JP6754768B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6754768B2
JP6754768B2 JP2017539807A JP2017539807A JP6754768B2 JP 6754768 B2 JP6754768 B2 JP 6754768B2 JP 2017539807 A JP2017539807 A JP 2017539807A JP 2017539807 A JP2017539807 A JP 2017539807A JP 6754768 B2 JP6754768 B2 JP 6754768B2
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
electrolyte secondary
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017539807A
Other languages
Japanese (ja)
Other versions
JPWO2017047353A1 (en
Inventor
優子 松木
優子 松木
邦彦 小山
邦彦 小山
山田 將之
將之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Publication of JPWO2017047353A1 publication Critical patent/JPWO2017047353A1/en
Application granted granted Critical
Publication of JP6754768B2 publication Critical patent/JP6754768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

この発明は、非水電解質二次電池に関するものである。 The present invention relates to a non-aqueous electrolyte secondary battery.

非水電解質二次電池は、その高いエネルギー密度から携帯電話やノートパソコンなど民生機器だけではなく、電動自転車や電力貯蔵など産業用途にも広く展開されてきている。特に、ドローンや介護補助器具といったロボット用途は、近年、需要が大きく伸びつつある。これらロボットに関連した用途では、絶対的な電池容量は必要ないものの、高エネルギー密度と高入出力性能の両立が求められており、特に重量当たりのエネルギー密度と放電時の負荷特性の向上が必要な状況となっている。更に、大電流放電時の発熱抑制も重要な課題となっている。 Due to its high energy density, non-aqueous electrolyte secondary batteries have been widely deployed not only in consumer devices such as mobile phones and laptop computers, but also in industrial applications such as electric bicycles and electric power storage. In particular, demand for robot applications such as drones and nursing care aids has been increasing significantly in recent years. In applications related to these robots, although absolute battery capacity is not required, both high energy density and high input / output performance are required, and in particular, it is necessary to improve the energy density per weight and the load characteristics during discharge. The situation is. Furthermore, suppressing heat generation during large current discharge is also an important issue.

特許文献1には、正負極の集電タブの配置構成を適正化することによって、高エネルギー密度、高い放電レート特性を併せて得られることが開示されている。また、特許文献2には、高容量化・高出力化された系において、異常時に内部短絡が生じても高い安全性を確保することが可能な非水電解質二次電池が開示されている。 Patent Document 1 discloses that high energy density and high discharge rate characteristics can be obtained together by optimizing the arrangement configuration of the current collecting tabs of the positive and negative electrodes. Further, Patent Document 2 discloses a non-aqueous electrolyte secondary battery capable of ensuring high safety even if an internal short circuit occurs in an abnormal situation in a system having a high capacity and a high output.

特開2009−245839号公報Japanese Unexamined Patent Publication No. 2009-245839 特開2014−225326号公報Japanese Unexamined Patent Publication No. 2014-225326

しかしながら、特許文献1および2に開示の電池は円筒形の鉄製外装缶を利用したものであるため、高負荷での充放電時における外装缶からの放熱は十分ではなかった。 However, since the batteries disclosed in Patent Documents 1 and 2 utilize a cylindrical iron outer can, heat dissipation from the outer can during charging and discharging under a high load is not sufficient.

本発明は、かかる問題を解決するためになされたものであり、その目的は、高負荷特性に優れ、充放電サイクル特性も良好な非水電解質二次電池を提供することにある。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent high load characteristics and good charge / discharge cycle characteristics.

本発明の非水電解質二次電池は、一対の幅広面を持つ扁平形状の電極体が外装体内に収納されており、前記扁平形状の電極体は、長尺の正極と長尺の負極とがセパレータを介して積層されて渦巻き状に巻回されており、前記正極および前記負極は、それぞれ正極集電タブ、負極集電タブを有しており、前記正極および前記負極の少なくとも一方は、2以上の集電タブを有しており、前記正極集電タブおよび前記負極集電タブは、前記電極体を幅広面側から側面視した時に重ならないように配置されていることを特徴とするものである。 In the non-aqueous electrolyte secondary battery of the present invention, a flat electrode body having a pair of wide surfaces is housed inside the exterior body, and the flat electrode body has a long positive electrode and a long negative electrode. It is laminated via a separator and wound in a spiral shape, and the positive electrode and the negative electrode have a positive electrode current collecting tab and a negative electrode current collecting tab, respectively, and at least one of the positive electrode and the negative electrode is 2 It has the above-mentioned current collection tabs, and is characterized in that the positive electrode current collection tab and the negative electrode current collection tab are arranged so as not to overlap when the electrode body is viewed from the wide surface side. Is.

本発明によれば、高負荷特性に優れ、充放電サイクル特性も良好な非水電解質二次電池を提供できる。 According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having excellent high load characteristics and good charge / discharge cycle characteristics.

本発明の非水電解質二次電池に係る正極の実施態様の一例を模式的に表す平面図である。It is a top view schematically showing an example of the embodiment of the positive electrode which concerns on the non-aqueous electrolyte secondary battery of this invention. 図1のI−I線断面図である。FIG. 1 is a cross-sectional view taken along the line II of FIG. 本発明の非水電解質二次電池に係る負極の実施態様の一例を模式的に表す平面図である。It is a top view schematically showing an example of embodiment of the negative electrode which concerns on the non-aqueous electrolyte secondary battery of this invention. 図3のII−II線断面図である。FIG. 3 is a sectional view taken along line II-II of FIG. 本発明の非水電解質二次電池に係る扁平形状の電極体の実施態様の一例を模式的に表す側面図である。It is a side view schematically showing an example of embodiment of the flat electrode body which concerns on the non-aqueous electrolyte secondary battery of this invention. 本発明の非水電解質二次電池の実施態様の一例を模式的に表す斜視図である。It is a perspective view which shows an example of embodiment of the non-aqueous electrolyte secondary battery of this invention schematically. 本発明の比較例である非水電解質二次電池に係る扁平形状の電極体を模式的に表す側面図である。It is a side view which shows typically the flat electrode body which concerns on the non-aqueous electrolyte secondary battery which is a comparative example of this invention.

本発明の非水電解質二次電池では、長尺の正極および長尺の負極の少なくとも一方に、集電タブを2以上配置する。これにより、正極および/または負極での集電性を高めて電池の高負荷特性を向上させることができる。 In the non-aqueous electrolyte secondary battery of the present invention, two or more current collecting tabs are arranged on at least one of a long positive electrode and a long negative electrode. As a result, the current collecting property at the positive electrode and / or the negative electrode can be improved to improve the high load characteristics of the battery.

なお、長尺の正極および長尺の負極を渦巻き状に巻回する電極体では、充放電時に電流が集電タブへ集中することで発熱する。高負荷での充放電を行う場合は更に集電タブでの発熱が顕著になる。本発明では正極および負極の少なくとも一方において、集電タブを2以上設けることで、1つの集電タブへの電流集中を回避して、顕著な発熱を防止することも可能としている。更に、電極体を扁平形状にして外装体に収納された電池にすることで、円筒形の電池よりも同一体積あたりの表面積を増やすことができるため、放熱性を高めることが可能である。 In the electrode body in which the long positive electrode and the long negative electrode are wound in a spiral shape, heat is generated by concentrating the current on the current collecting tab during charging and discharging. When charging / discharging with a high load, heat generation at the current collector tab becomes more remarkable. In the present invention, by providing two or more current collecting tabs on at least one of the positive electrode and the negative electrode, it is possible to avoid current concentration on one current collecting tab and prevent remarkable heat generation. Further, by forming the electrode body into a flat shape and using the battery housed in the outer body, the surface area per the same volume can be increased as compared with the cylindrical battery, so that the heat dissipation can be improved.

また、扁平形状の電極体の幅広面側から側面視した時に、正極、負極それぞれの集電タブが重ならないように配置することによって、充放電の繰り返しによる電池厚みの増加や電極体の歪みを低減することができ、これにより充放電反応ムラの発生を抑制し、充放電サイクル特性低下を抑えることが可能となる。 In addition, by arranging the current collecting tabs of the positive electrode and the negative electrode so that they do not overlap when viewed from the wide surface side of the flat electrode body, the battery thickness increases and the electrode body is distorted due to repeated charging and discharging. This can be reduced, which makes it possible to suppress the occurrence of uneven charge / discharge reaction and suppress the deterioration of charge / discharge cycle characteristics.

本発明では、長尺の正極および長尺の負極の少なくとも一方に、集電タブを2以上配置する。後述するように、扁平形状の電極体を幅広面側から側面視した時に、集電タブが重ならない位置になれば集電タブは何本でも構わないが、作業性の観点から一つの電極に対して5本以下が好ましく、一つの電極に対して2本が最も好ましい。 In the present invention, two or more current collecting tabs are arranged on at least one of the long positive electrode and the long negative electrode. As will be described later, when the flat electrode body is viewed from the wide surface side, any number of current collecting tabs may be used as long as the current collecting tabs do not overlap, but from the viewpoint of workability, one electrode can be used. On the other hand, 5 or less is preferable, and 2 is most preferable for one electrode.

また、扁平形状の電極体であれば外装体は缶でもフィルムでも適用可能である。外装体に扁平形状の有底筒状の缶を用いた場合、つまり、いわゆる角形電池とする場合は、外装缶が正電極を帯びているのが一般的であるため、正極集電タブを2以上配置すると作業性が向上し好ましい。更に、外装缶にアルミニウム(アルミニウム合金を含む)を採用できるため、重量エネルギー密度および放熱性の観点からも好ましい。 Further, if the electrode body has a flat shape, the outer body can be a can or a film. When a flat-shaped bottomed tubular can is used for the exterior body, that is, when a so-called square battery is used, the exterior can generally has a positive electrode, so the positive electrode current collector tab is set to 2. It is preferable to arrange the above arrangements because the workability is improved. Further, since aluminum (including an aluminum alloy) can be used for the outer can, it is preferable from the viewpoint of weight energy density and heat dissipation.

以下、図面を参照しながら説明する。図1〜5は、本発明の実施態様の一例として、正極集電タブが2本、負極集電タブが1本の態様に係る構成要素を模式的に表す図面である。図1は巻回前の長尺の状態の正極の平面図であり、図2は図1のI−I線断面図である。正極1は、帯状長尺体の正極集電体11に、正極合剤層12を両面および一部片面に設けており、正極集電体11の両端はそれぞれ正極集電体露出部11a、11bを有する。正極集電タブ13a、13bは、それぞれ、正極集電体露出部11a、11b上に配置され、例えば抵抗溶接により溶接される。 Hereinafter, description will be made with reference to the drawings. 1 to 5 are drawings schematically showing components according to an embodiment of the present invention, in which two positive electrode current collecting tabs and one negative electrode current collecting tab are used. FIG. 1 is a plan view of a positive electrode in a long state before winding, and FIG. 2 is a sectional view taken along line II of FIG. The positive electrode 1 is provided with a positive electrode mixture layer 12 on both sides and a part of the positive electrode current collector 11 of a strip-shaped long body, and both ends of the positive electrode current collector 11 are exposed portions 11a and 11b of the positive electrode current collector, respectively. Has. The positive electrode current collector tabs 13a and 13b are arranged on the positive electrode current collector exposed portions 11a and 11b, respectively, and are welded by, for example, resistance welding.

図3は巻回前の帯状長尺体の負極の平面図であり、図4は図3のII−II線断面図である。負極2は帯状長尺体の負極集電体21に、負極合剤層22を両面および一部片面に設けており、負極集電体21は一方の端は負極集電体露出部21aを有する。負極集電タブ23は、負極集電体露出部21a上に配置され、例えば抵抗溶接により溶接される。 FIG. 3 is a plan view of the negative electrode of the strip-shaped elongated body before winding, and FIG. 4 is a sectional view taken along line II-II of FIG. The negative electrode 2 is provided with a negative electrode mixture layer 22 on both sides and a part of the negative electrode current collector 21 of a strip-shaped long body, and the negative electrode current collector 21 has a negative electrode current collector exposed portion 21a at one end. .. The negative electrode current collector tab 23 is arranged on the negative electrode current collector exposed portion 21a and is welded by, for example, resistance welding.

図5は、図1および図2に示す正極と図3および図4に示す負極とをセパレータを介して積層し、渦巻き状に巻回して扁平形状とした電極体の側面図である。電極体3は、巻回された後に絶縁性の巻止めテープ31で巻止めされている。図5に示すように電極体3を扁平形状とすることで、同一の体積の円筒形の電極体と比較して表面積を大きくすることができるため、放熱性を高めることが可能となる。 FIG. 5 is a side view of an electrode body in which the positive electrode shown in FIGS. 1 and 2 and the negative electrode shown in FIGS. 3 and 4 are laminated via a separator and wound in a spiral shape to form a flat shape. The electrode body 3 is wound with an insulating winding tape 31 after being wound. By forming the electrode body 3 into a flat shape as shown in FIG. 5, the surface area can be increased as compared with the cylindrical electrode body having the same volume, so that the heat dissipation can be improved.

