JP2006012703A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2006012703A
JP2006012703A JP2004190837A JP2004190837A JP2006012703A JP 2006012703 A JP2006012703 A JP 2006012703A JP 2004190837 A JP2004190837 A JP 2004190837A JP 2004190837 A JP2004190837 A JP 2004190837A JP 2006012703 A JP2006012703 A JP 2006012703A
Authority
JP
Japan
Prior art keywords
positive
negative electrode
secondary battery
mixture layer
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2004190837A
Other languages
Japanese (ja)
Inventor
Akira Kojima
亮 小島
Takenori Ishizu
竹規 石津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004190837A priority Critical patent/JP2006012703A/en
Publication of JP2006012703A publication Critical patent/JP2006012703A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery enabling both high output and high capacity. <P>SOLUTION: A positive electrode plate 5 and a negative electrode plate 6 are rolled in an electrode group 18. In the positive electrode plate 5, the thickness of a mix layer is set by changing from 44 μm to 88 μm generally at a constant gradient, and the density thereof is set to 2.7 g/cm<SP>3</SP>regardless of the thickness. In the negative electrode plate 6, the thickness of a mix layer is set by being changed from 35 μm to 77 μm generally at a constant gradient, and the density thereof is set to 1 g/cm<SP>3</SP>. In each of the positive electrode plate 5 and the negative electrode plate 6, a part having a small thickness of the mix layer is rolled on the side of shaft center 10. In the positive electrode plate 5 and the negative electrode plate 6, a plurality of current collection tabs are formed one-by-one at every certain length of a collector. Resistance of charge transfer is reduced on the shaft center 10 side having a small thickness of the mix layer, and the quantity of an active material is increased on the peripheral side having a large thickness. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は二次電池に係り、特に、集電体に活物質を含む合剤層が塗着されており集電体から複数の集電タブがそれぞれ導出された正、負極板間にセパレータを介在させた電極群を有する二次電池に関する。   The present invention relates to a secondary battery, and in particular, a separator layer is provided between a positive electrode plate and a negative electrode plate in which a mixture layer containing an active material is applied to a current collector, and a plurality of current collector tabs are respectively led out from the current collector. The present invention relates to a secondary battery having an intervening electrode group.

二次電池は、VTRカメラやノートパソコン、携帯電話等の各種携帯型機器や情報機器用の電源として広く使用されており、最近では、電気自動車等の動力用電源としても期待されている。一般に、二次電池は、電池容器内に電極群が収容され、電解液注液後、電池容器が封口されている。この電極群は、正負極板が直接接触しないようにセパレ−タを挟んで対向させて捲回又は積層され形成されている。正負極板には、活物質を含む合剤が金属箔(集電体)に略均等に塗付されて合剤層が形成されている。   Secondary batteries are widely used as power sources for various portable devices and information devices such as VTR cameras, laptop computers, and mobile phones, and recently, they are also expected as power sources for electric vehicles and the like. Generally, in a secondary battery, an electrode group is accommodated in a battery container, and the battery container is sealed after injecting an electrolytic solution. The electrode group is formed by being wound or laminated so that the positive and negative electrode plates do not directly contact each other with the separator interposed therebetween. On the positive and negative electrode plates, a mixture containing an active material is applied almost evenly to a metal foil (current collector) to form a mixture layer.

上述した各種機器では、始動(電源投入)時に大きな電流が必要であり、その後比較的小さな負荷で継続的な出力が求められる場合が多いため、電源として使用される二次電池には高出力及び高容量を両立させることが要求されている。二次電池を高容量化するためには、電池内における活物質の占有体積をできるだけ大きくすることが必要であり、合剤層の厚みを大きくすることが有効である。一方、高出力を得るためには、物質移動、電荷移動の観点から合剤層の厚みを小さくすることが好ましい。このとき、高出力を得るために合剤層の厚みを小さくして略均等に形成させ、高容量化を図るために正負極板の捲回数又は積層数を大きくすると、正負極板に挟まれるセパレータ分の体積が増大するため、活物質の占有体積の増大が不十分となる。二次電池を高容量化する技術としては、例えば、1本の集電タブを有する二次電池において少なくとも正極板に塗着された合剤層の厚みを集電タブから遠ざかるに従い小さくして合剤層内の電荷移動を均一化する技術が開示されている(特許文献1参照)。   In the various devices described above, a large current is required at the start (power-on), and after that, a continuous output with a relatively small load is often required. It is required to achieve both high capacity. In order to increase the capacity of the secondary battery, it is necessary to increase the volume of the active material in the battery as much as possible, and it is effective to increase the thickness of the mixture layer. On the other hand, in order to obtain a high output, it is preferable to reduce the thickness of the mixture layer from the viewpoint of mass transfer and charge transfer. At this time, in order to obtain a high output, the thickness of the mixture layer is made to be substantially uniform, and when the number of positive or negative electrode plates is increased or the number of laminated layers is increased to increase the capacity, the mixture is sandwiched between the positive and negative electrode plates. Since the volume for the separator increases, the increase in the occupied volume of the active material becomes insufficient. As a technology for increasing the capacity of a secondary battery, for example, in a secondary battery having a single current collecting tab, the thickness of the mixture layer applied to at least the positive electrode plate is reduced as the distance from the current collecting tab decreases. A technique for making charge transfer in the agent layer uniform is disclosed (see Patent Document 1).

特開2000−21453号公報JP 2000-21453 A

しかしながら、特許文献1の技術では、電荷移動が均一化して容量は向上するものの、集電タブが1本であり集電タブ近傍の合剤層の厚みが大きくされているため、抵抗が大きくなり高出力を得ることは難しい。また、1つの電池内で正極板の合剤層の厚みを変えた場合には、対向する正負極板の単位体積あたりで、正極板の放電容量と負極板の放電容量との比が異なる部分が生じるため、充放電時に正負極板の一方のみに負荷がかかることもある。このため、相反する特性である高容量と高出力とを両立させる技術は、要求が多いながらも開発に到っていないのが現状である。   However, in the technique of Patent Document 1, although the charge transfer is made uniform and the capacity is improved, the resistance increases because the thickness of the mixture layer in the vicinity of the current collecting tab is increased because there is only one current collecting tab. It is difficult to obtain high output. Further, when the thickness of the mixture layer of the positive electrode plate is changed in one battery, the ratio of the discharge capacity of the positive electrode plate to the discharge capacity of the negative electrode plate is different per unit volume of the opposing positive and negative electrode plates Therefore, a load may be applied to only one of the positive and negative electrode plates during charging and discharging. For this reason, a technology that achieves both high capacity and high output, which are contradictory characteristics, is currently under development even though there are many demands.

本発明では上記事案に鑑み、高出力及び高容量を両立可能な二次電池を提供することを課題とする。   In view of the above case, an object of the present invention is to provide a secondary battery that can achieve both high output and high capacity.

上記課題を解決するために、本発明の第1の態様は、集電体に活物質を含む合剤層が塗着されており前記集電体から複数の集電タブがそれぞれ導出された正、負極板間にセパレータを介在させた電極群を有する二次電池において、前記正、負極板は、いずれも前記合剤層の厚みが前記電極群の内側より外側が大きく、かつ、前記合剤層のかさ密度がそれぞれ略均一であり、前記集電タブは前記電極群の端面から前記集電体の一定長さに対して1つずつ導出されていることを特徴とする。   In order to solve the above-described problem, a first aspect of the present invention is a positive mode in which a current collector is coated with a mixture layer containing an active material, and a plurality of current collecting tabs are respectively derived from the current collector. In the secondary battery having an electrode group in which a separator is interposed between the negative electrode plates, the positive electrode plate and the negative electrode plate both have a thickness of the mixture layer larger than the inside of the electrode group, and the mixture The bulk densities of the layers are substantially uniform, and the current collecting tabs are led out one by one from the end face of the electrode group for a certain length of the current collector.

第1の態様では、正、負極板はいずれも合剤層の厚みが電極群の内側より外側が大きく、かつ、合剤層のかさ密度がそれぞれ略均一なため、電極群の内側で電荷移動の抵抗が小さくなることから、高出力が要求されるときは抵抗の小さい電極群の内側からの出力が主に寄与し、電極群の端面から集電体の一定長さに対して1つずつ導出された集電タブを介して放電されると共に、電極群の外側で活物質量が大きくなることから、電気量が持続的に要求されるときは活物質量の豊富な電極群の外側からの出力が主に寄与し集電タブを介して放電されるので、高出力、高容量を両立させることができる。   In the first aspect, both the positive and negative electrode plates have a thickness of the mixture layer that is greater on the outside than the inside of the electrode group, and the bulk density of the mixture layer is substantially uniform, so that charge transfer is performed on the inside of the electrode group. Therefore, when a high output is required, the output from the inside of the electrode group having a small resistance mainly contributes, one by one from the end face of the electrode group to a certain length of the current collector. Since the amount of active material is increased outside the electrode group while being discharged through the derived current collecting tab, when the amount of electricity is required continuously, the electrode group is rich from the active material amount. The main output contributes to the discharge through the current collecting tab, so that both high output and high capacity can be achieved.

