強度を高めることができるからであると考えられる。   Examples of the separator having a puncture strength of 3N or more include the above-described laminated separator, and in particular, an inorganic filler having a heat resistant temperature of 150 ° C. or higher in the porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower. A separator in which a porous layer (II) containing as a main component is laminated is preferable. This is presumably because the mechanical strength of the separator can be increased by supplementing the mechanical strength of the porous layer (I) because the inorganic filler has high mechanical strength.
 前記突き刺し強度は以下の方法で測定できる。直径2インチの穴があいた板上にセパレータをしわやたわみのないように固定し、先端の直径が1.0mmの半円球状の金属ピンを、120mm/分の速度で測定試料に降下させて、セパレータに穴があく時の力を5回測定する。そして、前記5回の測定値のうち最大値と最小値とを除く3回の測定について平均値を求め、これをセパレータの突き刺し強度とする。 The piercing strength can be measured by the following method. A separator is fixed on a plate having a hole with a diameter of 2 inches so as not to be wrinkled or bent, and a semicircular metal pin having a tip diameter of 1.0 mm is lowered onto a measurement sample at a speed of 120 mm / min. Measure the force when making a hole in the separator 5 times. And an average value is calculated | required about the measurement of 3 times except the maximum value and the minimum value among the said measurement values of 5 times, and this is made into the piercing strength of a separator.
 前記の正極と前記の負極と前記のセパレータとは、正極と負極との間にセパレータを介在させて重ねて渦巻状に巻回し、更に横断面を扁平形状にした電極体として、非水電解質二次電池に使用される。 The positive electrode, the negative electrode, and the separator are stacked in a spiral shape with a separator interposed between the positive electrode and the negative electrode. Used for the next battery.
 前記電極体においては、前記積層型のセパレータ、特に融点が140℃以下の樹脂を主体とした多孔質層(I)に、耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)を積層したセパレータを使用する場合、多孔質層(II)が少なくとも正極と面するように配置することが好ましい。この場合、耐熱温度が150℃以上の無機フィラーを主体として含み、より耐酸化性に優れる多孔質層(II)が正極と面することで、正極によるセパレータの酸化をより良好に抑制できるため、電池の高温時の保存特性や充放電サイクル特性を更に高めることもできる。また、非水電解質にはビニレンカーボネートやシクロヘキシルベンゼンなどの添加剤を添加して、電池の各種特性を更に高めることが可能であるが、このような添加物を加えた場合、正極側で皮膜形成してセパレータの細孔を詰まらせ、電池特性の低下を引き起こす虞もある。そこで、比較的ポーラスな多孔質層(II)を正極に対面させることで、細孔の目詰まりを抑制する効果も期待できる。 In the electrode body, a porous layer (II) mainly containing an inorganic filler having a heat resistant temperature of 150 ° C. or more in the porous separator (I) mainly comprising a resin having a melting point of 140 ° C. or less. ) Is preferably disposed so that the porous layer (II) faces at least the positive electrode. In this case, since the porous layer (II) that includes an inorganic filler having a heat resistant temperature of 150 ° C. or more as a main component and more excellent in oxidation resistance faces the positive electrode, oxidation of the separator by the positive electrode can be better suppressed, It is possible to further improve the storage characteristics and charge / discharge cycle characteristics of the battery at high temperatures. In addition, additives such as vinylene carbonate and cyclohexylbenzene can be added to the non-aqueous electrolyte to further improve various battery characteristics. When such additives are added, a film is formed on the positive electrode side. As a result, the pores of the separator may be clogged and the battery characteristics may be deteriorated. Therefore, an effect of suppressing clogging of pores can be expected by causing the relatively porous porous layer (II) to face the positive electrode.
 本発明の非水電解質二次電池は、従来の非水電解質二次電池と同様に充電の上限電圧を4.2V程度として使用することもできるが、充電の上限電圧を、これよりも高い4.3V以上に設定して使用することも可能であり、これにより高容量化を図りつつ、長期にわたって繰り返し使用しても、安定して優れた特性を発揮することが可能である。なお、非水電解質二次電池の充電の上限電圧は、4.7V以下であることが好ましい。 The non-aqueous electrolyte secondary battery of the present invention can be used with the upper limit voltage of charging being about 4.2 V as in the case of the conventional non-aqueous electrolyte secondary battery, but the upper limit voltage of charging is higher than this. It is also possible to use it by setting it to 3 V or more, so that it is possible to stably exhibit excellent characteristics even if it is repeatedly used over a long period of time while increasing the capacity. In addition, it is preferable that the upper limit voltage of charge of a nonaqueous electrolyte secondary battery is 4.7V or less.
 本発明の非水電解質二次電池は、従来から知られている非水電解質二次電池と同様の用途に適用することができる。本発明は電池内の部品点数の増加を最小限に抑えられるので、特に、限られた体積に対して高容量が求められるような機器、例えばモバイル機器や小型機器および多セルを直列に組み合わせたロボット用途など体積エネルギー密度が350~800Wh/Lのような場合に特に効果を発揮する。更に本発明の非水電解質二次電池は、後述する条件(実施例に記載)で測定した場合の電池容量が1.0~5.0Ahの場合に特徴が良く現れ、特に1.5~4.0Ahの範囲で最適な特性を示す。ロボットなどの用途では、その使い道を考えると絶対的な電池容量は高くする必要はないため、本発明の電池がうまく適合する。 The non-aqueous electrolyte secondary battery of the present invention can be applied to the same applications as conventionally known non-aqueous electrolyte secondary batteries. Since the present invention can minimize the increase in the number of parts in the battery, in particular, a device that requires a high capacity for a limited volume, for example, a mobile device, a small device, and a multi-cell combination. This is particularly effective when the volumetric energy density is 350 to 800 Wh / L, such as for robot applications. Further, the non-aqueous electrolyte secondary battery of the present invention is well characterized when the battery capacity is 1.0 to 5.0 Ah when measured under the conditions described later (described in the examples), particularly 1.5 to 4 Optimal characteristics in the range of 0.0 Ah. In applications such as robots, the battery capacity of the present invention is well suited because the absolute battery capacity does not need to be increased in consideration of its usage.
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.
実施例1
<正極の作製>