扁平形状の電極体3は一対の幅広面30を有し、電極体3の巻回軸方向の一方の端から2本の正極集電タブ2本13a、13bと、1本の負極集電タブ23とが突出している。これらの集電タブを介して電極体へ電流を流し、充放電を行う。図5に示す通り、電極体3の幅広面30側からの側面視で、正極集電タブ13a、正極集電タブ13bおよび負極集電タブ23は、互いに重なっていない。これによって、熱が集中しやすい集電タブ部の放熱性を高めている。また、各集電タブをこのように配置することで、扁平形状の電極体全体の厚み(一方の幅広面から他方の幅広面までの距離)のバラつきが抑えられることから、充放電の繰り返しによる電極体の厚みムラの発生を抑制し、厚みムラによる充放電反応ムラの発生も抑制することができるため、サイクル特性の劣化を抑えることが可能となる。 The flat electrode body 3 has a pair of wide surfaces 30, two positive electrode current collecting tabs 13a and 13b and one negative electrode current collecting tab from one end in the winding axis direction of the electrode body 3. 23 is protruding. A current is passed through these current collecting tabs to the electrode body to charge and discharge. As shown in FIG. 5, the positive electrode current collecting tab 13a, the positive electrode current collecting tab 13b, and the negative electrode current collecting tab 23 do not overlap each other when viewed from the wide surface 30 side of the electrode body 3. This enhances the heat dissipation of the current collecting tab portion where heat tends to concentrate. In addition, by arranging each current collecting tab in this way, variation in the thickness of the entire flat electrode body (distance from one wide surface to the other wide surface) can be suppressed, so that charging and discharging are repeated. Since the occurrence of uneven thickness of the electrode body can be suppressed and the occurrence of uneven charge / discharge reaction due to uneven thickness can be suppressed, deterioration of cycle characteristics can be suppressed.

前記電極体においては、幅広面の巻回軸方向と垂直な方向の長さ(集電タブと垂直な方向の長さ。以下、この長さを「幅」という。)が20〜90mmであることが好ましく、30〜80mmであることが特に好ましい。30mmよりも幅が狭くなると、複数の集電タブを取り出すことが困難となるためである。また、80mmよりも幅が広くなると、後述する容量とのバランス(1.5〜4.0Ah)を考慮した際に、電極体の幅と高さの比率が現実的な値から大きく外れ、生産性などに悪影響を及ぼすためである。一般的に、電池抵抗を小さくするには、電極体の幅は高さよりも小さくした方がよいことから、この観点でも電極体の幅は80mm以下であることが特に好ましい。 In the electrode body, the length in the direction perpendicular to the winding axis direction of the wide surface (the length in the direction perpendicular to the current collecting tab; hereinafter, this length is referred to as "width") is 20 to 90 mm. It is preferably 30 to 80 mm, and particularly preferably 30 to 80 mm. This is because if the width is narrower than 30 mm, it becomes difficult to take out a plurality of current collecting tabs. Further, when the width becomes wider than 80 mm, the ratio of the width and the height of the electrode body greatly deviates from the realistic value when considering the balance with the capacitance (1.5 to 4.0 Ah) described later, and the production This is because it has an adverse effect on sex. Generally, in order to reduce the battery resistance, the width of the electrode body should be smaller than the height. Therefore, from this viewpoint as well, the width of the electrode body is particularly preferably 80 mm or less.

前記集電タブ1本あたりの断面積は、0.1〜1.5mmであることが好ましく、0.15〜1.0mmであることが特に好ましい。0.15mmよりも断面積が小さくなると、集電タブに由来する抵抗が大きくなり、集電タブを増やしても高負荷特性を得るのが難しいためである。また、1.0mmよりも断面積が大きくなると、集電タブの幅や厚みが大きくなりすぎて、溶接性などの生産性に問題が発生するためである。Sectional area per the current collector tabs one is preferably 0.1 to 1.5 mm 2, particularly preferably 0.15~1.0mm 2. This is because if the cross section is smaller than 0.15 mm 2, the resistance derived from the current collecting tab becomes large, and it is difficult to obtain high load characteristics even if the number of current collecting tabs is increased. Further, if the cross-sectional area is larger than 1.0 mm 2 , the width and thickness of the current collecting tab become too large, which causes problems in productivity such as weldability.

また、前記電極体においては、平面視で前記集電タブがセパレータを介して極性の異なる電極と重なる箇所の面積の50〜100%はテープまたは樹脂膜で保護されていることが好ましい。集電タブを取り付けた部分は電極としての厚みが厚くなるため、外部から応力が加わった際に内部短絡の原因となる可能性がある。集電タブを増やすとそのリスクが高まるため、それを低減するために保護のためのテープなどを重なっている部分の50〜100%となるように貼り付けることが好ましい。 Further, in the electrode body, it is preferable that 50 to 100% of the area where the current collecting tab overlaps the electrodes having different polarities via the separator in a plan view is protected by a tape or a resin film. Since the portion to which the current collector tab is attached becomes thicker as an electrode, it may cause an internal short circuit when stress is applied from the outside. Since the risk increases when the number of current collecting tabs is increased, it is preferable to attach a protective tape or the like so as to be 50 to 100% of the overlapping portion in order to reduce the risk.

〔正極〕
本発明の非水電解質二次電池に係る正極には、例えば、正極活物質、導電助剤、バインダなどを含有する正極合剤層を、集電体の片面または両面に有する構造のものが使用できる。
[Positive electrode]
The positive electrode according to the non-aqueous electrolyte secondary battery of the present invention has a structure in which, for example, a positive electrode mixture layer containing a positive electrode active material, a conductive auxiliary agent, a binder, etc. is provided on one or both sides of a current collector. it can.

<正極活物質>
上記正極に用いる正極活物質は、特に限定されず、リチウム含有遷移金属酸化物などの一般に用いることのできる活物質を使用すればよい。リチウム含有遷移金属酸化物の具体例としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1−y、LiCo1−y、LiNi1−y、LiMnNiCo1−y−z、LiMn、LiMn2−yなどが挙げられる。ただし、上記の各構造式中において、Mは、Mg、Mn、Fe、Co、Ni、Cu、Zn、Al、Ti、Zr、GeおよびCrよりなる群から選ばれる少なくとも1種の金属元素であり、0≦x≦1.1、0<y<1.0、2.0<z<1.0である。エネルギー密度の観点から、リチウムとコバルトを含有する層状化合物(一般式LiCo1−y ;Mは上述のMからCoを抜いた群から選ばれる少なくとも1種の金属元素、yは上述と同じ)が特に好ましい。
<Positive electrode active material>
The positive electrode active material used for the positive electrode is not particularly limited, and a generally usable active material such as a lithium-containing transition metal oxide may be used. Specific examples of the lithium-containing transition metal oxide include, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O 2. and Li x Ni 1-y M y O 2, Li x Mn y Ni z Co 1-y-z O 2, Li x Mn 2 O 4, Li x Mn 2-y M y O 4 and the like. However, in each of the above structural formulas, M is at least one metal element selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn, Al, Ti, Zr, Ge and Cr. , 0 ≦ x ≦ 1.1, 0 <y <1.0, 2.0 <z <1.0. From the viewpoint of energy density, a layered compound containing lithium and cobalt (general formula LiCo 1-y M 2 y O 2 ; M 2 is at least one metal element selected from the above-mentioned group in which Co is removed from M, y. Is the same as above) is particularly preferable.

<バインダ>
上記正極に用いるバインダとしては、電池内で化学的に安定なものであれば、熱可塑性樹脂、熱硬化性樹脂のいずれも使用できる。例えば、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロプロピレン(PHFP)、スチレン・ブタジエンゴム(SBR)、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、又は、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−アクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体及びそれら共重合体のNaイオン架橋体などの1種または2種以上を使用できる。
<Binder>
As the binder used for the positive electrode, either a thermoplastic resin or a thermosetting resin can be used as long as it is chemically stable in the battery. For example, polyvinylidene fluoride (PVDF), polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyhexafluoropropylene (PHFP), styrene / butadiene rubber (SBR), tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoro Ethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), propylene- Tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTFE), or ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl acrylate copolymer, ethylene-methacryl One or more kinds such as a methyl acid copolymer and a Na ion cross-linked product of these copolymers can be used.

<導電助剤>
上記正極に用いる導電助剤としては、電池内で化学的に安定なものであればよい。例えば、天然黒鉛、人造黒鉛などのグラファイト;アセチレンブラック、ケッチェンブラック(商品名)、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック;炭素繊維、金属繊維などの導電性繊維;アルミニウム粉などの金属粉末;フッ化炭素;酸化亜鉛;チタン酸カリウムなどからなる導電性ウィスカー;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。これらの中でも、導電性の高いグラファイトと、吸液性に優れたカーボンブラックが好ましい。また、導電助剤の形態としては、一次粒子に限定されず、二次凝集体や、チェーンストラクチャーなどの集合体の形態のものも用いることができる。このような集合体の方が、取り扱いが容易であり、生産性が良好となる。
<Conductive aid>
The conductive auxiliary agent used for the positive electrode may be one that is chemically stable in the battery. For example, graphite such as natural graphite and artificial graphite; carbon black such as acetylene black and ketjen black (trade name), channel black, furnace black, lamp black and thermal black; conductive fibers such as carbon fiber and metal fiber; aluminum. Metal powders such as powder; carbon fluoride; zinc oxide; conductive whisker composed of potassium titanate and the like; conductive metal oxides such as titanium oxide; organic conductive materials such as polyphenylene derivatives, etc. It may be used alone or in combination of two or more. Among these, graphite having high conductivity and carbon black having excellent liquid absorption are preferable. Further, the form of the conductive auxiliary agent is not limited to the primary particles, and those in the form of aggregates such as secondary aggregates and chain structures can also be used. Such an aggregate is easier to handle and has better productivity.

<集電体>
上記正極に用いる集電体としては、従来から知られている非水電解質二次電池の正極に使用されているものと同様のものが使用でき、例えば、厚さが10〜30μmのアルミニウム箔が好ましい。
<Current collector>
As the current collector used for the positive electrode, the same current collector as that used for the positive electrode of a conventionally known non-aqueous electrolyte secondary battery can be used. For example, an aluminum foil having a thickness of 10 to 30 μm can be used. preferable.

<正極の製造方法>
上記正極は、例えば、前述した正極活物質、導電助剤およびバインダを、N−メチル−2−ピロリドン(NMP)などの溶剤に分散させたペースト状やスラリー状の正極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい。)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダ処理を施す工程を経て製造することができる。正極の製造方法は、上記の方法に制限されるわけではなく、他の製造方法で製造することもできる。
<Manufacturing method of positive electrode>
For the positive electrode, for example, a paste-like or slurry-like positive electrode mixture-containing composition in which the above-mentioned positive electrode active material, conductive auxiliary agent, and binder are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) is prepared. (However, the binder may be dissolved in a solvent.), This can be applied to one or both sides of the current collector, dried, and then subjected to a calendering treatment if necessary. .. The method for manufacturing the positive electrode is not limited to the above method, and other manufacturing methods can also be used.

<正極合剤層>
上記正極合剤層においては、正極活物質の総量を92〜95質量%とし、導電助剤の量を3〜6質量%とし、バインダの量を3〜6質量%とすることが好ましい。また、高負荷での放電特性を向上させるために、正極合剤層の厚みは片面あたり20〜70μmであることが好ましい。正極合剤層を薄くすると、充放電時にリチウムイオンが移動する最大距離を短くすることができるため、内部抵抗を低く抑えられるからである。
<Positive electrode mixture layer>
In the positive electrode mixture layer, the total amount of the positive electrode active material is preferably 92 to 95% by mass, the amount of the conductive auxiliary agent is 3 to 6% by mass, and the amount of the binder is preferably 3 to 6% by mass. Further, in order to improve the discharge characteristics under a high load, the thickness of the positive electrode mixture layer is preferably 20 to 70 μm per side. This is because if the positive electrode mixture layer is made thin, the maximum distance that lithium ions move during charging / discharging can be shortened, so that the internal resistance can be suppressed low.

また、正極集電体上の正極合剤層の総面積(正極集電体の一方の面での正極合剤層の占める面積と、他方の面での正極合剤層の占める面積の合計面積)は300〜2000cmであることが好ましく、500〜1600cmであることが特に好ましい。電極面積が300cmより小さくなると上述した電極厚みとのバランスから容量が低くなり、流れる電流値も小さくなるため、集電タブを増やす効果が小さくなりすぎるためである。正極合剤層の総面積が2000cmより大きくなると上述した正極合剤層厚みと容量とのバランスからエネルギー密度が低くなりすぎ、エネルギー密度との両立が困難となるためである。Further, the total area of the positive electrode mixture layer on the positive electrode current collector (the total area of the area occupied by the positive electrode mixture layer on one surface of the positive electrode current collector and the area occupied by the positive electrode mixture layer on the other surface). ) is preferably a 300~2000cm 2, and particularly preferably 500~1600cm 2. This is because when the electrode area is smaller than 300 cm 2, the capacitance becomes lower due to the balance with the electrode thickness described above, and the current value flowing also becomes smaller, so that the effect of increasing the current collecting tab becomes too small. This is because when the total area of the positive electrode mixture layer is larger than 2000 cm 2 , the energy density becomes too low due to the balance between the thickness and the capacity of the positive electrode mixture layer described above, and it becomes difficult to achieve both the energy density and the energy density.

電池容量を上述した正極合材層の総面積で除した値(本明細書では「電流密度」と呼ぶ)は、2.0〜3.5が好ましい。電流密度が2より小さいとエネルギー密度が低くなりすぎ、3.5より大きいと、高負荷充放電時の分極抵抗が大きくなり、活物質の劣化が進行しやすくなる。 The value obtained by dividing the battery capacity by the total area of the positive electrode mixture layer described above (referred to as “current density” in the present specification) is preferably 2.0 to 3.5. If the current density is less than 2, the energy density becomes too low, and if it is larger than 3.5, the polarization resistance at the time of high load charging / discharging becomes large, and the deterioration of the active material tends to proceed.

〔負極〕
本発明の非水電解質二次電池に係る負極には、例えば、負極活物質、バインダおよび必要に応じて導電助剤などを含む負極合剤層を、集電体の片面または両面に有する構造のものが使用できる。
[Negative electrode]
The negative electrode according to the non-aqueous electrolyte secondary battery of the present invention has a structure having, for example, a negative electrode mixture layer containing a negative electrode active material, a binder and, if necessary, a conductive auxiliary agent, on one side or both sides of the current collector. Things can be used.

