JP7085147B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP7085147B2
JP7085147B2 JP2019074406A JP2019074406A JP7085147B2 JP 7085147 B2 JP7085147 B2 JP 7085147B2 JP 2019074406 A JP2019074406 A JP 2019074406A JP 2019074406 A JP2019074406 A JP 2019074406A JP 7085147 B2 JP7085147 B2 JP 7085147B2
Authority
JP
Japan
Prior art keywords
positive electrode
insulating layer
active material
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019074406A
Other languages
Japanese (ja)
Other versions
JP2020173941A (en
Inventor
好伸 山田
哲也 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019074406A priority Critical patent/JP7085147B2/en
Priority to US16/832,165 priority patent/US11522253B2/en
Priority to KR1020200042250A priority patent/KR102391375B1/en
Priority to CN202010267602.9A priority patent/CN111799440B/en
Publication of JP2020173941A publication Critical patent/JP2020173941A/en
Application granted granted Critical
Publication of JP7085147B2 publication Critical patent/JP7085147B2/en
Priority to US17/979,108 priority patent/US20230055772A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery.

非水電解質二次電池は、軽量で高いエネルギー密度が得られることから、ポータブル電源や車両搭載用の高出力電源等として好ましく用いられている。この非水電解質二次電池では、正極と負極とがセパレータ等で絶縁された構成の蓄電要素が、一つの電池ケース内に円柱状または楕円柱状に積層捲回された渦巻状電極体を備えている。ここで正極と負極とは、負極でのリチウムイオンの析出を防止するために、負極の幅方向の寸法が正極の幅方向の寸法よりも広くなるように設計されている。例えば特許文献1には、このような二次電池において、正極集電体の表面に、正極活物質層の端部に沿って無機フィラーを含む絶縁層を備えることが開示されている。この絶縁層によって、正極集電体と対向する負極活物質層の端部との間の短絡を防止できることが記載されている。 A non-aqueous electrolyte secondary battery is preferably used as a portable power source, a high output power source for mounting on a vehicle, or the like because it is lightweight and has a high energy density. In this non-aqueous electrolyte secondary battery, a storage element having a positive electrode and a negative electrode insulated by a separator or the like is provided with a spiral electrode body in which a columnar or elliptical columnar layer is wound in one battery case. There is. Here, the positive electrode and the negative electrode are designed so that the widthwise dimension of the negative electrode is wider than the widthwise dimension of the positive electrode in order to prevent the precipitation of lithium ions on the negative electrode. For example, Patent Document 1 discloses that in such a secondary battery, an insulating layer containing an inorganic filler is provided on the surface of the positive electrode current collector along the end portion of the positive electrode active material layer. It is described that this insulating layer can prevent a short circuit between the positive electrode current collector and the end portion of the negative electrode active material layer facing the positive electrode current collector.

特開2017-143004号公報JP-A-2017-143004

ところで、正極集電体のうち集電が行われる集電部は、活物質層が形成されていない非塗工部である。正極の非塗工部は、集電端子に近接して電流密度が高いこと等から正極の高電位によって酸化状態になりやすく、発熱しやすいという課題がある。特に、正極集電体に絶縁層を備える二次電池は、この集電部が絶縁層に覆われるために高温になりやすい。本発明者らの検討によると、正極の非塗工部に絶縁層を備える二次電池であっても、例えば当該電池の発熱によって短絡に至る場合があることを知見した。
本発明は、かかる事情に鑑みてなされたものであり、その目的は、電池が発熱した場合であっても、正極集電体と負極活物質層との間の短絡をより好適に抑制することができる非水電解質二次電池を提供することである。
By the way, among the positive electrode current collectors, the current collector portion where the current collector is performed is a non-coated portion in which the active material layer is not formed. Since the non-coated portion of the positive electrode is close to the current collecting terminal and has a high current density, there is a problem that the high potential of the positive electrode tends to cause an oxidation state and generate heat. In particular, a secondary battery having an insulating layer on a positive electrode current collector tends to have a high temperature because the current collector is covered with the insulating layer. According to the studies by the present inventors, it has been found that even a secondary battery having an insulating layer in the non-coated portion of the positive electrode may cause a short circuit due to heat generation of the battery, for example.
The present invention has been made in view of such circumstances, and an object thereof is to more preferably suppress a short circuit between a positive electrode current collector and a negative electrode active material layer even when the battery generates heat. It is to provide a non-aqueous electrolyte secondary battery that can be used.

上記課題を解決するものとして、ここに開示される技術は、正極と、負極と、上記正極および上記負極とを絶縁するセパレータと、非水電解質と、を備える非水電解質二次電池を提供する。この非水電解質二次電池において、上記正極は、正極集電体と、上記正極集電体の表面の一部に備えられ正極活物質を含む正極活物質層と、上記正極集電体の表面の他の一部であって上記正極活物質層に隣接するように備えられた絶縁層と、を備える。そして上記絶縁層は、無機フィラーとバインダとを含み、かつ、一辺が5cmの正方形の形状に形成された絶縁層評価用サンプルについて、150℃で1時間の加熱処理を施したときの当該絶縁層評価用サンプルの表面に平行な一の方向の熱収縮率が13%以下である。 As a solution to the above problems, the technique disclosed herein provides a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator that insulates the positive electrode and the negative electrode, and a non-aqueous electrolyte. .. In this non-aqueous electrolyte secondary battery, the positive electrode is a positive electrode current collector, a positive electrode active material layer provided on a part of the surface of the positive electrode current collector and containing a positive electrode active material, and a surface of the positive electrode current collector. It is provided with an insulating layer which is another part and is provided adjacent to the positive electrode active material layer. The insulating layer contains an inorganic filler and a binder, and the insulating layer evaluation sample formed in a square shape having a side of 5 cm is heat-treated at 150 ° C. for 1 hour. The heat shrinkage in one direction parallel to the surface of the evaluation sample is 13% or less.

一般的なセパレータは延伸加工されているため、何ら拘束されることなく上記加熱条件に晒されることで、軟化または溶融して容易に(例えば15%以上、典型的には30%近く)熱収縮する。また、一般的なバインダも上記温度で軟化または溶融されるため、正極の絶縁層は何ら拘束されることなく上記加熱条件に晒されることで、容易に(例えば15%以上、典型的には20%近く)熱収縮し得る。その結果、正極の絶縁層に負極活物質層の幅方向の端部(角部であり得る。)が接触すると、絶縁層は容易に変形されて正極集電体と負極活物質層とが短絡し得る。これに対し、ここに開示される構成によると、絶縁層は150℃に加熱された場合であっても面方向での熱収縮率が13%以下に抑制されている。このような熱収縮率を達成する絶縁層は、無機フィラーの存在によってその熱収縮が抑制されている。このような無機フィラーは、セパレータが熱収縮して負極活物質層が接触した場合であっても、負極活物質層が絶縁層を変形して正極集電体に到達するのが困難な構成を実現している。その結果、二次電池が発熱した場合であっても、正極集電体と負極活物質層との間の短絡を好適に抑制することができる。 Since a general separator is stretched, it softens or melts easily (for example, 15% or more, typically close to 30%) by being exposed to the above heating conditions without any restrictions. do. Further, since a general binder is also softened or melted at the above temperature, the insulating layer of the positive electrode is easily exposed to the above heating conditions without being restricted (for example, 15% or more, typically 20). %) Can shrink heat. As a result, when the widthwise end (which may be a corner) of the negative electrode active material layer comes into contact with the insulating layer of the positive electrode, the insulating layer is easily deformed and the positive electrode current collector and the negative electrode active material layer are short-circuited. Can be. On the other hand, according to the configuration disclosed here, the heat shrinkage rate in the plane direction of the insulating layer is suppressed to 13% or less even when heated to 150 ° C. The heat shrinkage of the insulating layer that achieves such a heat shrinkage rate is suppressed by the presence of the inorganic filler. Such an inorganic filler has a configuration in which it is difficult for the negative electrode active material layer to deform the insulating layer and reach the positive electrode current collector even when the separator is thermally shrunk and comes into contact with the negative electrode active material layer. It has been realized. As a result, even when the secondary battery generates heat, it is possible to suitably suppress a short circuit between the positive electrode current collector and the negative electrode active material layer.

本技術に係る非水電解質二次電池の好適な一態様において、上記無機フィラーは板状粒子を含む。無機フィラーは、平均アスペクト比が3以上の板状粒子を含むことが好ましい。このような構成によると、上述の通り絶縁層を150℃に加熱した場合であっても、その熱収縮率を13%以下に好適に抑制することができる。また、例えば内部短絡が生じた場合であっても、当該内部短絡の面積を低減させたり、拡大を抑制したりする効果が得られるために好ましい。 In a preferred embodiment of the non-aqueous electrolyte secondary battery according to the present technique, the inorganic filler contains plate-like particles. The inorganic filler preferably contains plate-like particles having an average aspect ratio of 3 or more. According to such a configuration, even when the insulating layer is heated to 150 ° C. as described above, the heat shrinkage rate can be suitably suppressed to 13% or less. Further, for example, even when an internal short circuit occurs, it is preferable because the effect of reducing the area of the internal short circuit and suppressing the expansion can be obtained.

本技術に係る非水電解質二次電池の好適な一態様において、上記無機フィラーは、ベーマイト粉末およびアルミナ粉末の少なくとも一方である。無機フィラーは、ベーマイト粉末であることが好ましい。無機フィラーとしてこのような粉末を用いることで、耐熱性に優れた絶縁層を簡便に作製することができる。特にアルミナに比べてモース硬度が低いベーマイト粉末を用いることで、製造工程において設備接触部を削るなどして金属異物が発生することを抑制できるために好ましい。 In a preferred embodiment of the non-aqueous electrolyte secondary battery according to the present technique, the inorganic filler is at least one of boehmite powder and alumina powder. The inorganic filler is preferably boehmite powder. By using such a powder as the inorganic filler, an insulating layer having excellent heat resistance can be easily produced. In particular, it is preferable to use boehmite powder, which has a lower Mohs hardness than alumina, because it is possible to suppress the generation of metallic foreign matter by scraping the equipment contact portion in the manufacturing process.

本技術に係る非水電解質二次電池の好適な一態様では、上記無機フィラーにおいて、上記無機フィラーと上記バインダとの合計に占める上記バインダの割合は、30質量%未満である。このような構成によると、上述の通り絶縁層を150℃に加熱した場合であっても、その熱収縮率を13%以下に容易に低減させることができる。 In a preferred embodiment of the non-aqueous electrolyte secondary battery according to the present technique, the ratio of the binder to the total of the inorganic filler and the binder in the inorganic filler is less than 30% by mass. According to such a configuration, even when the insulating layer is heated to 150 ° C. as described above, the heat shrinkage rate can be easily reduced to 13% or less.

本技術に係る非水電解質二次電池の好適な一態様では、上記絶縁層の平均厚みは10μm以下である。二次電池において、軽量化や低コスト化の観点から、正極集電体に設けられる上記絶縁層は嵩および量が少ないことが好ましい。上記熱収縮率が13%以下を達成する絶縁層であれば、平均厚みを10μm以下にした場合であっても、例えば、金属異物に起因する短絡や、その拡大を好適に抑制することができる。その結果、安全性を備えた上で、軽量化や低コスト化が実現された二次電池が提供される。 In a preferred embodiment of the non-aqueous electrolyte secondary battery according to the present technique, the average thickness of the insulating layer is 10 μm or less. In the secondary battery, from the viewpoint of weight reduction and cost reduction, it is preferable that the insulating layer provided on the positive electrode current collector is small in bulk and quantity. As long as the insulating layer achieves the heat shrinkage rate of 13% or less, even when the average thickness is 10 μm or less, for example, a short circuit caused by a metal foreign substance and its expansion can be suitably suppressed. .. As a result, a secondary battery that is safe, lightweight, and low in cost is provided.

以上の非水電解質二次電池は、例えば150℃の高温においても正極集電体(非塗工部)と負極活物質層との短絡が抑制され、高い安全性を備えたものとして提供される。このような高温時の安全性は、例えば、蓄電要素が複数積層された積層構造(積層型電極体や捲回型電極体を含む)を備え、ハイレートで大電流を繰り返し充放電する、電池自体の充放電により高温になりやすい用途の二次電池に好適に適用することができる。また、上記の高い安全性は、ヒトが密接に使用し高い安全性が要求される用途の二次電池に好適に適用することができる。したがって、ここに開示される非水電解質二次電池は、車両の駆動用電源(主電源)、中でも例えばハイブリッド自動車やプラグインハイブリッド自動車等の駆動用電源等として特に好適に利用することができる。 The above non-aqueous electrolyte secondary battery is provided as having high safety by suppressing a short circuit between the positive electrode current collector (non-coated portion) and the negative electrode active material layer even at a high temperature of, for example, 150 ° C. .. For safety at such a high temperature, for example, the battery itself has a laminated structure (including a laminated electrode body and a wound electrode body) in which a plurality of power storage elements are laminated, and repeatedly charges and discharges a large current at a high rate. It can be suitably applied to a secondary battery for applications where the temperature tends to be high due to charging and discharging. In addition, the above-mentioned high safety can be suitably applied to a secondary battery for applications that are closely used by humans and require high safety. Therefore, the non-aqueous electrolyte secondary battery disclosed herein can be particularly preferably used as a driving power source (main power source) for a vehicle, particularly as a driving power source for a hybrid vehicle, a plug-in hybrid vehicle, or the like.

一実施形態に係る非水電解質二次電池の構成を模式的に示す切欠き斜視図である。It is a notch perspective view schematically showing the structure of the non-aqueous electrolyte secondary battery which concerns on one Embodiment. 捲回型電極体の構成を説明する部分展開図である。It is a partially developed view explaining the structure of the winding type electrode body. 一実施形態に係る非水電解質二次電池の要部断面図である。It is sectional drawing of the main part of the non-aqueous electrolyte secondary battery which concerns on one Embodiment. (a)(b)は、絶縁層に含まれる無機フィラーの形状の影響について説明する断面模式図である。(A) and (b) are schematic cross-sectional views illustrating the influence of the shape of the inorganic filler contained in the insulating layer. 実施例で作製した電極体の構成を説明する断面模式図である。It is sectional drawing which explains the structure of the electrode body produced in an Example. 実施例で使用した金属異物片の構成を説明する斜視図である。It is a perspective view explaining the structure of the metal foreign matter piece used in an Example.