また、本発明の第2の態様は、集電体に活物質を含む合剤層が塗着されており前記集電体から複数の集電タブがそれぞれ導出された正、負極板間にセパレータを介在させた電極群を有する二次電池において、前記正、負極板は、いずれも前記合剤層の単位面積あたりの重量が前記電極群の内側より外側が大きく、かつ、前記合剤層のかさ密度がそれぞれ略均一であり、前記集電タブは前記電極群の端面から前記集電体の一定長さに対して1つずつ導出されていることを特徴とする。   Further, according to the second aspect of the present invention, a separator layer is provided between a positive electrode and a negative electrode plate in which a mixture layer containing an active material is applied to a current collector, and a plurality of current collector tabs are respectively led out from the current collector. In the secondary battery having the electrode group interposing the electrode group, each of the positive and negative electrode plates has a weight per unit area of the mixture layer larger than the inside of the electrode group and whether the mixture layer is The thickness density is substantially uniform, and the current collecting tab is led out from the end face of the electrode group one by one for a certain length of the current collector.

第2の態様では、正、負極板はいずれも合剤層の単位面積あたりの重量が電極群の内側より外側が大きく、かつ、合剤層のかさ密度がそれぞれ略均一なため、電極群の内側で電荷移動の抵抗が小さくなることから、高出力が要求されるときは抵抗の小さい電極群の内側からの出力が主に寄与し、電極群の端面から集電体の一定長さに対して1つずつ導出された集電タブを介して放電されると共に、電極群の外側で活物質量が大きくなることから、電気量が持続的に要求されるときは活物質量の豊富な電極群の外側からの出力が主に寄与し集電タブを介して放電されるので、高出力、高容量を両立させることができる。   In the second aspect, both the positive and negative electrode plates have a weight per unit area of the mixture layer that is greater on the outside than the inside of the electrode group, and the bulk density of the mixture layer is substantially uniform. Since the resistance to charge transfer is reduced on the inside, when high output is required, the output from the inside of the electrode group with low resistance mainly contributes to the fixed length of the current collector from the end face of the electrode group. In addition to being discharged through current collecting tabs that are led out one by one, the amount of active material increases outside the electrode group. Since the output from the outside of the group mainly contributes and is discharged through the current collecting tab, both high output and high capacity can be achieved.

第1、第2の態様において、電極群が、合剤層の厚み又は単位面積あたりの重量の異なる少なくとも2組みの正、負極板を有するようにしてもよい。このとき、少なくとも2組みの正、負極板を有する電極群間に絶縁性の薄板を介在させていることが好ましい。また、合剤層を正、負極板の集電体の両面に塗着して、該合剤層の厚み又は単位面積あたりの重量が集電体の両面で異なるようにしてもよい。この場合において、二次電池をリチウムイオン二次電池としてもよい。   In the first and second embodiments, the electrode group may have at least two sets of positive and negative electrode plates having different thicknesses or weights per unit area of the mixture layer. At this time, it is preferable that an insulating thin plate is interposed between the electrode groups having at least two pairs of positive and negative plates. Alternatively, the mixture layer may be applied to both sides of the current collector of the positive and negative electrode plates so that the thickness or weight per unit area of the mixture layer is different on both sides of the current collector. In this case, the secondary battery may be a lithium ion secondary battery.

本発明によれば、正、負極板はいずれも合剤層の厚み又は単位面積あたりの重量が電極群の内側より外側が大きく、かつ、合剤層のかさ密度がそれぞれ略均一なため、高出力が要求されるときは抵抗の小さい電極群の内側からの出力が主に寄与し、電極群の端面から集電体の一定長さに対して1つずつ導出された集電タブを介して放電されると共に、電気量が持続的に要求されるときは活物質量の豊富な電極群の外側からの出力が主に寄与し集電タブを介して放電されるので、高出力、高容量を両立させることができる、という効果を得ることができる。   According to the present invention, both the positive and negative electrode plates have a thickness of the mixture layer or a weight per unit area that is larger on the outside than the inside of the electrode group, and the bulk density of the mixture layer is substantially uniform. When the output is required, the output from the inside of the electrode group having a small resistance mainly contributes, and through the current collecting tab derived one by one for the fixed length of the current collector from the end face of the electrode group. In addition to being discharged, when the amount of electricity is required continuously, the output from the outside of the electrode group rich in the amount of active material contributes mainly and is discharged through the current collecting tab, so it has high output and high capacity. Can be achieved.

以下、図面を参照して、本発明を円筒型リチウムイオン二次電池に適用した実施の形態について説明する。   Embodiments in which the present invention is applied to a cylindrical lithium ion secondary battery will be described below with reference to the drawings.

(構成)
本実施形態の円筒型リチウムイオン二次電池20は、図1に示すように、電池容器となるニッケルメッキが施されたスチール製で有底円筒状の電池缶19並びに電気絶縁性で中空円筒状の軸芯10の周囲に帯状の正極板及び負極板がセパレータを介して断面渦巻状に捲回された電極群18を有している。
(Constitution)
As shown in FIG. 1, the cylindrical lithium ion secondary battery 20 of the present embodiment is made of nickel-plated steel battery can 19 having a bottomed cylindrical shape and an electrically insulating hollow cylindrical shape. Around the shaft core 10, there is an electrode group 18 in which a belt-like positive electrode plate and a negative electrode plate are wound in a spiral shape with a separator interposed therebetween.

電極群18の上側には、正極板からの電位を集電するためのアルミニウム製で円盤状の正極集電部材13が配置されている。正極集電部材13は、軸芯10の上端部に固定されている。正極集電部材13の周縁には、電極群18の上端面から導出された複数の正極タブ11の端部が超音波溶接されている。正極集電部材13の上方には、正極外部端子となる円盤状の電池蓋17が配置されている。正極集電部材13の上面略中央部にはアルミニウム製でリボン状の正極リード板の一端が固定されており、正極リード板の他端は電池蓋17の下面に接合されている。   On the upper side of the electrode group 18, an aluminum disc-shaped positive electrode current collector 13 for collecting the electric potential from the positive electrode plate is disposed. The positive electrode current collecting member 13 is fixed to the upper end portion of the shaft core 10. Ends of the plurality of positive electrode tabs 11 led out from the upper end surface of the electrode group 18 are ultrasonically welded to the periphery of the positive electrode current collecting member 13. A disc-shaped battery lid 17 serving as a positive electrode external terminal is disposed above the positive electrode current collecting member 13. One end of a ribbon-like positive electrode lead plate made of aluminum is fixed to a substantially central portion of the upper surface of the positive electrode current collecting member 13, and the other end of the positive electrode lead plate is joined to the lower surface of the battery lid 17.

一方、電極群18の下側には負極板からの電位を集電するための銅製で円盤状の負極集電部材14が配置されており、負極集電部材14は軸芯10の下端部に固定されている。負極集電部材14の周縁には、電極群18の下端面から導出された複数の負極タブ12の端部が溶接されている。負極集電部材14の下部には負極リード板が溶接されており、負極リード板は電池缶19の内底部に抵抗溶接されている。   On the other hand, a copper disc-shaped negative electrode current collecting member 14 for collecting the electric potential from the negative electrode plate is disposed below the electrode group 18, and the negative electrode current collecting member 14 is disposed at the lower end portion of the shaft core 10. It is fixed. The ends of the plurality of negative electrode tabs 12 led out from the lower end surface of the electrode group 18 are welded to the periphery of the negative electrode current collecting member 14. A negative electrode lead plate is welded to the lower portion of the negative electrode current collecting member 14, and the negative electrode lead plate is resistance welded to the inner bottom portion of the battery can 19.