<負極活物質>
上記負極活物質は、従来から知られている非水電解質二次電池に用いられている負極活物質、すなわち、リチウムイオンを吸蔵・放出可能な材料であれば特に制限はない。例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムイオンを吸蔵・放出可能な炭素系材料の1種または2種以上の混合物が負極活物質として用いられる。また、シリコン(Si)、スズ(Sn)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)、インジウム(In)などの元素およびその合金、リチウム含有窒化物またはリチウム含有酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。中でも、負極活物質としては、シリコンと酸素とを構成元素に含むSiO(0.5≦x≦1.5)で表される材料と黒鉛との混合体が好ましい。
<Negative electrode active material>
The negative electrode active material is not particularly limited as long as it is a negative electrode active material used in a conventionally known non-aqueous electrolyte secondary battery, that is, a material capable of storing and releasing lithium ions. For example, carbon-based materials capable of storing and releasing lithium ions, such as graphite, thermally decomposed carbons, cokes, glassy carbons, calcined bodies of organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers. One or a mixture of two or more is used as the negative electrode active material. In addition, elements such as silicon (Si), tin (Sn), germanium (Ge), bismuth (Bi), antimony (Sb), indium (In) and their alloys, lithium such as lithium-containing nitrides or lithium-containing oxides. A compound that can be charged and discharged at a low voltage close to that of a metal, or a lithium metal or a lithium / aluminum alloy can also be used as the negative electrode active material. Among them, as the negative electrode active material, a mixture of graphite and a material represented by SiO x (0.5 ≦ x ≦ 1.5) containing silicon and oxygen as constituent elements is preferable.

SiOは、Siの微結晶又は非晶質相を含んでいてもよく、この場合、SiとOの原子比は、Siの微結晶又は非晶質相のSiを含めた比率となる。すなわち、SiOには、非晶質のSiOマトリックス中に、Si(例えば、微結晶Si)が分散した構造のものが含まれ、この非晶質のSiOと、その中に分散しているSiを合わせて、上記原子比xが0.5≦x≦1.5を満足していればよい。例えば、非晶質のSiOマトリックス中に、Siが分散した構造で、SiOとSiのモル比が1:1の材料の場合、x=1であるので、構造式としてはSiOで表記される。このような構造の材料の場合、例えば、X線回折分析では、Si(微結晶Si)の存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると、微細なSiの存在が確認できる。SiO x may contain a microcrystalline or amorphous phase of Si, in which case the atomic ratio of Si to O is a ratio including the microcrystalline or amorphous phase of Si. That is, SiO x includes a structure in which Si (for example, microcrystalline Si) is dispersed in an amorphous SiO 2 matrix, and the amorphous SiO 2 is dispersed therein. It suffices that the atomic ratio x satisfies 0.5 ≦ x ≦ 1.5 together with the Si. For example, in the case of a material in which Si is dispersed in an amorphous SiO 2 matrix and the molar ratio of SiO 2 and Si is 1: 1, x = 1, so the structural formula is expressed as SiO. Amorphous metal. In the case of a material having such a structure, for example, in X-ray diffraction analysis, a peak due to the presence of Si (microcrystalline Si) may not be observed, but when observed with a transmission electron microscope, the presence of fine Si is observed. Can be confirmed.

上記SiOは、炭素材料と複合化した複合体であることが好ましく、例えば、SiOの表面が炭素材料で被覆されていることが望ましい。通常、SiOは導電性が乏しいため、これを負極活物質として用いる際には、良好な電池特性確保の観点から、導電性材料(導電助剤)を使用し、負極内におけるSiOと導電性材料との混合・分散を良好にして、優れた導電ネットワークを形成する必要がある。SiOを炭素材料と複合化した複合体であれば、例えば、単にSiOと炭素材料などの導電性材料とを混合して得られた材料を用いた場合よりも、負極における導電ネットワークが良好に形成される。The SiO x is preferably a composite composite with a carbon material, and for example, it is desirable that the surface of the SiO x is coated with a carbon material. Normally, SiO x has poor conductivity, so when using this as a negative electrode active material, a conductive material (conductive aid) is used from the viewpoint of ensuring good battery characteristics, and SiO x and conductivity in the negative electrode are used. It is necessary to form an excellent conductive network by improving mixing and dispersion with the material. If complexes complexed with carbon material SiO x, for example, simply than with a material obtained by mixing a conductive material such as SiO x and the carbon material, good conductive network in the negative electrode Is formed in.

<バインダ>
上記バインダとしては、例えば、でんぷん、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロースなどの多糖類やそれらの変成体;ポリビニルクロリド、ポリビニルピロリドン(PVP)、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリアミドイミド、ポリアミドなどの熱可塑性樹脂やそれらの変成体;ポリイミド;エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシドなどのゴム状弾性を有するポリマーやそれらの変成体;などが挙げられ、これらの1種または2種以上を用いることができる。
<Binder>
Examples of the binder include polysaccharides such as starch, polyvinyl alcohol, polyacrylic acid, carboxymethyl cellulose (CMC), hydroxypropyl cellulose, regenerated cellulose, and diacetyl cellulose and their variants; polyvinyl chloride, polyvinylpyrrolidone (PVP), and the like. Thermoplastic resins such as polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyamideimide, polyamide and their variants; polyimide; ethylene-propylene-dienter polymer (EPDM), sulfonated EPDM, styrene-butadiene rubber ( Examples thereof include polymers having rubber-like elasticity such as SBR), butadiene rubber, polybutadiene, fluororubber, and polyethylene oxide; and variants thereof; and one or more of these can be used.

<導電助剤>
上記負極合剤層には、更に導電助剤として導電性材料を添加してもよい。このような導電性材料としては、電池内において化学変化を起こさないものであれば特に限定されず、例えば、カーボンブラック(サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック、アセチレンブラックなど)、炭素繊維、金属粉(銅、ニッケル、アルミニウム、銀などの粉末)、金属繊維、ポリフェニレン誘導体(特開昭59−20971号公報に記載のもの)などの材料を、1種または2種以上用いることができる。これらの中でも、カーボンブラックを用いることが好ましく、ケッチェンブラックやアセチレンブラックがより好ましい。
<Conductive aid>
A conductive material may be further added to the negative electrode mixture layer as a conductive auxiliary agent. Such a conductive material is not particularly limited as long as it does not cause a chemical change in the battery, and is, for example, carbon black (thermal black, furnace black, channel black, ketjen black, acetylene black, etc.), carbon. One or more materials such as fibers, metal powders (powder of copper, nickel, aluminum, silver, etc.), metal fibers, polyphenylene derivatives (described in JP-A-59-20971) may be used. it can. Among these, carbon black is preferably used, and Ketjen black and acetylene black are more preferable.

<集電体>
上記集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するために下限は5μmであることが望ましい。
<Current collector>
As the current collector, a foil made of copper or nickel, a punching metal, a net, an expanded metal or the like can be used, but a copper foil is usually used. When the thickness of the entire negative electrode of this negative electrode current collector is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is 5 μm in order to secure mechanical strength. Is desirable.

<負極の製造方法>
上記負極は、例えば、前述した負極活物質およびバインダ、更には必要に応じて導電助剤を、NMPや水などの溶剤に分散させたペースト状やスラリー状の負極合剤含有組成物を調製し、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダ処理を施す工程を経て製造することができる。負極の製造方法は、上記の製法に制限されるわけではなく、他の製造方法で製造することもできる。
<Manufacturing method of negative electrode>
For the negative electrode, for example, a paste-like or slurry-like negative electrode mixture-containing composition in which the above-mentioned negative electrode active material and binder and, if necessary, a conductive auxiliary agent are dispersed in a solvent such as NMP or water is prepared. , This can be applied to one or both sides of the current collector, dried, and then subjected to a calendering treatment if necessary. The method for manufacturing the negative electrode is not limited to the above-mentioned manufacturing method, and other manufacturing methods can be used for manufacturing the negative electrode.

<負極合剤層>
上記負極合剤層においては、負極活物質の総量を80〜99質量%とし、バインダの量を1〜20質量%とすることが好ましい。また、別途導電助剤として導電性材料を使用する場合には、負極合剤層におけるこれらの導電性材料は、負極活物質の総量およびバインダ量が、上記の好適値を満足する範囲で使用することが好ましい。
<Negative electrode mixture layer>
In the negative electrode mixture layer, the total amount of the negative electrode active material is preferably 80 to 99% by mass, and the amount of the binder is preferably 1 to 20% by mass. When a conductive material is separately used as the conductive auxiliary agent, these conductive materials in the negative electrode mixture layer are used within a range in which the total amount of the negative electrode active material and the amount of the binder satisfy the above-mentioned suitable values. Is preferable.

高負荷での放電特性を向上させるために、負極合剤層の厚みは片面あたり20〜70μmであることが好ましい。負極合剤層を薄くすると、充放電時にリチウムイオンが移動する最大距離を短くすることができるため、内部抵抗が低く抑えられるからである。SiOで表される材料は負極活物質として最も一般的な黒鉛と比較して、高容量化が可能となる。そのため、SiOで表される材料を負極活物質に含有させると、負極活物質の合計量を少なくすることができるため、負極合剤層の薄膜化が容易になる。In order to improve the discharge characteristics under a high load, the thickness of the negative electrode mixture layer is preferably 20 to 70 μm per side. This is because if the negative electrode mixture layer is made thin, the maximum distance that lithium ions move during charging / discharging can be shortened, so that the internal resistance can be suppressed low. The material represented by SiO x can have a higher capacity than graphite, which is the most common negative electrode active material. Therefore, when the material represented by SiO x is contained in the negative electrode active material, the total amount of the negative electrode active material can be reduced, so that the negative electrode mixture layer can be easily thinned.

〔非水電解質〕
本発明の非水電解質二次電池に係る非水電解質には、リチウム塩を有機溶媒に溶解した非水電解液を使用できる。
[Non-aqueous electrolyte]
As the non-aqueous electrolyte according to the non-aqueous electrolyte secondary battery of the present invention, a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent can be used.

上記非水電解液に用いるリチウム塩としては、溶媒中で解離してリチウムイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限はない。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩;LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(2≦n≦7)、LiN(RfOSO〔ここで、Rfはフルオロアルキル基〕などの有機リチウム塩;などを用いることができる。The lithium salt used in the non-aqueous electrolytic solution is not particularly limited as long as it dissociates in a solvent to form lithium ions and does not easily cause side reactions such as decomposition in the voltage range used as a battery. For example, inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2). ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ≦ n ≦ 7), LiN (RfOSO 2 ) 2 [Here, Rf is a fluoroalkyl group] and other organic lithium salts; Can be used.

このリチウム塩の非水電解液中の濃度としては、0.5〜1.5mol/Lとすることが好ましく、0.9〜1.25mol/Lとすることがより好ましい。 The concentration of this lithium salt in the non-aqueous electrolytic solution is preferably 0.5 to 1.5 mol / L, more preferably 0.9 to 1.25 mol / L.

上記非水電解液に用いる有機溶媒としては、上記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ−ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類など;が挙げられ、これらは2種以上混合して用いることもできる。より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒などのような、高い導電率を得ることができる組み合わせで用いることが望ましい。 The organic solvent used in the non-aqueous electrolytic solution is not particularly limited as long as it dissolves the above lithium salt and does not cause a side reaction such as decomposition in the voltage range used as a battery. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate; chain esters such as methyl propionate; cyclic esters such as γ-butyrolactone; dimethoxyethane, Chain ethers such as diethyl ether, 1,3-dioxolane, diglime, triglime, tetraglime; cyclic ethers such as dioxane, tetrahydrofuran, 2-methyltetrax; nitriles such as acetonitrile, propionitrile, methoxypropionitrile; ethylene Sulfurous acid esters such as glycolsulfite; and the like; these can also be used by mixing two or more kinds. In order to obtain a battery having better characteristics, it is desirable to use it in a combination capable of obtaining high conductivity, such as a mixed solvent of ethylene carbonate and chain carbonate.

〔セパレータ〕
非水電解質二次電池に係るセパレータには、80℃以上(より好ましくは100℃以上)170℃以下(より好ましくは150℃以下)において、その孔が閉塞する性質(すなわちシャットダウン機能)を有していることが好ましく、通常の非水電解質二次電池などで使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。
[Separator]
The separator according to the non-aqueous electrolyte secondary battery has a property of closing its pores (that is, a shutdown function) at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower). It is preferable that a separator used in a normal non-aqueous electrolyte secondary battery or the like, for example, a microporous film made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used. The microporous membrane constituting the separator may be, for example, one using only PE or one using only PP, or a laminate of a microporous membrane made of PE and a microporous membrane made of PP. There may be.

セパレータの厚みは、6μmより大きく20μmより小さいことが好ましい。 The thickness of the separator is preferably larger than 6 μm and smaller than 20 μm.