以下、ここに開示される非水電解質二次電池の一実施形態について説明する。なお、本明細書において特に言及している事項(例えば、絶縁層の構成等)以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない二次電池の構造や製造プロセス等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、下記に示す図面における寸法関係(長さ、幅、厚さ等)は必ずしも実際の寸法関係を反映するものではない。そして本明細書において数値範囲を示す「A~B」との表記は、「A以上B以下」を意味する。 Hereinafter, an embodiment of the non-aqueous electrolyte secondary battery disclosed herein will be described. It should be noted that matters other than those specifically mentioned in the present specification (for example, the configuration of the insulating layer, etc.) and necessary for carrying out the present invention (for example, the structure of the secondary battery which does not characterize the present invention) and the like. The manufacturing process, etc.) can be grasped as a design matter of a person skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in the present specification and the common general technical knowledge in the art. Further, the dimensional relations (length, width, thickness, etc.) in the drawings shown below do not necessarily reflect the actual dimensional relations. In the present specification, the notation "A to B" indicating a numerical range means "A or more and B or less".

本明細書において「非水電解質二次電池」とは、電荷担体として非水電解質を用い、正負極間の電荷担体の移動に伴って繰り返しの充放電が可能な電池一般をいう。非水電解質二次電池における電解質は、例えば、非水電解液、ゲル状電解質、固体電解質のいずれであってもよい。このような非水電解質二次電池には、一般にリチウムイオン電池やリチウム二次電池等と称される電池の他、リチウムポリマー電池、リチウムイオンキャパシタ等が包含される。以下、非水電解液二次電池がリチウムイオン二次電池である場合を例にして、ここに開示される技術について説明する。 As used herein, the term "non-aqueous electrolyte secondary battery" refers to a general battery that uses a non-aqueous electrolyte as a charge carrier and can be repeatedly charged and discharged as the charge carrier moves between the positive and negative electrodes. The electrolyte in the non-aqueous electrolyte secondary battery may be, for example, a non-aqueous electrolyte solution, a gel-like electrolyte, or a solid electrolyte. Such a non-aqueous electrolyte secondary battery includes a battery generally called a lithium ion battery, a lithium secondary battery, or the like, a lithium polymer battery, a lithium ion capacitor, or the like. Hereinafter, the techniques disclosed herein will be described by taking as an example the case where the non-aqueous electrolyte secondary battery is a lithium ion secondary battery.

[リチウムイオン二次電池]
図1は、一実施形態に係るリチウムイオン二次電池(以下、単に「二次電池」等という。)1の構成を示す切欠き斜視図である。このリチウムイオン二次電池1は、正極30と負極40とセパレータ50とを含む捲回型電極体20が非水電解液(図示せず)とともに電池ケース10に収容されることで構成されている。図中のWは、電池ケース10および捲回型電極体20の幅方向を示し、図2に示す捲回型電極体20の捲回軸WLと一致する方向である。図2に示すように、電極体20は、セパレータ50と負極40とセパレータ50と正極30とをこの順に積層することで構成されている。図3は、電極体20の要部断面図である。
[Lithium-ion secondary battery]
FIG. 1 is a notched perspective view showing the configuration of a lithium ion secondary battery (hereinafter, simply referred to as “secondary battery” or the like) 1 according to an embodiment. The lithium ion secondary battery 1 is configured such that a wound electrode body 20 including a positive electrode 30, a negative electrode 40, and a separator 50 is housed in a battery case 10 together with a non-aqueous electrolytic solution (not shown). .. W in the figure indicates the width direction of the battery case 10 and the winding type electrode body 20, and is a direction corresponding to the winding axis WL of the winding type electrode body 20 shown in FIG. As shown in FIG. 2, the electrode body 20 is configured by laminating a separator 50, a negative electrode 40, a separator 50, and a positive electrode 30 in this order. FIG. 3 is a cross-sectional view of a main part of the electrode body 20.

正極30は、正極集電体32と、正極活物質層34と、絶縁層36とを備えている。
正極活物質層34は、正極活物質を含む多孔質体であり、電解液を含浸し得る。正極活物質は、電荷担体であるリチウムイオンを、電解液に放出または電解液から吸蔵する。正極活物質層34は、付加的に、導電材やリン酸三リチウム(LiPO;以下、単に「LPO」と記す)を含むことができる。正極活物質層34は、正極集電体32の表面(片面または両面)の一部に備えられる。正極集電体32は、正極活物質層34を保持し、正極活物質層34に電荷を供給したり回収したりするための部材である。正極集電体32は、電池内の正極環境において電気化学的に安定であり、導電性の良好な金属(例えばアルミニウム、アルミニウム合金、ニッケル、チタン、ステンレス鋼等)からなる導電性部材により好適に構成される。
The positive electrode 30 includes a positive electrode current collector 32, a positive electrode active material layer 34, and an insulating layer 36.
The positive electrode active material layer 34 is a porous body containing the positive electrode active material and may be impregnated with the electrolytic solution. The positive electrode active material releases lithium ions, which are charge carriers, into or occludes the electrolytic solution. The positive electrode active material layer 34 can additionally contain a conductive material and trilithium phosphate (Li 3 PO 4 ; hereinafter, simply referred to as “LPO”). The positive electrode active material layer 34 is provided on a part of the surface (one side or both sides) of the positive electrode current collector 32. The positive electrode current collector 32 is a member that holds the positive electrode active material layer 34 and supplies and recovers electric charges to the positive electrode active material layer 34. The positive electrode current collector 32 is preferably electrochemically stable in the positive electrode environment in the battery, and is more preferably made of a conductive member made of a metal having good conductivity (for example, aluminum, aluminum alloy, nickel, titanium, stainless steel, etc.). It is composed.

正極活物質層34は、典型的には、粒状の正極活物質が導電材と共にバインダ(結着剤)により互いに結合されるとともに、正極集電体32に接合されている。正極活物質としては、従来からリチウムイオン二次電池の正極活物質として用いられる各種の材料を特に制限なく使用することができる。好適例として、リチウムニッケル酸化物(例えばLiNiO)、リチウムコバルト酸化物(例えばLiCoO)、リチウムマンガン酸化物(例えばLiMn)や、これらの複合体(例えば、LiNi0.5Mn1.5、LiNi1/3Co1/3Mn1/3)等の、リチウムと遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)の粒子や、リン酸マンガンリチウム(LiMnPO)、リン酸鉄リチウム(LiFePO)等の、リチウムと遷移金属元素とを構成金属元素として含むリン酸塩の粒子等が挙げられる。このような正極活物質層34は、例えば、正極活物質と導電材とバインダ(例えば、メタクリル酸エステル重合体等のアクリル系樹脂、ポリフッ化ビニリデン(PVdF)等のハロゲン化ビニル樹脂、ポリエチレンオキサイド(PEO)等のポリアルキレンオキサイド等)とを適当な分散媒(例えばN-メチル-2-ピロリドン)に分散させてなる正極ペーストを、正極集電体32の表面に供給した後、乾燥して分散媒を除去することにより作製することができる。導電材を含む構成においては、導電材として、例えば、カーボンブラック(典型的にはアセチレンブラック、ケッチェンブラック)、活性炭、黒鉛、炭素繊維等の炭素材料を好適に用いることができる。これらはいずれか1種を単独で、あるいは2種以上を組み合わせて用いてもよい。 The positive electrode active material layer 34 is typically bonded to the positive electrode current collector 32 while the granular positive electrode active material is bonded to each other together with the conductive material by a binder (binding agent). As the positive electrode active material, various materials conventionally used as the positive electrode active material of the lithium ion secondary battery can be used without particular limitation. Suitable examples include lithium nickel oxide (eg LiNiO 2 ), lithium cobalt oxide (eg LiCoO 2 ), lithium manganese oxide (eg LiMn 2 O 4 ) and composites thereof (eg LiNi 0.5 Mn 1 ). .5 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) and other oxide particles containing lithium and transition metal elements as constituent metal elements (lithium transition metal oxide particles) and phosphoric acid Examples thereof include phosphate particles containing lithium and a transition metal element as constituent metal elements such as lithium manganese (LiMnPO 4 ) and lithium iron phosphate (LiFePO 4 ). Such a positive electrode active material layer 34 may be, for example, a positive electrode active material, a conductive material, a binder (for example, an acrylic resin such as a methacrylic acid ester polymer, a vinylidene halide resin such as polyvinylidene fluoride (PVdF), or a polyethylene oxide (for example). A positive electrode paste obtained by dispersing polyalkylene oxide such as PEO) in an appropriate dispersion medium (for example, N-methyl-2-pyrrolidone) is supplied to the surface of the positive electrode current collector 32, and then dried and dispersed. It can be produced by removing the medium. In the configuration including the conductive material, for example, a carbon material such as carbon black (typically acetylene black or Ketjen black), activated carbon, graphite, carbon fiber or the like can be preferably used as the conductive material. Any one of these may be used alone or in combination of two or more.

正極活物質粒子の平均粒子径(D50)は特に制限されず、典型的には1μm以上、好ましくは3μm以上、例えば5μm以上であり、典型的には15μm以下、好ましくは10μm以下、例えば8μm以下である。正極活物質層34全体に占める正極活物質の割合は、およそ75質量%以上、典型的には80質量%以上、例えば85質量%以上であってよく、典型的には99質量%以下、例えば95質量%以下であり得る。正極活物質層34における導電材の割合は、正極活物質100質量部に対して、典型的には1質量部以上、好ましくは3質量部以上、例えば5質量部以上であり、典型的には15質量部以下、好ましくは12質量部以下、例えば10質量部以下である。正極活物質層34におけるバインダの割合は、正極活物質100質量部に対して、典型的には0.5質量部以上、好ましくは1質量部以上、例えば1.5質量部以上であり、典型的には10質量部以下、好ましくは8質量部以下、例えば5質量部以下とすることができる。また、正極活物質層34のプレス後の厚み(平均厚みである。以下同じ。)は、典型的には10μm以上、例えば15μm以上であって、典型的には50μm以下、30μm以下、例えば25μm以下とすることができる。また、正極活物質層34の密度は特に限定されないが、典型的には1.5g/cm以上、例えば2g/cm以上であって、3g/cm以下、例えば2.5g/cm以下とすることができる。
なお、本明細書において「平均粒子径」とは、特に断りのない限り、レーザ回折散乱法によって得られる体積基準の粒度分布における累積50%粒子径(D50)である。また、当該粒度分布における小粒径側からの累積10%に相当する粒子径をD10、累積90%に相当する粒子径をD90、最大頻度径をDmaxという。
The average particle size (D 50 ) of the positive electrode active material particles is not particularly limited, and is typically 1 μm or more, preferably 3 μm or more, for example 5 μm or more, typically 15 μm or less, preferably 10 μm or less, for example 8 μm. It is as follows. The ratio of the positive electrode active material to the entire positive electrode active material layer 34 may be about 75% by mass or more, typically 80% by mass or more, for example 85% by mass or more, and typically 99% by mass or less, for example. It can be 95% by weight or less. The ratio of the conductive material in the positive electrode active material layer 34 is typically 1 part by mass or more, preferably 3 parts by mass or more, for example, 5 parts by mass or more, and typically 5 parts by mass or more, with respect to 100 parts by mass of the positive electrode active material. It is 15 parts by mass or less, preferably 12 parts by mass or less, for example, 10 parts by mass or less. The ratio of the binder in the positive electrode active material layer 34 is typically 0.5 parts by mass or more, preferably 1 part by mass or more, for example 1.5 parts by mass or more, with respect to 100 parts by mass of the positive electrode active material. It can be 10 parts by mass or less, preferably 8 parts by mass or less, for example, 5 parts by mass or less. The thickness of the positive electrode active material layer 34 after pressing (average thickness; the same applies hereinafter) is typically 10 μm or more, for example 15 μm or more, and typically 50 μm or less, 30 μm or less, for example 25 μm. It can be as follows. The density of the positive electrode active material layer 34 is not particularly limited, but is typically 1.5 g / cm 3 or more, for example 2 g / cm 3 or more, and 3 g / cm 3 or less, for example 2.5 g / cm 3 . It can be as follows.
In the present specification, the "average particle size" is a cumulative 50% particle size (D 50 ) in the volume-based particle size distribution obtained by the laser diffraction / scattering method, unless otherwise specified. Further, the particle size corresponding to the cumulative 10% from the small particle size side in the particle size distribution is called D 10 , the particle size corresponding to the cumulative 90% is called D 90 , and the maximum frequency diameter is called D max .

なお、本発明者らのこれまでの検討によると、正極活物質層34がLPOを含む構成において、LPOは電解液が酸化分解される等して発生する酸と反応し、リン酸イオン(PO 3-)となって溶出する。このリン酸イオンは負極に到達し、負極の発熱反応を好適に抑制する被膜を形成して二次電池の過充電耐性を好適に向上させ得る。二次電池1の発熱を抑制するとの観点から、正極活物質層34がLPOを含む構成は好ましい態様であり得る。正極活物質層34がLPOを含む場合、LPOの割合は、LPOによる過充電耐性の向上効果と、正極作製時の正極ペーストの粘度上昇および生産性向上とを両立させる観点から、正極活物質100質量部に対し、LPOは0.88~8.8質量部とすることが好適である。また、LPOの比表面積は、過充電耐性の向上と反応抵抗の低減とを両立するとの観点から、0.9~20.3m/gとすることが好適である。また、LPOの平均粒子径は、1μm以上が好ましく、2μm以上がより好ましく、例えば2.5μm以上であってよく、30μm以下が好ましく、8μm以下がより好ましく、例えば5μm以下であってよい。LPOのD90は、60μm以下が好ましく、40μm以下がより好ましく、20μm以下であってよい。LPOのD10は、0.3μm以上が好ましく、0.6μm以上がより好ましく、0.8μm以上であってよい。なお、Dmaxは、80μm以下が好ましく、60μm以下がより好ましく、50μm以下であるとよい。 According to the studies by the present inventors so far, in the configuration where the positive electrode active material layer 34 contains LPO, the LPO reacts with the acid generated by the oxidative decomposition of the electrolytic solution and the like, and the phosphate ion (PO). It becomes 4 3- ) and elutes. The phosphate ion reaches the negative electrode and can form a film that suitably suppresses the exothermic reaction of the negative electrode to suitably improve the overcharge resistance of the secondary battery. From the viewpoint of suppressing heat generation of the secondary battery 1, a configuration in which the positive electrode active material layer 34 contains LPO may be a preferred embodiment. When the positive electrode active material layer 34 contains LPO, the ratio of LPO is the positive electrode active material 100 from the viewpoint of achieving both the effect of improving the overcharge resistance by LPO and the increase in viscosity and productivity of the positive electrode paste at the time of producing the positive electrode. It is preferable that the LPO is 0.88 to 8.8 parts by mass with respect to the mass part. Further, the specific surface area of the LPO is preferably 0.9 to 20.3 m 2 / g from the viewpoint of achieving both improvement of overcharge resistance and reduction of reaction resistance. The average particle size of the LPO is preferably 1 μm or more, more preferably 2 μm or more, for example, 2.5 μm or more, preferably 30 μm or less, more preferably 8 μm or less, and for example, 5 μm or less. The D 90 of LPO is preferably 60 μm or less, more preferably 40 μm or less, and may be 20 μm or less. The D 10 of LPO is preferably 0.3 μm or more, more preferably 0.6 μm or more, and may be 0.8 μm or more. The D max is preferably 80 μm or less, more preferably 60 μm or less, and preferably 50 μm or less.

