JP2009181931A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2009181931A
JP2009181931A JP2008022413A JP2008022413A JP2009181931A JP 2009181931 A JP2009181931 A JP 2009181931A JP 2008022413 A JP2008022413 A JP 2008022413A JP 2008022413 A JP2008022413 A JP 2008022413A JP 2009181931 A JP2009181931 A JP 2009181931A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
members
mass
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008022413A
Other languages
Japanese (ja)
Other versions
JP5205995B2 (en
Inventor
Yukio Tokuhara
幸夫 得原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008022413A priority Critical patent/JP5205995B2/en
Publication of JP2009181931A publication Critical patent/JP2009181931A/en
Application granted granted Critical
Publication of JP5205995B2 publication Critical patent/JP5205995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To improve battery characteristics in a battery wherein a plurality of positive electrode plates and negative electrode plates are alternately stacked by interposing separators. <P>SOLUTION: In the battery 100 wherein a plurality of positive electrode members 11 made of a positive electrode active material and a collector and a plurality of negative electrode members 12 made of a negative electrode active material and a collector are alternately stacked by interposing separator members 13, the plurality of positive electrode members 11 are stacked so as to make respective mass of the positive electrode members 11 large along a predetermined laminating direction, and the plurality of negative electrode members 12 are stacked so as to make respective mass of the negative electrode members 12 large along the predetermined laminating direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、一般的には電池に関し、特定的には、セパレータの間に交互に積層された複数の正極部材と負極部材を有する電池に関するものである。   The present invention generally relates to a battery, and more particularly to a battery having a plurality of positive electrode members and negative electrode members stacked alternately between separators.

近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源として電池、特に二次電池が用いられている。二次電池の一例としてリチウムイオン二次電池は、相対的に大きなエネルギー密度を有することが知られている。   In recent years, batteries, particularly secondary batteries, have been used as power sources for portable electronic devices such as mobile phones and portable personal computers. As an example of a secondary battery, a lithium ion secondary battery is known to have a relatively large energy density.

たとえば、特開2005−116482号公報(特許文献1)には、リチウムイオン二次電池として薄型電池の構成が記載されている。この薄型電池では、セパレータの間に交互に積層された正極板と負極板を有する発電要素が外装部材に収容されて封止され、複数の集電部を介して発電要素に接続された正極端子と負極端子が外装部材の外周縁から導出している。このような積層型二次電池では、外装部材内において複数の正極板と負極板がセパレータを間に介在して交互に積層されている。
特開2005−116482号公報
For example, Japanese Patent Laying-Open No. 2005-116482 (Patent Document 1) describes a configuration of a thin battery as a lithium ion secondary battery. In this thin battery, a positive electrode terminal in which a power generation element having a positive electrode plate and a negative electrode plate alternately stacked between separators is accommodated in an exterior member and sealed and connected to the power generation element via a plurality of current collectors And the negative electrode terminal is led out from the outer peripheral edge of the exterior member. In such a stacked secondary battery, a plurality of positive plates and negative plates are alternately stacked in the exterior member with separators interposed therebetween.
JP-A-2005-116482

ところで、積層される複数の正極板と負極板の各々の質量には、製造公差に起因してばらつきが存在する。たとえば、塗布工法で極板を製作する場合、正極板は正極活物質が集電体の表面上に形成されることによって構成され、負極板は負極活物質が集電体の表面上に形成されることによって構成される。集電体の質量のばらつきは、集電体の表面上に形成される正極活物質層または負極活物質層の質量のばらつきに比べて十分に小さいので、正極板と負極板の質量のばらつきは、集電体の表面上に形成される正極活物質層または負極活物質層の質量のばらつきに依存する。   By the way, there are variations in the mass of each of the stacked positive and negative electrode plates due to manufacturing tolerances. For example, when an electrode plate is manufactured by a coating method, the positive electrode plate is configured by forming the positive electrode active material on the surface of the current collector, and the negative electrode plate is formed by forming the negative electrode active material on the surface of the current collector. It is composed by doing. The variation in the mass of the current collector is sufficiently small compared to the variation in the mass of the positive electrode active material layer or the negative electrode active material layer formed on the surface of the current collector. , Depending on variations in mass of the positive electrode active material layer or the negative electrode active material layer formed on the surface of the current collector.