また、セパレータの厚みは、電池の体積エネルギー密度を向上させる観点から、16μmより小さいことがより好ましく、14μmより小さいことが更に好ましい。従来では、正極集電タブ部分への電流集中による顕著な発熱が起こるため、当該箇所でのセパレータの熱収縮による内部短絡を懸念し、セパレータの厚みを大きくすることで熱収縮を防止していた。本発明において、正極集電タブを2以上設けている場合には、1つの正極集電タブに熱が集中するのを防止することができる。そのため従来よりも薄いセパレータを用いることができ、更に体積エネルギー密度の向上に寄与することが可能となった。 Further, the thickness of the separator is more preferably smaller than 16 μm and further preferably smaller than 14 μm from the viewpoint of improving the volumetric energy density of the battery. In the past, since remarkable heat generation occurs due to current concentration on the positive electrode current collector tab portion, there is concern about an internal short circuit due to heat shrinkage of the separator at that location, and heat shrinkage is prevented by increasing the thickness of the separator. .. In the present invention, when two or more positive electrode current collecting tabs are provided, it is possible to prevent heat from concentrating on one positive electrode current collecting tab. Therefore, a thinner separator than before can be used, and it is possible to further contribute to the improvement of the volumetric energy density.

また、セパレータの厚みは、取扱いやすさから8μmより大きいことが更に好ましい。 Further, the thickness of the separator is more preferably larger than 8 μm from the viewpoint of ease of handling.

非水電解質二次電池に係るセパレータには、融点が140℃以下の樹脂を主体とした多孔質層(I)と、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)とを有する積層型のセパレータを使用することが好ましい。ここで、「融点」とはJIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度を意味している。また、「150℃以下の温度で溶融しない」とは、JIS K 7121の規定に準じて、DSCを用いて測定される融解温度が150℃を超えているなど、前記融解温度測定時に150℃以下の温度で融解挙動を示さないことを意味している。更に、「耐熱温度が150℃以上」とは、少なくとも150℃において軟化などの変形が見られないことを意味している。 Separators for non-aqueous electrolyte secondary batteries include a porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower, a resin that does not melt at a temperature of 150 ° C. or lower, or an inorganic filler having a heat resistant temperature of 150 ° C. or higher. It is preferable to use a laminated separator having a porous layer (II) mainly containing. Here, the "melting point" means the melting temperature measured by a differential scanning calorimeter (DSC) according to the provisions of JIS K 7121. In addition, "does not melt at a temperature of 150 ° C. or lower" means that the melting temperature measured using a DSC exceeds 150 ° C. according to the provisions of JIS K 7121, and the temperature is 150 ° C. or lower when measuring the melting temperature. It means that it does not show melting behavior at the temperature of. Further, "heat resistant temperature of 150 ° C. or higher" means that no deformation such as softening is observed at at least 150 ° C.

前記積層型のセパレータに係る多孔質層(I)は、主にシャットダウン機能を確保するためのものであり、非水電解質二次電池が多孔質層(I)の主体となる成分である樹脂の融点以上に達したときには、多孔質層(I)に係る樹脂が溶融してセパレータの空孔を塞ぎ、電気化学反応の進行を抑制するシャットダウンを生じる。 The porous layer (I) related to the laminated separator is mainly for ensuring a shutdown function, and the non-aqueous electrolyte secondary battery is a resin which is a main component of the porous layer (I). When the temperature reaches the melting point or higher, the resin related to the porous layer (I) melts and closes the pores of the separator, causing a shutdown that suppresses the progress of the electrochemical reaction.

多孔質層(I)の主体となる融点が140℃以下の樹脂としては、例えばPEが挙げられ、その形態としては、前述の非水電解質二次電池のセパレータとして用いられる微多孔膜や、不織布などの基材にPEの粒子を含む分散液を塗布し、乾燥するなどして得られるものが挙げられる。ここで、多孔質層(I)の全構成成分中において、主体となる融点が140℃以下の樹脂の体積は、50体積%以上であり、70体積%以上であることがより好ましい。例えば、多孔質層(I)を前記PEの微多孔膜で形成する場合は、融点が140℃以下の樹脂の体積が100体積%となる。 Examples of the resin having a melting point of 140 ° C. or lower, which is the main component of the porous layer (I), include PE, and the form thereof includes a microporous membrane used as a separator for the above-mentioned non-aqueous electrolyte secondary battery and a non-woven fabric. Examples thereof include those obtained by applying a dispersion liquid containing PE particles to a substrate such as, and drying the mixture. Here, among all the constituents of the porous layer (I), the volume of the resin having a melting point of 140 ° C. or lower as a main component is 50% by volume or more, more preferably 70% by volume or more. For example, when the porous layer (I) is formed of the microporous film of PE, the volume of the resin having a melting point of 140 ° C. or lower is 100% by volume.

前記積層型のセパレータに係る多孔質層(II)は、非水電解質二次電池の内部温度が上昇した際にも正極と負極との直接の接触による短絡を防止する機能を備えたものであり、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラーによって、その機能を確保している。すなわち、電池が高温となった場合には、喩え多孔質層(I)が収縮しても、収縮し難い多孔質層(II)によって、セパレータが熱収縮した場合に発生し得る正負極の直接の接触による短絡を防止することができる。また、この耐熱性の多孔質層(II)がセパレータの骨格として作用するため、多孔質層(I)の熱収縮、すなわちセパレータ全体の熱収縮自体も抑制できる。 The porous layer (II) related to the laminated separator has a function of preventing a short circuit due to direct contact between the positive electrode and the negative electrode even when the internal temperature of the non-aqueous electrolyte secondary battery rises. The function is ensured by a resin that does not melt at a temperature of 150 ° C. or lower or an inorganic filler having a heat resistant temperature of 150 ° C. or higher. That is, when the temperature of the battery becomes high, even if the porous layer (I) shrinks, the porous layer (II) that does not easily shrink can directly cause the positive and negative electrodes to occur when the separator is thermally shrunk. It is possible to prevent a short circuit due to contact with. Further, since the heat-resistant porous layer (II) acts as a skeleton of the separator, the heat shrinkage of the porous layer (I), that is, the heat shrinkage of the entire separator itself can be suppressed.

多孔質層(II)を150℃以下の温度で溶融しない樹脂を主体として形成する場合、例えば、150℃以下の温度で溶融しない樹脂で形成された微多孔膜(例えば、前述のPP製の電池用微多孔膜)を多孔質層(I)に積層させる形態や、150℃以下の温度で溶融しない樹脂の粒子などを含む分散液を多孔質層(I)に塗布し、乾燥して多孔質層(I)の表面に多孔質層(II)を形成する塗布積層型の形態が挙げられる。 When the porous layer (II) is mainly formed of a resin that does not melt at a temperature of 150 ° C. or lower, for example, a microporous film (for example, the above-mentioned PP battery) formed of a resin that does not melt at a temperature of 150 ° C. or lower. (Microporous film for use) is laminated on the porous layer (I), or a dispersion liquid containing resin particles that do not melt at a temperature of 150 ° C. or lower is applied to the porous layer (I) and dried to be porous. Examples thereof include a coating laminated type form in which a porous layer (II) is formed on the surface of the layer (I).

150℃以下の温度で溶融しない樹脂としては、PP;架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン−ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン−ホルムアルデヒド縮合物などの各種架橋高分子微粒子;ポリスルフォン;ポリエーテルスルフォン;ポリフェニレンスルフィド;ポリテトラフルオロエチレン;ポリアクリロニトリル;アラミド;ポリアセタール;などが挙げられる。 As a resin that does not melt at a temperature of 150 ° C. or lower, PP; crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, styrene-divinylbenzene copolymer crosslinked product, polyimide, melamine resin, phenol resin, benzoguanamine-formaldehyde condensation. Various cross-linked polymer fine particles such as those; polysulfone; polyether sulfone; polyphenylene sulfide; polytetrafluoroethylene; polyacrylonitrile; aramid; polyacetal; and the like can be mentioned.

150℃以下の温度で溶融しない樹脂の粒子を使用する場合、その粒径は、平均粒子径で、例えば、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、また、10μm以下であることが好ましく、2μm以下であることがより好ましい。本明細書でいう各種粒子の平均粒子径は、例えば、堀場製作所製のレーザー散乱粒度分布計「LA−920」を用い、粒子を溶解しない媒体に、これらの粒子を分散させて測定した平均粒子径D50%である。 When resin particles that do not melt at a temperature of 150 ° C. or lower are used, the particle size thereof is preferably 0.01 μm or more, more preferably 0.1 μm or more, and more preferably 0.1 μm or more, in terms of average particle size. It is preferably 10 μm or less, and more preferably 2 μm or less. The average particle size of the various particles referred to in the present specification is, for example, an average particle measured by dispersing these particles in a medium that does not dissolve the particles using a laser scattering particle size distribution meter "LA-920" manufactured by HORIBA, Ltd. The diameter is D50%.

多孔質層(II)を耐熱温度が150℃以上の無機フィラーを主体として形成する場合、例えば、耐熱温度が150℃以上の無機フィラーなどを含む分散液を、多孔質層(I)に塗布し、乾燥して多孔質層(II)を形成する塗布積層型の形態が挙げられる。 When the porous layer (II) is mainly formed of an inorganic filler having a heat resistant temperature of 150 ° C. or higher, for example, a dispersion liquid containing an inorganic filler having a heat resistant temperature of 150 ° C. or higher is applied to the porous layer (I). , A coated laminated type form which is dried to form a porous layer (II).

多孔質層(II)に係る無機フィラーは、耐熱温度が150℃以上で、電池の有する非水電解質に対して安定であり、更に電池の作動電圧範囲において酸化還元されにくい電気化学的に安定なものであればよいが、分散などの点から微粒子であることが好ましく、また、アルミナ、シリカ、ベーマイトが好ましい。アルミナ、シリカ、ベーマイトは、耐酸化性が高く、粒径や形状を所望の数値などに調整することが可能であるため、多孔質層(II)の空孔率を精度よく制御することが容易となる。耐熱温度が150℃以上の無機フィラーは、例えば前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。また、耐熱温度が150℃以上の無機フィラーを、前述の150℃以下の温度で溶融しない樹脂と併用しても差し支えない。 The inorganic filler related to the porous layer (II) has a heat resistant temperature of 150 ° C. or higher, is stable with respect to the non-aqueous electrolyte of the battery, and is electrochemically stable with little redox in the operating voltage range of the battery. Anything may be used, but fine particles are preferable from the viewpoint of dispersion and the like, and alumina, silica, and boehmite are preferable. Alumina, silica, and boehmite have high oxidation resistance, and the particle size and shape can be adjusted to desired values. Therefore, it is easy to accurately control the porosity of the porous layer (II). It becomes. As the inorganic filler having a heat resistant temperature of 150 ° C. or higher, for example, one of the above-mentioned examples may be used alone, or two or more of them may be used in combination. Further, an inorganic filler having a heat resistant temperature of 150 ° C. or higher may be used in combination with the above-mentioned resin that does not melt at a temperature of 150 ° C. or lower.

多孔質層(II)に係る耐熱温度が150℃以上の無機フィラーの形状については特に制限はなく、略球状(真球状を含む。)、略楕円体状(楕円体状を含む。)、板状などの各種形状のものを使用できる。 The shape of the inorganic filler having a heat resistant temperature of 150 ° C. or higher related to the porous layer (II) is not particularly limited, and is substantially spherical (including true sphere), substantially ellipsoidal (including ellipsoidal), and plate. Various shapes such as shapes can be used.

また、多孔質層(II)に係る耐熱温度が150℃以上の無機フィラーの平均粒子径は、小さすぎるとイオンの透過性が低下することから、0.3μm以上であることが好ましく、0.5μm以上であることがより好ましい。また、耐熱温度が150℃以上の無機フィラーが大きすぎると、電気特性が劣化しやすくなることから、その平均粒子径は、5μm以下であることが好ましく、2μm以下であることがより好ましい。 Further, the average particle size of the inorganic filler having a heat resistant temperature of 150 ° C. or higher related to the porous layer (II) is preferably 0.3 μm or more because the permeability of ions decreases if it is too small. It is more preferably 5 μm or more. Further, if the inorganic filler having a heat resistant temperature of 150 ° C. or higher is too large, the electrical characteristics are likely to deteriorate. Therefore, the average particle size thereof is preferably 5 μm or less, more preferably 2 μm or less.

多孔質層(II)において、150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーは、多孔質層(II)に主体として含まれるものであるため、これらの多孔質層(II)における量〔多孔質層(II)が150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーのうちのいずれか一方のみを含有する場合は、その量であり、両者を含有する場合は、それらの合計量。150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーの多孔質層(II)における量について、以下同じ。〕は、多孔質層(II)の構成成分の全体積中、50体積%以上であり、70体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることが更に好ましい。多孔質層(II)中の耐熱材料を前記のように高含有量とすることで、非水電解質二次電池が高温となった際にも、セパレータ全体の熱収縮を良好に抑制することができ、正極と負極との直接の接触による短絡の発生をより良好に抑制することができる。 In the porous layer (II), the resin that does not melt at a temperature of 150 ° C. or lower and the inorganic filler having a heat resistant temperature of 150 ° C. or higher are mainly contained in the porous layer (II), and thus these porous layers. Amount in (II) [When the porous layer (II) contains only one of a resin that does not melt at a temperature of 150 ° C. or lower and an inorganic filler having a heat resistant temperature of 150 ° C. or higher, it is the amount. If both are included, the total amount of them. The same applies to the amounts of the resin that does not melt at a temperature of 150 ° C. or lower and the inorganic filler having a heat resistant temperature of 150 ° C. or higher in the porous layer (II). ] Is 50% by volume or more, preferably 70% by volume or more, more preferably 80% by volume or more, and 90% by volume or more in the total volume of the constituent components of the porous layer (II). It is more preferable to have. By setting the heat-resistant material in the porous layer (II) to a high content as described above, it is possible to satisfactorily suppress the heat shrinkage of the entire separator even when the temperature of the non-aqueous electrolyte secondary battery becomes high. Therefore, the occurrence of a short circuit due to direct contact between the positive electrode and the negative electrode can be suppressed more satisfactorily.