絶縁層36は、無機フィラーとバインダとを含み、電気絶縁性を備える。このような絶縁層36は、典型的には、無機フィラーがバインダによって、互いにまた正極集電体32に結着されることで形成される。絶縁層36は、電荷担体の通過を可能とする多孔質な層であってよい。絶縁層36は、図2,3に示されるように、正極集電体32の表面(片面または両面)の一部であって、正極活物質層34に隣接する領域に設けられる。換言すれば、絶縁層36は、正極活物質層34の幅方向の端部に沿って設けられる。絶縁層36は、正極活物質層34に隣接する領域(正極活物質層34が形成されていない領域)であって、少なくとも負極活物質層44と対向する領域に設けられている。一例では、図3に示すように、絶縁層36は幅方向で負極活物質層44よりも外側(図で左側)に寸法αだけ突出してもよい。寸法αは、負極活物質層44に位置ズレが生じた場合であっても、負極活物質層44と正極集電体32とがセパレータ50のみを介して対向する事態を回避するよう、負極活物質層44の端部を絶縁層36が十分にカバーし得る寸法に設計されている。また、寸法αは、高温環境において絶縁層36が熱収縮した場合でも、負極活物質層44の端部を十分にカバーし得る寸法に設計されていてもよい。なお、寸法αは、集電体32(非塗工部32A)の集箔不良を避けるために、絶縁層36が幅方向でセパレータ50の端部からはみ出さない程度の寸法に設計されているとよい。寸法αは、これに限定されるものではないが、例えば、正極活物質層34から負極活物質層44が突出している寸法の、113%以上であってよく、例えば150%以下であってもよい。絶縁層36の正極活物質層34に隣接しない側には、集電のために正極集電体32が露出している非塗工部32Aが設けられている。 The insulating layer 36 contains an inorganic filler and a binder, and has electrical insulating properties. Such an insulating layer 36 is typically formed by binding inorganic fillers to each other and to the positive electrode current collector 32 by a binder. The insulating layer 36 may be a porous layer that allows the passage of charge carriers. As shown in FIGS. 2 and 3, the insulating layer 36 is a part of the surface (one side or both sides) of the positive electrode current collector 32 and is provided in a region adjacent to the positive electrode active material layer 34. In other words, the insulating layer 36 is provided along the widthwise end of the positive electrode active material layer 34. The insulating layer 36 is provided in a region adjacent to the positive electrode active material layer 34 (a region in which the positive electrode active material layer 34 is not formed) and at least in a region facing the negative electrode active material layer 44. In one example, as shown in FIG. 3, the insulating layer 36 may project outward (on the left side in the figure) by the dimension α from the negative electrode active material layer 44 in the width direction. The dimension α is such that even if the negative electrode active material layer 44 is displaced, the negative electrode active material layer 44 and the positive electrode current collector 32 face each other only through the separator 50. The dimensions are designed so that the insulating layer 36 can sufficiently cover the end portion of the material layer 44. Further, the dimension α may be designed to have a dimension that can sufficiently cover the end portion of the negative electrode active material layer 44 even when the insulating layer 36 is thermally shrunk in a high temperature environment. The dimension α is designed so that the insulating layer 36 does not protrude from the end of the separator 50 in the width direction in order to avoid poor foil collection of the current collector 32 (non-coated portion 32A). It is good. The dimension α is not limited to this, but may be, for example, 113% or more, for example, 150% or less of the dimension in which the negative electrode active material layer 44 protrudes from the positive electrode active material layer 34. good. On the side of the insulating layer 36 that is not adjacent to the positive electrode active material layer 34, a non-coated portion 32A in which the positive electrode current collector 32 is exposed for current collection is provided.

このような絶縁層36を構成する無機フィラーとしては、600℃以上、典型的には700℃以上、例えば900℃以上の温度で軟化や溶融をせず、正負極間の絶縁を維持し得る程度の耐熱性、電気化学的安定性を備える材料を用いることができる。典型的には、上記の耐熱性および絶縁性を備える無機材料、ガラス材料、およびこれらの複合材料などにより構成することができる。このような無機フィラーとしては、具体的には、アルミナ(Al)、マグネシア(MgO)、シリカ(SiO)、チタニア(TiO)等の無機酸化物、窒化アルミニウム、窒化ケイ素等の窒化物、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物、マイカ、タルク、ベーマイト、ゼオライト、アパタイト、カオリン等の粘土鉱物、ガラス材料等が挙げられる。なかでも、無機フィラーとしては、品質が安定しているうえに安価で入手が容易なベーマイト(Al・HO)、アルミナ(Al)、シリカ(SiO)等を用いるのが好ましく、適切な硬度を備えるベーマイトがより好ましい。これらはいずれか1種を単独で含んでもよいし、2種以上を組み合わせて含んでもよい。 The inorganic filler constituting such an insulating layer 36 does not soften or melt at a temperature of 600 ° C. or higher, typically 700 ° C. or higher, for example, 900 ° C. or higher, and can maintain insulation between positive and negative electrodes. A material having heat resistance and electrochemical stability can be used. Typically, it can be composed of the above-mentioned heat-resistant and insulating inorganic materials, glass materials, and composite materials thereof. Specific examples of such an inorganic filler include inorganic oxides such as alumina (Al 2 O 3 ), magnesia (MgO), silica (SiO 2 ), and titania (TIO 2 ), aluminum hydroxide, and silicon nitride. Examples thereof include metal hydroxides such as nitrides, calcium hydroxide, magnesium hydroxide and aluminum hydroxide, clay minerals such as mica, talc, boehmite, zeolite, apatite and kaolin, and glass materials. Among them, as the inorganic filler, boehmite (Al 2 O 3・ H 2 O), alumina (Al 2 O 3 ), silica (SiO 2 ), etc., which have stable quality and are inexpensive and easily available, are used. Is preferable, and boehmite having an appropriate hardness is more preferable. These may contain any one kind alone, or may contain two or more kinds in combination.

絶縁層36に含まれるバインダとしては、例えば上記正極活物質層に用いることができる各種のバインダを好ましく用いることができる。中でも、バインダとしては、複数の正極集電体32を束ねて集電するときの柔軟性を絶縁層36に付与しつつ、適切な厚みの絶縁層36を好適に形成するとの観点から、ポリフッ化ビニリデン(PVdF)等のハロゲン化ビニル樹脂を好ましく用いることができる。絶縁層36に含まれるバインダの割合は、例えば、典型的には1質量%以上であり、5質量%以上が好ましく、8質量%以上や10質量%以上などであってよい。絶縁層36に含まれるバインダは、例えば、典型的には30質量%以下であり、25質量%以下であってよく、20質量%以下や、18質量%以下、15質量%以下であってよい。代表的な一例として、5~20質量%で適宜調整するとよい。なお、このような絶縁層36は、目付量がおおよそ0.5mg/cm以上、0.7mg/cm以上、1mg/cm以上などであるとよく、1.5mg/cm以下、1.3mg/cm以下、1.2mg/cm以下などであるとよい。 As the binder contained in the insulating layer 36, for example, various binders that can be used for the positive electrode active material layer can be preferably used. Among them, the binder is made of polyvinylidene from the viewpoint of appropriately forming the insulating layer 36 having an appropriate thickness while imparting the flexibility when collecting a plurality of positive electrode current collectors 32 to the insulating layer 36. A vinyl halide resin such as vinylidene (PVdF) can be preferably used. The proportion of the binder contained in the insulating layer 36 is typically 1% by mass or more, preferably 5% by mass or more, and may be 8% by mass or more, 10% by mass or more, and the like. The binder contained in the insulating layer 36 is typically, for example, 30% by mass or less, 25% by mass or less, 20% by mass or less, 18% by mass or less, and 15% by mass or less. .. As a typical example, it may be appropriately adjusted at 5 to 20% by mass. The insulating layer 36 may have a grain size of approximately 0.5 mg / cm 2 or more, 0.7 mg / cm 2 or more, 1 mg / cm 2 or more, 1.5 mg / cm 2 or less, and 1 It is preferable that the amount is 3 mg / cm 2 or less, 1.2 mg / cm 2 or less, and the like.

絶縁層36は、例えば、二次電池1が150℃の高温環境に晒された場合であっても、正極集電体32と負極活物質層44との短絡を防止できるように構成されている。150℃とは、一般的なシャットダウン機能を備えるセパレータに設計されるシャットダウン温度よりも有意に高い値である。すなわち、絶縁層36は、一辺が5cmの正方形の形状に形成された絶縁層評価用サンプルについて、150℃で1時間の加熱処理を施したときの当該絶縁層評価用サンプルの表面に平行な一の方向の熱収縮率が13%以下である。絶縁層36は、正極集電体32上に形成されるものの、その表面はセパレータ等の他の部材によって拘束されない。したがって、上記の熱収縮率は、絶縁層36と同様に作製した絶縁層評価用サンプルについて、当該絶縁層評価用サンプルが独立した状態で測定する値である。言い換えれば、上記の熱収縮率は、絶縁層評価用サンプルの面方向の収縮が制限されない状態で測定する。例えば、絶縁層評価用サンプルが基材等から離型された状態で、加熱炉の天板や試料ケース等に載置して加熱されたときの熱収縮率である。したがって、上記の熱収縮率は、基材の表面に形成されたままの状態や、積層電極体の内部における積層状態を模擬するための板材等によって挟まれた状態など、絶縁層評価用サンプルの面方向の収縮が制限される条件で測定される熱収縮率等とは明確に区別されるものである。絶縁層評価用サンプルの熱収縮率の測定方法は、例えば、後述の実施例に記載の方法によって好適に測定することができる。 The insulating layer 36 is configured to prevent a short circuit between the positive electrode current collector 32 and the negative electrode active material layer 44 even when the secondary battery 1 is exposed to a high temperature environment of, for example, 150 ° C. .. 150 ° C. is a value significantly higher than the shutdown temperature designed for a separator having a general shutdown function. That is, the insulating layer 36 is parallel to the surface of the insulating layer evaluation sample formed in a square shape having a side of 5 cm and subjected to heat treatment at 150 ° C. for 1 hour. The heat shrinkage rate in the direction of is 13% or less. Although the insulating layer 36 is formed on the positive electrode current collector 32, its surface is not constrained by other members such as a separator. Therefore, the above-mentioned heat shrinkage rate is a value measured in an independent state of the insulating layer evaluation sample prepared in the same manner as the insulating layer 36. In other words, the heat shrinkage rate is measured in a state where the shrinkage in the plane direction of the insulating layer evaluation sample is not limited. For example, it is a heat shrinkage rate when a sample for evaluation of an insulating layer is placed on a top plate of a heating furnace, a sample case, or the like and heated in a state where the sample is released from a base material or the like. Therefore, the heat shrinkage rate of the sample for evaluation of the insulating layer, such as the state of being formed on the surface of the base material or the state of being sandwiched by a plate material or the like for simulating the laminated state inside the laminated electrode body. It is clearly distinguished from the heat shrinkage rate and the like measured under the condition that the shrinkage in the plane direction is restricted. The method for measuring the heat shrinkage of the insulating layer evaluation sample can be preferably measured by, for example, the method described in Examples described later.

絶縁層評価用サンプルの熱収縮率は、13%以下であると、バインダが軟化または溶融した状態であっても、無機フィラーによってそれ以上の熱収縮が抑制された状態であるといえる。したがって、無機フィラーの存在によって、絶縁層36に物理的な力が作用してもその変形(収縮)が抑制されて、絶縁性を保つことができる。熱収縮率は、12%以下が好ましく、10%以下がより好ましく、例えば、8%以下や、6%以下、4%以下であってよい。熱収縮率の下限は0%であってよいが、熱収縮率は1%以上、例えば2%以上であっても高温時に十分な絶縁性を保つことができる。 When the heat shrinkage rate of the insulating layer evaluation sample is 13% or less, it can be said that even if the binder is softened or melted, further heat shrinkage is suppressed by the inorganic filler. Therefore, due to the presence of the inorganic filler, even if a physical force acts on the insulating layer 36, its deformation (shrinkage) is suppressed, and the insulating property can be maintained. The heat shrinkage rate is preferably 12% or less, more preferably 10% or less, and may be, for example, 8% or less, 6% or less, or 4% or less. The lower limit of the heat shrinkage rate may be 0%, but even if the heat shrinkage rate is 1% or more, for example, 2% or more, sufficient insulation can be maintained at high temperatures.