 LiCoOとLi1.0Ni0.5Co0.2Mn0.3とを8:2の割合(質量比)で混合した正極活物質100質量部と、バインダであるPVDFを10質量%の濃度で含むNMP溶液20質量部と、導電助剤である人造黒鉛1質量部およびケッチェンブラック1質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
Example 1
<Preparation of positive electrode>
100 parts by mass of a positive electrode active material obtained by mixing LiCoO 2 and Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2 at a ratio (mass ratio) of 8: 2, and 10 parts by mass of PVDF as a binder. 20 parts by weight of NMP solution contained at a concentration of 1%, 1 part by weight of artificial graphite and 1 part by weight of ketjen black, which are conductive assistants, are kneaded using a biaxial kneader, and NMP is added to adjust the viscosity. Thus, a positive electrode mixture-containing paste was prepared.
 前記正極合剤含有ペーストを、図1および図2に示すように厚みが12μmのアルミニウム箔(正極集電体)の両面および一部片面に塗布した後、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。その後、プレス処理を行って、正極合剤層の厚さおよび密度を調節した。得られた正極における正極合剤層は、片面あたりの厚みが40μmであった。図1および図2に示すように、両端のアルミニウム箔露出部にアルミにウム製の正極集電タブ(幅5mm、厚み0.08mm、断面積0.4mm)を1本ずつ溶接することで、2本の正極集電タブを有する長さ1000mm、幅54mmの帯状の正極を作製した。また、この時の正極合剤層の総面積は、両面の合計で820cmであった。 As shown in FIG. 1 and FIG. 2, the positive electrode mixture-containing paste is applied to both surfaces and a part of one surface of an aluminum foil (positive electrode current collector) having a thickness of 12 μm, followed by vacuum drying at 120 ° C. for 12 hours. Then, a positive electrode mixture layer was formed on both surfaces of the aluminum foil. Then, the press process was performed and the thickness and density of the positive mix layer were adjusted. The positive electrode mixture layer in the obtained positive electrode had a thickness of 40 μm on one side. As shown in FIGS. 1 and 2, by welding aluminum positive electrode current collecting tabs (width 5 mm, thickness 0.08 mm, cross-sectional area 0.4 mm 2 ) one by one to the aluminum foil exposed portions at both ends, A strip-like positive electrode having a length of 1000 mm and a width of 54 mm having two positive electrode current collecting tabs was produced. Further, the total area of the positive electrode mixture layer at this time was 820 cm 2 in total on both surfaces.
<負極の作製>
 負極活物質である平均粒子径D50%が8μmであるSiO表面を炭素材料で被覆した複合体(複合体における炭素材料の量が10質量%)と、平均粒子径D50%が16μmである黒鉛とを、SiO表面を炭素材料で被覆した複合体の量が3.75質量%となる量で混合した混合物:97.5質量部と、バインダであるSBR:1.5質量部と、増粘剤であるCMC:1質量部とに、水を加えて混合し、負極合剤含有ペーストを調製した。
<Production of negative electrode>
A composite in which the surface of SiO having an average particle diameter D50% of 8 μm, which is a negative electrode active material, is coated with a carbon material (the amount of the carbon material in the composite is 10% by mass), and graphite having an average particle diameter D50% of 16 μm A mixture in which the amount of the composite having the SiO surface coated with a carbon material is 3.75% by mass: 97.5 parts by mass, SBR as a binder: 1.5 parts by mass, and a thickener CMC: 1 part by mass of water was added and mixed to prepare a negative electrode mixture-containing paste.
 前記負極合剤含有ペーストを、図3および図4に示すように厚みが8μmの銅箔(負極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、銅箔の両面および一部片面に負極合剤層を形成した。その後、プレス処理を行って、負極合剤層の厚さおよび密度を調節し、図3および図4に示すように銅箔の露出部にニッケル製の負極集電タブを溶接して、長さ990mm、幅55mmの帯状の負極を作製した。得られた負極における負極合剤層は、片面あたりの厚みが45μmであった。 The negative electrode mixture-containing paste was applied to both sides of a copper foil (negative electrode current collector) having a thickness of 8 μm as shown in FIGS. 3 and 4 and then vacuum-dried at 120 ° C. for 12 hours to obtain a copper foil. A negative electrode mixture layer was formed on both sides and a part of one side. Then, press treatment is performed to adjust the thickness and density of the negative electrode mixture layer, and a negative electrode current collector tab made of nickel is welded to the exposed portion of the copper foil as shown in FIGS. A strip-shaped negative electrode having a width of 990 mm and a width of 55 mm was produced. The negative electrode mixture layer in the obtained negative electrode had a thickness per side of 45 μm.
<非水電解液の調製>
 エチレンカーボネートとジエチルカーボネートの体積比3:7の混合溶媒に、LiPFを1.1mol/Lの濃度で溶解させ、2質量%となる量のビニレンカーボネートと2質量%となる量のフルオロエチレンカーボネートとを、それぞれ添加して非水電解液を調製した。
<Preparation of non-aqueous electrolyte>
LiPF 6 is dissolved at a concentration of 1.1 mol / L in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7, and vinylene carbonate in an amount of 2% by mass and fluoroethylene carbonate in an amount of 2% by mass are obtained. Were added to prepare a non-aqueous electrolyte.
<セパレータの作製>
 板状ベーマイト(平均粒径1μm、アスペクト比10)5kgに、イオン交換水5kgと、分散剤(水系ポリカルボン酸アンモニウム塩、固形分濃度40質量%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで10時間解砕処理をして分散液を調製した。処理後の分散液の一部を120℃で真空乾燥し、走査型電子顕微鏡(SEM)で観察したところ、ベーマイトの形状はほぼ板状であった。また、処理後のベーマイトの平均粒子径は1μmであった。
<Preparation of separator>
To 5 kg of plate boehmite (average particle diameter 1 μm, aspect ratio 10), 5 kg of ion-exchanged water and 0.5 kg of a dispersant (aqueous polycarboxylic acid ammonium salt, solid content concentration 40% by mass) are added, and the internal volume is 20 L. Dispersion was prepared by crushing for 10 hours with a ball mill with 40 rotations / minute. When a part of the treated dispersion was vacuum dried at 120 ° C. and observed with a scanning electron microscope (SEM), the shape of boehmite was almost plate-like. The average particle size of the boehmite after the treatment was 1 μm.
 上記分散液500gに、増粘剤としてキサンタンガムを0.5g、バインダとして樹脂バインダーディスパージョン(変性ポリブチルアクリレート、固形分含量45質量%)を17g加え、スリーワンモーターで3時間攪拌して均一な多孔質層(II)形成用スラリー(固形分比率50質量%)を調製した。 To 500 g of the above dispersion, 0.5 g of xanthan gum as a thickener and 17 g of a resin binder dispersion (modified polybutyl acrylate, solid content 45% by mass) as a binder are added and stirred with a three-one motor for 3 hours to obtain uniform porosity. A slurry for forming a quality layer (II) (solid content ratio 50 mass%) was prepared.