後述するように、多孔質層(II)には有機バインダも含有させることが好ましいため、150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーの多孔質層(II)における量は、多孔質層(II)の構成成分の全体積中、99.5体積%以下であることが好ましい。 As will be described later, since it is preferable that the porous layer (II) also contains an organic binder, the porous layer (II) of the resin that does not melt at a temperature of 150 ° C. or lower and the inorganic filler having a heat resistant temperature of 150 ° C. or higher The amount is preferably 99.5% by volume or less based on the total volume of the constituent components of the porous layer (II).

多孔質層(II)には、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラー同士を結着したり、多孔質層(II)と多孔質層(I)との一体化したりするなどのために、有機バインダを含有させることが好ましい。有機バインダとしては、エチレン−酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20〜35モル%のもの)、エチレン−エチルアクリレート共重合体などのエチレン−アクリル酸共重合体、フッ素系ゴム、SBR、CMC、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられるが、特に、150℃以上の耐熱温度を有する耐熱性のバインダが好ましく用いられる。有機バインダは、前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。 A resin that does not melt at a temperature of 150 ° C. or lower or an inorganic filler having a heat resistant temperature of 150 ° C. or higher is bonded to the porous layer (II), or the porous layer (II) and the porous layer (I) are combined. It is preferable to include an organic binder for integration and the like. Examples of the organic binder include ethylene-vinyl acetate copolymer (EVA, which has a structural unit derived from vinyl acetate of 20 to 35 mol%), ethylene-acrylic acid copolymer such as ethylene-ethylacrylate copolymer, and fluorine-based binder. Examples thereof include rubber, SBR, CMC, hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinylpyrrolidone (PVP), crosslinked acrylic resin, polyurethane, epoxy resin, etc., but in particular, at 150 ° C. or higher. A heat-resistant binder having a heat-resistant temperature is preferably used. As the organic binder, one of the above-mentioned examples may be used alone, or two or more of them may be used in combination.

前記例示の有機バインダの中でも、EVA、エチレン−アクリル酸共重合体、フッ素系ゴム、SBRなどの柔軟性の高いバインダが好ましい。このような柔軟性の高い有機バインダには、三井デュポンポリケミカル社のEVA「エバフレックスシリーズ」、日本ユニカー社のEVA、三井デュポンポリケミカル社のエチレン−アクリル酸共重合体「エバフレックス−EEAシリーズ」、日本ユニカー社のEEA、ダイキン工業社のフッ素ゴム「ダイエルラテックスシリーズ」、JSR社のSBR「TRD−2001」、日本ゼオン社のSBR「BM−400B」などがある。 Among the above-exemplified organic binders, highly flexible binders such as EVA, ethylene-acrylic acid copolymer, fluorine-based rubber, and SBR are preferable. For such highly flexible organic binders, Mitsui DuPont Polychemical's EVA "Evaflex Series", Nippon Unicar's EVA, and Mitsui DuPont Polychemical's ethylene-acrylic acid copolymer "Evaflex-EEA Series" , Nippon Unicar's EEA, Daikin Industries' fluororubber "Daiel Latex Series", JSR's SBR "TRD-2001", Nippon Zeon's SBR "BM-400B", etc.

前記有機バインダを多孔質層(II)に使用する場合には、後述する多孔質層(II)形成用の組成物の溶媒に溶解させるか、または分散させたエマルジョンの形態で用いればよい。 When the organic binder is used for the porous layer (II), it may be used in the form of an emulsion dissolved or dispersed in the solvent of the composition for forming the porous layer (II) described later.

前記塗布積層型のセパレータは、例えば、150℃以下の温度で溶融しない樹脂の粒子や耐熱温度が150℃以上の無機フィラーなどを含有する多孔質層(II)形成用組成物(スラリーなどの液状組成物など)を、多孔質層(I)を構成するための膜(微多孔膜、不織布など)の表面に塗布し、所定の温度で乾燥して多孔質層(II)を形成することにより製造することができる。 The coating-laminated separator is, for example, a composition for forming a porous layer (II) (liquid such as a slurry) containing resin particles that do not melt at a temperature of 150 ° C. or lower and an inorganic filler having a heat resistant temperature of 150 ° C. or higher. The composition, etc.) is applied to the surface of a membrane (microporous membrane, non-woven fabric, etc.) for forming the porous layer (I), and dried at a predetermined temperature to form the porous layer (II). Can be manufactured.

多孔質層(II)形成用組成物は、150℃以下の温度で溶融しない樹脂の粒子および/または耐熱温度が150℃以上の無機フィラーの他、必要に応じて有機バインダなどを含有し、これらを溶媒(分散媒を含む。以下同じ。)に分散させたものである。有機バインダについては溶媒に溶解させることもできる。多孔質層(II)形成用組成物に用いられる溶媒は、150℃以下の温度で溶融しない樹脂の粒子や無機フィラーなどを均一に分散でき、また、有機バインダを均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素;テトラヒドロフランなどのフラン類;メチルエチルケトン、メチルイソブチルケトンなどのケトン類;など、一般的な有機溶媒が好適に用いられる。これらの溶媒に、界面張力を制御する目的で、アルコール類(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、有機バインダが水溶性である場合、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適宜加えて界面張力を制御することもできる。 The composition for forming the porous layer (II) contains resin particles that do not melt at a temperature of 150 ° C. or lower and / or an inorganic filler having a heat resistant temperature of 150 ° C. or higher, and if necessary, an organic binder or the like. Was dispersed in a solvent (including a dispersion medium; the same applies hereinafter). The organic binder can also be dissolved in a solvent. The solvent used in the composition for forming the porous layer (II) can uniformly disperse resin particles and inorganic fillers that do not melt at a temperature of 150 ° C. or lower, and can uniformly dissolve or disperse an organic binder. However, general organic solvents such as aromatic hydrocarbons such as toluene; furans such as tetrahydrofuran; ketones such as methyl ethyl ketone and methyl isobutyl ketone; are preferably used. Alcohols (ethylene glycol, propylene glycol, etc.), various propylene oxide-based glycol ethers such as monomethyl acetate, and the like may be appropriately added to these solvents for the purpose of controlling the interfacial tension. In addition, when the organic binder is water-soluble or used as an emulsion, water may be used as a solvent, and alcohols (methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.) are appropriately added at this time as well. Interfacial tension can also be controlled.

多孔質層(II)形成用組成物は、150℃以下の温度で溶融しない樹脂の粒子および/または耐熱温度が150℃以上の無機フィラー、更には有機バインダなどを含む固形分含量を、例えば10〜80質量%とすることが好ましい。 The composition for forming the porous layer (II) has a solid content of resin particles that do not melt at a temperature of 150 ° C. or lower and / or an inorganic filler having a heat resistant temperature of 150 ° C. or higher, and an organic binder or the like. It is preferably ~ 80% by mass.

前記積層型のセパレータにおいて、多孔質層(I)と多孔質層(II)とは、それぞれ1層ずつである必要はなく、複数の層がセパレータ中にあってもよい。例えば、多孔質層(II)の両面に多孔質層(I)を配置した構成としたり、多孔質層(I)の両面に多孔質層(II)を配置した構成としたりしてもよい。ただし、層数を増やすことで、セパレータの厚みを増やして電池の内部抵抗の増加やエネルギー密度の低下を招く虞があるので、層数を多くしすぎるのは好ましくなく、前記積層型のセパレータ中の多孔質層(I)と多孔質層(II)との合計層数は5層以下であることが好ましい。 In the laminated separator, the porous layer (I) and the porous layer (II) do not have to be one layer each, and a plurality of layers may be contained in the separator. For example, the porous layer (I) may be arranged on both sides of the porous layer (II), or the porous layer (II) may be arranged on both sides of the porous layer (I). However, increasing the number of layers may increase the thickness of the separator, resulting in an increase in the internal resistance of the battery and a decrease in energy density. Therefore, it is not preferable to increase the number of layers too much, and the laminated separator is used. The total number of layers of the porous layer (I) and the porous layer (II) is preferably 5 or less.

本発明によってセパレータ全体の厚みを薄くすることができることは上述した通りであるが、前記積層型セパレータを用いる場合においては、熱収縮を抑える作用が非常に高いため、セパレータの厚みを更に薄くすることが可能となる。 As described above, the thickness of the entire separator can be reduced by the present invention, but when the laminated separator is used, the effect of suppressing heat shrinkage is very high, so that the thickness of the separator should be further reduced. Is possible.

具体的には、多孔質層(I)の厚みを5〜14μm、多孔質層(II)の厚みを1〜5μmとすることができ、厚みの合計を6〜15μmとすることができる。これにより、更にセパレータの全体の厚みを薄くすることが可能になり、正負極間距離を短くすることができるので、電池の内部抵抗を低く抑えることができる。 Specifically, the thickness of the porous layer (I) can be 5 to 14 μm, the thickness of the porous layer (II) can be 1 to 5 μm, and the total thickness can be 6 to 15 μm. As a result, the overall thickness of the separator can be further reduced, and the distance between the positive and negative electrodes can be shortened, so that the internal resistance of the battery can be suppressed low.

セパレータ全体の空孔率としては、電解液の保液量を確保してイオン透過性を良好にするために、乾燥した状態で、30%以上であることが好ましい。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、乾燥した状態で、70%以下であることが好ましい。セパレータの空孔率:P(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、下記式(1)を用いて各成分iについての総和を求めることにより計算できる。 The porosity of the entire separator is preferably 30% or more in a dry state in order to secure the retention amount of the electrolytic solution and improve the ion permeability. On the other hand, from the viewpoint of ensuring the strength of the separator and preventing an internal short circuit, the porosity of the separator is preferably 70% or less in a dry state. The porosity of the separator: P (%) can be calculated by calculating the sum of each component i using the following formula (1) from the thickness of the separator, the mass per area, and the density of the constituent components.

P={1−m/(Σaiρi×t)}×100 (1) P = {1-m / (Σaiρi × t)} × 100 (1)

ここで、前記式(1)中、ai:質量%で表した成分iの比率、ρi:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:セパレータの厚み(cm)である。Here, in the above formula (1), ai: the ratio of the component i expressed in% by mass, ρi: the density of the component i (g / cm 3 ), m: the mass per unit area of the separator (g / cm 2 ). , T: Thickness (cm) of the separator.

また、前記積層型のセパレータの場合、前記式(1)において、mを多孔質層(I)の単位面積あたりの質量(g/cm)とし、tを多孔質層(I)の厚み(cm)とすることで、前記式(1)を用いて多孔質層(I)の空孔率:P(%)を求めることもできる。この方法により求められる多孔質層(I)の空孔率は、30〜70%であることが好ましい。In the case of the laminated separator, in the formula (1), m is the mass (g / cm 2 ) per unit area of the porous layer (I), and t is the thickness of the porous layer (I) (I). By setting cm), the porosity of the porous layer (I): P (%) can also be obtained using the above formula (1). The porosity of the porous layer (I) obtained by this method is preferably 30 to 70%.

更に、前記積層型のセパレータの場合、前記式(1)において、mを多孔質層(II)の単位面積あたりの質量(g/cm)とし、tを多孔質層(II)の厚み(cm)とすることで、前記式(1)を用いて多孔質層(II)の空孔率:P(%)を求めることもできる。この方法により求められる多孔質層(II)の空孔率は、20〜60%であることが好ましい。Further, in the case of the laminated type separator, in the above formula (1), m is the mass (g / cm 2 ) per unit area of the porous layer (II), and t is the thickness of the porous layer (II) (II). By setting cm), the porosity: P (%) of the porous layer (II) can also be obtained by using the above formula (1). The porosity of the porous layer (II) obtained by this method is preferably 20 to 60%.

前記セパレータとしては、機械的な強度の高いものが好ましく、例えば突き刺し強度が3N以上であることが好ましい。例えば、充放電に伴う体積変化の大きなSiOを負極活物質に使用した場合、充放電を繰り返すことで、負極全体の伸縮によって、対面させたセパレータにも機械的なダメージが加わることになる。セパレータの突き刺し強度が3N以上であれば、良好な機械的強度が確保され、セパレータの受ける機械的ダメージを緩和することができる。The separator preferably has high mechanical strength, and for example, the piercing strength is preferably 3N or more. For example, when SiO x, which has a large volume change due to charging and discharging, is used as the negative electrode active material, the expansion and contraction of the entire negative electrode causes mechanical damage to the facing separators due to repeated charging and discharging. When the piercing strength of the separator is 3N or more, good mechanical strength can be ensured and the mechanical damage to the separator can be mitigated.

突き刺し強度が3N以上のセパレータとしては、前述した積層型のセパレータが挙げられ、特に、融点が140℃以下の樹脂を主体とした多孔質層(I)に、耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)を積層したセパレータが好適である。それは、前記無機フィラーの機械的強度が高いため、多孔質層(I)の機械的強度を補って、セパレータ全体の機械的強度を高めることができるからであると考えられる。 Examples of the separator having a piercing strength of 3 N or more include the above-mentioned laminated type separator. In particular, an inorganic filler having a heat resistant temperature of 150 ° C. or higher is formed on a porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower. A separator in which a porous layer (II) containing the above is laminated is preferable. It is considered that this is because the mechanical strength of the inorganic filler is high, so that the mechanical strength of the porous layer (I) can be supplemented and the mechanical strength of the entire separator can be increased.