電池蓋17は、絶縁性の樹脂製ガスケットを介して電池缶19の上部にカシメられて固定されている。このため、リチウムイオン二次電池20の内部は密封されている。また、電池缶19内には、非水電解液が所定量注液されている。非水電解液には、例えば、エチレンカーボネートやジエチルカーボネート等のカーボネート系混合溶媒中に6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解して使用することができる。なお、電池缶19内の電極群18は非水電解液注液前に60°C、20時間の真空乾燥で水分除去されている。 The battery lid 17 is fixed by being crimped to the upper part of the battery can 19 via an insulating resin gasket. For this reason, the inside of the lithium ion secondary battery 20 is sealed. A predetermined amount of non-aqueous electrolyte is injected into the battery can 19. For the non-aqueous electrolyte, for example, 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) can be used by dissolving in a carbonate-based mixed solvent such as ethylene carbonate or diethyl carbonate. In addition, the electrode group 18 in the battery can 19 is water-removed by vacuum drying at 60 ° C. for 20 hours before injecting the non-aqueous electrolyte.

図2に示すように、電極群18は、軸芯10の周囲に、正極板1及び負極板2が、これら両極板が直接接触しないように厚さ30μmで微多孔性のポリエチレン製のセパレータ7を介して捲回されている。正極板1及び負極板2は、電極群18の外径の約半分の直径に捲回されている。正極板1及び負極板2の捲回周囲には、厚さ100μmでポリプロピレン製の絶縁シート9が1周分巻き付けられている。絶縁シート9の周囲には、合剤層の単位面積あたりの重量を、それぞれ正極板1及び負極板2より大きくした正極板3及び負極板4が、正極板1及び負極板2と同様にして捲回されている。従って、電極群18は、合剤層の単位面積あたりの重量の異なるそれぞれ2種類の正極板1、3及び負極板2、4を有している。また、電極群18は、軸芯10(捲回中心)側に単位面積あたりの重量の小さな正極板1及び負極板2が配置され、外周側に単位面積あたりの重量の大きな正極板3及び負極板4が配置されている。正極板1及び負極板2の電極群と、正極板3及び負極板4の電極群との間には絶縁シート9が介在している。   As shown in FIG. 2, the electrode group 18 includes a positive electrode plate 1 and a negative electrode plate 2 around a shaft core 10 and a microporous polyethylene separator 7 having a thickness of 30 μm so that the two electrode plates do not directly contact each other. Has been wound through. The positive electrode plate 1 and the negative electrode plate 2 are wound to have a diameter that is approximately half the outer diameter of the electrode group 18. A polypropylene insulating sheet 9 having a thickness of 100 μm is wound around the wound periphery of the positive electrode plate 1 and the negative electrode plate 2 for one turn. Around the insulating sheet 9, the positive electrode plate 3 and the negative electrode plate 4, whose weight per unit area of the mixture layer is larger than that of the positive electrode plate 1 and the negative electrode plate 2, respectively, are the same as the positive electrode plate 1 and the negative electrode plate 2. Has been wounded. Therefore, the electrode group 18 has two types of positive electrode plates 1 and 3 and negative electrode plates 2 and 4 having different weights per unit area of the mixture layer. The electrode group 18 includes a positive electrode plate 1 and a negative electrode plate 2 having a small weight per unit area on the axial core 10 (winding center) side, and a positive electrode plate 3 and a negative electrode having a large weight per unit area on the outer peripheral side. A plate 4 is arranged. An insulating sheet 9 is interposed between the electrode group of the positive electrode plate 1 and the negative electrode plate 2 and the electrode group of the positive electrode plate 3 and the negative electrode plate 4.

正極板1、3の合剤層の幅(図2の縦方向)は負極板2、4の合剤層の幅内に収まるように配置されており、正極板1、3の合剤層の全面を負極板2、4の合剤層とそれぞれ対向させて捲回されている。正極タブ11及び負極タブ12は、それぞれ電極群18の両端面の互いに反対側に導出されている。電極群18及び正極集電部材13の外周面全周には、図示を省略した絶縁被覆が施されている。   The width of the mixture layer of the positive plates 1 and 3 (vertical direction in FIG. 2) is arranged so as to be within the width of the mixture layer of the negative plates 2 and 4. The entire surface is wound with the mixture layers of the negative electrode plates 2 and 4 facing each other. The positive electrode tab 11 and the negative electrode tab 12 are led out to opposite sides of both end faces of the electrode group 18, respectively. An insulation coating (not shown) is applied to the entire outer peripheral surface of the electrode group 18 and the positive electrode current collector 13.

電極群18を構成する正極板1、3は、正極集電体として厚さ20μmのアルミニウム箔を有している。アルミニウム箔の両面には、正極活物質としてリチウムマンガン複合酸化物粉末を含む正極合剤が略均等に塗着されて合剤層が形成されている。正極合剤には、正極活物質の85重量部に対して、導電剤として炭素粉末の10重量部及びバインダ(結着材)としてポリフッ化ビニリデン(以下、PVDFと略記する。)の5重量部が配合されている。正極合剤は、粘度調整溶媒としてN−メチルピロリドン(以下、NMPと略記する。)が用いられ、プラネタリミキサで略均一に混練され真空脱泡処理されている。アルミニウム箔に正極合剤を塗工するときには、合剤層の単位面積あたりの重量(以下、正極塗工量という。)を調整可能な塗工機が使用される。正極塗工量は、正極板1ではアルミニウム箔片面あたり120g/mに設定されており、正極板3では240g/mに設定されている。正極板1、3は、いずれも正極合剤のかさ密度が2.7g/cmとなるように、ロールプレス機でプレス加工されている。このため、正極塗工量が正極板3より小さい正極板1では、合剤層の厚みも小さくなる。アルミニウム箔の長寸方向一側の側縁には、正極合剤の未塗工部が形成されている。未塗工部は略均等な間隔で櫛歯状に裁断されており、複数の正極タブ11が形成されている。このため、正極タブ11は、アルミニウム箔の一定長さに対して1つずつ形成されている。 The positive plates 1 and 3 constituting the electrode group 18 have an aluminum foil having a thickness of 20 μm as a positive electrode current collector. On both surfaces of the aluminum foil, a positive electrode mixture containing lithium manganese composite oxide powder as a positive electrode active material is applied substantially evenly to form a mixture layer. In the positive electrode mixture, 10 parts by weight of carbon powder as a conductive agent and 5 parts by weight of polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a binder (binder) with respect to 85 parts by weight of the positive electrode active material. Is blended. The positive electrode mixture uses N-methylpyrrolidone (hereinafter abbreviated as NMP) as a viscosity adjusting solvent, and is kneaded substantially uniformly by a planetary mixer and vacuum defoamed. When the positive electrode mixture is applied to the aluminum foil, a coating machine capable of adjusting the weight per unit area of the mixture layer (hereinafter referred to as the positive electrode coating amount) is used. The positive electrode coating amount is set to 120 g / m 2 per one side of the aluminum foil in the positive electrode plate 1 and 240 g / m 2 in the positive electrode plate 3. The positive plates 1 and 3 are all pressed by a roll press so that the bulk density of the positive electrode mixture is 2.7 g / cm 3 . For this reason, in the positive electrode plate 1 whose positive electrode coating amount is smaller than the positive electrode plate 3, the thickness of the mixture layer is also reduced. An uncoated portion of the positive electrode mixture is formed on the side edge on one side in the longitudinal direction of the aluminum foil. The uncoated portion is cut into a comb shape at substantially equal intervals, and a plurality of positive electrode tabs 11 are formed. For this reason, the positive electrode tabs 11 are formed one by one for a certain length of the aluminum foil.

一方、負極板2、4は、負極集電体として厚さ10μmの銅箔を有している。銅箔の両面には、負極活物質として非晶質炭素粉末を含む負極合剤が塗着されて合剤層が形成されている。負極合剤には、負極活物質の90重量部に対して、導電剤としてアセチレンブラックの5重量部及びバインダとしてPVDFの5重量部が配合されており、負極合剤は正極合剤と同様にして調製されている。銅箔に負極合剤を塗工するときには、正極合剤の塗工と同様の塗工機が使用される。合剤層の単位面積あたりの重量(以下、負極塗工量という。)は、負極板2では銅箔片面あたり35g/mに設定されており、負極板4では70g/mに設定されている。負極板2、4は、いずれも負極合剤のかさ密度が1g/cmとなるように、ロールプレス機でプレス加工されている。このため、負極塗工量が負極板4より小さい負極板2では、合剤層の厚みも小さくなる。銅箔の長寸方向一側の側縁には、負極合剤の未塗工部が形成されており、正極板1、3と同様にして複数の負極タブ12が形成されている。このため、負極タブ12は、銅箔の一定長さに対して1つずつ形成されている。なお、負極合剤の塗工部の幅は正極合剤の塗工部の幅より約2%大きく設定されている。 On the other hand, the negative plates 2 and 4 have a copper foil having a thickness of 10 μm as a negative electrode current collector. On both surfaces of the copper foil, a negative electrode mixture containing amorphous carbon powder as a negative electrode active material is applied to form a mixture layer. The negative electrode mixture contains 5 parts by weight of acetylene black as a conductive agent and 5 parts by weight of PVDF as a binder with respect to 90 parts by weight of the negative electrode active material. The negative electrode mixture is the same as the positive electrode mixture. Have been prepared. When coating the negative electrode mixture on the copper foil, a coating machine similar to the coating of the positive electrode mixture is used. The weight per unit area of the mixture layer (hereinafter referred to as negative electrode coating amount) is set to 35 g / m 2 per one side of the copper foil in the negative electrode plate 2 and is set to 70 g / m 2 in the negative electrode plate 4. ing. The negative electrode plates 2 and 4 are both pressed by a roll press so that the bulk density of the negative electrode mixture is 1 g / cm 3 . For this reason, in the negative electrode plate 2 whose negative electrode coating amount is smaller than the negative electrode plate 4, the thickness of the mixture layer is also reduced. An uncoated portion of the negative electrode mixture is formed on the side edge on one side in the longitudinal direction of the copper foil, and a plurality of negative electrode tabs 12 are formed in the same manner as the positive electrode plates 1 and 3. For this reason, the negative electrode tabs 12 are formed one by one for a certain length of the copper foil. Note that the width of the coating portion of the negative electrode mixture is set to be about 2% larger than the width of the coating portion of the positive electrode mixture.