積層される複数の正極板と負極板の各々の質量にばらつきがあると、たとえば、対向する正極板と負極板の組合せとして、質量の製造公差の範囲内にて、最も重い正極板と最も重い負極板、最も軽い正極板と最も軽い負極板、最も重い正極板と最も軽い負極板、最も軽い正極板と最も重い負極板、などのような組合せが考えられる。このとき、集電体の質量のばらつきは十分に小さいので、対向する各組の正極板と負極板では、各対向面に形成された正極活物質層に対する負極活物質層の質量比率がばらつくことになる。   If there are variations in the mass of each of the stacked positive electrode plates and negative electrode plates, for example, as the combination of the opposing positive electrode plate and negative electrode plate, the heaviest positive electrode plate and heaviest material within the manufacturing tolerance of mass Combinations such as a negative electrode plate, the lightest positive electrode plate and the lightest negative electrode plate, the heaviest positive electrode plate and the lightest negative electrode plate, the lightest positive electrode plate and the heaviest negative electrode plate, etc. are conceivable. At this time, since the variation in the mass of the current collector is sufficiently small, the mass ratio of the negative electrode active material layer to the positive electrode active material layer formed on each opposed surface varies between each pair of the positive electrode plate and the negative electrode plate facing each other. become.

充放電反応は、積層される複数の正極板と負極板の各対向面にて行われる。発明者の知見によれば、各対向面に形成された正極活物質層に対する負極活物質層の質量比率がばらついている電池では、容量維持率(サイクル寿命)などの電池特性が低下するという問題がある。   The charge / discharge reaction is performed on the opposing surfaces of the plurality of stacked positive and negative electrode plates. According to the inventor's knowledge, in a battery in which the mass ratio of the negative electrode active material layer to the positive electrode active material layer formed on each facing surface varies, battery characteristics such as capacity retention rate (cycle life) are deteriorated. There is.

そこで、この発明の目的は、複数の正極板と負極板がセパレータを間に介在して交互に積層されている電池において電池特性を向上させることである。   Accordingly, an object of the present invention is to improve battery characteristics in a battery in which a plurality of positive plates and negative plates are alternately stacked with separators interposed therebetween.

この発明に従った電池は、正極活物質と集電体からなる複数の正極部材と、負極活物質と集電体からなる複数の負極部材とが、セパレータ部材を間に介在させて交互に積層されている電池において、複数の正極部材は所定の積層方向に沿って正極部材の各々の質量が大きくなるように積層され、複数の負極部材は上記の所定の積層方向に沿って負極部材の各々の質量が大きくなるように積層されている。   In the battery according to the present invention, a plurality of positive electrode members made of a positive electrode active material and a current collector and a plurality of negative electrode members made of a negative electrode active material and a current collector are alternately stacked with a separator member interposed therebetween. In the battery, the plurality of positive electrode members are stacked so that the mass of each of the positive electrode members is increased along a predetermined stacking direction, and the plurality of negative electrode members are each of the negative electrode members along the predetermined stacking direction. It is laminated so that the mass of