 多孔質層(I)であるPE製の微多孔膜(厚み10μm、空孔率40%、平均孔径0.08μm、PEの融点135℃)の片面にコロナ放電処理(放電量40W・分/m2)を施し、この処理面に上記多孔質層(II)形成用スラリーをマイクログラビアコーターによって塗布し、乾燥して厚みが2μmの多孔質層(II)をセパレータ上の片面に形成して、積層型セパレータを作製した。 Corona discharge treatment (discharge amount: 40 W · min / m 2) on one side of the porous layer (I) PE microporous film (thickness 10 μm, porosity 40%, average pore size 0.08 μm, PE melting point 135 ° C.) The porous layer (II) forming slurry is applied to the treated surface with a micro gravure coater and dried to form a porous layer (II) having a thickness of 2 μm on one side of the separator. A mold separator was produced.
<電池の組み立て>
 図5に示すように、前記帯状の正極を、上記積層型セパレータ(空孔率:42%)を介して前記帯状の負極に重ね、渦巻状に巻回した後、扁平形状になるように加圧して電極体とし、この電極体をポリプロピレン製の絶縁テープで固定した。この時、扁平形状の電極体は、図5の通り幅広面からの側面視で、それぞれの集電タブが重ならない位置となっていた。この時の電極体の幅広面寸法は幅方向(巻回軸方向と垂直方向)50mm、高さ方向(巻回軸方向と平行方向)58mmであった。
<Battery assembly>
As shown in FIG. 5, the strip-shaped positive electrode is stacked on the strip-shaped negative electrode via the laminated separator (porosity: 42%), wound in a spiral shape, and then added to form a flat shape. The electrode body was pressed to be fixed with an insulating tape made of polypropylene. At this time, the flat electrode body was in a position where the current collecting tabs did not overlap in a side view from the wide surface as shown in FIG. The wide surface dimensions of the electrode body at this time were 50 mm in the width direction (direction perpendicular to the winding axis direction) and 58 mm in the height direction (direction parallel to the winding axis direction).
 次に、外寸が厚さ4.8mm、幅57mm、高さ60mmのアルミニウム合金製の角形缶に前記巻回電極体を挿入し、それぞれ集電タブの溶接を行うとともに、アルミニウム合金製の蓋板を角形缶の開口端部に溶接した。その後、蓋板に設けた注入口から前記非水電解質を注入し、注入口を封止して、図6に示す外観の非水電解質二次電池100を得た。 Next, the wound electrode body is inserted into a rectangular can made of aluminum alloy having an outer dimension of thickness 4.8 mm, width 57 mm, and height 60 mm, and the current collecting tab is welded to each other. The plate was welded to the open end of the square can. Thereafter, the non-aqueous electrolyte was injected from an inlet provided in the lid plate, and the inlet was sealed to obtain a non-aqueous electrolyte secondary battery 100 having an appearance shown in FIG.
 非水電解質二次電池100は、外装缶111と蓋板121を有し、これらは正極端子を兼ねている。外装缶111は一対の側面部112と一対の幅広面113と底面とからなる。幅広面113は、電池の内圧が上昇した際に防爆機構として作動する開裂溝114を有している。蓋体121は外装缶111の開口部に挿入され、両者の接合部を溶接することによって、外装缶111の開口部が封口され、電池内部が密閉されている。蓋体121に非水電解液注入口が設けられており、この非水電解液注入口には、封止部材122が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている。蓋体121にはPP製の絶縁パッキング124を介してステンレス鋼製の端子123が取り付けられ、この端子123は電池内部で絶縁体を介してリード板が取り付けられている。 The non-aqueous electrolyte secondary battery 100 has an outer can 111 and a cover plate 121, which also serve as a positive electrode terminal. The outer can 111 includes a pair of side surfaces 112, a pair of wide surfaces 113, and a bottom surface. The wide surface 113 has a cleavage groove 114 that operates as an explosion-proof mechanism when the internal pressure of the battery increases. The lid 121 is inserted into the opening of the outer can 111, and the joint of the two is welded to seal the opening of the outer can 111 and seal the inside of the battery. The lid 121 is provided with a non-aqueous electrolyte inlet, and the non-aqueous electrolyte inlet is welded and sealed by, for example, laser welding in a state where the sealing member 122 is inserted. Airtightness is ensured. A stainless steel terminal 123 is attached to the lid 121 via an insulating packing 124 made of PP, and a lead plate is attached to the terminal 123 via an insulator inside the battery.
 図示していないが、正極集電タブは蓋体121に直接溶接することによって外装缶111と蓋体121とが正極端子として機能し、負極集電タブは電池内部のリード板に溶接し、そのリード板を介して端子123とを導通させることによって端子123が負極端子として機能するようになっている。 Although not shown, the positive electrode current collecting tab is directly welded to the lid body 121 so that the outer can 111 and the lid body 121 function as a positive electrode terminal, and the negative electrode current collecting tab is welded to a lead plate inside the battery. The terminal 123 functions as a negative electrode terminal by conducting with the terminal 123 through the lead plate.
実施例2
 セパレータにPE製の微多孔膜(厚み20μm)を用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
Example 2
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a PE microporous membrane (thickness 20 μm) was used as the separator.
実施例3
 サイズを長さ700mm、幅54mmに変更した以外は、実施例1と同様にして帯状の正極を作製した。この時の正極合剤層の総面積は,両面の合計で660cmであった。
Example 3
A strip-shaped positive electrode was produced in the same manner as in Example 1 except that the size was changed to 700 mm in length and 54 mm in width. The total area of the positive electrode mixture layer at this time was 660 cm 2 in total on both sides.
 また、サイズを長さ800mm、幅55mmに変更した以外は、実施例1と同様にして帯状の負極を作製した。 Further, a strip-shaped negative electrode was produced in the same manner as in Example 1 except that the size was changed to 800 mm in length and 55 mm in width.
 前記帯状の正極と、前記帯状の負極とを用いた以外は、実施例1と同様にして扁平形状の電極体を作製した。この時の電極体の幅広面寸法は、幅方向35mm、高さ方向58mmであった。 A flat electrode body was produced in the same manner as in Example 1 except that the belt-like positive electrode and the belt-like negative electrode were used. The wide surface dimensions of the electrode body at this time were 35 mm in the width direction and 58 mm in the height direction.
 そして、外寸が厚さ4.8mm、幅38mm、高さ60mmのアルミニウム合金製の角形缶に前記扁平形状の電極体を挿入した以外は、実施例1と同様にして非水電解質二次電池を作製した。 And the nonaqueous electrolyte secondary battery was carried out in the same manner as in Example 1 except that the flat electrode body was inserted into an aluminum alloy rectangular can having a thickness of 4.8 mm, a width of 38 mm, and a height of 60 mm. Was made.
実施例4
 サイズを長さ1600mm、幅54mmに変更した以外は、実施例1と同様にして帯状の正極を作製した。この時の正極合剤層の総面積は、両面の合計で1560cmであった。