無機フィラーは、その形状は特に制限されず、例えば球状、粒状、板状、または繊維状の各種の形状であってよい。上記の熱収縮率を好適に実現するとの観点からは、無機フィラーは、板状粒子を含む粉末により構成されていることが好ましい。板状粒子は、形状異方性を有する。無機フィラーを構成する粒子が板状粒子であることで、図4(a)に示すように、板状粒子の平面が絶縁層36の表面とほぼ平行になるように、絶縁層36中で無機フィラー36aを面配向させることができる。このような絶縁層36中で、無機フィラー36aが厚み方向に移動するには、移動方向に存在する無機フィラー36aを全て移動させる必要があるために大きな抵抗が作用する。絶縁層36中で、無機フィラー36aが面方向に移動するには、面方向で隣り合う粒子との間隙の分だけは容易に移動できるものの、更に移動するには、移動方向に存在する無機フィラー36aを全て移動させる必要があるため大きな抵抗が作用する。このことにより、絶縁層36が面方向で収縮する際にも、ある程度収縮した後は大きな抵抗が作用する。その結果、無機フィラー36aが板状粒子によって構成される場合は、絶縁層36の面方向の収縮率(熱収縮率を含む)は相対的に小さく制限される。 The shape of the inorganic filler is not particularly limited, and may be various shapes such as spherical, granular, plate-like, or fibrous. From the viewpoint of preferably achieving the above heat shrinkage rate, the inorganic filler is preferably composed of a powder containing plate-like particles. The plate-like particles have shape anisotropy. Since the particles constituting the inorganic filler are plate-shaped particles, as shown in FIG. 4A, the plate-shaped particles are inorganic in the insulating layer 36 so that the plane of the plate-shaped particles is substantially parallel to the surface of the insulating layer 36. The filler 36a can be plane-oriented. In such an insulating layer 36, in order for the inorganic filler 36a to move in the thickness direction, it is necessary to move all the inorganic fillers 36a existing in the moving direction, so that a large resistance acts. In the insulating layer 36, in order for the inorganic filler 36a to move in the plane direction, only the gap between the particles adjacent to each other in the plane direction can be easily moved, but in order to move further, the inorganic filler existing in the moving direction is present. Since it is necessary to move all 36a, a large resistance acts. As a result, even when the insulating layer 36 shrinks in the plane direction, a large resistance acts after the insulating layer 36 shrinks to some extent. As a result, when the inorganic filler 36a is composed of plate-like particles, the shrinkage rate (including the heat shrinkage rate) in the plane direction of the insulating layer 36 is relatively small and limited.

ここで板状粒子とは、いわゆる球状粒子と比較して、一つの次元の寸法が有意に小さい(例えば80%以下、50%以下、40%以下、30%以下であり得る)、換言すれば扁平で厚みが薄い粒子のことを言う。したがって、板状粒子は、例えば鱗片状粒子等と表現される粒子を含み得る。しかしながら、二つの次元の寸法が有意に小さい、例えば棒状、針状と表現される粒子は板状粒子に含まれない。無機フィラーが板状粒子を含むとは、無機フィラーを構成する粒子のうち50個数%以上(好ましくは80個数%以上)が、アスペクト比が1.2以上(例えば1.5以上、2以上、2.5以上、3以上)の板状粒子であることを意味する。この板状粒子の割合は、適切な倍率による電子顕微鏡(典型的には、透過型電子顕微鏡(TEM)。以下同じ。)観察において、100個以上の無機フィラー粒子について観察した結果により算出するとよい。 Here, the plate-like particles are significantly smaller in one dimension than the so-called spherical particles (for example, 80% or less, 50% or less, 40% or less, 30% or less), in other words. Flat and thin particles. Therefore, the plate-like particles may include particles expressed as, for example, scaly particles and the like. However, particles whose dimensions in the two dimensions are significantly smaller, such as rod-shaped and needle-shaped particles, are not included in the plate-shaped particles. When the inorganic filler contains plate-like particles, 50% or more (preferably 80% or more) of the particles constituting the inorganic filler have an aspect ratio of 1.2 or more (for example, 1.5 or more and 2 or more). It means that it is a plate-like particle of 2.5 or more and 3 or more). The ratio of the plate-like particles may be calculated based on the results of observing 100 or more inorganic filler particles in an electron microscope (typically, a transmission electron microscope (TEM); the same applies hereinafter) at an appropriate magnification. ..

なお、無機フィラーの平均アスペクト比は、2.5以上が適切であり、好ましくは3以上、例えば4以上、5以上、6以上、7以上、8以上であってよい。無機フィラーの平均アスペクト比の上限は特に制限されず、ハンドリングの容易さと粒子強度などの観点から、一例として20以下程度を目安としてもよい。また、本明細書における「平均アスペクト比」は、20以上の無機フィラー粒子について、電子顕微鏡による観察によって測定される、無機フィラー粒子の厚みに対する平面視における直径の比(直径/厚み)の算術平均値である。直径は、例えば、無機フィラー粒子の二軸平均径を採用することができる。厚みは、例えば、無機フィラー粒子の2点以上の厚みの算術平均値を採用することができる。 The average aspect ratio of the inorganic filler is preferably 2.5 or more, and preferably 3 or more, for example, 4 or more, 5 or more, 6 or more, 7 or more, or 8 or more. The upper limit of the average aspect ratio of the inorganic filler is not particularly limited, and from the viewpoint of ease of handling and particle strength, an example of about 20 or less may be used as a guide. Further, the "average aspect ratio" in the present specification is an arithmetic mean of the ratio (diameter / thickness) of the diameter in a plan view to the thickness of the inorganic filler particles measured by observation with an electron microscope for 20 or more inorganic filler particles. The value. As the diameter, for example, the biaxial average diameter of the inorganic filler particles can be adopted. For the thickness, for example, an arithmetic mean value of the thickness of two or more points of the inorganic filler particles can be adopted.

これに対し、球状粒子の形状異方性は小さい。そのため、無機フィラーを構成する粒子が球状粒子である場合、図4(b)に示すように、絶縁層36中で球状粒子はランダムに存在し得る。絶縁層36中で、無機フィラー36aが面方向に移動するには、面方向で隣り合う粒子と接触するまでは面方向に容易に移動したのち、隣り合う粒子に接触したときは、当該粒子自体が周辺の間隙の方向に移動させることで、厚み方向ないしは面方向に更に移動することができる。また、隣り合う粒子に接触したときは、接触した粒子を周辺の間隙の方向に移動させることで、当該粒子は更に面方向に移動することができる。このときの抵抗は、球状粒子の充填状態が高くなるまでは、板状粒子が移動するときの抵抗よりも小さいものであり得る。その結果、無機フィラー36aが球状粒子によって構成される場合は、絶縁層36の面方向の収縮率(熱収縮率を含む)が相対的に大きくなる。 On the other hand, the shape anisotropy of spherical particles is small. Therefore, when the particles constituting the inorganic filler are spherical particles, the spherical particles may randomly exist in the insulating layer 36 as shown in FIG. 4 (b). In the insulating layer 36, in order for the inorganic filler 36a to move in the plane direction, the inorganic filler 36a easily moves in the plane direction until it comes into contact with adjacent particles in the plane direction, and then when it comes into contact with the adjacent particles, the particles themselves. By moving the particles in the direction of the peripheral gaps, the particles can be further moved in the thickness direction or the surface direction. Further, when the particles come into contact with adjacent particles, the particles can be further moved in the plane direction by moving the contacted particles in the direction of the peripheral gaps. The resistance at this time may be smaller than the resistance when the plate-shaped particles move until the filled state of the spherical particles becomes high. As a result, when the inorganic filler 36a is composed of spherical particles, the shrinkage rate (including the heat shrinkage rate) in the surface direction of the insulating layer 36 becomes relatively large.

絶縁層36の厚み(平均厚み。以下同じ。)は厳密には制限されないものの、例えば正極と負極との間に金属異物が混入した場合に、この金属異物による正極集電体32と負極活物質層44との短絡を十分に抑制できる厚みであることが好ましい。かかる観点から、絶縁層36の厚みは、1μm以上であってよく、3μm以上が好ましく、例えば4μm以上がより好ましい。しかしながら、絶縁層36は、集箔や溶接の作業性の低下を招き得るため、できる限り体積が少ないことが望ましい。かかる観点から、絶縁層36は、20μm以下、例えば18μm以下、15μm以下、10μm以下(例えば10μm未満)等であってよく、8μm以下、例えば6μm以下、5μm以下としてもよい。例えば絶縁層36の厚みをT1とし、正極活物質層の厚みをT2としたとき、厚みT1とT2の比(T1/T2)は、1以下であって、典型的には1/2以下であり、2/5以下が好ましく、1/3以下がより好ましく、1/4以下、1/5以下等がより好ましい。また、絶縁層36がその機能を十分に発揮するとの観点から、比(T1/T2)は、1/10以上であるとよく、例えば1/8以上や、1/6以上であってよい。なお、絶縁層36の厚みT1は、正極集電体32の表面からの絶縁層36の高さとし、正極活物質層34の上に絶縁層36が重ねて形成されている部分における厚みは含まない。 Although the thickness of the insulating layer 36 (average thickness; the same applies hereinafter) is not strictly limited, for example, when a metallic foreign substance is mixed between the positive electrode and the negative electrode, the positive electrode current collector 32 and the negative electrode active material due to the metallic foreign substance are used. It is preferable that the thickness is such that short-circuiting with the layer 44 can be sufficiently suppressed. From this point of view, the thickness of the insulating layer 36 may be 1 μm or more, preferably 3 μm or more, and more preferably 4 μm or more, for example. However, it is desirable that the insulating layer 36 has as little volume as possible because it may cause a decrease in workability of foil collection and welding. From this point of view, the insulating layer 36 may be 20 μm or less, for example, 18 μm or less, 15 μm or less, 10 μm or less (for example, less than 10 μm), or 8 μm or less, for example, 6 μm or less, 5 μm or less. For example, when the thickness of the insulating layer 36 is T1 and the thickness of the positive electrode active material layer is T2, the ratio of the thicknesses T1 to T2 (T1 / T2) is 1 or less, typically 1/2 or less. Yes, 2/5 or less is preferable, 1/3 or less is more preferable, 1/4 or less, 1/5 or less, and the like are more preferable. Further, from the viewpoint that the insulating layer 36 fully exerts its function, the ratio (T1 / T2) is preferably 1/10 or more, and may be, for example, 1/8 or more or 1/6 or more. The thickness T1 of the insulating layer 36 is the height of the insulating layer 36 from the surface of the positive electrode current collector 32, and does not include the thickness of the portion formed by superimposing the insulating layer 36 on the positive electrode active material layer 34. ..

無機フィラーの平均粒子径については特に制限されない。上記の厚みの絶縁層36を好適に形成するとの観点から、典型的には平均粒子径が3μm以下であり、2μm以下が好ましく、例えば1μm以下である。しかしながら、微細すぎる無機フィラーはハンドリング性や均一分散性が劣るために好ましくない。したがって、無機フィラーの平均粒子径は、典型的には0.05μm以上であり、好ましくは0.1μm以上であり、例えば0.2μm以上である。この平均粒子径は、正極活物質等と同様、レーザ回折散乱法によって得られる体積基準の粒度分布における累積50%粒子径である。 The average particle size of the inorganic filler is not particularly limited. From the viewpoint of preferably forming the insulating layer 36 having the above thickness, the average particle size is typically 3 μm or less, preferably 2 μm or less, and for example, 1 μm or less. However, an inorganic filler that is too fine is not preferable because it is inferior in handleability and uniform dispersibility. Therefore, the average particle size of the inorganic filler is typically 0.05 μm or more, preferably 0.1 μm or more, for example 0.2 μm or more. This average particle size is a cumulative 50% particle size in the volume-based particle size distribution obtained by the laser diffraction / scattering method, as in the case of the positive electrode active material.

ここに開示される絶縁層36の好適な一態様は、絶縁層36がさらにLPOを含むことにより特徴付けられる。絶縁層36がLPOを含むことで、過充電時に絶縁層36からLPOが溶出し、負極40の発熱抑制に好適に寄与する良質の被膜を負極40の表面に効果的に形成することができる。本発明者らの検討によると、電流集中により高電位状態となりやすい正極集電部の近傍に絶縁層36を設け、この絶縁層36にLPOを配置することで、このLPOに由来する被膜が負極の発熱反応を特に効果的に抑制し得る形態で形成されることが明らかとなった。なお、正極塗工端部に絶縁層を備える構成については公知である(例えば特許文献1等参照)が、この絶縁層36にLPOを配置することが過充電耐性に特に奏功することはこれまでに知られていない新規な技術事項である。このような構成によって、負極表面における更なる発熱反応を効果的に抑制することができ、例えば、電池の過充電耐性をより一層高めることができる。 A preferred embodiment of the insulating layer 36 disclosed herein is characterized by the insulating layer 36 further comprising LPO. When the insulating layer 36 contains the LPO, the LPO is eluted from the insulating layer 36 at the time of overcharging, and a high-quality film that preferably contributes to the suppression of heat generation of the negative electrode 40 can be effectively formed on the surface of the negative electrode 40. According to the study by the present inventors, by providing an insulating layer 36 in the vicinity of the positive electrode current collector, which tends to be in a high potential state due to current concentration, and arranging the LPO on the insulating layer 36, the film derived from this LPO becomes the negative electrode. It was clarified that it was formed in a form capable of suppressing the exothermic reaction of the above. It should be noted that a configuration in which an insulating layer is provided at the positive electrode coating end is known (see, for example, Patent Document 1 and the like), but it has been so far that arranging the LPO on the insulating layer 36 is particularly effective for overcharge resistance. It is a new technical matter that is not known to. With such a configuration, further exothermic reaction on the surface of the negative electrode can be effectively suppressed, and for example, the overcharge resistance of the battery can be further enhanced.

絶縁層36にLPOが含まれる場合、LPOの形状等は特に制限されない。LPOは、例えば上記の正極活物質層34に含まれるのと同じ性状のLPOを用いることができる。しかしながら、LPOは、比較的コストが高いことから、例えば、上記の厚みの絶縁層36を好適に形成するとともに、電池が過充電状態に至った際に速やかに電解液中に溶出し得ることが好ましい。かかる観点から、LPOの平均粒子径は、典型的には10μm以下、好ましくは8μm以下、例えば5μm以下であり、典型的には1μm以上であり、好ましくは2μm以上であり、例えば2.5μm以上としてもよい。 When the insulating layer 36 contains LPO, the shape of the LPO and the like are not particularly limited. As the LPO, for example, an LPO having the same properties as that contained in the positive electrode active material layer 34 can be used. However, since LPO is relatively expensive, for example, the insulating layer 36 having the above thickness can be suitably formed, and when the battery reaches an overcharged state, it can be rapidly eluted into the electrolytic solution. preferable. From this point of view, the average particle size of LPO is typically 10 μm or less, preferably 8 μm or less, for example 5 μm or less, typically 1 μm or more, preferably 2 μm or more, for example 2.5 μm or more. May be.