この発明の電池においては、複数の正極部材は所定の積層方向に沿って正極部材の各々の質量が大きくなるように積層され、複数の負極部材は上記の所定の積層方向に沿って負極部材の各々の質量が大きくなるように積層されているので、対向する各組の正極部材と負極部材では、各対向面における正極活物質に対する負極活物質の質量比率のばらつきを小さくすることができる。これにより、積層される複数の正極部材と負極部材の各対向面にて行われる充放電反応がほぼ均一に進行するので、容量維持率(サイクル寿命)を向上させることができる。また、過充電状態などの誤使用を想定した場合における安全性を向上させることができる。   In the battery of the present invention, the plurality of positive electrode members are stacked so that the mass of each of the positive electrode members is increased along a predetermined stacking direction, and the plurality of negative electrode members are formed of the negative electrode member along the predetermined stacking direction. Since the respective layers are stacked so that their masses are increased, the variation in the mass ratio of the negative electrode active material to the positive electrode active material on each facing surface can be reduced in each pair of the positive electrode member and the negative electrode member facing each other. Thereby, since the charging / discharging reaction performed by each opposing surface of the some positive electrode member and negative electrode member to laminate | stack progresses substantially uniformly, a capacity | capacitance maintenance factor (cycle life) can be improved. Moreover, the safety | security in the case of assuming misuse, such as an overcharge state, can be improved.

以上のようにこの発明によれば、複数の正極部材と負極部材がセパレータ部材を間に介在して交互に積層されている電池において、容量維持率(サイクル寿命)を向上させることができ、また過充電状態における安全性を向上させることができる。   As described above, according to the present invention, in a battery in which a plurality of positive electrode members and negative electrode members are alternately stacked with separator members interposed therebetween, the capacity retention rate (cycle life) can be improved. Safety in an overcharged state can be improved.

以下、この発明の一つの実施の形態を図面に基づいて説明する。   An embodiment of the present invention will be described below with reference to the drawings.

図1は本発明の一つの実施の形態として非水電解液電池の一例を示す概略的な平面図、図2は図1のII−II線に沿った方向から見た断面を拡大して示す部分断面図、図3は図1のIII−III線に沿った方向から見た断面を拡大して示す部分断面図である。   FIG. 1 is a schematic plan view showing an example of a non-aqueous electrolyte battery as one embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view as seen from the direction along the line II-II in FIG. FIG. 3 is a partial cross-sectional view, and FIG. 3 is a partial cross-sectional view showing, in an enlarged manner, a cross section viewed from the direction along line III-III in FIG.

図1に示すように、電池100は、発電要素10と、発電要素10を収容して封止する外装部材20と、複数の集電部を介して発電要素10に接続されて外装部材20の外周縁から導出された正極端子30および負極端子40とから構成される。   As shown in FIG. 1, the battery 100 includes a power generation element 10, an exterior member 20 that houses and seals the power generation element 10, and is connected to the power generation element 10 via a plurality of current collectors. It consists of a positive electrode terminal 30 and a negative electrode terminal 40 which are led out from the outer periphery.

図2と図3に示すように、発電要素10は、複数の正極部材11と、複数の負極部材12と、各々が複数の正極部材11の各々と複数の負極部材12の各々との間に介在するように配置された複数のセパレータ部材13と、図示しない非水電解液とを含む。複数の正極部材11の各々と複数の負極部材12の各々が複数のセパレータ部材13の各々を間に介在して交互に積層されている。正極部材11、負極部材12およびセパレータ部材13は、板状、フィルム状、箔状などに形成される。たとえば、複数のフィルム状の正極部材11と負極部材12がセパレータ部材13を介して密着状態で積層された積層体が、アルミニウムラミネートフィルムからなる外装部材20の内部に充填されている。図3に示すように、複数の負極部材12は複数の集電部材41を介して負極端子40に接続されている。図示されていないが、複数の正極部材11も同様に正極端子30(図1)に接続されている。   As shown in FIG. 2 and FIG. 3, the power generation element 10 includes a plurality of positive electrode members 11, a plurality of negative electrode members 12, each between a plurality of positive electrode members 11 and a plurality of negative electrode members 12. It includes a plurality of separator members 13 disposed so as to intervene and a non-aqueous electrolyte (not shown). Each of the plurality of positive electrode members 11 and each of the plurality of negative electrode members 12 are alternately stacked with each of the plurality of separator members 13 interposed therebetween. The positive electrode member 11, the negative electrode member 12, and the separator member 13 are formed in a plate shape, a film shape, a foil shape, or the like. For example, a laminate in which a plurality of film-like positive electrode members 11 and negative electrode members 12 are laminated in close contact with each other via a separator member 13 is filled in an exterior member 20 made of an aluminum laminate film. As shown in FIG. 3, the plurality of negative electrode members 12 are connected to the negative electrode terminal 40 via the plurality of current collecting members 41. Although not shown in figure, the some positive electrode member 11 is similarly connected to the positive electrode terminal 30 (FIG. 1).