Example 4
A belt-like positive electrode was produced in the same manner as in Example 1 except that the size was changed to 1600 mm in length and 54 mm in width. The total area of the positive electrode mixture layer at this time was 1560 cm 2 in total on both sides.
 また、サイズを長さ1700mm、幅55mmに変更した以外は、実施例1と同様にして帯状の負極を作製した。 Further, a strip-shaped negative electrode was produced in the same manner as in Example 1 except that the size was changed to 1700 mm in length and 55 mm in width.
 前記帯状の正極と、前記帯状の負極とを用いた以外は、実施例1と同様にして扁平形状の電極体を作製した。この時の電極体の幅広面寸法は、幅方向75mm、高さ方向58mmであった。 A flat electrode body was produced in the same manner as in Example 1 except that the belt-like positive electrode and the belt-like negative electrode were used. The wide surface dimensions of the electrode body at this time were 75 mm in the width direction and 58 mm in the height direction.
 そして、外寸が厚さ4.8mm、幅78mm、高さ60mmのアルミニウム合金製の角形缶に前記扁平形状の電極体を挿入した以外は、実施例1と同様にして非水電解質二次電池を作製した。 And the nonaqueous electrolyte secondary battery was carried out in the same manner as in Example 1 except that the flat electrode body was inserted into a square can made of an aluminum alloy having a thickness of 4.8 mm, a width of 78 mm, and a height of 60 mm. Was made.
比較例1
 電極体を円筒形状に形成し、外装体を従来公知の円筒形に変更した以外は、実施例1と同様にして非水電解質二次電池を作製した。
Comparative Example 1
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the electrode body was formed in a cylindrical shape and the exterior body was changed to a conventionally known cylindrical shape.
比較例2
 正極集電タブ13bを設けなかった以外は実施例1と同様にして帯状の正極を作製し、この正極を用い、更にPE製の微多孔膜(厚み20μm)を用いた以外は、実施例1と同様に非水電解質二次電池を作製した。
Comparative Example 2
A belt-like positive electrode was produced in the same manner as in Example 1 except that the positive electrode current collecting tab 13b was not provided, and this positive electrode was used. In addition, a PE microporous film (thickness 20 μm) was used. A non-aqueous electrolyte secondary battery was produced in the same manner as described above.
比較例3
 実施例1で用いたものと同じ帯状の正極、帯状の負極およびセパレータを重ねて、正極の巻き始めの位置を実施例1と変更し、電極体最外周側の正極集電タブ213a、および電極体最内周側の正極集電タブ213bを図7の配置になるようにして、扁平形状の電極体203を作製した。
Comparative Example 3
The same belt-like positive electrode, belt-like negative electrode, and separator as used in Example 1 are stacked, and the positive electrode winding start position is changed to that of Example 1, and the positive electrode current collecting tab 213a on the outermost peripheral side of the electrode body, and the electrode A flat electrode body 203 was produced with the positive electrode current collecting tab 213b on the innermost peripheral side of the body arranged as shown in FIG.
 そして、この扁平形状の電極体203を用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this flat electrode body 203 was used.
比較例4
 セパレータをPE製の微多孔膜(厚み20μm)に変更した以外は、比較例3と同様にして非水電解質二次電池を作製した。
Comparative Example 4
A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 3 except that the separator was changed to a PE microporous membrane (thickness 20 μm).
 実施例、比較例の各非水電解質二次電池を、以下の評価方法で評価した。表1および表2には各電池の構成を示し、表3にはそれぞれの評価結果を示す。 Each non-aqueous electrolyte secondary battery in Examples and Comparative Examples was evaluated by the following evaluation methods. Tables 1 and 2 show the configuration of each battery, and Table 3 shows the evaluation results.
<電池容量>
 実施例および比較例の各電池について、1Cの電流値で2.75Vまで定電流(以下CCと記す)放電することで、一度完全に放電された状態にした。次に、各電池について、4.35Vまで定電流定電圧(以下CCCVと記す)充電を行った。CC充電の電流値は1Cとし、充電終止電流値は0.05Cとした。続いて、各電池について0.2Cの電流値で2.75VまでCC放電を行い、その時の放電容量を測定した。この時の容量を電池容量とした。
<Battery capacity>
About each battery of an Example and a comparative example, it was set as the state fully discharged once by discharging constant current (it is hereafter described as CC) to 2.75V with the electric current value of 1C. Next, each battery was charged with a constant current and a constant voltage (hereinafter referred to as CCCV) up to 4.35V. The CC charging current value was 1 C, and the charging end current value was 0.05 C. Then, CC discharge was performed to 2.75V with the electric current value of 0.2C about each battery, and the discharge capacity at that time was measured. The capacity at this time was defined as the battery capacity.
<放電負荷特性>
 実施例および比較例の各電池について、1Cの電流値で2.75VまでCC放電することで、一度完全に放電された状態にした。次に、各電池について、4.35VまでCCCV充電を行った。CC充電の電流値は1Cとし、充電終止電流値は0.05Cとした。続いて、各電池について0.2Cの電流値で2.75VまでCC放電を行い、その時の放電容量を測定した。
<Discharge load characteristics>
About each battery of an Example and a comparative example, it was set as the state fully discharged once by CC discharging to 2.75V with the electric current value of 1C. Next, CCCV charge was performed up to 4.35V for each battery. The CC charging current value was 1 C, and the charging end current value was 0.05 C. Then, CC discharge was performed to 2.75V with the electric current value of 0.2C about each battery, and the discharge capacity at that time was measured.
 ついで、各電池について、再度同様の条件でCCCV充電を行い、10Cの電流値で2.75VまでCC放電し、その際の放電容量と電池の表面温度とを評価した。 Next, CCCV charging was performed again under the same conditions for each battery, and CC discharge was performed to a current value of 10 C to 2.75 V, and the discharge capacity and the surface temperature of the battery were evaluated.
 高負荷放電特性評価として、実施例および比較例の各電池について、10C放電時の放電容量を0.2C放電時の放電容量で除した値(10C/0.2C放電容量比)をそれぞれ算出した。表2の10C/0.2C放電容量比では、各電池について、実施例1の電池の結果を100としたときの相対値を示している。 As the high load discharge characteristics evaluation, values (10C / 0.2C discharge capacity ratio) obtained by dividing the discharge capacity at the time of 10C discharge by the discharge capacity at the time of 0.2C discharge were calculated for each battery of the example and the comparative example. . The 10 C / 0.2 C discharge capacity ratio in Table 2 shows the relative value when the result of the battery of Example 1 is set to 100 for each battery.