(作用等)
次に、本実施形態のリチウムイオン二次電池20の作用等について説明する。
(Action etc.)
Next, the operation and the like of the lithium ion secondary battery 20 of the present embodiment will be described.

本実施形態のリチウムイオン二次電池20では、電極群18は、軸芯10側に正極塗工量を小さくした正極板1及び負極塗工量を小さくした負極板2が捲回されており、外周側に正極塗工量を大きくした正極板3及び負極塗工量を大きくした負極板4が捲回されている。すなわち、電極群18は、正負極塗工量の異なる2組みの正負極板を有している。このため、正極板1、負極板2をセパレータ7を介して対向させた軸芯10側では充放電時の電荷移動の抵抗が小さくなり、正極板3、負極板4をセパレータ7を介して対向させた外周側では正負極板共に活物質量が大きくなる。これにより、高出力が要求されるときは、電荷移動の抵抗が小さな正極板1、負極板2からの出力が主に寄与して放電され、それに続いて大きな電気量が持続的に要求されるときは、活物質量が大きな正極板3、負極板4からの出力が主に寄与して放電される。また、正極板1、3には、アルミニウム箔の一定長さに対して1つずつ導出された複数の集電タブ11が形成されており、負極板2、4には、銅箔の一定長さに対して1つずつ導出された複数の集電タブ12が形成されている。従って、高出力が要求されるときでも、電気量が持続的に要求されるときでも、負荷側からの要求に対し、電極群18を構成する正負極塗工量の異なる2組みの正負極板の物質移動や電荷移動の抵抗差に応じて電気量が集電されるので、高出力及び高容量を両立させることができる。   In the lithium ion secondary battery 20 of the present embodiment, the electrode group 18 has the positive electrode plate 1 with a small positive electrode coating amount and the negative electrode plate 2 with a small negative electrode coating amount wound on the axial core 10 side. A positive electrode plate 3 having a large positive electrode coating amount and a negative electrode plate 4 having a large negative electrode coating amount are wound on the outer peripheral side. That is, the electrode group 18 has two sets of positive and negative electrode plates having different positive and negative electrode coating amounts. For this reason, on the shaft core 10 side where the positive electrode plate 1 and the negative electrode plate 2 are opposed to each other via the separator 7, the resistance of charge transfer during charge / discharge is reduced, and the positive electrode plate 3 and the negative electrode plate 4 are opposed to each other via the separator 7. On the outer peripheral side, the amount of the active material becomes large for both the positive and negative electrode plates. Thereby, when a high output is required, discharge from the positive electrode plate 1 and the negative electrode plate 2 having a small charge transfer resistance mainly contributes to discharge, and subsequently a large amount of electricity is required continuously. In some cases, the output from the positive electrode plate 3 and the negative electrode plate 4 having a large amount of active material mainly contributes to discharge. The positive electrode plates 1 and 3 are formed with a plurality of current collecting tabs 11 led out one by one with respect to the predetermined length of the aluminum foil, and the negative electrode plates 2 and 4 have a predetermined length of the copper foil. A plurality of current collecting tabs 12 led out one by one are formed. Therefore, even when high output is required or when the amount of electricity is required continuously, two sets of positive and negative electrode plates having different positive and negative electrode coating amounts constituting the electrode group 18 in response to the request from the load side Since the amount of electricity is collected according to the resistance difference between the mass transfer and the charge transfer, both high output and high capacity can be achieved.

また、本実施形態のリチウムイオン二次電池20では、正負極塗工量を小さくした正極板1、負極板2が、正負極塗工量を大きくした正極板3、負極板4がそれぞれ対向するように捲回されており、正極板1、3、及び、負極板2、4ではそれぞれ正負極合剤のかさ密度が同じに形成されている。このため、正極板1、3の単位体積あたりの放電容量と、負極板2、4の単位体積あたりの放電容量との比は、正負極塗工量にかかわらず電極群18の軸芯10側及び外周側でほぼ一定となる。これにより、充放電時に正負極板のいずれか一方のみに負荷がかかることを防止することができる。更に、正極板1、負極板2を捲回した外側には絶縁シート9が1周分巻き付けられている。このため、例えば、正極塗工量を大きくした正極板1と負極塗工量を大きくした負極板4とを対向させるような、厚みが異なることによる正負極板の対向不良が生じることを防止することができる。   Further, in the lithium ion secondary battery 20 of the present embodiment, the positive electrode plate 1 and the negative electrode plate 2 having a small positive / negative electrode coating amount are opposed to the positive electrode plate 3 and the negative electrode plate 4 having a large positive / negative electrode coating amount, respectively. The positive electrode plates 1 and 3 and the negative electrode plates 2 and 4 have the same bulk density of the positive and negative electrode mixtures. For this reason, the ratio of the discharge capacity per unit volume of the positive plates 1 and 3 to the discharge capacity per unit volume of the negative plates 2 and 4 is the axis 10 side of the electrode group 18 regardless of the positive and negative electrode coating amount. And it becomes almost constant on the outer peripheral side. Thereby, it can prevent that a load is applied only to either one of the positive / negative electrode plates at the time of charging / discharging. Further, an insulating sheet 9 is wound around the outer periphery of the positive electrode plate 1 and the negative electrode plate 2 that are wound. For this reason, for example, it is possible to prevent the positive and negative electrode plates from facing each other due to the different thicknesses such that the positive electrode plate 1 having a large positive electrode coating amount and the negative electrode plate 4 having a large negative electrode coating amount are opposed to each other. be able to.

更に、本実施形態のリチウムイオン二次電池20では、電極群18の軸芯10側に正極板1、負極板2が、外周側に正極板3、負極板4がそれぞれ捲回されている。このため、正負極塗工量を小さくした正極板1、負極板2が小さな捲回径で捲回され、正負極塗工量を大きくした正極板3、負極板4が大きな捲回径で捲回されるので、正負極板の捲回時に合剤層にひび割れ等の損傷が生じることを防止することができる。   Furthermore, in the lithium ion secondary battery 20 of this embodiment, the positive electrode plate 1 and the negative electrode plate 2 are wound on the axial core 10 side of the electrode group 18, and the positive electrode plate 3 and the negative electrode plate 4 are wound on the outer peripheral side. For this reason, the positive electrode plate 1 and the negative electrode plate 2 having a small positive / negative electrode coating amount are wound with a small winding diameter, and the positive electrode plate 3 and the negative electrode plate 4 having a large positive / negative electrode coating amount are wound with a large winding diameter. Since it rotates, it can prevent that damage, such as a crack, arises in a mixture layer at the time of winding of a positive / negative electrode plate.

また更に、正極板3、負極板4で正負極塗工量を大きくしたため、セパレータ7の使用量が減少するので、正極板1、負極板2の1組みの捲回数を増大させる場合と比較して、セパレータ7の体積分で正負極活物質量を増大させることができ高容量化を図ることができる。更にまた、正負極塗工量の大きな正負極板を有する電池と、小さな正負極板を有する電池とを並列に接続する場合と比べて制御回路や電池構成が複雑にならない、という利点もある。   Furthermore, since the positive and negative electrode coating amounts are increased in the positive electrode plate 3 and the negative electrode plate 4, the usage amount of the separator 7 is reduced, so that the number of times of one set of the positive electrode plate 1 and the negative electrode plate 2 is increased. Thus, the volume of the positive and negative electrode active materials can be increased by the volume of the separator 7, and the capacity can be increased. Furthermore, there is an advantage that a control circuit and a battery configuration are not complicated as compared with a case where a battery having a positive and negative electrode plate having a large positive and negative electrode coating amount and a battery having a small positive and negative electrode plate are connected in parallel.