図2と図3に示すように、複数の正極部材11は、所定の積層方向に沿って、図では上から下に向かう方向に沿って、正極部材11の各々の質量が大きくなるように積層されている。具体的には、図2と図3に示す例では、正極部材11は、積層順No.1〜17に従って質量が大きくなるように積層されている。   As shown in FIGS. 2 and 3, the plurality of positive electrode members 11 are stacked so that the mass of each of the positive electrode members 11 increases along a predetermined stacking direction, in the drawing, from the top to the bottom. Has been. Specifically, in the example shown in FIG. 2 and FIG. It is laminated so as to increase the mass according to 1-17.

図2と図3に示すように、複数の負極部材12は、所定の積層方向に沿って、図では上から下に向かう方向に沿って、負極部材12の各々の質量が大きくなるように積層されている。具体的には、図2と図3に示す例では、負極部材12は、積層順No.1〜18に従って質量が大きくなるように積層されている。   As shown in FIGS. 2 and 3, the plurality of negative electrode members 12 are laminated so that the mass of each of the negative electrode members 12 increases along a predetermined lamination direction, in the drawing, from the top to the bottom. Has been. Specifically, in the example shown in FIG. 2 and FIG. It is laminated so that the mass increases according to 1-18.

正極部材11は、正極活物質層が集電体の表面上に形成されることによって構成される。負極部材12は、負極活物質層が集電体の表面上に形成されることによって構成される。   The positive electrode member 11 is configured by forming a positive electrode active material layer on the surface of the current collector. The negative electrode member 12 is configured by forming a negative electrode active material layer on the surface of the current collector.

この発明の電池100においては、複数の正極部材11は所定の積層方向に沿って正極部材11の各々の質量が大きくなるように積層され、複数の負極部材12は上記の所定の積層方向に沿って負極部材12の各々の質量が大きくなるように積層されているので、対向する各組の正極部材11と負極部材12では、各対向面における正極活物質に対する負極活物質の質量比率のばらつきを小さくすることができる。これにより、積層される複数の正極部材11と負極部材12の各対向面にて行われる充放電反応がほぼ均一に進行するので、容量維持率(サイクル寿命)を向上させることができる。また、過充電状態などの誤使用を想定した場合における安全性を向上させることができる。   In the battery 100 of the present invention, the plurality of positive electrode members 11 are stacked so that the mass of each of the positive electrode members 11 increases along the predetermined stacking direction, and the plurality of negative electrode members 12 extend along the predetermined stacking direction. The negative electrode member 12 is laminated so that the mass of each of the negative electrode members 12 is increased. Therefore, in each pair of the positive electrode member 11 and the negative electrode member 12, the mass ratio of the negative electrode active material to the positive electrode active material on each facing surface varies. Can be small. As a result, the charge / discharge reaction performed on the opposing surfaces of the plurality of stacked positive electrode members 11 and negative electrode members 12 proceeds substantially uniformly, so that the capacity retention rate (cycle life) can be improved. Moreover, the safety | security in the case of assuming misuse, such as an overcharge state, can be improved.

たとえば、正極部材11は、正極活物質と結着剤と導電助剤とを含有する正極合剤を、アルミニウム箔からなる集電体の表面上に塗布し、乾燥して、正極活物質層を集電体の表面上に形成することにより作製される。   For example, the positive electrode member 11 is formed by applying a positive electrode mixture containing a positive electrode active material, a binder, and a conductive additive onto the surface of a current collector made of aluminum foil, and drying the positive electrode active material layer. It is produced by forming on the surface of a current collector.