<1kHz交流抵抗〔インピーダンス(Imp.)〕>
 実施例および比較例の各非水電解質二次電池の1kHz交流抵抗は、1Cの電流値で2.75VまでCC放電した後、4.35VまでCCCV充電を行い、その後にHIOKI社製の抵抗測定機「HiTESTER」を用いて25℃で測定した。
<1 kHz AC resistance [impedance (Imp.)]>
The 1 kHz AC resistance of each of the nonaqueous electrolyte secondary batteries in Examples and Comparative Examples was obtained by performing CC discharge to 2.75 V at a current value of 1 C, performing CCCV charge to 4.35 V, and then measuring resistance manufactured by HIOKI It measured at 25 degreeC using the machine "HiTESTER".
<電池厚みの測定>
 実施例および比較例の各非水電解質二次電池の厚みは、株式会社ミツトヨ製のシックネスゲージ(測定部φ10mm平面円形)を用いて、外装缶の幅広面中央部と、外装缶幅広面における扁平形状の電極体の集電タブに対応する箇所とで測定した。表3では、中央部の厚み、および集電タブ位置に対応する箇所の厚みの最大値を示す。
<Measurement of battery thickness>
The thickness of each of the nonaqueous electrolyte secondary batteries in Examples and Comparative Examples was determined by using a thickness gauge (measurement part φ10 mm flat circle) manufactured by Mitutoyo Co., Ltd. It measured with the location corresponding to the current collection tab of an electrode body of a shape. Table 3 shows the maximum value of the thickness of the central portion and the thickness of the portion corresponding to the current collecting tab position.
<充放電サイクル特性>
 実施例および比較例の各非水電解質二次電池について、1Cの電流値で2.75VまでCC放電することで、一度完全に放電された状態にした。次に、各電池について、4.35VまでCCCV充電を行った。CC充電の電流値は1Cとし、充電終止電流値は0.05Cとした。続いて、各電池について5Cの電流値で2.75VまでCC放電を行い、その際の初回放電容量を求めた。その後、この充放電条件を1サイクルとし、各電池について、500サイクルの充放電を繰り返したときの放電容量を求めた。表3では、各電池について、500サイクル後の放電容量を初回放電容量で除した値を百分率(容量維持率)で示す。
<Charge / discharge cycle characteristics>
About each nonaqueous electrolyte secondary battery of an Example and a comparative example, it was made into the state discharged completely once by CC discharging to 2.75V with the electric current value of 1C. Next, CCCV charge was performed up to 4.35V for each battery. The CC charging current value was 1 C, and the charging end current value was 0.05 C. Then, CC discharge was performed to 2.75V with the electric current value of 5C about each battery, and the initial stage discharge capacity in that case was calculated | required. Then, this charging / discharging condition was made into 1 cycle, and about each battery, the discharge capacity when repeating 500 cycles charging / discharging was calculated | required. In Table 3, the value obtained by dividing the discharge capacity after 500 cycles by the initial discharge capacity is shown as a percentage (capacity maintenance ratio) for each battery.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~4のように電極体が扁平形状で正極集電タブを2本用い、かつ幅広面側から側面視した時に集電タブが重ならない位置に配置された非水電解質二次電池は、インピーダンスが低いため、10C/0.2C放電容量比が高く、かつ電池表面の温度上昇も抑えられた。更に電池の幅広面の中央部厚みと最大厚みとの差が小さく、幅広面の厚みムラが少ないので、充放電時に電極体内の空隙の偏りにより発生する電極体の歪みが少ないため、高いサイクル容量維持率が得られた。 As in Examples 1 to 4, the non-aqueous electrolyte secondary battery in which the electrode body is flat, uses two positive electrode current collecting tabs, and is arranged at a position where the current collecting tabs do not overlap when viewed from the wide side. Since the impedance was low, the 10C / 0.2C discharge capacity ratio was high, and the temperature rise on the battery surface was also suppressed. In addition, the difference between the central thickness and the maximum thickness of the wide surface of the battery is small, and there is little unevenness in the thickness of the wide surface, so there is less distortion of the electrode body due to the bias in the electrode body during charging and discharging, resulting in high cycle capacity. A retention rate was obtained.
 電極体が円筒状である比較例1の電池は、扁平形状の電極体を有する実施例1の電池と比べて放熱性が悪く、高負荷放電時に温度が上昇した。更に放熱性が悪いことが充放電サイクル特性にも悪影響を与える結果となった。正極、負極とも集電タブが1本の比較例2の電池は、インピーダンスが高いために高負荷での放電時の容量が小さかった。側面視した時に2本の正極集電タブが重なるように配置した電極体を有する比較例3、4の電池は、充放電サイクル特性評価時の容量維持率が低くなった。比較例3、4の電池では、扁平形状の電極体の幅広面に厚みムラがあるため、充放電サイクルを繰り返すうちに充放電容量ロスが発生し、容量維持率が低くなったと考えられる。 The battery of Comparative Example 1 having a cylindrical electrode body was poor in heat dissipation as compared with the battery of Example 1 having a flat electrode body, and the temperature increased during high load discharge. Further, the poor heat dissipation has a negative effect on the charge / discharge cycle characteristics. The battery of Comparative Example 2 having one current collecting tab for both the positive electrode and the negative electrode has a high impedance, and thus has a small capacity during discharge under a high load. The batteries of Comparative Examples 3 and 4 having the electrode bodies arranged so that the two positive electrode current collecting tabs overlap each other when viewed from the side have a low capacity retention rate when evaluating charge / discharge cycle characteristics. In the batteries of Comparative Examples 3 and 4, since the flat surface of the flat electrode body has a thickness unevenness, a charge / discharge capacity loss occurred while repeating the charge / discharge cycle, and the capacity retention rate was considered to be low.
 本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。 The present invention can be implemented in other forms as long as it does not depart from the spirit of the present invention. The embodiments disclosed in the present application are examples, and the present invention is not limited to these embodiments. The scope of the present invention is construed in preference to the description of the appended claims rather than the description of the above specification, and all modifications within the scope equivalent to the claims are construed in the scope of the claims. included.
 この発明は、非水電解質二次電池に適用される。 This invention is applied to a non-aqueous electrolyte secondary battery.
 1 正極
 13a、13b 正極集電タブ
 2 負極
 3 扁平形状の電極体
 30 幅広面
 100 非水電解質二次電池
 