これに対して、従来のリチウムイオン二次電池では、正負極塗工量が略均一な1組みの正負極板が捲回されているので、高出力、高容量を両立させることは難しい。また、高出力を得るために合剤層の厚みを小さくし、高容量化を図るために捲回数を増大させると、正負極間に介在するセパレータの体積分で活物質量が減少するため、高容量化が不十分となる。更に、正負極塗工量の大きな部分と小さな部分とを有するようにしても、対向する正負極板の単位体積あたりの放電容量の比が異なると、充放電時に正負極板の一方のみに負荷がかかることがある。これに代えて、正負極塗工量を大きくした正負極板を有する電池と、正負極塗工量を小さくした正負極板を有する電池とを並列に接続して高出力、高容量を両立させようとするには、制御回路や電池構成が複雑になる。本実施形態のリチウムイオン二次電池20では、これらの問題を解決することができるものである。   On the other hand, in a conventional lithium ion secondary battery, since a set of positive and negative electrode plates having substantially uniform positive and negative electrode coating amounts are wound, it is difficult to achieve both high output and high capacity. In addition, reducing the thickness of the mixture layer to obtain a high output, and increasing the number of times to increase the capacity, the amount of active material decreases due to the volume of the separator interposed between the positive and negative electrodes. High capacity is insufficient. Furthermore, even if it has a large part and a small part of the positive and negative electrode coating amount, if the ratio of the discharge capacity per unit volume of the opposing positive and negative electrode plates is different, only one of the positive and negative electrode plates is loaded during charging and discharging. May take. Instead, a battery having a positive / negative electrode plate with a large positive / negative electrode coating amount and a battery having a positive / negative electrode plate with a small positive / negative electrode coating amount are connected in parallel to achieve both high output and high capacity. To do so, the control circuit and battery configuration become complicated. In the lithium ion secondary battery 20 of this embodiment, these problems can be solved.

なお、本実施形態のリチウムイオン二次電池20では、正負極塗工量の異なる2組みの正負極板を用いて電極群18を形成したが、本発明はこれに限定されるものではない。例えば、正負極塗工量の異なる3組み以上の正負極板を用いてもよく、正負極塗工量に代えて合剤層の厚みが異なるようにしてもよい。また、合剤層の厚みをほぼ一定の勾配(厚みの増加率)で変化させて形成した1組みの正負極板を用いてもよい。このことは、例えば、図3に示すように、リチウムイオン二次電池20の電極群18を、軸芯10の周囲に、合剤層の厚みを正負極板の長手方向でほぼ一定の勾配となるように形成した正極板5、負極板6をセパレータ7を介して捲回し、正極板5、負極板6共に合剤層の厚みの小さい方を軸芯10側に配置することで実現することができる。   In addition, in the lithium ion secondary battery 20 of this embodiment, although the electrode group 18 was formed using two sets of positive / negative electrode plates from which the amount of positive / negative electrode coating differs, this invention is not limited to this. For example, three or more sets of positive and negative electrode plates having different positive and negative electrode coating amounts may be used, and the thickness of the mixture layer may be different from the positive and negative electrode coating amounts. Alternatively, a pair of positive and negative electrode plates formed by changing the thickness of the mixture layer with a substantially constant gradient (thickness increase rate) may be used. For example, as shown in FIG. 3, the electrode group 18 of the lithium ion secondary battery 20 is arranged around the shaft core 10, and the thickness of the mixture layer has a substantially constant gradient in the longitudinal direction of the positive and negative electrode plates. The positive electrode plate 5 and the negative electrode plate 6 formed as described above are wound through a separator 7, and the positive electrode plate 5 and the negative electrode plate 6 are both disposed on the shaft core 10 side with the smaller thickness of the mixture layer. Can do.

正極板5の作製では、アルミニウム箔に正極合剤を塗工する際に、合剤層の厚みをシーケンス制御可能な塗工機を用いて塗工始め部分の厚みを44μm(片面あたり塗工量120g/m)に設定し、漸次厚みを増大させて塗工終わり部分の厚みが88μm(片面あたり塗工量240g/m)となるように塗工する。このとき、合剤層の厚みの勾配を塗工始め部分から塗工終わり部分までほぼ一定にする。正極合剤塗工後のプレス加工時には、ロールプレス機のクリアランスをシーケンス制御等でプレス中に変更可能な機械を用いて、正極合剤のかさ密度が合剤層の厚みにかかわらず2.7g/cmにプレス加工する。一方、負極板6の作製では、正極板5の作製と同様にして、塗工始め部分の合剤層の厚みを35μm(片面あたり塗工量35g/m)に設定し、漸次厚みを増大させて塗工終わり部分の厚みが70μm(片面あたり塗工量70g/m)となるように塗工する。プレス加工時には、正極板5と同様にして負極合剤のかさ密度1g/cmにプレス加工する。作製した正極板5及び負極板6を厚みの小さい(塗工始め)部分を軸芯10側にして捲回することで、電極群18には合剤層の厚みが軸芯10側から漸次増大する正負極板が配置される。これにより、高出力及び高容量を両立させることができる。 In the production of the positive electrode plate 5, when the positive electrode mixture is applied to the aluminum foil, the thickness of the coating start portion is 44 μm (the coating amount per one side) using a coating machine capable of controlling the thickness of the mixture layer. 120 g / m 2 ), and the thickness is gradually increased so that the thickness of the coating end portion is 88 μm (the coating amount is 240 g / m 2 per side). At this time, the gradient of the thickness of the mixture layer is made substantially constant from the coating start part to the coating end part. At the time of press working after coating the positive electrode mixture, a bulk density of the positive electrode mixture is 2.7 g regardless of the thickness of the mixture layer by using a machine that can change the clearance of the roll press machine during the press by sequence control or the like. / Cm 3 to press. On the other hand, in the production of the negative electrode plate 6, as in the production of the positive electrode plate 5, the thickness of the mixture layer at the beginning of coating is set to 35 μm (coating amount 35 g / m 2 per side), and the thickness is gradually increased. Then, the coating is applied so that the thickness of the coating end portion is 70 μm (the coating amount is 70 g / m 2 per side). At the time of pressing, the negative electrode mixture is pressed to a bulk density of 1 g / cm 3 in the same manner as the positive electrode plate 5. The prepared positive electrode plate 5 and negative electrode plate 6 are wound with the portion having a small thickness (beginning of coating) facing the axial core 10 side, so that the thickness of the mixture layer in the electrode group 18 gradually increases from the axial core 10 side. Positive and negative electrode plates are arranged. Thereby, both high output and high capacity can be achieved.

このように1つの電池内で合剤層の厚みの大きな正負極板と厚みの小さな正負極板とを混在させる場合は、対向する正負極板の放電容量の比が異なると充放電時に正負極板の一方のみに負荷がかかるため、対向する正負極板の単位体積あたりの放電容量の比をほぼ一定とすることが望ましい。このため、正負極板の1組みを捲回するときは、合剤層の厚みを漸減又は漸増させることが必要であるが、合剤層の厚みの勾配を正確に制御することは容易ではない。正負極合剤の塗工時にシーケンス制御可能な塗工機を用いる等の煩雑さを考慮すれば、合剤層の厚み又は正負極塗工量の異なる少なくとも2組みの正負極板を捲回することが好ましい。このとき、対向する正負極板の放電容量の比が異なることを回避するため、合剤層の厚み又は正負極塗工量を変更する境界で一度正負極板の捲回を終結し、絶縁性の薄板等を配置した後に厚みの異なる正負極板を捲回することが好ましい。   Thus, when a positive / negative electrode plate with a large mixture layer thickness and a positive / negative electrode plate with a small thickness are mixed in one battery, if the ratio of the discharge capacities of the opposing positive and negative electrode plates is different, the positive and negative electrodes are charged and discharged. Since only one of the plates is loaded, it is desirable that the ratio of the discharge capacity per unit volume of the opposing positive and negative electrode plates is substantially constant. For this reason, when winding one set of positive and negative electrode plates, it is necessary to gradually reduce or gradually increase the thickness of the mixture layer, but it is not easy to accurately control the gradient of the mixture layer thickness. . Taking into account the complexity of using a coating machine capable of sequence control at the time of coating the positive and negative electrode mixture, at least two pairs of positive and negative electrode plates having different thickness of the mixture layer or different positive and negative electrode coating amounts are wound. It is preferable. At this time, in order to avoid that the ratio of the discharge capacity of the opposing positive and negative electrode plates is different, the winding of the positive and negative electrode plates is once terminated at the boundary of changing the thickness of the mixture layer or the coating amount of the positive and negative electrodes. It is preferable that the positive and negative electrode plates having different thicknesses are wound after the thin plate or the like is disposed.