なお、無機フィラーの平均粒子径をD1、絶縁層36におけるLPOの平均粒子径をD2、上記の正極活物質の平均粒子径をD3としたとき、D1,D2<D3を満たすことが好ましく、D1<D2を満たすことが好ましく、D1<D2<D3を満たすことがより好ましい。D1,D2<D3であることで、例えば図4に示すように、絶縁層36が正極活物質層34の端部に重なるように形成されたときに、正極集電体32の表面からの絶縁層36の表面高さ位置が、正極集電体32の表面からの正極活物質層34の表面高さ位置よりも、高くなることを好適に抑制することができる。また、D1<D2であることで、微細な無機フィラーによって絶縁層36の強度を確保するとともに、LPOが溶出した場合であっても絶縁性を確保し、正極集電体32と負極活物質層44との短絡をより好適に抑制することができる。また、絶縁層36にLPOを溶出しやすく配置することができる。 When the average particle size of the inorganic filler is D1, the average particle size of the LPO in the insulating layer 36 is D2, and the average particle size of the positive electrode active material is D3, it is preferable that D1 and D2 <D3 are satisfied. It is preferable to satisfy <D2, and it is more preferable to satisfy D1 <D2 <D3. Since D1 and D2 <D3, for example, as shown in FIG. 4, when the insulating layer 36 is formed so as to overlap the end portion of the positive electrode active material layer 34, the insulation from the surface of the positive electrode current collector 32 is provided. It is possible to preferably suppress that the surface height position of the layer 36 is higher than the surface height position of the positive electrode active material layer 34 from the surface of the positive electrode current collector 32. Further, since D1 <D2, the strength of the insulating layer 36 is secured by the fine inorganic filler, and the insulating property is secured even when the LPO is eluted, so that the positive electrode current collector 32 and the negative electrode active material layer are secured. The short circuit with 44 can be suppressed more preferably. Further, the LPO can be easily arranged on the insulating layer 36 so as to elute.

負極40は、負極集電体42上に負極活物質層44が備えられることで構成されている。負極集電体42には、集電のために負極活物質層44が形成されず、負極集電体42が露出している非塗工部42Aが設けられている。負極活物質層44は負極活物質を含む。典型的には、粒子状の負極活物質がバインダ(結着剤)により互いに結合されるとともに、負極集電体42に接合された形態であり得る。負極活物質は、充放電に伴い電荷担体であるリチウムイオンを電解液から吸蔵し、また、電解液に放出する。負極活物質としては、従来からリチウムイオン二次電池の負極活物質として用いられる各種の材料を特に制限なく使用することができる。好適例として、人造黒鉛、天然黒鉛、アモルファスカーボンおよびこれらの複合体(例えばアモルファスカーボンコートグラファイト)等に代表される炭素材料、あるいは、シリコン(Si)等のリチウムと合金を形成する材料、これらのリチウム合金(例えば、LiM、Mは、C、Si、Sn、Sb、Al、Mg、Ti、Bi、Ge、PbまたはP等であり、Xは自然数。)、シリコン化合物(SiO等)等のリチウム貯蔵性化合物が挙げられる。この負極40は、例えば、粉体状の負極活物質とバインダ(例えば、スチレンブタジエン共重合体(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)等のゴム類、カルボキシメチルセルロース(CMC)等のセルロース系ポリマー等)とを適当な分散媒(例えば、水やN-メチル-2-ピロリドン、好ましくは水。)に分散させてなる負極ペーストを負極集電体42の表面に供給した後、乾燥して分散媒を除去することにより作製することができる。負極集電体としては、導電性の良好な金属(例えば、銅、ニッケル、チタン、ステンレス鋼等)からなる導電性部材を好適に使用することができる。 The negative electrode 40 is configured by providing a negative electrode active material layer 44 on a negative electrode current collector 42. The negative electrode current collector 42 is provided with a non-coated portion 42A in which the negative electrode active material layer 44 is not formed for current collection and the negative electrode current collector 42 is exposed. The negative electrode active material layer 44 contains a negative electrode active material. Typically, the particulate negative electrode active materials may be bonded to each other by a binder (binder) and bonded to the negative electrode current collector 42. The negative electrode active material occludes lithium ions, which are charge carriers, from the electrolytic solution and releases them to the electrolytic solution during charging and discharging. As the negative electrode active material, various materials conventionally used as the negative electrode active material of the lithium ion secondary battery can be used without particular limitation. Preferable examples thereof include carbon materials typified by artificial graphite, natural graphite, amorphous carbon and composites thereof (for example, amorphous carbon-coated graphite), or materials that form an alloy with lithium such as silicon (Si). Lithium alloy (for example, Li X M, M is C, Si, Sn, Sb, Al, Mg, Ti, Bi, Ge, Pb or P, etc., and X is a natural number), silicon compound (SiO, etc.), etc. Examples of the lithium-storing compound. The negative electrode 40 is, for example, a powdery negative electrode active material and a binder (for example, styrene butadiene copolymer (SBR), rubbers such as acrylic acid-modified SBR resin (SBR-based latex), carboxymethyl cellulose (CMC), etc. A negative electrode paste obtained by dispersing (for example, water or N-methyl-2-pyrrolidone, preferably water) in a suitable dispersion medium (for example, water or N-methyl-2-pyrrolidone) is supplied to the surface of the negative electrode current collector 42 and then dried. It can be produced by removing the dispersion medium. As the negative electrode current collector, a conductive member made of a metal having good conductivity (for example, copper, nickel, titanium, stainless steel, etc.) can be preferably used.

負極活物質粒子の平均粒子径(D50)は特に制限されず、例えば、0.5μm以上であってよく、1μm以上が好ましく、より好ましくは5μm以上である。また、30μm以下であってよく、20μm以下が好ましく、15μm以下がより好ましい。負極活物質層44全体に占める負極活物質の割合は、およそ50質量%以上とすることが適当であり、好ましくは90質量%~99質量%、例えば95質量%~99質量%である。バインダを使用する場合には、負極活物質層44に占めるバインダの割合を、負極活物質100質量部に対して例えば0.1質量部~5質量部程度とすることができ、通常はおよそ0.5質量部~2質量部とすることが適当である。負極活物質層44の厚み(平均厚みである。以下同じ。)は、例えば10μm以上、典型的には20μm以上であって、80μm以下、典型的には50μm以下とすることができる。また、負極活物質層44の密度は特に限定されないが、例えば0.8g/cm以上、典型的には1.0g/cm以上であって、1.5g/cm以下、典型的には1.4g/cm以下、例えば1.3g/cm以下とすることができる。 The average particle size (D 50 ) of the negative electrode active material particles is not particularly limited, and may be, for example, 0.5 μm or more, preferably 1 μm or more, and more preferably 5 μm or more. Further, it may be 30 μm or less, preferably 20 μm or less, and more preferably 15 μm or less. The ratio of the negative electrode active material to the entire negative electrode active material layer 44 is preferably about 50% by mass or more, preferably 90% by mass to 99% by mass, for example, 95% by mass to 99% by mass. When a binder is used, the ratio of the binder to the negative electrode active material layer 44 can be, for example, about 0.1 part by mass to 5 parts by mass with respect to 100 parts by mass of the negative electrode active material, and is usually about 0. .It is appropriate to use 5 parts by mass to 2 parts by mass. The thickness of the negative electrode active material layer 44 (which is the average thickness; the same applies hereinafter) can be, for example, 10 μm or more, typically 20 μm or more, and 80 μm or less, typically 50 μm or less. The density of the negative electrode active material layer 44 is not particularly limited, but is, for example, 0.8 g / cm 3 or more, typically 1.0 g / cm 3 or more, and 1.5 g / cm 3 or less, typically. Can be 1.4 g / cm 3 or less, for example 1.3 g / cm 3 or less.

負極活物質層44の表面には、LPOに由来する被膜(図示せず)が備えられていてもよい。この被膜は、電池組立て後の初期充電によって形成されてもよいし、過充電によって形成されてもよい。LPOに由来する被膜は、負極活物質層の表面において、リン酸イオン(PO 3-)またはリン(P)成分を検出することにより確認することができる。一例として、負極活物質層を所定の大きさで打ち抜き、その表面を酸性溶媒(例えば硫酸)で洗浄することでリン酸イオン(PO 3-)またはリン(P)成分を溶出させる。そしてこの溶出液から、例えば誘導結合プラズマ発光分光法(ICP-OES:Inductively Coupled Plasma-Optical Emission Spectrometry)でリン原子を定量することや、イオンクロマトグラフィーによってリン酸イオンを定量することで、負極活物質層の表面に形成されたLPO由来の被膜の存在や、その形成量を把握することができる。なお、リン酸イオン(PO 3-)またはリン(P)成分の定性および定量分析の手法は、例えば、電解液の添加剤等の影響を考慮して、上記例あるいは公知の分析化学の手法から、当業者であれば適切に選択することができる。 The surface of the negative electrode active material layer 44 may be provided with a coating film (not shown) derived from LPO. This film may be formed by initial charging after battery assembly, or may be formed by overcharging. The film derived from LPO can be confirmed by detecting a phosphate ion ( PO 43- ) or phosphorus (P) component on the surface of the negative electrode active material layer. As an example, the negative electrode active material layer is punched out to a predetermined size, and the surface thereof is washed with an acidic solvent (for example, sulfuric acid) to elute the phosphate ion (PO 43- ) or phosphorus (P) component. Then, from this eluate, for example, by quantifying phosphorus atoms by inductively coupled plasma emission spectroscopy (ICP-OES: Inductively Coupled Plasma-Optical Emission Spectrometry) or by quantifying phosphate ions by ion chromatography, the negative electrode activity It is possible to grasp the existence of the LPO-derived film formed on the surface of the material layer and the amount of the film formed. The method for qualitative and quantitative analysis of phosphate ion ( PO 43-3 ) or phosphorus (P) component is, for example, the above example or a known analytical chemistry method in consideration of the influence of additives in the electrolytic solution. Therefore, any person in the art can make an appropriate selection.

セパレータ50は、正極30と負極40とを絶縁するとともに、正極活物質層34と負極活物質層44との間で電荷担体の移動経路を提供する構成要素である。このようなセパレータ50は、典型的には上記正極活物質層34と負極活物質層44との間に配置される。セパレータ50は、非水電解液の保持機能や、所定の温度において電荷担体の移動経路を閉塞するシャットダウン機能を備えていてもよい。このようなセパレータ50は、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる微多孔質樹脂シートにより好適に構成することができる。なかでも、PEやPP等のポリオレフィン樹脂からなる微多孔質シートは、シャットダウン温度を80℃~140℃(典型的には110℃~140℃、例えば120℃~135℃)の範囲に好適に設定できるために好ましい。シャットダウン温度とは、電池が発熱した際に電池の電気化学反応を停止させる温度であり、シャットダウンは典型的にはこの温度においてセパレータ50が溶融または軟化することで発現される。かかるセパレータ50は、単一の材料から構成される単層構造であってもよく、材質や性状(例えば、平均厚みや空孔率等)の異なる2種以上の微多孔質樹脂シートが積層された構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。 The separator 50 is a component that insulates the positive electrode 30 and the negative electrode 40 and provides a transfer path for the charge carrier between the positive electrode active material layer 34 and the negative electrode active material layer 44. Such a separator 50 is typically arranged between the positive electrode active material layer 34 and the negative electrode active material layer 44. The separator 50 may have a function of holding the non-aqueous electrolytic solution and a function of shutting down the movement path of the charge carrier at a predetermined temperature. Such a separator 50 can be suitably configured by a microporous resin sheet made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, or polyamide. Among them, the microporous sheet made of a polyolefin resin such as PE or PP preferably has a shutdown temperature in the range of 80 ° C to 140 ° C (typically 110 ° C to 140 ° C, for example 120 ° C to 135 ° C). It is preferable because it can be done. The shutdown temperature is a temperature at which the electrochemical reaction of the battery is stopped when the battery generates heat, and shutdown is typically expressed by melting or softening the separator 50 at this temperature. The separator 50 may have a single-layer structure composed of a single material, and two or more types of microporous resin sheets having different materials and properties (for example, average thickness, porosity, etc.) are laminated. (For example, a three-layer structure in which PP layers are laminated on both sides of the PE layer) may be used.

セパレータ50の厚み(平均厚みである。以下同じ。)は特に限定されないが、通常、10μm以上、典型的には15μm以上、例えば17μm以上とすることができる。また、上限については、40μm以下、典型的には30μm以下、例えば25μm以下とすることができる。基材の平均厚みが上記範囲内にあることで、電荷担体の透過性を良好に保つことができ、かつ、微小な短絡(漏れ電流)がより生じ難くなる。このため、入出力密度と安全性とを高いレベルで両立することができる。 The thickness of the separator 50 (which is an average thickness; the same applies hereinafter) is not particularly limited, but can be usually 10 μm or more, typically 15 μm or more, for example, 17 μm or more. The upper limit can be 40 μm or less, typically 30 μm or less, for example, 25 μm or less. When the average thickness of the base material is within the above range, the permeability of the charge carrier can be kept good, and a minute short circuit (leakage current) is less likely to occur. Therefore, both input / output density and safety can be achieved at a high level.

非水電解液としては、典型的には、非水溶媒中に電解質としての支持塩(例えば、リチウム塩、ナトリウム塩、マグネシウム塩等であり、リチウムイオン二次電池ではリチウム塩)を溶解または分散させたものを特に制限なく用いることができる。あるいは、液状の非水電解質にポリマーが添加されてゲル状となった、いわゆるポリマー電解質や固体電解質等であってもよい。非水溶媒としては、一般的なリチウムイオン二次電池において電解液として用いられるカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の各種の有機溶媒を特に制限なく用いることができる。例えば、具体的には、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等の鎖状カーボネートや、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネートが挙げられる。なかでも正極の酸性雰囲気で分解されて水素イオンを発生する溶媒(例えば環状カーボネート)等は一部に含むことが好ましい。このような非水溶媒は、フッ素化されていてもよい。また非水溶媒は、1種を単独で、あるいは2種以上を混合溶媒として用いることができる。支持塩としては、一般的なリチウムイオン二次電池に用いられる各種のものを適宜選択して採用することができる。例えば、LiPF、LiBF、LiClO、LiAsF、Li(CFSON、LiCFSO等のリチウム塩を用いることが例示される。ここに開示される技術では、過充電時の発熱を抑制する効果が得られることから、例えば、過充電時に分解されてフッ化水素(HF)を発生するフッ素を含んだリチウム化合物を支持塩として用いる場合に、本技術の効果が明瞭に発揮されるために好ましい。このような支持塩は、1種を単独で、あるいは2種以上を組み合わせて用いてもよい。かかる支持塩は、非水電解質における濃度が0.7mol/L~1.3mol/Lの範囲内となるように調製することが好ましい。 The non-aqueous electrolyte solution typically dissolves or disperses a supporting salt as an electrolyte (for example, a lithium salt, a sodium salt, a magnesium salt, etc., and a lithium salt in a lithium ion secondary battery) in a non-aqueous solvent. It can be used without any particular limitation. Alternatively, it may be a so-called polymer electrolyte, a solid electrolyte, or the like, in which a polymer is added to a liquid non-aqueous electrolyte to form a gel. As the non-aqueous solvent, various organic solvents such as carbonates, ethers, esters, nitriles, sulfones, and lactones used as an electrolytic solution in a general lithium ion secondary battery may be used without particular limitation. can. For example, specific examples thereof include chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC), and cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC). .. In particular, it is preferable to partially contain a solvent (for example, cyclic carbonate) that is decomposed in the acidic atmosphere of the positive electrode to generate hydrogen ions. Such a non-aqueous solvent may be fluorinated. Further, as the non-aqueous solvent, one kind may be used alone, or two or more kinds may be used as a mixed solvent. As the supporting salt, various types used in a general lithium ion secondary battery can be appropriately selected and adopted. For example, the use of lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, and LiCF 3 SO 3 is exemplified. Since the technique disclosed herein has the effect of suppressing heat generation during overcharging, for example, a lithium compound containing fluorine that is decomposed during overcharging to generate hydrogen fluoride (HF) is used as a supporting salt. When used, it is preferable because the effect of this technique is clearly exhibited. Such a supporting salt may be used alone or in combination of two or more. The supporting salt is preferably prepared so that the concentration in the non-aqueous electrolyte is in the range of 0.7 mol / L to 1.3 mol / L.