DESCRIPTION OF SYMBOLS 1 Positive electrode 13a, 13b Positive electrode current collection tab 2 Negative electrode 3 Flat electrode body 30 Wide surface 100 Nonaqueous electrolyte secondary battery

Claims (8)

  1.  一対の幅広面を持つ扁平形状の電極体が外装体内に収納されており、
     前記扁平形状の電極体は、長尺の正極と長尺の負極とがセパレータを介して積層されて渦巻き状に巻回されており、
     前記正極および前記負極は、それぞれ正極集電タブ、負極集電タブを有しており、
     前記正極および前記負極の少なくとも一方は、2以上の集電タブを有しており、
     前記正極集電タブおよび前記負極集電タブは、前記電極体を幅広面側から側面視した時に重ならないように配置されていることを特徴とする非水電解質二次電池。
    A flat electrode body having a pair of wide surfaces is housed in the exterior body,
    The flat electrode body is formed by laminating a long positive electrode and a long negative electrode via a separator and wound in a spiral shape,
    The positive electrode and the negative electrode each have a positive electrode current collecting tab and a negative electrode current collecting tab,
    At least one of the positive electrode and the negative electrode has two or more current collecting tabs,
    The non-aqueous electrolyte secondary battery, wherein the positive electrode current collecting tab and the negative electrode current collecting tab are arranged so as not to overlap when the electrode body is viewed from the side of the wide surface.
  2.  下記の条件で測定した時の電池容量が1.5~4.0Ahである請求項1に記載の非水電解質二次電池。
    <電池容量測定条件>
     1Cの電流値で2.75Vまで定電流放電することで、一度完全に放電された状態にする。次に4.35Vまで定電流定電圧充電を行う。定電流充電の電流値は1Cとし、充電終止電流値は0.05Cとする。続いて0.2Cの電流値で2.75Vまで定電流放電を行い、その時の放電容量を電池容量とする。
    The nonaqueous electrolyte secondary battery according to claim 1, wherein the battery capacity when measured under the following conditions is 1.5 to 4.0 Ah.
    <Battery capacity measurement conditions>
    By discharging at a constant current up to 2.75 V at a current value of 1 C, the battery is completely discharged once. Next, constant current constant voltage charging is performed up to 4.35V. The constant current charging current value is 1 C, and the charging end current value is 0.05 C. Subsequently, constant current discharge is performed at a current value of 0.2 C up to 2.75 V, and the discharge capacity at that time is defined as battery capacity.
  3.  前記幅広面は、巻回軸方向と垂直な方向の長さが30~80mmである請求項1または2に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the wide surface has a length in a direction perpendicular to a winding axis direction of 30 to 80 mm.
  4.  前記セパレータは、厚みが20μm以下である請求項1~3のいずれかに記載の非水電解質二次電池。 4. The nonaqueous electrolyte secondary battery according to claim 1, wherein the separator has a thickness of 20 μm or less.
  5.  前記セパレータは、
     融点が140℃以下の樹脂を主体とする多孔質層(I)と、
     150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)
    とを有する積層型のセパレータである請求項1~4のいずれかに記載の非水電解質二次電池。
    The separator is
    A porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower;
    Porous layer (II) mainly comprising a resin that does not melt at a temperature of 150 ° C. or less or an inorganic filler having a heat resistant temperature of 150 ° C. or more
    The nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, which is a laminated separator having
  6.  前記正極は、正極合剤層を正極集電体の片面または両面に有するものであり、
     前記正極合剤層の厚みは、片面で20~70μmである請求項1~5のいずれかに記載の非水電解質二次電池。
    The positive electrode has a positive electrode mixture layer on one side or both sides of a positive electrode current collector,
    6. The nonaqueous electrolyte secondary battery according to claim 1, wherein the thickness of the positive electrode mixture layer is 20 to 70 μm on one side.
  7.  前記正極は正極合剤層を正極集電体の片面または両面に有するものであり、
     前記正極集電体上の正極合剤層の総面積が300~2000cmである請求項1~6のいずれかに記載の非水電解質二次電池。
    The positive electrode has a positive electrode mixture layer on one side or both sides of a positive electrode current collector,
    7. The nonaqueous electrolyte secondary battery according to claim 1, wherein the total area of the positive electrode mixture layer on the positive electrode current collector is 300 to 2000 cm 2 .
  8.  前記正極集電タブおよび前記負極集電タブは、1本あたりの断面積が0.15~1.0mmである請求項1~7のいずれかに記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 7, wherein each of the positive electrode current collecting tab and the negative electrode current collecting tab has a cross-sectional area of 0.15 to 1.0 mm 2 .
PCT/JP2016/074939 2015-09-14 2016-08-26 Nonaqueous electrolyte secondary battery WO2017047353A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017539807A JP6754768B2 (en) 2015-09-14 2016-08-26 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015181280 2015-09-14
JP2015-181280 2015-09-14