また、本実施形態のリチウムイオン二次電池20では、正負極板を捲回して電極群18を作製する例を示したが、本発明はこれに限定されるものではなく、正負極板を短冊状に裁断して積層するようにしてもよい。このことは、例えば、図4に示すように、角型リチウムイオン二次電池の電極群18では、正極板1、負極板2を交互に積層し、積層した正負極板の両側に絶縁シート9を配設した後、絶縁シート9の両外側に正極板3、負極板4を交互に積層することで実現することができる。正極板1、3は、袋状に加工されたセパレータ7で被覆されている。正極板1、負極板2を積層した積層厚みは、電極群18の積層方向の全体の厚みの約半分に積層されている。各正極板には、1辺の一側にそれぞれ1本の正極タブが形成されており、各負極板には1辺の他側にそれぞれ1本の負極タブが形成されている。このため、1辺の長さに対して1つずつの正負極タブが導出されている。正負極板の積層時には、正極タブと負極タブとが重ならないように配置されている。   Moreover, in the lithium ion secondary battery 20 of this embodiment, although the example which winds a positive / negative electrode plate and produces the electrode group 18 was shown, this invention is not limited to this, A positive / negative electrode plate is strip-shaped. It may be cut into a shape and laminated. For example, as shown in FIG. 4, in the electrode group 18 of the prismatic lithium ion secondary battery, the positive electrode plates 1 and the negative electrode plates 2 are alternately stacked, and the insulating sheets 9 are formed on both sides of the stacked positive and negative electrode plates. Can be realized by alternately laminating the positive electrode plate 3 and the negative electrode plate 4 on both outer sides of the insulating sheet 9. The positive plates 1 and 3 are covered with a separator 7 processed into a bag shape. The thickness of the stacked positive electrode plate 1 and negative electrode plate 2 is approximately half of the total thickness of the electrode group 18 in the stacking direction. Each positive electrode plate is formed with one positive electrode tab on one side of each side, and each negative electrode plate is formed with one negative electrode tab on the other side of one side. For this reason, one positive / negative electrode tab is derived for each side length. When the positive and negative electrode plates are stacked, the positive electrode tab and the negative electrode tab are arranged so as not to overlap each other.

角型リチウムイオン二次電池の電池缶は、直方体の形状を有しており、ステンレス製で板状の電池蓋と嵌合可能に直方体の一面が開口されている。電極群18は、電池缶と絶縁するためにポリプロピレン製の内箱に挿入後、電池缶に挿入されている。正極タブはアルミニウム製で角柱状のストラップ15に超音波溶接されており、負極タブは銅製で角柱状の図示しないストラップに超音波溶接されている。それぞれのストラップは、電池蓋に電気絶縁部材を介して固定された正負極外部端子にボルトで締結されている。正負極外部端子には、それぞれアルミニウム製及び銅製の材質が用いられている。また、電池蓋には、テーパーネジを螺合可能で非水電解液を注液するための注液口が形成されている。電池蓋の外周及び電池缶の開口部はレーザ溶接で封口されている。電極群18は、水分除去のため、非水電解液注液前に60°Cで20時間真空乾燥処理されている。電池缶内には注液口から非水電解液が注液されており、注液口にはシールテープを巻いたテーパーネジが螺合されている。   The battery can of the rectangular lithium ion secondary battery has a rectangular parallelepiped shape, and one surface of the rectangular parallelepiped is made of stainless steel so as to be fitted to a plate-shaped battery lid. The electrode group 18 is inserted into a battery can after being inserted into a polypropylene inner box in order to insulate it from the battery can. The positive electrode tab is made of aluminum and ultrasonically welded to a prismatic strap 15, and the negative electrode tab is made of copper and ultrasonically welded to a prismatic strap not shown. Each strap is fastened with a bolt to positive and negative external terminals fixed to the battery lid via an electrical insulating member. Aluminum and copper materials are used for the positive and negative external terminals, respectively. Further, the battery lid is formed with a liquid injection port through which a taper screw can be screwed to inject a non-aqueous electrolyte. The outer periphery of the battery lid and the opening of the battery can are sealed by laser welding. The electrode group 18 is vacuum-dried at 60 ° C. for 20 hours before the non-aqueous electrolyte injection to remove moisture. A non-aqueous electrolyte is injected into the battery can from an injection port, and a taper screw wound with a sealing tape is screwed into the injection port.

このように正負極板を積層して電極群18を作製する場合は、対向させる正負極板の放電容量比がほぼ一定となるように合剤層の厚みを調整(制御)すればよいので、正負極塗工量を調整することと比較して、合剤層の厚みの異なる少なくとも2組みの正負極板を有する電極群18を容易に実現することができる。   When the electrode group 18 is produced by laminating the positive and negative electrode plates in this way, the thickness of the mixture layer may be adjusted (controlled) so that the discharge capacity ratio of the opposed positive and negative electrode plates is substantially constant. Compared with adjusting the amount of positive / negative electrode coating, the electrode group 18 having at least two sets of positive / negative electrode plates having different thicknesses of the mixture layer can be easily realized.

更に、本実施形態のリチウムイオン二次電池20では、正負極板共に合剤層の厚み又は正負極塗工量を集電体の両面で同じに形成する例を示したが、本発明はこれに限定されるものではなく、集電体の両面で合剤層の厚み又は正負極塗工量を変えるようにしてもよい。この場合には、対向する正負極板の単位体積あたりの放電容量をほぼ一定とするため、合剤層の厚み又は正負極塗工量を大きくした面同士、小さくした面同士をそれぞれ対向させることが好ましい。また、集電体の両面で合剤層の厚み又は正負極塗工量を変えると、プレス加工時に正負極板が湾曲して反りが生じるため、正負極板の捲回時にある程度のテンションをかけて捲回することが好ましい。このような反りが生じると正負極板を積層しにくくなるため、正負極板を積層する積層式の電池では集電体両面で合剤層の厚み又は正負極塗工量を同じにすることが好ましい。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, an example in which the thickness of the mixture layer or the coating amount of the positive and negative electrodes is the same on both sides of the current collector is shown on both the positive and negative electrode plates. However, the thickness of the mixture layer or the coating amount of the positive and negative electrodes may be changed on both sides of the current collector. In this case, in order to make the discharge capacity per unit volume of the positive and negative electrode plates facing each other substantially constant, the surfaces where the thickness of the mixture layer or the positive and negative electrode coating amount is increased and the surfaces which are reduced are made to face each other. Is preferred. Also, if the thickness of the mixture layer or the amount of positive and negative electrode coating is changed on both sides of the current collector, the positive and negative electrode plates will bend and warp during pressing, so a certain amount of tension will be applied when winding the positive and negative electrode plates. It is preferable to wind. When such warpage occurs, it is difficult to stack the positive and negative electrode plates. Therefore, in a stacked battery in which positive and negative electrode plates are stacked, the thickness of the mixture layer or the positive and negative electrode coating amount may be the same on both current collector surfaces. preferable.

また更に、本実施形態のリチウムイオン二次電池20では、正極板1及び負極板2の電極群と、正極板3及び負極板4の電極群との間に介在させる絶縁シートに厚さ100μmでポリプロピレン製の絶縁シート9を用いる例を示したが、本発明はこれに限定されるものではない。絶縁シートとしては、合剤層の厚み又は正負極塗工量の異なる複数組みの正負極板を絶縁可能であればよく、例えば、ポリエチレン等のポリオレフィン製等の材質を用いてもよく、また、厚さについても特に制限はない。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, the insulating sheet interposed between the electrode group of the positive electrode plate 1 and the negative electrode plate 2 and the electrode group of the positive electrode plate 3 and the negative electrode plate 4 has a thickness of 100 μm. Although the example which uses the insulating sheet 9 made from a polypropylene was shown, this invention is not limited to this. As the insulating sheet, it is only necessary to be able to insulate a plurality of sets of positive and negative electrode plates having different thicknesses or positive and negative electrode coating amounts, for example, a material such as polyolefin such as polyethylene may be used, There is no particular limitation on the thickness.