また、非水電解質は、本発明のリチウムイオン二次電池の特性を損なわない限り、各種の添加剤等を含んでいても良い。かかる添加剤としては、ガス発生剤、被膜形成剤等として、電池の入出力特性の向上、サイクル特性の向上、初期充放電効率の向上等のうち、1または2以上の目的で使用され得る。かかる添加剤としては、具体的には、フルオロリン酸塩(好ましくはジフルオロリン酸塩。例えば、LiPOで表されるジフルオロリン酸リチウム)、リチウムビス(オキサラト)ボレート(LiBOB)等のオキサラト錯体化合物が挙げられる。非水電解質全体に対するこれらの添加剤の濃度は、通常0.1mol/L以下(典型的には0.005mol/L~0.1mol/L)とすることが適当である。 Further, the non-aqueous electrolyte may contain various additives and the like as long as the characteristics of the lithium ion secondary battery of the present invention are not impaired. As such an additive, it can be used as a gas generating agent, a film forming agent, or the like for one or more purposes of improving the input / output characteristics of the battery, improving the cycle characteristics, improving the initial charge / discharge efficiency, and the like. Specific examples of such additives include fluorophosphate (preferably difluorophosphate, for example, lithium difluorophosphate represented by LiPO 2 F2), lithium bis (oxalat) borate (LiBOB), and the like. Oxalato complex compounds can be mentioned. It is appropriate that the concentration of these additives with respect to the entire non-aqueous electrolyte is usually 0.1 mol / L or less (typically 0.005 mol / L to 0.1 mol / L).

なお、図1に示したリチウムイオン二次電池1は、電池ケース10として扁平な角型電池ケースを使用している。しかしながら、電池ケース10は、非扁平の角型電池ケースや円筒型電池ケース、コイン型電池ケース等であってもよい。あるいは、リチウムイオン二次電池1は、金属製の電池ケースシート(典型的にはアルミニウムシート)と樹脂シートが張り合わされて袋状に形成されたラミネートバッグであってもよい。また例えば、電池ケースは、アルミニウム、鉄、およびこれらの金属の合金、高強度プラスチック等により形成されていてもよい。また、図1に示したリチウムイオン二次電池1は、例えば、長尺の正極30と負極40とが2枚のセパレータ50で互いに絶縁された状態て積層され、捲回軸WLを中心に断面長円形に捲回された形態の、いわゆる捲回型電極体20を備えている。図2および図3に示されるように、正極活物質層34の幅W1と、負極活物質層44の幅W2と、セパレータの幅W3とは、W1<W2<W3の関係を満たす。なおかつ、負極活物質層44は幅方向の両端で正極活物質層34を覆い、セパレータ50は幅方向の両端で負極活物質層44を覆う。また、絶縁層36は、正極活物質層34に隣接しつつ、少なくとも負極活物質層44の端部と対向する領域の正極集電体32を覆う。しかしながら、ここに開示されるリチウムイオン二次電池1の電極体20は、捲回型電極体に制限されず、例えば、複数枚の正極30と負極40とがそれぞれセパレータ50で絶縁されて積層された形態の、いわゆる平板積層型の電極体20であってもよい。あるいは、正極30と負極40がそれぞれ1枚ずつ電池ケースに収容された単セルであってもよい。 The lithium ion secondary battery 1 shown in FIG. 1 uses a flat square battery case as the battery case 10. However, the battery case 10 may be a non-flat square battery case, a cylindrical battery case, a coin battery case, or the like. Alternatively, the lithium ion secondary battery 1 may be a laminated bag formed in a bag shape by laminating a metal battery case sheet (typically an aluminum sheet) and a resin sheet. Further, for example, the battery case may be made of aluminum, iron, an alloy of these metals, high-strength plastic, or the like. Further, in the lithium ion secondary battery 1 shown in FIG. 1, for example, a long positive electrode 30 and a negative electrode 40 are laminated in a state of being insulated from each other by two separators 50, and have a cross section centered on a winding shaft WL. The so-called winding type electrode body 20 in the form of being wound in an oval shape is provided. As shown in FIGS. 2 and 3, the width W1 of the positive electrode active material layer 34, the width W2 of the negative electrode active material layer 44, and the width W3 of the separator satisfy the relationship of W1 <W2 <W3. Further, the negative electrode active material layer 44 covers the positive electrode active material layer 34 at both ends in the width direction, and the separator 50 covers the negative electrode active material layer 44 at both ends in the width direction. Further, the insulating layer 36 covers the positive electrode current collector 32 in a region facing at least the end of the negative electrode active material layer 44 while being adjacent to the positive electrode active material layer 34. However, the electrode body 20 of the lithium ion secondary battery 1 disclosed herein is not limited to the wound type electrode body, and for example, a plurality of positive electrodes 30 and 40 are insulated and laminated by a separator 50, respectively. It may be a so-called flat plate laminated type electrode body 20 having a different form. Alternatively, it may be a single cell in which one positive electrode 30 and one negative electrode 40 are housed in a battery case.

電池ケース10は、典型的には、一面に開口を有するケース本体11と、その開口を蓋する蓋部材12とにより構成される。蓋部材12には、従来のリチウムイオン電池の電池ケースと同様に、電池ケースの内部で発生したガスを外部に排出するための安全弁や、電解液の注入を行う注液口等が備えられてもよい。また、蓋部材12には、典型的には、外部接続用の正極端子38と負極端子48とが、電池ケース10とは絶縁された状態で配設され得る。正極端子38および負極端子48は、それぞれ正極集電端子38aおよび負極集電端子48aを介して正極30および負極40と電気的に接続され、外部負荷に電力を供給できるよう構成されている。 The battery case 10 is typically composed of a case body 11 having an opening on one side and a lid member 12 for covering the opening. Similar to the battery case of a conventional lithium-ion battery, the lid member 12 is provided with a safety valve for discharging the gas generated inside the battery case to the outside, a liquid injection port for injecting an electrolytic solution, and the like. May be good. Further, the lid member 12 may typically be provided with a positive electrode terminal 38 for external connection and a negative electrode terminal 48 in a state of being insulated from the battery case 10. The positive electrode terminal 38 and the negative electrode terminal 48 are electrically connected to the positive electrode 30 and the negative electrode 40 via the positive electrode current collecting terminal 38a and the negative electrode current collecting terminal 48a, respectively, and are configured to be able to supply electric power to an external load.

ここに開示されるリチウムイオン二次電池は各種用途に利用可能であるが、従来品に比べ、例えば、ハイレートでの繰り返し充放電時に高い安全性を兼ね備えたものであり得る。また、これらの優れた電池性能と信頼性(過充電時の熱安定性等の安全性を包含する)とを高いレベルで両立可能なものであり得る。したがって、このような特徴を活かして、高エネルギー密度や高入出力密度が要求される用途、高い信頼性を要求される用途で好ましく用いることができる。かかる用途としては、例えば、プラグインハイブリッド自動車、ハイブリッド自動車、電気自動車等の車両に搭載される駆動用電源が挙げられる。なお、かかる二次電池は、典型的には複数個を直列および/または並列に接続してなる組電池の形態で使用され得る。 Although the lithium ion secondary battery disclosed herein can be used for various purposes, it may have higher safety, for example, during repeated charging and discharging at a high rate, as compared with the conventional product. Further, these excellent battery performance and reliability (including safety such as thermal stability at the time of overcharging) can be compatible at a high level. Therefore, by taking advantage of these characteristics, it can be preferably used in applications that require high energy density and high input / output density, and applications that require high reliability. Examples of such applications include drive power supplies mounted on vehicles such as plug-in hybrid vehicles, hybrid vehicles, and electric vehicles. It should be noted that such a secondary battery can be typically used in the form of an assembled battery in which a plurality of such secondary batteries are connected in series and / or in parallel.

以下、具体的な実施例として、ここに開示される非水電解液二次電池を作製した。なお、本発明をかかる具体例に示すものに限定することを意図したものではない。 Hereinafter, as a specific example, the non-aqueous electrolytic solution secondary battery disclosed here was produced. It should be noted that the present invention is not intended to be limited to those shown in such specific examples.

[絶縁層評価用サンプルの収縮率]
絶縁層を評価するための絶縁層評価用サンプルを用意した。まず、無機フィラーとして、形状および組成の異なる8通りの金属酸化物粉末を用意した。すなわち、以下の表1に示すように、例1~4、6~7の無機フィラーは、アスペクト比が8.5~1.2で異なる板状のベーマイト粉末である。例8の無機フィラーは、アスペクト比が1.1の球状のベーマイト粉末である。例5の無機フィラーは、アスペクト比が3.2の板状のアルミナ粉末である。なお、各無機フィラーのアスペクト比は、各試料ごとに20個以上のフィラー粒子についてTEM観察によって測定した、粒子の厚みと二軸平均径とから算出されるアスペクト比の算術平均値である。
[Shrinkage rate of sample for insulating layer evaluation]
A sample for evaluating the insulating layer was prepared for evaluating the insulating layer. First, as inorganic fillers, eight types of metal oxide powders having different shapes and compositions were prepared. That is, as shown in Table 1 below, the inorganic fillers of Examples 1 to 4 and 6 to 7 are plate-shaped boehmite powders having different aspect ratios of 8.5 to 1.2. The inorganic filler of Example 8 is a spherical boehmite powder having an aspect ratio of 1.1. The inorganic filler of Example 5 is a plate-shaped alumina powder having an aspect ratio of 3.2. The aspect ratio of each inorganic filler is an arithmetic average value of the aspect ratio calculated from the thickness of the particles and the biaxial average diameter measured by TEM observation for 20 or more filler particles for each sample.

各例の無機フィラー(F)と、バインダとしてのPVdF(B)とを、下記の表1に示すように、F:B=85~70:15~30の割合で混合し、分散媒としてのN-メチル-2-ピロリドン(NMP)に分散させ、混練することで例1~8の絶縁層用ペーストを調製した。絶縁層用ペーストの固形分濃度は凡そ20~24質量%とした。またバインダ量は、無機フィラーの形状の違いによるペーストの塗工性状(例えば粘度)を一定の基準に保つために必要な量とした。この絶縁層用ペーストを、離型剤付のポリエチレンテレフタレート(PET)製のフィルムの表面に塗布し、乾燥させることで、評価用の絶縁層を用意した。各例の評価用の絶縁層の厚みは凡そ5μm、目付量は凡そ1.2~0.7g/cmの範囲とした。 As shown in Table 1 below, the inorganic filler (F) of each example and PVdF (B) as a binder are mixed at a ratio of F: B = 85 to 70:15 to 30 to serve as a dispersion medium. The paste for the insulating layer of Examples 1 to 8 was prepared by dispersing in N-methyl-2-pyrrolidone (NMP) and kneading. The solid content concentration of the insulating layer paste was approximately 20 to 24% by mass. The amount of binder was set to the amount required to keep the coating properties (for example, viscosity) of the paste due to the difference in the shape of the inorganic filler to a certain standard. This insulating layer paste was applied to the surface of a polyethylene terephthalate (PET) film with a mold release agent and dried to prepare an insulating layer for evaluation. The thickness of the insulating layer for evaluation in each example was about 5 μm, and the basis weight was about 1.2 to 0.7 g / cm 2 .

用意した各例の絶縁層をPETフィルムから剥がしてシート状の絶縁層とし、5cm角の正方形に打ち抜くことで評価用サンプルとした。評価用サンプルには、中央に縦横3cmの十字印を慎重にスタンプし、基準線を記した。この評価用サンプルを、150℃の恒温槽に1時間保存することで加熱した。そして、加熱の前後で測定した基準線の寸法から、次式:収縮率(%)=(加熱前寸法-加熱後寸法)÷加熱前寸法×100;に基づき収縮率を算出した。なお、基準線の加熱前寸法および加熱後寸法は、縦横で交差する2本の線について測定した寸法の算術平均を採用した。その結果を、下記の表1に示した。 The insulating layer of each prepared example was peeled off from the PET film to form a sheet-shaped insulating layer, which was punched into a square of 5 cm square to prepare a sample for evaluation. The evaluation sample was carefully stamped with a cross mark of 3 cm in length and width in the center, and a reference line was marked. This evaluation sample was heated by storing it in a constant temperature bath at 150 ° C. for 1 hour. Then, from the dimensions of the reference line measured before and after heating, the shrinkage ratio was calculated based on the following equation: shrinkage ratio (%) = (pre-heating dimension-post-heating dimension) ÷ pre-heating dimension × 100 ;. As the pre-heating dimension and the post-heating dimension of the reference line, the arithmetic mean of the dimensions measured for the two lines intersecting vertically and horizontally was adopted. The results are shown in Table 1 below.