Publications (1)

Publication Number Publication Date
WO2017047353A1 true WO2017047353A1 (en) 2017-03-23

Family

ID=58288873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074939 WO2017047353A1 (en) 2015-09-14 2016-08-26 Nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP6754768B2 (en)
WO (1) WO2017047353A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107834014A (en) * 2017-09-18 2018-03-23 东莞市迈科新能源有限公司 A kind of high power cylindrical lithium ion cell core
JP2020509534A (en) * 2017-04-14 2020-03-26 エルジー・ケム・リミテッド Electrode assembly
CN111386622A (en) * 2017-11-30 2020-07-07 松下知识产权经营株式会社 Cylindrical secondary battery
CN111799440A (en) * 2019-04-09 2020-10-20 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
WO2021010185A1 (en) * 2019-07-12 2021-01-21 Tdk株式会社 Positive electrode and lithium ion secondary battery
WO2021227896A1 (en) * 2020-05-11 2021-11-18 珠海冠宇电池股份有限公司 Battery and electronic device
JP2021531618A (en) * 2018-07-20 2021-11-18 エルジー・ケム・リミテッド Electrode assembly and secondary battery containing it
JP2022540192A (en) * 2020-01-20 2022-09-14 寧徳新能源科技有限公司 Electrode assembly and battery
JP7280913B2 (en) 2021-04-26 2023-05-24 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery and battery module
JP7411161B2 (en) 2020-03-31 2024-01-11 株式会社Gsユアサ Energy storage element

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326609A (en) * 1997-03-26 1998-12-08 Toyota Central Res & Dev Lab Inc Battery
US6159253A (en) * 1998-01-07 2000-12-12 Medtronic, Inc. Thermally formed tab slots in a separator for a spirally-wound electrochemical cell
JP2002164044A (en) * 2000-11-24 2002-06-07 Nec Corp Electrode wound-type battery and method of manufacturing the same
JP2010135170A (en) * 2008-12-04 2010-06-17 Hitachi Vehicle Energy Ltd Lithium secondary battery, secondary battery module, and secondary battery pack
JP2011113960A (en) * 2009-11-27 2011-06-09 Samsung Sdi Co Ltd Secondary battery
US20110151295A1 (en) * 2009-12-17 2011-06-23 Kwang-Chun Kim Electrode assembly and secondary battery using the same
JP2012028158A (en) * 2010-07-23 2012-02-09 Hitachi Maxell Energy Ltd Anode for nonaqueous electrolytic secondary battery and nonaqueous electrolytic secondary battery
JP2012174411A (en) * 2011-02-18 2012-09-10 Toshiba Corp Battery
WO2014141875A1 (en) * 2013-03-11 2014-09-18 日立マクセル株式会社 Lithium secondary cell pack, as well as electronic device, charging system, and charging method using said pack
WO2014188501A1 (en) * 2013-05-21 2014-11-27 日立オートモティブシステムズ株式会社 Nonaqueous electrolyte secondary cell
JP2015146273A (en) * 2014-02-03 2015-08-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and battery pack