更にまた、本実施形態のリチウムイオン二次電池20では、合剤層の厚み、正負極塗工量、正負極合剤のかさ密度等の具体的な数値を例示したが、本発明はこれらに限定されるものではなく、通常用いられる範囲で適宜選定すればよい。また、本実施形態では、リチウムイオン二次電池20を例示したが、本発明は二次電池一般に適用可能であることはいうまでもない。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, specific numerical values such as the thickness of the mixture layer, the coating amount of the positive and negative electrodes, the bulk density of the positive and negative electrode mixtures are exemplified, but the present invention includes them. It is not limited and may be selected as appropriate within the range that is usually used. Moreover, although the lithium ion secondary battery 20 was illustrated in this embodiment, it cannot be overemphasized that this invention is applicable to a secondary battery generally.

以下、本実施形態に従い作製したリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例のリチウムイオン二次電池についても併記する。また、各実施例及び比較例の電池では、電池容量を同じに設定した。   Hereinafter, examples of the lithium ion secondary battery 20 manufactured according to the present embodiment will be described. In addition, it describes together about the lithium ion secondary battery of the comparative example produced for the comparison. Moreover, in the batteries of the examples and comparative examples, the battery capacities were set to be the same.

(実施例1)
実施例1では、正負極塗工量の異なる2組みの正負極板を軸芯10の周囲に捲回してリチウムイオン二次電池20(以下、電池1という。)を作製した(図2参照)。
Example 1
In Example 1, two sets of positive and negative electrode plates having different positive and negative electrode coating amounts were wound around the shaft core 10 to produce a lithium ion secondary battery 20 (hereinafter referred to as battery 1) (see FIG. 2). .

(実施例2)
実施例2では、合剤層の厚みを軸芯10側から外周側に向けて漸次増大させた正負極板を用いてリチウムイオン二次電池(以下、電池2という。)を作製した(図3参照)。
(Example 2)
In Example 2, a lithium ion secondary battery (hereinafter referred to as battery 2) was produced using positive and negative electrode plates in which the thickness of the mixture layer was gradually increased from the axial core 10 side toward the outer peripheral side (FIG. 3). reference).

(実施例3)
実施例3では、正負極塗工量の異なる2組みの正負極板を積層した角型のリチウムイオン二次電池(以下、電池3という。)を作製した(図4参照)。
Example 3
In Example 3, a square lithium ion secondary battery (hereinafter referred to as battery 3) in which two sets of positive and negative electrode plates having different positive and negative electrode coating amounts were laminated was produced (see FIG. 4).

(比較例1)
比較例1では、正極塗工量を180g/m(正極板1、3の平均の塗工量)、負極塗工量を52.5g/m(負極板2、4の平均の塗工量)とする以外は実施例1と同様にしてリチウムイオン二次電池(以下、電池4という。)を作製した。すなわち、比較例1の電池4では、正負極塗工量を略均一にした1組みの正負極板を用いた電池である。
(Comparative Example 1)
In Comparative Example 1, the positive electrode coating amount was 180 g / m 2 (the average coating amount of the positive electrode plates 1 and 3), and the negative electrode coating amount was 52.5 g / m 2 (the average coating amount of the negative electrode plates 2 and 4). A lithium ion secondary battery (hereinafter referred to as the battery 4) was produced in the same manner as in Example 1 except that the amount was changed to (Amount). That is, the battery 4 of Comparative Example 1 is a battery using a set of positive and negative electrode plates in which the positive and negative electrode coating amounts are made substantially uniform.

(試験)
実施例及び比較例の各電池について、0.5C(2時間率)及び3C(1/3時間率)の電流値で放電して放電容量に対する電池電圧の変化を測定し、放電曲線を作成した。0.5C、3Cの放電曲線を図4、図5にそれぞれ示す。なお、図4、図5において、放電容量は、電池容量に対する百分率(単位%)を示している。
(test)
About each battery of an Example and a comparative example, it discharged with the electric current value of 0.5C (2 hour rate) and 3C (1/3 hour rate), measured the change of the battery voltage with respect to discharge capacity, and created the discharge curve. . The discharge curves of 0.5C and 3C are shown in FIGS. 4 and 5, respectively. 4 and 5, the discharge capacity indicates a percentage (unit%) with respect to the battery capacity.

図4、図5に示すように、正負極塗工量を略均一にした1組みの正負極板を用いた電池4では、放電初期の電圧降下が大きくなり、放電容量の増加に伴う電池電圧の低下も大きくなった。これに対して、合剤層の厚み又は正負極塗工量の異なる正負極板を捲回又は積層した電池1〜電池3では、いずれの放電率においても、放電初期の電圧降下が小さく、平均放電電圧を向上させることができた。従って、電池1〜電池3では、放電容量(単位Ah)が同じ電池4と比較して、高出力が可能であり、より多くの電力量(単位Wh)を供給可能なことが判明した。   As shown in FIGS. 4 and 5, in the battery 4 using a set of positive and negative electrode plates in which the positive and negative electrode coating amounts are made substantially uniform, the voltage drop at the initial stage of discharge becomes large, and the battery voltage accompanying the increase in the discharge capacity. The decline in the price also increased. On the other hand, in the batteries 1 to 3 in which the positive and negative electrode plates having different thicknesses or positive and negative electrode coating amounts were wound or laminated, the voltage drop at the initial stage of discharge was small and averaged at any discharge rate. The discharge voltage could be improved. Therefore, it was found that the batteries 1 to 3 can output higher power than the battery 4 having the same discharge capacity (unit Ah) and can supply a larger amount of power (unit Wh).

本発明は、高出力及び高容量を両立可能な二次電池を提供するものであり、製造、販売に寄与し、産業上利用することができる。   The present invention provides a secondary battery capable of achieving both high output and high capacity, contributes to manufacturing and sales, and can be used industrially.

本発明を適用した実施形態の円筒型リチウムイオン二次電池を示す断面図である。It is sectional drawing which shows the cylindrical lithium ion secondary battery of embodiment to which this invention is applied. 実施形態の円筒型リチウムイオン二次電池の電極群を示す断面図である。It is sectional drawing which shows the electrode group of the cylindrical lithium ion secondary battery of embodiment. 本発明が適用可能な円筒型リチウムイオン二次電池で合剤層の厚みを捲き始め部分から捲き終わり部分までほぼ一定の勾配で漸次増大させた正負極板を捲回した電極群を示す断面図である。Sectional drawing which shows the electrode group which wound the positive / negative electrode board which increased the thickness of the mixture layer gradually from the start part to the end part by the substantially constant gradient in the cylindrical lithium ion secondary battery which can apply this invention It is. 本発明が適用可能な角形リチウムイオン二次電池で正負極合剤の塗工量の異なる2組みの正負極板を積層した電極群を示す断面図である。It is sectional drawing which shows the electrode group which laminated | stacked two sets of positive / negative electrode plates from which the coating amount of positive / negative electrode mixture differs in the square lithium ion secondary battery which can apply this invention. 2時間率放電におけるリチウムイオン二次電池の放電容量と放電電圧との関係を示すグラフである。It is a graph which shows the relationship between the discharge capacity and discharge voltage of a lithium ion secondary battery in 2 hour rate discharge. 1/3時間率放電におけるリチウムイオン二次電池の放電容量と放電電圧との関係を示すグラフである。It is a graph which shows the relationship between the discharge capacity and discharge voltage of a lithium ion secondary battery in 1/3 time rate discharge.

符号の説明Explanation of symbols

1、3、5 正極板
2、4、6 負極板
9 絶縁シート(絶縁性薄板)
11 正極タブ(集電タブ)
12 負極タブ(集電タブ)
18 電極群
20 円筒型リチウムイオン二次電池(二次電池)
1, 3, 5 Positive electrode plate 2, 4, 6 Negative electrode plate 9 Insulating sheet (insulating thin plate)
11 Positive electrode tab (current collection tab)
12 Negative electrode tab (current collection tab)
18 Electrode group 20 Cylindrical lithium ion secondary battery (secondary battery)

Claims (8)