[短絡試験]
(短絡試験用非水電解質二次電池の構築)
上記と同様にして、例1~8の絶縁層の評価用サンプル(5cm角)を用意した。
また、以下の手順で非水電解質二次電池を用意した。すなわち、正極活物質としての層状構造のリチウムニッケルコバルトマンガン含有複合酸化物(LiNi1/3Co1/3Mn1/3:NCM)と、導電助剤としてのアセチレンブラック(AB)と、結着剤としてのポリフッ化ビニリデン(PVdF)とを、NCM:AB:PVdF=90:8:2の質量比で配合し、溶媒としてのN-メチル-2-ピロリドン(NMP)と混練することで正極ペーストを調製した。そして、用意した正極ペーストを正極集電体としての厚さ12μmの長尺のアルミニウム箔の両面に塗布し、乾燥させることにより、正極活物質層を備える正極を得た。正極には、集電のため、幅方向の一方の端部に沿って正極活物質層を形成していない非塗工部を設けた。
[Short circuit test]
(Construction of non-aqueous electrolyte secondary battery for short circuit test)
In the same manner as above, evaluation samples (5 cm square) of the insulating layers of Examples 1 to 8 were prepared.
In addition, a non-aqueous electrolyte secondary battery was prepared by the following procedure. That is, a layered structure lithium nickel cobalt manganese-containing composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O2 : NCM) as a positive electrode active material, acetylene black (AB) as a conductive auxiliary agent, and By blending polyvinylidene fluoride (PVdF) as a binder in a mass ratio of NCM: AB: PVdF = 90: 8: 2, and kneading with N-methyl-2-pyrrolidone (NMP) as a solvent. A positive paste was prepared. Then, the prepared positive electrode paste was applied to both sides of a long aluminum foil having a thickness of 12 μm as a positive electrode current collector and dried to obtain a positive electrode provided with a positive electrode active material layer. The positive electrode was provided with a non-coated portion in which a positive electrode active material layer was not formed along one end in the width direction for current collection.

負極活物質としての黒鉛(C)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、C:SBR:CMC=98:1:1の質量比で配合し、イオン交換水と混練することで負極ペーストを調製した。そして用意した負極ペーストを、負極集電体としての厚さ10μmの長尺の銅箔の両面に塗布し、乾燥させることにより、負極活物質層を備える負極を得た。負極には、集電のため、幅方向の一方の端部に沿って負極活物質層を形成していない非塗工部を設けた。 Graphite (C) as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener are mixed in a mass ratio of C: SBR: CMC = 98: 1: 1. Negative electrode paste was prepared by blending and kneading with ion-exchanged water. Then, the prepared negative electrode paste was applied to both sides of a long copper foil having a thickness of 10 μm as a negative electrode current collector and dried to obtain a negative electrode provided with a negative electrode active material layer. The negative electrode was provided with a non-coated portion in which a negative electrode active material layer was not formed along one end in the width direction for current collection.

上記で用意した正極と負極とを、2枚のセパレータを介して互いに絶縁するように重ね合わせて積層体とし、次いで捲回することで、捲回型電極体を構築した。このとき、図5に概略的に示すように、巻き始め側の正極端部の正極活物質層を一部剥離して正極集電体を露出させ、例1~8のいずれかの絶縁層評価用サンプル(36S)とL字形の金属異物片(M)とを配置して、捲回することで、例1~8の捲回型電極体とした。絶縁層評価用サンプルと金属異物試験片とは、捲回型電極体の幅方向、高さ方向、および厚み方向のほぼ中心に位置するようにした。また、正極の非塗工部と負極の非塗工部が幅方向の反対側に位置するように、正極と負極とを重ね合わせた。なお、使用した金属異物片は、図6に示すように、一辺の長さが1mmずつ、幅100μm、高さ200μmのL字形であり、金属異物片の厚み方向が積層方向に一致するように絶縁層評価用サンプルの中央に配置した。セパレータとしては、PP/PE/PPの三層構造の多孔性シートを用いた。 A wound electrode body was constructed by stacking the positive electrode and the negative electrode prepared above so as to insulate each other via two separators to form a laminated body, and then winding the layers. At this time, as schematically shown in FIG. 5, the positive electrode active material layer at the positive electrode end on the winding start side is partially peeled off to expose the positive electrode current collector, and the insulating layer of any one of Examples 1 to 8 is evaluated. The sample (36S) and the L-shaped metal foreign matter piece (M) were arranged and wound to obtain a wound electrode body of Examples 1 to 8. The insulating layer evaluation sample and the metal foreign matter test piece were positioned approximately at the center in the width direction, height direction, and thickness direction of the wound electrode body. Further, the positive electrode and the negative electrode were overlapped so that the non-coated portion of the positive electrode and the non-coated portion of the negative electrode were located on opposite sides in the width direction. As shown in FIG. 6, the metal foreign matter pieces used are L-shaped with a side length of 1 mm, a width of 100 μm, and a height of 200 μm, so that the thickness directions of the metal foreign matter pieces coincide with the stacking direction. It was placed in the center of the insulating layer evaluation sample. As the separator, a porous sheet having a three-layer structure of PP / PE / PP was used.

電池ケースとして、アルミニウム合金製の扁平角型電池ケースを用意した。そして、各例の捲回型電極体の正極非塗工部と負極非塗工部をそれぞれ電池ケースの正極端子および負極端子に接続し、非水電解液とともにケース本体に収容したのち、密閉することにより、例1~8の評価用の非水電解質二次電池を得た。非水電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とをEC:EMC:DMC=3:3:4の体積比で含む混合溶媒に、支持塩としてのLiPFを1mol/Lの濃度で溶解させたものを用いた。 As a battery case, a flat square battery case made of aluminum alloy was prepared. Then, the positive electrode non-coated portion and the negative electrode non-coated portion of the wound type electrode body of each example are connected to the positive electrode terminal and the negative electrode terminal of the battery case, respectively, and the case is housed together with the non-aqueous electrolyte solution and then sealed. As a result, a non-aqueous electrolyte secondary battery for evaluation of Examples 1 to 8 was obtained. As the non-aqueous electrolytic solution, a mixed solvent containing ethylene carbonate (EC), ethylmethyl carbonate (EMC) and dimethyl carbonate (DMC) in a volume ratio of EC: EMC: DMC = 3: 3: 4 as a supporting salt. LiPF 6 was dissolved at a concentration of 1 mol / L.

(短絡時電圧降下量、最高到達温度の測定)
各例の二次電池に対し、25℃の温度環境下で、電圧が4.1Vとなるまで1/3Cのレートで定電流(CC)充電した後、電流が1/50Cとなるまで定電圧(CV)充電した。これにより、各例の二次電池に活性化処理を施した。次いで、電圧が3Vとなるまで1/3Cのレートで定電流(CC)放電した。次いで、活性化処理後の二次電池を、25℃の温度環境下で、充電状態(State of Charge:SOC)が90%となるまで1/3Cのレートで定電流(CC)充電した。なおここで、「1C」とは、活物質の理論容量から予測される電池容量(Ah)を1時間で充電できる電流値を意味する。
(Measurement of voltage drop at short circuit and maximum temperature reached)
The secondary batteries of each example are charged with a constant current (CC) at a rate of 1 / 3C until the voltage reaches 4.1V under a temperature environment of 25 ° C., and then a constant voltage until the current reaches 1 / 50C. (CV) Charged. As a result, the secondary batteries of each example were activated. Then, a constant current (CC) was discharged at a rate of 1 / 3C until the voltage became 3V. Next, the activated secondary battery was charged with a constant current (CC) at a rate of 1/3 C until the state of charge (SOC) reached 90% in a temperature environment of 25 ° C. Here, "1C" means a current value that can charge the battery capacity (Ah) predicted from the theoretical capacity of the active material in one hour.

SOC90%に調整した二次電池の電池ケースの外側の中央部に熱電対を取り付けた。この二次電池の外部端子間の電圧を測定しながら、電池ケースの外側から金属異物片が配置された箇所を所定の条件で押圧することで、二次電池を強制短絡させた。押圧は、端子間電圧が2mV低下することで単層短絡(微少短絡)が生じたと判断し、単層短絡(2mV低下)を確認した時点で押圧を停止するものとした。そして短絡させてから100秒後の電圧を測定することで、微少短絡による電圧降下量を算出した。また、短絡後の二次電池の温度を観察し、最高到達温度を調べた。これらの結果を、表1の当該欄に記載した。 A thermocouple was attached to the central part of the outside of the battery case of the secondary battery adjusted to SOC 90%. While measuring the voltage between the external terminals of the secondary battery, the secondary battery was forcibly short-circuited by pressing the portion where the metal foreign matter piece was arranged from the outside of the battery case under predetermined conditions. For the pressing, it was determined that a single-layer short circuit (small short circuit) occurred due to a decrease in the voltage between the terminals by 2 mV, and the pressing was stopped when the single layer short circuit (decreased by 2 mV) was confirmed. Then, the voltage drop due to the slight short circuit was calculated by measuring the voltage 100 seconds after the short circuit. In addition, the temperature of the secondary battery after the short circuit was observed, and the maximum temperature reached was investigated. These results are listed in the relevant column of Table 1.

Figure 0007085147000001
Figure 0007085147000001

(評価:熱収縮率)
表1に示されるように、絶縁層を構成する無機フィラーの組成および形態によって、150℃に加熱したときの絶縁層の熱収縮率が異なることがわかった。具体的には、例1~7に示されるように、絶縁層を構成する板状の無機フィラーのアスペクト比を1.2~8.5で変化させたところ、アスペクト比が小さくなるほど絶縁層の熱収縮率が大きくなることが確認できた。スラリー塗布法によって形成された絶縁層において、板状の無機フィラーはその面方向が絶縁層(換言すれば、基材)の面方向と概ね平行に、かつ、厚み方向で重なり合うように、面配向した状態で配置される。そして、アスペクト比が大きい無機フィラーほど、単位面積あたりの絶縁層の面内で、隣り合う粒子の数、言い換えれば粒子間の隙間が少ない。そのため、絶縁層中の板状粒子に面方向の力が作用しても、板状粒子は面内で隣り合う粒子にぶつかった後は、粒子間隙よりも多く移動することが難しい。その結果、高温に晒されて絶縁層中のバインダが軟化または溶融した場合であっても、絶縁層中の無機フィラーの面方向での移動は抑制される。このため、アスペクト比が大きい無機フィラーを含む絶縁層ほど、熱収縮率が小さくなると考えられる。このような絶縁層は、例えば、二次電池が150℃程度にまで発熱した場合においても、その収縮率が13%以下に低減される。そのため、この絶縁層を正極活物質層の端部に沿う領域であって、負極活物質層と対向する部分に配置することで、例えセパレータが熱収縮するような高温に晒されても、この絶縁層が対向する負極との短絡を好適に抑制することができる。なお、例4,5の比較から、無機フィラーとしてベーマイトを用いるよりも、融点がより高く耐火性に優れたアルミナを用いることで、熱収縮率を僅かではあるが低く抑えられることがわかった。
(Evaluation: Heat shrinkage rate)
As shown in Table 1, it was found that the heat shrinkage rate of the insulating layer when heated to 150 ° C. differs depending on the composition and form of the inorganic filler constituting the insulating layer. Specifically, as shown in Examples 1 to 7, when the aspect ratio of the plate-shaped inorganic filler constituting the insulating layer was changed from 1.2 to 8.5, the smaller the aspect ratio, the more the insulating layer. It was confirmed that the heat shrinkage rate increased. In the insulating layer formed by the slurry coating method, the plate-shaped inorganic filler is oriented so that its surface direction is substantially parallel to the surface direction of the insulating layer (in other words, the base material) and overlaps in the thickness direction. It is placed in the state of being. The larger the aspect ratio of the inorganic filler, the smaller the number of adjacent particles, in other words, the gaps between the particles, in the plane of the insulating layer per unit area. Therefore, even if a force in the plane direction acts on the plate-shaped particles in the insulating layer, it is difficult for the plate-shaped particles to move more than the particle gap after colliding with the adjacent particles in the plane. As a result, even when the binder in the insulating layer is softened or melted by being exposed to a high temperature, the movement of the inorganic filler in the insulating layer in the plane direction is suppressed. Therefore, it is considered that the heat shrinkage rate becomes smaller as the insulating layer contains the inorganic filler having a larger aspect ratio. The shrinkage rate of such an insulating layer is reduced to 13% or less even when the secondary battery generates heat up to about 150 ° C., for example. Therefore, by arranging this insulating layer in a region along the end of the positive electrode active material layer and facing the negative electrode active material layer, even if the separator is exposed to a high temperature such as thermal shrinkage, this It is possible to suitably suppress a short circuit between the insulating layer and the negative electrode facing the negative electrode. From the comparison of Examples 4 and 5, it was found that the heat shrinkage rate can be suppressed to a low level by using alumina having a higher melting point and excellent fire resistance than using boehmite as the inorganic filler.

これに対し、粒状の無機フィラーは、形状異方性がほぼ見られない。また、アスペクト比が小さい球状粒子は、絶縁層中の面内で、単位面積あたりで隣り合う粒子の数、言い換えれば粒子間の隙間が多い。そのため、絶縁層中の球状粒子に面方向に力が作用すると、球状粒子は面内で隣り合う粒子にぶつかった後、ぶつかった粒子とともに更に移動しやすい。また、球状粒子は、ぶつかった粒子の表面に沿って重なり合うように(すなわち厚み方向に)移動でき、粒子間隙よりも多く移動し得る。アスペクト比が小さい板状の無機フィラー粒子も、この球状粒子と類似の挙動を取り得る。その結果、絶縁層中のバインダが軟化または溶融すると、絶縁層中の無機フィラーは面方向で容易に移動し、絶縁層が熱収縮しやすくなると考えられる。 On the other hand, the granular inorganic filler has almost no shape anisotropy. Further, spherical particles having a small aspect ratio have a large number of adjacent particles per unit area in the plane of the insulating layer, in other words, a large number of gaps between the particles. Therefore, when a force acts on the spherical particles in the insulating layer in the plane direction, the spherical particles collide with the adjacent particles in the plane and then move more easily together with the collided particles. Also, the spherical particles can move so as to overlap (that is, in the thickness direction) along the surface of the collided particles, and can move more than the particle gaps. Plate-shaped inorganic filler particles having a small aspect ratio can also behave similarly to these spherical particles. As a result, when the binder in the insulating layer is softened or melted, it is considered that the inorganic filler in the insulating layer easily moves in the plane direction and the insulating layer is easily heat-shrinked.