一般的に正極活物質としては、目的とする電池の種類に応じて金属酸化物、金属硫化物または特定の高分子を用いることができる。   In general, as the positive electrode active material, a metal oxide, a metal sulfide, or a specific polymer can be used depending on the type of the target battery.

リチウムイオン二次電池を構成する場合、正極活物質としては、TiS、MoS、NbSe、V等の金属硫化物または酸化物を使用することができる。また、リチウムイオン二次電池の正極活物質としてLiM(化学式中、Mは一種以上の遷移金属を表し、xは電池の充放電状態によって異なり、通常0.05以上、1.10以下である)を主体とするリチウム複合酸化物等を使用することができる。このリチウム複合酸化物を構成する遷移金属Mとしては、Co、Ni、Mn等が好ましい。このようなリチウム複合酸化物の具体例としてはLiCoO、LiNiO、LiNiCo1−y(化学式中、0<y<1である)、Li1+a(NiCoMn)O2−b(化学式中、−0.1<a<0.2、x+y+z=1、−0.1<b<0.1)、LiMn等を挙げることができる。これらのリチウム複合酸化物は、高電圧を発生でき、エネルギー密度が優れた正極活物質となる。正極部材11を作製するために、これらの正極活物質の複数種をあわせて使用してもよい。 When constituting a lithium ion secondary battery, metal sulfides or oxides such as TiS 2 , MoS 2 , NbSe 2 , V 2 O 5 can be used as the positive electrode active material. In addition, LiM x O 2 (in the chemical formula, M represents one or more transition metals, x varies depending on the charge / discharge state of the battery, and is usually 0.05 or more and 1.10 or less as a positive electrode active material of the lithium ion secondary battery. Lithium composite oxide mainly composed of As the transition metal M constituting this lithium composite oxide, Co, Ni, Mn and the like are preferable. Specific examples of such a lithium composite oxide include LiCoO 2 , LiNiO 2 , LiNi y Co 1-y O 2 (where 0 <y <1), and Li 1 + a (Ni x Co y Mn z ) O. 2-b (in the chemical formula, −0.1 <a <0.2, x + y + z = 1, −0.1 <b <0.1), LiMn 2 O 4 and the like. These lithium composite oxides can generate a high voltage and become a positive electrode active material having an excellent energy density. In order to produce the positive electrode member 11, a plurality of these positive electrode active materials may be used in combination.

また、上記の正極合剤に含有される結着剤としては、通常、電池の正極合剤に用いられている公知の結着剤を用いることができ、上記の正極合剤には、導電剤等、公知の添加剤を添加することができる。   Moreover, as a binder contained in said positive electrode mixture, the well-known binder normally used for the positive electrode mixture of a battery can be used, A conductive agent is used for said positive electrode mixture. For example, known additives can be added.

たとえば、負極部材12は、負極活物質と結着剤とを含有する負極合剤を、銅箔からなる集電体の表面上に均一に塗布し、乾燥して、負極活物質層を集電体の表面上に形成することにより作製される。   For example, in the negative electrode member 12, a negative electrode mixture containing a negative electrode active material and a binder is uniformly applied on the surface of a current collector made of copper foil and dried to collect the negative electrode active material layer. It is made by forming on the surface of the body.