集電体に活物質を含む合剤層が塗着されており前記集電体から複数の集電タブがそれぞれ導出された正、負極板間にセパレータを介在させた電極群を有する二次電池において、前記正、負極板は、いずれも前記合剤層の厚みが前記電極群の内側より外側が大きく、かつ、前記合剤層のかさ密度がそれぞれ略均一であり、前記集電タブは前記電極群の端面から前記集電体の一定長さに対して1つずつ導出されていることを特徴とする二次電池。   A secondary battery having an electrode group in which a mixture layer containing an active material is applied to a current collector, and a plurality of current collecting tabs are led out from the current collector, and a separator is interposed between positive and negative electrode plates In each of the positive and negative electrode plates, the thickness of the mixture layer is larger on the outside than the inside of the electrode group, and the bulk density of the mixture layer is substantially uniform, and the current collecting tab is A secondary battery, wherein the secondary battery is led out from the end face of the electrode group one by one for a certain length of the current collector. 集電体に活物質を含む合剤層が塗着されており前記集電体から複数の集電タブがそれぞれ導出された正、負極板間にセパレータを介在させた電極群を有する二次電池において、前記正、負極板は、いずれも前記合剤層の単位面積あたりの重量が前記電極群の内側より外側が大きく、かつ、前記合剤層のかさ密度がそれぞれ略均一であり、前記集電タブは前記電極群の端面から前記集電体の一定長さに対して1つずつ導出されていることを特徴とする二次電池。   A secondary battery having an electrode group in which a mixture layer containing an active material is applied to a current collector, and a plurality of current collecting tabs are led out from the current collector, and a separator is interposed between positive and negative electrode plates In each of the positive and negative electrode plates, the weight per unit area of the mixture layer is larger on the outside than the inside of the electrode group, and the bulk density of the mixture layer is substantially uniform, respectively. The secondary battery is characterized in that one electric tab is led out from the end face of the electrode group one by one for a certain length of the current collector. 前記電極群が、前記合剤層の厚みの異なる少なくとも2組みの正、負極板を有することを特徴とする請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein the electrode group includes at least two pairs of positive and negative electrode plates having different thicknesses of the mixture layer. 前記電極群が、前記合剤層の単位面積あたりの重量の異なる少なくとも2組みの正、負極板を有することを特徴とする請求項2に記載の二次電池。   The secondary battery according to claim 2, wherein the electrode group includes at least two pairs of positive and negative electrodes having different weights per unit area of the mixture layer. 前記少なくとも2組みの正、負極板を有する電極群間に絶縁性の薄板が介在していることを特徴とする請求項3又は請求項4に記載の二次電池。   5. The secondary battery according to claim 3, wherein an insulating thin plate is interposed between the electrode group having the at least two sets of positive and negative electrode plates. 前記合剤層は、前記正、負極板の集電体の両面に塗着されており、該合剤層の厚みが前記集電体の両面で異なることを特徴とする請求項1に記載の二次電池。   2. The mixture layer according to claim 1, wherein the mixture layer is applied to both surfaces of the current collector of the positive and negative electrode plates, and the thickness of the mixture layer is different on both surfaces of the current collector. Secondary battery. 前記合剤層は、前記正、負極板の集電体の両面に塗着されており、該合剤層の単位面積あたりの重量が前記集電体の両面で異なることを特徴とする請求項2に記載の二次電池。   The mixture layer is coated on both surfaces of the current collector of the positive and negative electrode plates, and the weight per unit area of the mixture layer is different on both surfaces of the current collector. 2. The secondary battery according to 2. 前記二次電池がリチウムイオン二次電池であることを特徴とする請求項1乃至請求項7のいずれか1項に記載の二次電池。   The secondary battery according to claim 1, wherein the secondary battery is a lithium ion secondary battery.
JP2004190837A 2004-06-29 2004-06-29 Secondary battery Abandoned JP2006012703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190837A JP2006012703A (en) 2004-06-29 2004-06-29 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190837A JP2006012703A (en) 2004-06-29 2004-06-29 Secondary battery

Publications (1)

Publication Number Publication Date
JP2006012703A true JP2006012703A (en) 2006-01-12

Family

ID=35779688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190837A Abandoned JP2006012703A (en) 2004-06-29 2004-06-29 Secondary battery

Country Status (1)

Country Link
JP (1) JP2006012703A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188816A (en) * 2006-01-16 2007-07-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery and power supply device
JP2009070658A (en) * 2007-09-12 2009-04-02 Nec Tokin Corp Nonaqueous electrolyte secondary battery
JP2009181931A (en) * 2008-02-01 2009-08-13 Murata Mfg Co Ltd Battery
KR100963981B1 (en) * 2007-03-26 2010-06-15 주식회사 엘지화학 Jelly-roll Having Active Material Layer with Different Loading Amount
JP2010267457A (en) * 2009-05-13 2010-11-25 Hitachi Vehicle Energy Ltd Spiral wound battery
JP2012513076A (en) * 2008-11-27 2012-06-07 エムプラス コーポレーション Secondary battery manufacturing method and secondary battery
US8323829B2 (en) 2006-08-25 2012-12-04 Toyota Jidosha Kabushiki Kaisha Electrode for electric storage device and electric storage device
EP2685528A1 (en) * 2012-07-12 2014-01-15 GS Yuasa International Ltd. Electrode assembly and electric storage device
JP2014515165A (en) * 2011-04-27 2014-06-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Cell winding of lithium ion storage battery and method of manufacturing cell winding
JP2018502413A (en) * 2014-12-08 2018-01-25 エルジー・ケム・リミテッド Secondary battery with improved output characteristics
CN108511787A (en) * 2017-02-23 2018-09-07 松下知识产权经营株式会社 Lithium rechargeable battery and its manufacturing method
WO2023092274A1 (en) * 2021-11-23 2023-06-01 东莞新能源科技有限公司 Electrochemical device and electronic device comprising electrochemical device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188816A (en) * 2006-01-16 2007-07-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery and power supply device
US8323829B2 (en) 2006-08-25 2012-12-04 Toyota Jidosha Kabushiki Kaisha Electrode for electric storage device and electric storage device
US8530083B2 (en) 2006-08-25 2013-09-10 Toyota Jidosha Kabushiki Kaisha Electrode storage device
KR100963981B1 (en) * 2007-03-26 2010-06-15 주식회사 엘지화학 Jelly-roll Having Active Material Layer with Different Loading Amount
US8129049B2 (en) 2007-03-26 2012-03-06 Lg Chem, Ltd. Jelly-roll having active material layer with different loading amount
JP2009070658A (en) * 2007-09-12 2009-04-02 Nec Tokin Corp Nonaqueous electrolyte secondary battery
JP2009181931A (en) * 2008-02-01 2009-08-13 Murata Mfg Co Ltd Battery
JP2012513076A (en) * 2008-11-27 2012-06-07 エムプラス コーポレーション Secondary battery manufacturing method and secondary battery
JP2010267457A (en) * 2009-05-13 2010-11-25 Hitachi Vehicle Energy Ltd Spiral wound battery
JP2014515165A (en) * 2011-04-27 2014-06-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Cell winding of lithium ion storage battery and method of manufacturing cell winding
EP2685528A1 (en) * 2012-07-12 2014-01-15 GS Yuasa International Ltd. Electrode assembly and electric storage device
US9318769B2 (en) 2012-07-12 2016-04-19 Gs Yuasa International Ltd. Electrode assembly and electric storage device
JP2018502413A (en) * 2014-12-08 2018-01-25 エルジー・ケム・リミテッド Secondary battery with improved output characteristics
CN108511787A (en) * 2017-02-23 2018-09-07 松下知识产权经营株式会社 Lithium rechargeable battery and its manufacturing method
WO2023092274A1 (en) * 2021-11-23 2023-06-01 东莞新能源科技有限公司 Electrochemical device and electronic device comprising electrochemical device

Similar Documents

Publication Publication Date Title
US8734983B2 (en) Housing for electrochemical devices
US20030162088A1 (en) Coin-shaped battery
JP2006310033A (en) Storage battery
JP4305111B2 (en) Battery pack and electric vehicle
JP2009087612A (en) Layered battery
JP2012178252A (en) Lithium ion secondary battery and its positive electrode
JP2007173223A (en) Battery lamination body and battery pack
JPH08171917A (en) Cell
JP3589021B2 (en) Lithium ion secondary battery
JP2009259502A (en) Nonaqueous electrolyte secondary battery
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
JP5433164B2 (en) Lithium ion secondary battery
JP2006012703A (en) Secondary battery
WO2015068680A1 (en) Non-aqueous electrolyte secondary cell, and electric storage circuit using same
JPH09266012A (en) Nonaqueous electrolyte secondary battery and battery assembly
JPH10255847A (en) Secondary battery and manufacture therefor
JP2000082498A (en) Nonaqueous electrolyte secondary battery
JP2007123009A (en) Wound type battery
KR101515672B1 (en) Electrode assembly including anode and cathod electrode more than 2 and electrochemical device using the same
US20060040184A1 (en) Non-aqueous electrolyte battery
JPH03152881A (en) Rectangular type lithium secondary battery
JP2010015852A (en) Secondary battery
US20190067729A1 (en) Lithium ion electrochemical devices having excess electrolyte capacity to improve lifetime
WO2022051879A1 (en) Electrochemical device and electronic device
JP3246553B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20090518