前記突き刺し強度は以下の方法で測定できる。直径2インチの穴があいた板上にセパレータをしわやたわみのないように固定し、先端の直径が1.0mmの半円球状の金属ピンを、120mm/分の速度で測定試料に降下させて、セパレータに穴があく時の力を5回測定する。そして、前記5回の測定値のうち最大値と最小値とを除く3回の測定について平均値を求め、これをセパレータの突き刺し強度とする。 The piercing strength can be measured by the following method. A separator is fixed on a plate with a hole with a diameter of 2 inches so as not to wrinkle or bend, and a hemispherical metal pin with a tip diameter of 1.0 mm is lowered onto the measurement sample at a speed of 120 mm / min. , Measure the force when the separator is punctured 5 times. Then, the average value is obtained for three measurements excluding the maximum value and the minimum value among the five measurement values, and this is used as the piercing strength of the separator.

前記の正極と前記の負極と前記のセパレータとは、正極と負極との間にセパレータを介在させて重ねて渦巻状に巻回し、更に横断面を扁平形状にした電極体として、非水電解質二次電池に使用される。 The positive electrode, the negative electrode, and the separator are formed as an electrode body in which a separator is interposed between the positive electrode and the negative electrode and is wound in a spiral shape, and the cross section is flattened. Used for the next battery.

前記電極体においては、前記積層型のセパレータ、特に融点が140℃以下の樹脂を主体とした多孔質層(I)に、耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)を積層したセパレータを使用する場合、多孔質層(II)が少なくとも正極と面するように配置することが好ましい。この場合、耐熱温度が150℃以上の無機フィラーを主体として含み、より耐酸化性に優れる多孔質層(II)が正極と面することで、正極によるセパレータの酸化をより良好に抑制できるため、電池の高温時の保存特性や充放電サイクル特性を更に高めることもできる。また、非水電解質にはビニレンカーボネートやシクロヘキシルベンゼンなどの添加剤を添加して、電池の各種特性を更に高めることが可能であるが、このような添加物を加えた場合、正極側で皮膜形成してセパレータの細孔を詰まらせ、電池特性の低下を引き起こす虞もある。そこで、比較的ポーラスな多孔質層(II)を正極に対面させることで、細孔の目詰まりを抑制する効果も期待できる。 In the electrode body, the laminated separator, particularly the porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower, and the porous layer (II) mainly containing an inorganic filler having a heat resistant temperature of 150 ° C. or higher. ) Is used, it is preferable to arrange the porous layer (II) so as to face at least the positive electrode. In this case, since the porous layer (II), which mainly contains an inorganic filler having a heat resistant temperature of 150 ° C. or higher and has more excellent oxidation resistance, faces the positive electrode, the oxidation of the separator by the positive electrode can be suppressed more satisfactorily. It is also possible to further improve the storage characteristics and charge / discharge cycle characteristics of the battery at high temperatures. Further, it is possible to add additives such as vinylene carbonate and cyclohexylbenzene to the non-aqueous electrolyte to further enhance various characteristics of the battery, but when such additives are added, a film is formed on the positive electrode side. This may clog the pores of the separator and cause deterioration of battery characteristics. Therefore, by facing the relatively porous porous layer (II) to the positive electrode, the effect of suppressing clogging of the pores can be expected.

本発明の非水電解質二次電池は、従来の非水電解質二次電池と同様に充電の上限電圧を4.2V程度として使用することもできるが、充電の上限電圧を、これよりも高い4.3V以上に設定して使用することも可能であり、これにより高容量化を図りつつ、長期にわたって繰り返し使用しても、安定して優れた特性を発揮することが可能である。なお、非水電解質二次電池の充電の上限電圧は、4.7V以下であることが好ましい。 The non-aqueous electrolyte secondary battery of the present invention can be used with a charging upper limit voltage of about 4.2 V as in the conventional non-aqueous electrolyte secondary battery, but the charging upper limit voltage is higher than this 4 It is also possible to set it to .3 V or higher and use it, so that it is possible to stably exhibit excellent characteristics even if it is used repeatedly for a long period of time while increasing the capacity. The upper limit voltage for charging the non-aqueous electrolyte secondary battery is preferably 4.7 V or less.

本発明の非水電解質二次電池は、従来から知られている非水電解質二次電池と同様の用途に適用することができる。本発明は電池内の部品点数の増加を最小限に抑えられるので、特に、限られた体積に対して高容量が求められるような機器、例えばモバイル機器や小型機器および多セルを直列に組み合わせたロボット用途など体積エネルギー密度が350〜800Wh/Lのような場合に特に効果を発揮する。更に本発明の非水電解質二次電池は、後述する条件(実施例に記載)で測定した場合の電池容量が1.0〜5.0Ahの場合に特徴が良く現れ、特に1.5〜4.0Ahの範囲で最適な特性を示す。ロボットなどの用途では、その使い道を考えると絶対的な電池容量は高くする必要はないため、本発明の電池がうまく適合する。 The non-aqueous electrolyte secondary battery of the present invention can be applied to the same applications as the conventionally known non-aqueous electrolyte secondary batteries. Since the present invention can minimize the increase in the number of parts in the battery, in particular, devices that require high capacity for a limited volume, such as mobile devices, small devices, and multiple cells are combined in series. It is particularly effective when the volumetric energy density is 350 to 800 Wh / L, such as in robot applications. Further, the non-aqueous electrolyte secondary battery of the present invention has good characteristics when the battery capacity is 1.0 to 5.0 Ah when measured under the conditions (described in Examples) described later, and particularly 1.5 to 4 It shows optimum characteristics in the range of 0.0 Ah. In applications such as robots, it is not necessary to increase the absolute battery capacity in consideration of its use, so the battery of the present invention fits well.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on Examples. However, the following examples do not limit the present invention.

実施例1
<正極の作製>
LiCoOとLi1.0Ni0.5Co0.2Mn0.3とを8:2の割合(質量比)で混合した正極活物質100質量部と、バインダであるPVDFを10質量%の濃度で含むNMP溶液20質量部と、導電助剤である人造黒鉛1質量部およびケッチェンブラック1質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
Example 1
<Preparation of positive electrode>
100 parts by mass of positive electrode active material obtained by mixing LiCoO 2 and Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2 at a ratio of 8: 2 (mass ratio) and 10 parts by mass of PVDF which is a binder. 20 parts by mass of NMP solution contained at a concentration of%, 1 part by mass of artificial graphite and 1 part by mass of Ketjen black, which are conductive aids, are kneaded using a twin-screw kneader, and further NMP is added to adjust the viscosity. Then, a paste containing a positive electrode mixture was prepared.

前記正極合剤含有ペーストを、図1および図2に示すように厚みが12μmのアルミニウム箔(正極集電体)の両面および一部片面に塗布した後、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。その後、プレス処理を行って、正極合剤層の厚さおよび密度を調節した。得られた正極における正極合剤層は、片面あたりの厚みが40μmであった。図1および図2に示すように、両端のアルミニウム箔露出部にアルミにウム製の正極集電タブ(幅5mm、厚み0.08mm、断面積0.4mm)を1本ずつ溶接することで、2本の正極集電タブを有する長さ1000mm、幅54mmの帯状の正極を作製した。また、この時の正極合剤層の総面積は、両面の合計で820cmであった。As shown in FIGS. 1 and 2, the positive electrode mixture-containing paste is applied to both sides and a part of an aluminum foil (positive electrode current collector) having a thickness of 12 μm, and then vacuum dried at 120 ° C. for 12 hours. A positive electrode mixture layer was formed on both sides of the aluminum foil. Then, a press treatment was performed to adjust the thickness and density of the positive electrode mixture layer. The positive electrode mixture layer in the obtained positive electrode had a thickness of 40 μm per side. As shown in FIGS. 1 and 2, by welding aluminum positive electrode current collector tabs (width 5 mm, thickness 0.08 mm, cross-sectional area 0.4 mm 2 ) to the exposed aluminum foils at both ends one by one. A strip-shaped positive electrode having a length of 1000 mm and a width of 54 mm having two positive electrode current collecting tabs was produced. The total area of the positive electrode mixture layer at this time was 820 cm 2 in total on both sides.

<負極の作製>
負極活物質である平均粒子径D50%が8μmであるSiO表面を炭素材料で被覆した複合体(複合体における炭素材料の量が10質量%)と、平均粒子径D50%が16μmである黒鉛とを、SiO表面を炭素材料で被覆した複合体の量が3.75質量%となる量で混合した混合物:97.5質量部と、バインダであるSBR:1.5質量部と、増粘剤であるCMC:1質量部とに、水を加えて混合し、負極合剤含有ペーストを調製した。
<Manufacturing of negative electrode>
A composite in which the SiO surface of the negative electrode active material having an average particle diameter D50% of 8 μm is coated with a carbon material (the amount of carbon material in the composite is 10% by mass) and graphite having an average particle diameter D50% of 16 μm. A mixture of 97.5 parts by mass, a binder SBR: 1.5 parts by mass, and a thickener in which the amount of the composite in which the SiO surface is coated with a carbon material is 3.75% by mass. Water was added to and mixed with 1 part by mass of CMC (CMC) to prepare a negative electrode mixture-containing paste.

前記負極合剤含有ペーストを、図3および図4に示すように厚みが8μmの銅箔(負極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、銅箔の両面および一部片面に負極合剤層を形成した。その後、プレス処理を行って、負極合剤層の厚さおよび密度を調節し、図3および図4に示すように銅箔の露出部にニッケル製の負極集電タブを溶接して、長さ990mm、幅55mmの帯状の負極を作製した。得られた負極における負極合剤層は、片面あたりの厚みが45μmであった。 As shown in FIGS. 3 and 4, the negative electrode mixture-containing paste is applied to both sides of a copper foil (negative electrode current collector) having a thickness of 8 μm, and then vacuum dried at 120 ° C. for 12 hours to obtain the copper foil. Negative electrode mixture layers were formed on both sides and a part of one side. After that, a pressing process is performed to adjust the thickness and density of the negative electrode mixture layer, and a nickel negative electrode current collecting tab is welded to the exposed portion of the copper foil as shown in FIGS. 3 and 4 to lengthen the negative electrode mixture layer. A strip-shaped negative electrode having a width of 990 mm and a width of 55 mm was produced. The negative electrode mixture layer in the obtained negative electrode had a thickness of 45 μm per side.

<非水電解液の調製>
エチレンカーボネートとジエチルカーボネートの体積比3:7の混合溶媒に、LiPFを1.1mol/Lの濃度で溶解させ、2質量%となる量のビニレンカーボネートと2質量%となる量のフルオロエチレンカーボネートとを、それぞれ添加して非水電解液を調製した。
<Preparation of non-aqueous electrolyte solution>
LiPF 6 is dissolved in a mixed solvent having a volume ratio of ethylene carbonate and diethyl carbonate at a volume ratio of 3: 7 at a concentration of 1.1 mol / L, and 2% by mass of vinylene carbonate and 2% by mass of fluoroethylene carbonate. And were added to prepare a non-aqueous electrolyte solution.

<セパレータの作製>
板状ベーマイト(平均粒径1μm、アスペクト比10)5kgに、イオン交換水5kgと、分散剤(水系ポリカルボン酸アンモニウム塩、固形分濃度40質量%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで10時間解砕処理をして分散液を調製した。処理後の分散液の一部を120℃で真空乾燥し、走査型電子顕微鏡(SEM)で観察したところ、ベーマイトの形状はほぼ板状であった。また、処理後のベーマイトの平均粒子径は1μmであった。
<Making a separator>
To 5 kg of plate-shaped boehmite (average particle size 1 μm, aspect ratio 10), 5 kg of ion-exchanged water and 0.5 kg of a dispersant (aqueous polycarboxylic acid ammonium salt, solid content concentration 40% by mass) were added to form an internal volume of 20 L. A dispersion was prepared by crushing for 10 hours with a ball mill having a number of turns of 40 times / minute. A part of the treated dispersion was vacuum dried at 120 ° C. and observed with a scanning electron microscope (SEM). As a result, the shape of boehmite was almost plate-like. The average particle size of boehmite after the treatment was 1 μm.

上記分散液500gに、増粘剤としてキサンタンガムを0.5g、バインダとして樹脂バインダーディスパージョン(変性ポリブチルアクリレート、固形分含量45質量%)を17g加え、スリーワンモーターで3時間攪拌して均一な多孔質層(II)形成用スラリー(固形分比率50質量%)を調製した。 To 500 g of the above dispersion, 0.5 g of xanthan gum as a thickener and 17 g of resin binder dispersion (modified polybutyl acrylate, solid content 45% by mass) as a binder are added, and the mixture is stirred with a three-one motor for 3 hours to make uniform porous. A slurry for forming the layer (II) (solid content ratio: 50% by mass) was prepared.

多孔質層(I)であるPE製の微多孔膜(厚み10μm、空孔率40%、平均孔径0.08μm、PEの融点135℃)の片面にコロナ放電処理(放電量40W・分/m2)を施し、この処理面に上記多孔質層(II)形成用スラリーをマイクログラビアコーターによって塗布し、乾燥して厚みが2μmの多孔質層(II)をセパレータ上の片面に形成して、積層型セパレータを作製した。 Corona discharge treatment (discharge amount 40 W / min / m2) on one side of a microporous film made of PE (thickness 10 μm, porosity 40%, average pore diameter 0.08 μm, melting point 135 ° C. of PE) which is a porous layer (I). ) Is applied, the slurry for forming the porous layer (II) is applied to the treated surface by a microgravure coater, and the porous layer (II) having a thickness of 2 μm is formed on one surface on the separator and laminated. A mold separator was prepared.