なお、例7、例8の比較から、絶縁層中のバインダ量が多いと、加熱時にバインダが軟化して無機フィラーが容易に移動し、熱収縮率が高くなってしまうことが確認された。このことから、絶縁層におけるバインダの割合は、30質量%未満が適切であり、25質量%以下や、20質量%以下、例えば15質量%以下が好ましいと言える。 From the comparison between Examples 7 and 8, it was confirmed that when the amount of the binder in the insulating layer is large, the binder softens during heating and the inorganic filler easily moves, resulting in a high heat shrinkage rate. From this, it can be said that the ratio of the binder in the insulating layer is preferably less than 30% by mass, preferably 25% by mass or less, 20% by mass or less, for example, 15% by mass or less.

(評価:短絡試験)
また、短絡試験の結果から、正極活物質層内に並べて配置した絶縁層の構成が異なることで、強制短絡時の電池の電圧降下量と、最高到達温度とが異なってくることが確認された。電圧降下量と最高到達温度とは良く相関している。また、電圧降下量および最高到達温度は、絶縁層の熱収縮率とよく相関し、絶縁層の熱収縮率が小さいほど、電圧降下量および最高到達温度が低減されることがわかった。換言すれば、絶縁層の熱収縮率が小さいほど、金属異物片による短絡量を削減でき、短絡を軽度なレベルに抑制できることがわかった。
短絡の原因である、金属異物片が絶縁層に当接する部分の幅は100μmと小さい。そのため、たとえ電池が常温でバインダが軟化または溶融されていない状態あっても、金属異物片が厚み方向で絶縁層に物理的に押圧されると、アスペクト比が小さい無機フィラー粒子は面内で移動しやすく押し退けられやすい。その結果、金属異物片は絶縁層に食い込んで、集電体に到達(短絡)しやすい。特にバインダ量が多い例7の絶縁層では、無機フィラー粒子が面内でより移動しやすく、金属異物片が容易に集電体に到達して、広い面積で短絡が生じて電圧降下量が大きくなったと考えられる。その結果、短絡による発熱量が増大し、安全性が低下されるレベルにまで短絡が拡大したと考えられる。
(Evaluation: Short circuit test)
In addition, from the results of the short-circuit test, it was confirmed that the voltage drop of the battery at the time of forced short-circuit and the maximum temperature reached differ due to the difference in the configuration of the insulating layers arranged side by side in the positive electrode active material layer. .. The amount of voltage drop and the maximum temperature reached are well correlated. It was also found that the voltage drop and the maximum temperature reached correlate well with the heat shrinkage of the insulating layer, and that the smaller the heat shrinkage of the insulating layer, the lower the voltage drop and the maximum temperature reached. In other words, it was found that the smaller the heat shrinkage rate of the insulating layer, the more the amount of short circuits caused by the metal foreign matter pieces can be reduced, and the short circuits can be suppressed to a mild level.
The width of the portion where the metal foreign matter piece abuts on the insulating layer, which is the cause of the short circuit, is as small as 100 μm. Therefore, even if the battery is in a state where the binder is not softened or melted at room temperature, when the metal foreign matter pieces are physically pressed against the insulating layer in the thickness direction, the inorganic filler particles having a small aspect ratio move in the plane. Easy to do and easy to push away. As a result, the metal foreign matter pieces bite into the insulating layer and easily reach (short-circuit) the current collector. Especially in the insulating layer of Example 7 in which the amount of binder is large, the inorganic filler particles move more easily in the plane, the metal foreign matter pieces easily reach the current collector, a short circuit occurs in a wide area, and the voltage drop amount is large. It is thought that it became. As a result, it is considered that the amount of heat generated by the short circuit increases and the short circuit expands to a level where safety is reduced.

これに対し、アスペクト比が大きい無機フィラー粒子は絶縁層の面内で移動し難く、金属異物片が押し当てられても集電体に接触するための経路を形成し難いと考えられる。その結果、金属異物片は集電体に容易に到達し難く、たとえ短絡してもその面積は小さく、短絡を軽度なレベルに軽減できると考えられる。その結果、短絡による発熱に伴う短絡面積の拡大と、これによる電池の更なる発熱とを抑制することができる。このことから、熱収縮率の小さい絶縁層は、常温においても、金属異物等による短絡を好適に抑制または軽減できることがわかった。 On the other hand, it is considered that the inorganic filler particles having a large aspect ratio are difficult to move in the plane of the insulating layer, and it is difficult to form a path for contacting the current collector even if a metal foreign matter piece is pressed against the particles. As a result, it is considered that the metal foreign matter pieces are difficult to reach the current collector easily, the area is small even if a short circuit occurs, and the short circuit can be reduced to a mild level. As a result, it is possible to suppress an increase in the short-circuit area due to heat generation due to a short circuit and further heat generation of the battery due to this. From this, it was found that the insulating layer having a small heat shrinkage rate can suitably suppress or reduce short circuit due to metal foreign matter or the like even at room temperature.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The techniques described in the claims include various modifications and modifications of the specific examples exemplified above.

1 二次電池
30 正極
32 正極集電体
34 正極活物質層
36 絶縁層
40 負極
42 負極集電体
44 負極活物質層
50 セパレータ
1 Secondary battery 30 Positive electrode 32 Positive electrode current collector 34 Positive electrode active material layer 36 Insulation layer 40 Negative electrode 42 Negative electrode current collector 44 Negative electrode active material layer 50 Separator

Claims (6)

正極と、負極と、前記正極および前記負極を絶縁するセパレータと、非水電解質とを備え、
前記正極は、
正極集電体と、
前記正極集電体の表面の一部に備えられ正極活物質を含む正極活物質層と、
前記正極集電体の表面の他の一部であって前記正極活物質層に隣接するように備えられた絶縁層と、
を備え、
前記絶縁層は、無機フィラーとバインダとを含み、かつ、
一辺が5cmの正方形の形状に形成された絶縁層評価用サンプルについて、150℃で1時間の加熱処理を施したときの当該絶縁層評価用サンプルの表面に平行な一の方向の熱収縮率が13%以下である、非水電解質二次電池。
A positive electrode, a negative electrode, a separator that insulates the positive electrode and the negative electrode, and a non-aqueous electrolyte are provided.
The positive electrode is
Positive current collector and
A positive electrode active material layer provided on a part of the surface of the positive electrode current collector and containing a positive electrode active material,
An insulating layer that is another part of the surface of the positive electrode current collector and is provided adjacent to the positive electrode active material layer.
Equipped with
The insulating layer contains an inorganic filler and a binder, and
For an insulating layer evaluation sample formed in a square shape with a side of 5 cm, the heat shrinkage rate in one direction parallel to the surface of the insulating layer evaluation sample when heat-treated at 150 ° C. for 1 hour is Non-aqueous electrolyte secondary battery with 13% or less.
前記無機フィラーは板状粒子を含む、請求項1に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the inorganic filler contains plate-like particles. 前記無機フィラーは、平均アスペクト比が3以上の板状粒子を含む、請求項2に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 2, wherein the inorganic filler contains plate-like particles having an average aspect ratio of 3 or more. 前記無機フィラーは、ベーマイト粉末およびアルミナ粉末の少なくとも一方である、請求項1~3のいずれか1項に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the inorganic filler is at least one of boehmite powder and alumina powder. 前記無機フィラーにおいて、前記無機フィラーと前記バインダとの合計に占める前記バインダの割合は、30質量%未満である、請求項1~4のいずれか1項に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the ratio of the binder to the total of the inorganic filler and the binder is less than 30% by mass in the inorganic filler. 前記絶縁層の平均厚みは10μm以下である、請求項1~5のいずれか1項に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the insulating layer has an average thickness of 10 μm or less.
JP2019074406A 2019-04-09 2019-04-09 Non-aqueous electrolyte secondary battery Active JP7085147B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019074406A JP7085147B2 (en) 2019-04-09 2019-04-09 Non-aqueous electrolyte secondary battery
US16/832,165 US11522253B2 (en) 2019-04-09 2020-03-27 Nonaqueous electrolyte secondary battery
KR1020200042250A KR102391375B1 (en) 2019-04-09 2020-04-07 Nonaqueous electrolyte secondary battery
CN202010267602.9A CN111799440B (en) 2019-04-09 2020-04-08 Nonaqueous electrolyte secondary battery
US17/979,108 US20230055772A1 (en) 2019-04-09 2022-11-02 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019074406A JP7085147B2 (en) 2019-04-09 2019-04-09 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2020173941A JP2020173941A (en) 2020-10-22
JP7085147B2 true JP7085147B2 (en) 2022-06-16

Family

ID=72748205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019074406A Active JP7085147B2 (en) 2019-04-09 2019-04-09 Non-aqueous electrolyte secondary battery

Country Status (4)

Country Link
US (2) US11522253B2 (en)
JP (1) JP7085147B2 (en)
KR (1) KR102391375B1 (en)
CN (1) CN111799440B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7085149B2 (en) 2019-04-09 2022-06-16 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
KR20230063150A (en) * 2021-11-01 2023-05-09 주식회사 엘지에너지솔루션 Composition for electrode insulation coating and electrode formed by using the same
US20230282924A1 (en) * 2022-03-01 2023-09-07 GM Global Technology Operations LLC Intumescent inorganic composites for mitigating a thermal runaway event in a battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063343A (en) 2002-07-30 2004-02-26 Toshiba Corp Lithium ion secondary battery
JP2009043515A (en) 2007-08-08 2009-02-26 Hitachi Maxell Ltd Electrode for battery, method of manufacturing the same, and battery having electrode for battery
JP2009134915A (en) 2007-11-29 2009-06-18 Panasonic Corp Non-aqueous secondary battery
JP2009272153A (en) 2008-05-08 2009-11-19 Hitachi Maxell Ltd Lithium secondary battery
WO2012115252A1 (en) 2011-02-25 2012-08-30 日本ゼオン株式会社 Porous membrane for secondary battery, slurry for secondary battery porous membrane and secondary battery
WO2014133063A1 (en) 2013-02-28 2014-09-04 日産自動車株式会社 Positive electrode active material, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI321860B (en) * 2004-07-07 2010-03-11 Lg Chemical Ltd Organic/inorganic composite porous film and electrochemical device using the same
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
US9166250B2 (en) * 2006-09-07 2015-10-20 Hitachi Maxell, Ltd. Separator for battery, method for manufacturing the same, and lithium secondary battery
KR20090111342A (en) * 2007-05-10 2009-10-26 히다치 막셀 가부시키가이샤 Electrochemical element and method for production thereof
KR100971345B1 (en) * 2007-10-08 2010-07-20 삼성에스디아이 주식회사 Electrode assembly and rechargeable battery comprising the same
KR101580731B1 (en) * 2011-05-02 2015-12-28 도요타지도샤가부시키가이샤 Non-aqueous electrolyte secondary battery
JP6015591B2 (en) * 2012-10-26 2016-10-26 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
CN104051689B (en) * 2013-03-13 2020-06-02 三星Sdi株式会社 Separator and rechargeable lithium battery including the same
JP6212887B2 (en) * 2013-03-21 2017-10-18 日産自動車株式会社 Electrode manufacturing method and electrode manufacturing apparatus
KR101816763B1 (en) * 2013-05-08 2018-01-09 주식회사 엘지화학 Electrode structure of electrochemical device including insulating layer and manufacturing thereof
JP5704414B2 (en) * 2013-06-28 2015-04-22 トヨタ自動車株式会社 Non-aqueous secondary battery
JP2015072758A (en) 2013-10-02 2015-04-16 日立マクセル株式会社 Electrode for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery
US9792165B2 (en) * 2013-12-23 2017-10-17 Koninklijke Kpn N.V. Binding smart objects
JP6260834B2 (en) * 2015-06-22 2018-01-17 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP6337914B2 (en) * 2015-07-15 2018-06-06 トヨタ自動車株式会社 Method for producing non-aqueous electrolyte secondary battery
JP6754768B2 (en) * 2015-09-14 2020-09-16 マクセルホールディングス株式会社 Non-aqueous electrolyte secondary battery
US10833313B2 (en) * 2015-10-22 2020-11-10 Maxell Holdings, Ltd. Positive electrode for nonaqeous electrolyte secondary battery and a nonaqueous electrolyte secondary battery
JP6834139B2 (en) 2016-02-10 2021-02-24 株式会社Gsユアサ Power storage element
JP6667111B2 (en) * 2016-12-16 2020-03-18 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
KR101918448B1 (en) * 2017-04-28 2018-11-13 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery insulating porous layer
JP6774632B2 (en) * 2017-07-18 2020-10-28 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP6872149B2 (en) * 2017-07-20 2021-05-19 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063343A (en) 2002-07-30 2004-02-26 Toshiba Corp Lithium ion secondary battery
JP2009043515A (en) 2007-08-08 2009-02-26 Hitachi Maxell Ltd Electrode for battery, method of manufacturing the same, and battery having electrode for battery
JP2009134915A (en) 2007-11-29 2009-06-18 Panasonic Corp Non-aqueous secondary battery
JP2009272153A (en) 2008-05-08 2009-11-19 Hitachi Maxell Ltd Lithium secondary battery
WO2012115252A1 (en) 2011-02-25 2012-08-30 日本ゼオン株式会社 Porous membrane for secondary battery, slurry for secondary battery porous membrane and secondary battery
WO2014133063A1 (en) 2013-02-28 2014-09-04 日産自動車株式会社 Positive electrode active material, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
US20200328425A1 (en) 2020-10-15
US20230055772A1 (en) 2023-02-23
US11522253B2 (en) 2022-12-06
JP2020173941A (en) 2020-10-22
CN111799440B (en) 2023-06-13
KR102391375B1 (en) 2022-04-27
CN111799440A (en) 2020-10-20
KR20200119207A (en) 2020-10-19

Similar Documents

Publication Publication Date Title
JP6710554B2 (en) Non-aqueous electrolyte battery, battery pack and vehicle
CN111799439B (en) Lithium ion battery
JP6305263B2 (en) Non-aqueous electrolyte battery, battery pack, battery pack and car
JP7253147B2 (en) Non-aqueous electrolyte secondary battery
JP7096979B2 (en) Lithium ion secondary battery
US20230055772A1 (en) Nonaqueous electrolyte secondary battery
US20230378430A1 (en) Non-aqueous electrolyte secondary battery
JP5880964B2 (en) Nonaqueous electrolyte secondary battery
CN113302766A (en) Energy storage element and method for manufacturing energy storage element
KR101799172B1 (en) Non-aqueous electrolyte secondary battery
CN111435729B (en) Lithium ion secondary battery
JP7085149B2 (en) Non-aqueous electrolyte secondary battery
CN112582621B (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220519

R151 Written notification of patent or utility model registration

Ref document number: 7085147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151