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326609A (en) * 1997-03-26 1998-12-08 Toyota Central Res & Dev Lab Inc Battery
US6159253A (en) * 1998-01-07 2000-12-12 Medtronic, Inc. Thermally formed tab slots in a separator for a spirally-wound electrochemical cell
JP2002164044A (en) * 2000-11-24 2002-06-07 Nec Corp Electrode wound-type battery and method of manufacturing the same
JP2010135170A (en) * 2008-12-04 2010-06-17 Hitachi Vehicle Energy Ltd Lithium secondary battery, secondary battery module, and secondary battery pack
JP2011113960A (en) * 2009-11-27 2011-06-09 Samsung Sdi Co Ltd Secondary battery
US20110151295A1 (en) * 2009-12-17 2011-06-23 Kwang-Chun Kim Electrode assembly and secondary battery using the same
JP2012028158A (en) * 2010-07-23 2012-02-09 Hitachi Maxell Energy Ltd Anode for nonaqueous electrolytic secondary battery and nonaqueous electrolytic secondary battery
JP2012174411A (en) * 2011-02-18 2012-09-10 Toshiba Corp Battery
WO2014141875A1 (en) * 2013-03-11 2014-09-18 日立マクセル株式会社 Lithium secondary cell pack, as well as electronic device, charging system, and charging method using said pack
WO2014188501A1 (en) * 2013-05-21 2014-11-27 日立オートモティブシステムズ株式会社 Nonaqueous electrolyte secondary cell
JP2015146273A (en) * 2014-02-03 2015-08-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and battery pack

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Sekkei Gijutsu Series Jisedai Jidoshayo Lithium Ion Denchi no Sekkeiho", KAGAKU JOHO SHUPPAN KABUSHIKI KAISHA, vol. C2054, no. 1st edition, 2013, pages 29, 35, 55, ISBN: 978-4-904774-01-4 *
HYBRID JIDOSHAYO LITHIUM ION DENCHI, 26 March 2015 (2015-03-26), pages 136, 137, 142, 143, ISBN: 978-4-526-07387-8 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509534A (en) * 2017-04-14 2020-03-26 エルジー・ケム・リミテッド Electrode assembly
US11349182B2 (en) 2017-04-14 2022-05-31 Lg Energy Solution, Ltd. Electrode assembly
JP7005642B2 (en) 2017-04-14 2022-01-21 エルジー・ケム・リミテッド Electrode assembly
CN107834014B (en) * 2017-09-18 2021-01-15 东莞市迈科新能源有限公司 High-power cylindrical lithium ion battery cell
CN107834014A (en) * 2017-09-18 2018-03-23 东莞市迈科新能源有限公司 A kind of high power cylindrical lithium ion cell core
US11502337B2 (en) 2017-11-30 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Cylindrical secondary battery
JPWO2019107049A1 (en) * 2017-11-30 2020-11-26 パナソニックIpマネジメント株式会社 Cylindrical secondary battery
CN111386622A (en) * 2017-11-30 2020-07-07 松下知识产权经营株式会社 Cylindrical secondary battery
JP2021531618A (en) * 2018-07-20 2021-11-18 エルジー・ケム・リミテッド Electrode assembly and secondary battery containing it
CN111799440A (en) * 2019-04-09 2020-10-20 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
WO2021010185A1 (en) * 2019-07-12 2021-01-21 Tdk株式会社 Positive electrode and lithium ion secondary battery
JP2022540192A (en) * 2020-01-20 2022-09-14 寧徳新能源科技有限公司 Electrode assembly and battery
EP4080599A4 (en) * 2020-01-20 2023-11-29 Ningde Amperex Technology Ltd. Electrode assembly and battery
JP7389218B2 (en) 2020-01-20 2023-11-29 寧徳新能源科技有限公司 Electrode assembly and battery
JP7411161B2 (en) 2020-03-31 2024-01-11 株式会社Gsユアサ Energy storage element
WO2021227896A1 (en) * 2020-05-11 2021-11-18 珠海冠宇电池股份有限公司 Battery and electronic device
JP7280913B2 (en) 2021-04-26 2023-05-24 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery and battery module

Also Published As

Publication number Publication date
JPWO2017047353A1 (en) 2018-06-28
JP6754768B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP6754768B2 (en) Non-aqueous electrolyte secondary battery
WO2010131401A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5264099B2 (en) Nonaqueous electrolyte secondary battery
WO2015046469A1 (en) Lithium ion secondary battery cathode and lithium ion secondary battery using same
JP2014127242A (en) Lithium secondary battery
JPWO2018179885A1 (en) Rechargeable battery
JP6734059B2 (en) Non-aqueous electrolyte secondary battery
US10468655B2 (en) Nonaqueous electrolyte secondary batteries
JP2009117159A (en) Positive electrode and lithium ion secondary battery
WO2015041167A1 (en) Non-aqueous secondary battery
JP2009004289A (en) Nonaqueous electrolyte secondary battery
WO2013038939A1 (en) Lithium secondary-battery pack, electronic device using same, charging system, and charging method
JP2017084769A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2017073328A (en) Nonaqueous electrolyte secondary battery
JP2011060481A (en) Nonaqueous electrolyte secondary battery
JP2006318868A (en) Lithium secondary battery
WO2014050114A1 (en) Non-aqueous electrolyte secondary battery
JP2015195195A (en) Nonaqueous electrolyte secondary battery
JP5793411B2 (en) Lithium secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP7003775B2 (en) Lithium ion secondary battery
JP2000090932A (en) Lithium secondary battery
JP2018018646A (en) Lithium ion secondary battery
JP2014022245A (en) Lithium ion secondary battery and manufacturing method thereof
US20190067729A1 (en) Lithium ion electrochemical devices having excess electrolyte capacity to improve lifetime

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539807

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846224

Country of ref document: EP

Kind code of ref document: A1