<電池の組み立て>
図5に示すように、前記帯状の正極を、上記積層型セパレータ(空孔率:42%)を介して前記帯状の負極に重ね、渦巻状に巻回した後、扁平形状になるように加圧して電極体とし、この電極体をポリプロピレン製の絶縁テープで固定した。この時、扁平形状の電極体は、図5の通り幅広面からの側面視で、それぞれの集電タブが重ならない位置となっていた。この時の電極体の幅広面寸法は幅方向(巻回軸方向と垂直方向)50mm、高さ方向(巻回軸方向と平行方向)58mmであった。
<Battery assembly>
As shown in FIG. 5, the strip-shaped positive electrode is superposed on the strip-shaped negative electrode via the laminated separator (porosity: 42%), wound in a spiral shape, and then added so as to have a flat shape. It was pressed into an electrode body, and this electrode body was fixed with an insulating tape made of polypropylene. At this time, the flat electrode body was in a position where the current collecting tabs did not overlap in the side view from the wide surface as shown in FIG. At this time, the wide surface dimensions of the electrode body were 50 mm in the width direction (perpendicular to the winding axis direction) and 58 mm in the height direction (parallel to the winding axis direction).

次に、外寸が厚さ4.8mm、幅57mm、高さ60mmのアルミニウム合金製の角形缶に前記巻回電極体を挿入し、それぞれ集電タブの溶接を行うとともに、アルミニウム合金製の蓋板を角形缶の開口端部に溶接した。その後、蓋板に設けた注入口から前記非水電解質を注入し、注入口を封止して、図6に示す外観の非水電解質二次電池100を得た。 Next, the wound electrode body is inserted into a square can made of aluminum alloy having an outer dimension of 4.8 mm in thickness, 57 mm in width, and 60 mm in height, and the current collecting tabs are welded to each of them, and the lid made of aluminum alloy is used. The plate was welded to the open end of the square can. Then, the non-aqueous electrolyte was injected from the injection port provided on the lid plate, and the injection port was sealed to obtain a non-aqueous electrolyte secondary battery 100 having the appearance shown in FIG.

非水電解質二次電池100は、外装缶111と蓋板121を有し、これらは正極端子を兼ねている。外装缶111は一対の側面部112と一対の幅広面113と底面とからなる。幅広面113は、電池の内圧が上昇した際に防爆機構として作動する開裂溝114を有している。蓋体121は外装缶111の開口部に挿入され、両者の接合部を溶接することによって、外装缶111の開口部が封口され、電池内部が密閉されている。蓋体121に非水電解液注入口が設けられており、この非水電解液注入口には、封止部材122が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている。蓋体121にはPP製の絶縁パッキング124を介してステンレス鋼製の端子123が取り付けられ、この端子123は電池内部で絶縁体を介してリード板が取り付けられている。 The non-aqueous electrolyte secondary battery 100 has an outer can 111 and a lid plate 121, which also serve as positive electrode terminals. The outer can 111 includes a pair of side surface portions 112, a pair of wide surfaces 113, and a bottom surface. The wide surface 113 has a cleavage groove 114 that operates as an explosion-proof mechanism when the internal pressure of the battery rises. The lid 121 is inserted into the opening of the outer can 111, and by welding the joint between the two, the opening of the outer can 111 is sealed and the inside of the battery is sealed. The lid 121 is provided with a non-aqueous electrolyte injection port, and the non-aqueous electrolyte injection port is welded and sealed by, for example, laser welding, with the sealing member 122 inserted therein. The airtightness is ensured. A stainless steel terminal 123 is attached to the lid 121 via an insulating packing 124 made of PP, and a lead plate is attached to the terminal 123 via an insulator inside the battery.

図示していないが、正極集電タブは蓋体121に直接溶接することによって外装缶111と蓋体121とが正極端子として機能し、負極集電タブは電池内部のリード板に溶接し、そのリード板を介して端子123とを導通させることによって端子123が負極端子として機能するようになっている。 Although not shown, the positive electrode current collecting tab is welded directly to the lid 121 so that the outer can 111 and the lid 121 function as positive electrode terminals, and the negative electrode current collecting tab is welded to the lead plate inside the battery. The terminal 123 functions as a negative electrode terminal by conducting the terminal 123 with the terminal 123 via the lead plate.

実施例2
セパレータにPE製の微多孔膜(厚み20μm)を用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
Example 2
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a PE microporous membrane (thickness 20 μm) was used as the separator.

実施例3
サイズを長さ700mm、幅54mmに変更した以外は、実施例1と同様にして帯状の正極を作製した。この時の正極合剤層の総面積は,両面の合計で660cmであった。
Example 3
A strip-shaped positive electrode was produced in the same manner as in Example 1 except that the size was changed to 700 mm in length and 54 mm in width. The total area of the positive electrode mixture layer at this time was 660 cm 2 in total on both sides.

また、サイズを長さ800mm、幅55mmに変更した以外は、実施例1と同様にして帯状の負極を作製した。 Further, a strip-shaped negative electrode was produced in the same manner as in Example 1 except that the size was changed to 800 mm in length and 55 mm in width.

前記帯状の正極と、前記帯状の負極とを用いた以外は、実施例1と同様にして扁平形状の電極体を作製した。この時の電極体の幅広面寸法は、幅方向35mm、高さ方向58mmであった。 A flat electrode body was produced in the same manner as in Example 1 except that the band-shaped positive electrode and the band-shaped negative electrode were used. The wide surface dimensions of the electrode body at this time were 35 mm in the width direction and 58 mm in the height direction.

そして、外寸が厚さ4.8mm、幅38mm、高さ60mmのアルミニウム合金製の角形缶に前記扁平形状の電極体を挿入した以外は、実施例1と同様にして非水電解質二次電池を作製した。 Then, the non-aqueous electrolyte secondary battery is the same as in Example 1 except that the flat electrode body is inserted into a square can made of an aluminum alloy having an outer dimension of 4.8 mm in thickness, 38 mm in width, and 60 mm in height. Was produced.

実施例4
サイズを長さ1600mm、幅54mmに変更した以外は、実施例1と同様にして帯状の正極を作製した。この時の正極合剤層の総面積は、両面の合計で1560cmであった。
Example 4
A band-shaped positive electrode was produced in the same manner as in Example 1 except that the size was changed to 1600 mm in length and 54 mm in width. The total area of the positive electrode mixture layer at this time was 1560 cm 2 in total on both sides.

また、サイズを長さ1700mm、幅55mmに変更した以外は、実施例1と同様にして帯状の負極を作製した。 Further, a strip-shaped negative electrode was produced in the same manner as in Example 1 except that the size was changed to 1700 mm in length and 55 mm in width.

前記帯状の正極と、前記帯状の負極とを用いた以外は、実施例1と同様にして扁平形状の電極体を作製した。この時の電極体の幅広面寸法は、幅方向75mm、高さ方向58mmであった。 A flat electrode body was produced in the same manner as in Example 1 except that the band-shaped positive electrode and the band-shaped negative electrode were used. The wide surface dimensions of the electrode body at this time were 75 mm in the width direction and 58 mm in the height direction.

そして、外寸が厚さ4.8mm、幅78mm、高さ60mmのアルミニウム合金製の角形缶に前記扁平形状の電極体を挿入した以外は、実施例1と同様にして非水電解質二次電池を作製した。 Then, the non-aqueous electrolyte secondary battery is the same as in Example 1 except that the flat electrode body is inserted into a square can made of an aluminum alloy having an outer dimension of 4.8 mm in thickness, 78 mm in width, and 60 mm in height. Was produced.

比較例1
電極体を円筒形状に形成し、外装体を従来公知の円筒形に変更した以外は、実施例1と同様にして非水電解質二次電池を作製した。
Comparative Example 1
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the electrode body was formed into a cylindrical shape and the exterior body was changed to a conventionally known cylindrical shape.

比較例2
正極集電タブ13bを設けなかった以外は実施例1と同様にして帯状の正極を作製し、この正極を用い、更にPE製の微多孔膜(厚み20μm)を用いた以外は、実施例1と同様に非水電解質二次電池を作製した。
Comparative Example 2
A band-shaped positive electrode was produced in the same manner as in Example 1 except that the positive electrode current collecting tab 13b was not provided, and the positive electrode was used, and a microporous membrane made of PE (thickness 20 μm) was used. A non-aqueous electrolyte secondary battery was produced in the same manner as in the above.

比較例3
実施例1で用いたものと同じ帯状の正極、帯状の負極およびセパレータを重ねて、正極の巻き始めの位置を実施例1と変更し、電極体最外周側の正極集電タブ213a、および電極体最内周側の正極集電タブ213bを図7の配置になるようにして、扁平形状の電極体203を作製した。
Comparative Example 3
The same band-shaped positive electrode, band-shaped negative electrode and separator as those used in Example 1 are overlapped, the position of the positive electrode winding start is changed from that of Example 1, and the positive electrode current collecting tab 213a on the outermost peripheral side of the electrode body and the electrode A flat electrode body 203 was produced by arranging the positive electrode current collecting tabs 213b on the innermost peripheral side of the body in the arrangement shown in FIG.

そして、この扁平形状の電極体203を用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。 Then, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the flat electrode body 203 was used.

比較例4
セパレータをPE製の微多孔膜(厚み20μm)に変更した以外は、比較例3と同様にして非水電解質二次電池を作製した。
Comparative Example 4
A non-aqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 3 except that the separator was changed to a microporous membrane made of PE (thickness 20 μm).

実施例、比較例の各非水電解質二次電池を、以下の評価方法で評価した。表1および表2には各電池の構成を示し、表3にはそれぞれの評価結果を示す。 Each non-aqueous electrolyte secondary battery of Examples and Comparative Examples was evaluated by the following evaluation method. Tables 1 and 2 show the configuration of each battery, and Table 3 shows the evaluation results of each.

<電池容量>
実施例および比較例の各電池について、1Cの電流値で2.75Vまで定電流(以下CCと記す)放電することで、一度完全に放電された状態にした。次に、各電池について、4.35Vまで定電流定電圧(以下CCCVと記す)充電を行った。CC充電の電流値は1Cとし、充電終止電流値は0.05Cとした。続いて、各電池について0.2Cの電流値で2.75VまでCC放電を行い、その時の放電容量を測定した。この時の容量を電池容量とした。
<Battery capacity>
Each of the batteries of Examples and Comparative Examples was once completely discharged by discharging a constant current (hereinafter referred to as CC) to 2.75 V at a current value of 1C. Next, each battery was charged with a constant current and a constant voltage (hereinafter referred to as CCCV) up to 4.35V. The CC charge current value was 1 C, and the charge termination current value was 0.05 C. Subsequently, CC discharge was performed for each battery up to 2.75 V at a current value of 0.2 C, and the discharge capacity at that time was measured. The capacity at this time was taken as the battery capacity.

<放電負荷特性>
実施例および比較例の各電池について、1Cの電流値で2.75VまでCC放電することで、一度完全に放電された状態にした。次に、各電池について、4.35VまでCCCV充電を行った。CC充電の電流値は1Cとし、充電終止電流値は0.05Cとした。続いて、各電池について0.2Cの電流値で2.75VまでCC放電を行い、その時の放電容量を測定した。
<Discharge load characteristics>
Each of the batteries of Examples and Comparative Examples was once completely discharged by CC discharging to 2.75 V at a current value of 1 C. Next, each battery was charged with CCCV up to 4.35V. The CC charge current value was 1 C, and the charge termination current value was 0.05 C. Subsequently, CC discharge was performed for each battery up to 2.75 V at a current value of 0.2 C, and the discharge capacity at that time was measured.

ついで、各電池について、再度同様の条件でCCCV充電を行い、10Cの電流値で2.75VまでCC放電し、その際の放電容量と電池の表面温度とを評価した。 Then, each battery was charged with CCCV again under the same conditions, CC-discharged to 2.75 V with a current value of 10 C, and the discharge capacity at that time and the surface temperature of the battery were evaluated.

高負荷放電特性評価として、実施例および比較例の各電池について、10C放電時の放電容量を0.2C放電時の放電容量で除した値(10C/0.2C放電容量比)をそれぞれ算出した。表2の10C/0.2C放電容量比では、各電池について、実施例1の電池の結果を100としたときの相対値を示している。 As an evaluation of the high load discharge characteristics, the values (10C / 0.2C discharge capacity ratio) obtained by dividing the discharge capacity at 10C discharge by the discharge capacity at 0.2C discharge were calculated for each of the batteries of Examples and Comparative Examples. .. The 10C / 0.2C discharge capacity ratio in Table 2 shows the relative value of each battery when the result of the battery of Example 1 is 100.

<1kHz交流抵抗〔インピーダンス(Imp.)〕>
実施例および比較例の各非水電解質二次電池の1kHz交流抵抗は、1Cの電流値で2.75VまでCC放電した後、4.35VまでCCCV充電を行い、その後にHIOKI社製の抵抗測定機「HiTESTER」を用いて25℃で測定した。
<1 kHz AC resistance [impedance (Imp.)]>
The 1 kHz AC resistance of each non-aqueous electrolyte secondary battery of Examples and Comparative Examples is CC discharged to 2.75 V at a current value of 1 C, then CCC V charged to 4.35 V, and then resistance measurement manufactured by HIOKI. It was measured at 25 ° C. using the machine "HiTESTER".

<電池厚みの測定>
実施例および比較例の各非水電解質二次電池の厚みは、株式会社ミツトヨ製のシックネスゲージ(測定部φ10mm平面円形)を用いて、外装缶の幅広面中央部と、外装缶幅広面における扁平形状の電極体の集電タブに対応する箇所とで測定した。表3では、中央部の厚み、および集電タブ位置に対応する箇所の厚みの最大値を示す。
<Measurement of battery thickness>
The thickness of each non-aqueous electrolyte secondary battery of Examples and Comparative Examples was flattened at the center of the wide surface of the outer can and the wide surface of the outer can using a thickness gauge (measurement part φ10 mm flat circle) manufactured by Mitutoyo Co., Ltd. The measurement was performed at the location corresponding to the current collection tab of the electrode body of the shape. Table 3 shows the maximum value of the thickness of the central portion and the thickness of the portion corresponding to the current collecting tab position.

<充放電サイクル特性>
実施例および比較例の各非水電解質二次電池について、1Cの電流値で2.75VまでCC放電することで、一度完全に放電された状態にした。次に、各電池について、4.35VまでCCCV充電を行った。CC充電の電流値は1Cとし、充電終止電流値は0.05Cとした。続いて、各電池について5Cの電流値で2.75VまでCC放電を行い、その際の初回放電容量を求めた。その後、この充放電条件を1サイクルとし、各電池について、500サイクルの充放電を繰り返したときの放電容量を求めた。表3では、各電池について、500サイクル後の放電容量を初回放電容量で除した値を百分率(容量維持率)で示す。
<Charge / discharge cycle characteristics>
Each of the non-aqueous electrolyte secondary batteries of Examples and Comparative Examples was once completely discharged by CC discharging to 2.75 V at a current value of 1 C. Next, each battery was charged with CCCV up to 4.35V. The CC charge current value was 1 C, and the charge termination current value was 0.05 C. Subsequently, CC discharge was performed for each battery up to 2.75 V at a current value of 5 C, and the initial discharge capacity at that time was determined. After that, the charge / discharge condition was set to one cycle, and the discharge capacity of each battery when 500 cycles of charge / discharge was repeated was determined. In Table 3, for each battery, the value obtained by dividing the discharge capacity after 500 cycles by the initial discharge capacity is shown as a percentage (capacity retention rate).

Figure 0006754768
Figure 0006754768

Figure 0006754768
Figure 0006754768

Figure 0006754768
Figure 0006754768

実施例1〜4のように電極体が扁平形状で正極集電タブを2本用い、かつ幅広面側から側面視した時に集電タブが重ならない位置に配置された非水電解質二次電池は、インピーダンスが低いため、10C/0.2C放電容量比が高く、かつ電池表面の温度上昇も抑えられた。更に電池の幅広面の中央部厚みと最大厚みとの差が小さく、幅広面の厚みムラが少ないので、充放電時に電極体内の空隙の偏りにより発生する電極体の歪みが少ないため、高いサイクル容量維持率が得られた。 As in Examples 1 to 4, the non-aqueous electrolyte secondary battery has a flat electrode body, uses two positive electrode current collecting tabs, and is arranged at a position where the current collecting tabs do not overlap when viewed from the wide surface side. Since the impedance is low, the 10C / 0.2C discharge capacity ratio is high, and the temperature rise on the battery surface is suppressed. Furthermore, the difference between the thickness of the central part of the wide surface of the battery and the maximum thickness is small, and the thickness unevenness of the wide surface is small, so that the distortion of the electrode body caused by the bias of the voids in the electrode body during charging and discharging is small, so that the cycle capacity is high. A maintenance rate was obtained.

電極体が円筒状である比較例1の電池は、扁平形状の電極体を有する実施例1の電池と比べて放熱性が悪く、高負荷放電時に温度が上昇した。更に放熱性が悪いことが充放電サイクル特性にも悪影響を与える結果となった。正極、負極とも集電タブが1本の比較例2の電池は、インピーダンスが高いために高負荷での放電時の容量が小さかった。側面視した時に2本の正極集電タブが重なるように配置した電極体を有する比較例3、4の電池は、充放電サイクル特性評価時の容量維持率が低くなった。比較例3、4の電池では、扁平形状の電極体の幅広面に厚みムラがあるため、充放電サイクルを繰り返すうちに充放電容量ロスが発生し、容量維持率が低くなったと考えられる。 The battery of Comparative Example 1 having a cylindrical electrode body had poor heat dissipation as compared with the battery of Example 1 having a flat electrode body, and the temperature rose during high-load discharge. Furthermore, the poor heat dissipation has adversely affected the charge / discharge cycle characteristics. The battery of Comparative Example 2 having one current collecting tab for both the positive electrode and the negative electrode had a small capacity when discharged under a high load because of its high impedance. The batteries of Comparative Examples 3 and 4 having the electrode bodies arranged so that the two positive electrode current collecting tabs overlap when viewed from the side had a low capacity retention rate at the time of evaluating the charge / discharge cycle characteristics. In the batteries of Comparative Examples 3 and 4, since the wide surface of the flat electrode body had uneven thickness, it is considered that the charge / discharge capacity loss occurred while the charge / discharge cycle was repeated, and the capacity retention rate became low.

本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。 The present invention can be implemented in a form other than the above as long as it does not deviate from the gist thereof. The embodiments disclosed in the present application are examples, and the present invention is not limited to these embodiments. The scope of the present invention shall be construed in preference to the description of the appended claims over the description of the specification, and all modifications within the scope of the claims shall be within the scope of the claims. included.

この発明は、非水電解質二次電池に適用される。 The present invention applies to non-aqueous electrolyte secondary batteries.

1 正極
13a、13b 正極集電タブ
2 負極
3 扁平形状の電極体
30 幅広面
100 非水電解質二次電池
1 Positive electrode 13a, 13b Positive electrode current collector tab 2 Negative electrode 3 Flat electrode body 30 Wide surface 100 Non-aqueous electrolyte secondary battery

Claims (8)

一対の幅広面を持つ扁平形状の電極体が外装体内に収納されており、
前記扁平形状の電極体は、長尺の正極と長尺の負極とがセパレータを介して積層されて渦巻き状に巻回されており、
前記正極および前記負極は、それぞれ正極集電タブ、負極集電タブを有しており、
前記正極は、2の集電タブを有しており、
前記セパレータは、厚みが20μm以下であり、
前記正極集電タブおよび前記負極集電タブは、前記電極体の、巻回軸方向の同一方向に突出しており、かつ前記電極体を幅広面側から側面視した時に重ならないように配置されていることを特徴とする非水電解質二次電池。
A flat electrode body with a pair of wide surfaces is housed inside the exterior.
In the flat electrode body, a long positive electrode and a long negative electrode are laminated via a separator and wound in a spiral shape.
The positive electrode and the negative electrode have a positive electrode current collecting tab and a negative electrode current collecting tab, respectively.
The positive electrode has two current collecting tabs.
The separator has a thickness of 20 μm or less.
The positive electrode current collecting tab and the negative electrode current collecting tab are arranged so as to project in the same direction in the winding axis direction of the electrode body and not to overlap when the electrode body is viewed from the wide surface side. A non-aqueous electrolyte secondary battery characterized by being present.
下記の条件で測定した時の電池容量が1.5〜4.0Ahである請求項1に記載の非水電解質二次電池。
<電池容量測定条件>
1Cの電流値で2.75Vまで定電流放電することで、一度完全に放電された状態にする。次に4.35Vまで定電流定電圧充電を行う。定電流充電の電流値は1Cとし、充電終止電流値は0.05Cとする。続いて0.2Cの電流値で2.75Vまで定電流放電を行い、その時の放電容量を電池容量とする。
The non-aqueous electrolyte secondary battery according to claim 1, wherein the battery capacity when measured under the following conditions is 1.5 to 4.0 Ah.
<Battery capacity measurement conditions>
By discharging a constant current up to 2.75V with a current value of 1C, it is once completely discharged. Next, constant current and constant voltage charging is performed up to 4.35V. The current value of constant current charging is 1C, and the charging termination current value is 0.05C. Subsequently, a constant current discharge is performed up to 2.75 V with a current value of 0.2 C, and the discharge capacity at that time is defined as the battery capacity.
前記幅広面は、巻回軸方向と垂直な方向の長さが30〜80mmである請求項1または2に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the wide surface has a length of 30 to 80 mm in a direction perpendicular to the winding axis direction. 前記セパレータは、厚みが14μm未満である請求項1〜3のいずれかに記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the separator has a thickness of less than 14 μm. 前記セパレータは、融点が140℃以下の樹脂を主体とする多孔質層(I)と、
150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)
とを有する積層型のセパレータである請求項1〜4のいずれかに記載の非水電解質二次電池。
The separator has a porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower, and
Porous layer (II) mainly containing a resin that does not melt at a temperature of 150 ° C. or lower or an inorganic filler having a heat resistant temperature of 150 ° C. or higher.
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, which is a laminated separator having the above.
前記正極は、正極合剤層を正極集電体の片面または両面に有するものであり、
前記正極合剤層の厚みは、片面で20〜70μmである請求項1〜5のいずれかに記載の非水電解質二次電池。
The positive electrode has a positive electrode mixture layer on one side or both sides of a positive electrode current collector.
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the thickness of the positive electrode mixture layer is 20 to 70 μm on one side.
前記正極は正極合剤層を正極集電体の片面または両面に有するものであり、
前記正極集電体上の正極合剤層の総面積が300〜2000cmである請求項1〜6のいずれかに記載の非水電解質二次電池。
The positive electrode has a positive electrode mixture layer on one side or both sides of a positive electrode current collector.
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the total area of the positive electrode mixture layer on the positive electrode current collector is 300 to 2000 cm 2 .
前記正極集電タブおよび前記負極集電タブは、1本あたりの断面積が0.15〜1.0mmである請求項1〜7のいずれかに記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 1 to 7, wherein the positive electrode current collecting tab and the negative electrode current collecting tab have a cross-sectional area of 0.15 to 1.0 mm 2 .
JP2017539807A 2015-09-14 2016-08-26 Non-aqueous electrolyte secondary battery Active JP6754768B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015181280 2015-09-14
JP2015181280 2015-09-14
PCT/JP2016/074939 WO2017047353A1 (en) 2015-09-14 2016-08-26 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPWO2017047353A1 JPWO2017047353A1 (en) 2018-06-28
JP6754768B2 true JP6754768B2 (en) 2020-09-16

Family

ID=58288873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017539807A Active JP6754768B2 (en) 2015-09-14 2016-08-26 Non-aqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP6754768B2 (en)
WO (1) WO2017047353A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102316338B1 (en) 2017-04-14 2021-10-22 주식회사 엘지에너지솔루션 Electrode assembly
CN107834014B (en) * 2017-09-18 2021-01-15 东莞市迈科新能源有限公司 High-power cylindrical lithium ion battery cell
WO2019107049A1 (en) 2017-11-30 2019-06-06 パナソニックIpマネジメント株式会社 Cylindrical secondary battery
JP7085147B2 (en) * 2019-04-09 2022-06-16 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
WO2021010185A1 (en) * 2019-07-12 2021-01-21 Tdk株式会社 Positive electrode and lithium ion secondary battery
CN117895193A (en) * 2020-01-20 2024-04-16 宁德新能源科技有限公司 Battery cell
JP7411161B2 (en) 2020-03-31 2024-01-11 株式会社Gsユアサ Energy storage element
WO2021227896A1 (en) * 2020-05-11 2021-11-18 珠海冠宇电池股份有限公司 Battery and electronic device
JP7280913B2 (en) 2021-04-26 2023-05-24 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery and battery module

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326609A (en) * 1997-03-26 1998-12-08 Toyota Central Res & Dev Lab Inc Battery
US6159253A (en) * 1998-01-07 2000-12-12 Medtronic, Inc. Thermally formed tab slots in a separator for a spirally-wound electrochemical cell
JP2002164044A (en) * 2000-11-24 2002-06-07 Nec Corp Electrode wound-type battery and method of manufacturing the same
JP2010135170A (en) * 2008-12-04 2010-06-17 Hitachi Vehicle Energy Ltd Lithium secondary battery, secondary battery module, and secondary battery pack
KR101165507B1 (en) * 2009-11-27 2012-07-13 삼성에스디아이 주식회사 Secondary Battery
KR101152515B1 (en) * 2009-12-17 2012-06-01 삼성에스디아이 주식회사 Electrode assembly and secondary battery using the same
JP5639400B2 (en) * 2010-07-23 2014-12-10 日立マクセル株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5749034B2 (en) * 2011-02-18 2015-07-15 株式会社東芝 battery
TWI504037B (en) * 2013-03-11 2015-10-11 Hitachi Maxell Lithium secondary battery pack, and the use of this electronic machine, charging system and charging method
JPWO2014188501A1 (en) * 2013-05-21 2017-02-23 日立オートモティブシステムズ株式会社 Non-aqueous electrolyte secondary battery
JP6128391B2 (en) * 2014-02-03 2017-05-17 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and battery pack

Also Published As

Publication number Publication date
WO2017047353A1 (en) 2017-03-23
JPWO2017047353A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6754768B2 (en) Non-aqueous electrolyte secondary battery
JP5156406B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5264099B2 (en) Nonaqueous electrolyte secondary battery
JP2014127242A (en) Lithium secondary battery
JP6734059B2 (en) Non-aqueous electrolyte secondary battery
JP2009081049A (en) Nonaqueous electrolyte battery and packed battery
WO2010070805A1 (en) Battery
JP4988169B2 (en) Lithium secondary battery
JP6359454B2 (en) Nonaqueous electrolyte secondary battery
JP2010123331A (en) Nonaqueous electrolyte secondary battery
JP2017084769A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2015195195A (en) Nonaqueous electrolyte secondary battery
JP4017376B2 (en) Lithium secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP2019164965A (en) Lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2014022245A (en) Lithium ion secondary battery and manufacturing method thereof
JP2018018646A (en) Lithium ion secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP6855882B2 (en) Positive electrode and lithium ion secondary battery
JP2020149920A (en) Lithium secondary battery
JP2010205739A (en) Lithium battery
WO2015037522A1 (en) Nonaqueous secondary battery
JP7009903B2 (en) Method for manufacturing laminated structure, lithium secondary battery and laminated structure
JP5786137B2 (en) Cylindrical lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R150 Certificate of patent or registration of utility model

Ref document number: 6754768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250