リチウム二次電池を構成する場合、負極活物質としては、リチウムをドープ、脱ドープできる材料を使用することが好ましい。リチウムをドープ、脱ドープできる材料としては、たとえば、難黒鉛化炭素系材料やグラファイト系材料等の炭素材料を使用することができる。具体的には、熱分解炭素類、コークス類、黒鉛類、ガラス状炭素繊維、有機高分子化合物焼成体、炭素繊維、活性炭等の炭素材料を使用することができる。上記のコークス類には、ピッチコークス、ニート゛ルコークス、石油コークス等がある。また、上記の有機高分子化合物焼成体とは、フェノール樹脂、フラン樹脂等を適当な温度で焼成して炭素化したものをいう。上述した炭素材料のほか、リチウムをドープ、脱ドープできる材料としては、ポリアセチレン、ポリピロール等の高分子やSnOやLiTi12(チタン酸リチウム)等の酸化物を使用することもできる。 When constituting a lithium secondary battery, it is preferable to use a material capable of doping and dedoping lithium as the negative electrode active material. As a material that can be doped or dedoped with lithium, for example, a carbon material such as a non-graphitizable carbon material or a graphite material can be used. Specifically, carbon materials such as pyrolytic carbons, cokes, graphites, glassy carbon fibers, organic polymer compound fired bodies, carbon fibers, and activated carbon can be used. Examples of the cokes include pitch coke, needle coke, and petroleum coke. Moreover, said organic polymer compound fired body means what carbonized by baking a phenol resin, furan resin, etc. at a suitable temperature. In addition to the carbon material described above, as a material that can be doped or dedoped with lithium, a polymer such as polyacetylene or polypyrrole, or an oxide such as SnO 2 or Li 4 Ti 5 O 12 (lithium titanate) can also be used. .

また、上記の負極合剤に含有される結着剤としては、通常、リチウムイオン電池の負極合剤に用いられている公知の結着剤を用いることができ、上記の負極合剤には、公知の添加剤等を添加することができる。   Moreover, as a binder contained in said negative electrode mixture, the well-known binder normally used for the negative electrode mixture of a lithium ion battery can be used, In said negative electrode mixture, Known additives and the like can be added.

非水電解液は、電解質を非水溶媒に溶解して調製される。電解質としては、たとえば、非水溶媒中にLiPFを1.0mol/Lの濃度で溶解したものが使用される。LiPF以外の電解質としては、LiBF、LiAsF、LiClO、LiCFSO、LiN(SOCF、LiC(SOCF、LiAlCl、LiSiF等のリチウム塩を挙げることができる。これらの中でも、電解質として特にLiPF、LiBFを用いることが酸化安定性の点から望ましい。このような電解質は、非水溶媒中に、0.1mol/L〜3.0mol/Lの濃度で溶解されて用いられることが好ましく、0.5mol/L〜2.0mol/Lの濃度で溶解されて用いられることがさらに好ましい。非水溶媒としては、たとえば、炭酸プロピレンと炭酸エチレンと炭酸ジエチルとを体積比で5〜20:20〜30:60〜70の割合で混合したものが使用される。その他の非水溶媒としては、炭酸プロピレン、炭酸エチレン等の環状炭酸エステル;炭酸ジエチル、炭酸ジメチル等の鎖状炭酸エステル;プロピオン酸メチル、酪酸メチル等のカルボン酸エステル;γ−ブチルラクトン、スルホラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル類等を使用することができる。これらの非水溶媒は単独で使用してもよく、複数種を混合して使用してもよい。これらの中でも、非水溶媒として特に炭酸エステルを用いることが酸化安定性の点から好ましい。 The nonaqueous electrolytic solution is prepared by dissolving an electrolyte in a nonaqueous solvent. As the electrolyte, for example, a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / L in a non-aqueous solvent is used. As an electrolyte other than LiPF 6 , lithium salts such as LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 are used. Can be mentioned. Among these, it is desirable from the viewpoint of oxidation stability that LiPF 6 or LiBF 4 is particularly used as the electrolyte. Such an electrolyte is preferably used by being dissolved in a nonaqueous solvent at a concentration of 0.1 mol / L to 3.0 mol / L, and dissolved at a concentration of 0.5 mol / L to 2.0 mol / L. More preferably, it is used. As the non-aqueous solvent, for example, a mixture of propylene carbonate, ethylene carbonate, and diethyl carbonate at a volume ratio of 5-20: 20-30: 60-70 is used. Other non-aqueous solvents include: cyclic carbonates such as propylene carbonate and ethylene carbonate; chain carbonates such as diethyl carbonate and dimethyl carbonate; carboxylic acid esters such as methyl propionate and methyl butyrate; γ-butyllactone, sulfolane, Ethers such as 2-methyltetrahydrofuran and dimethoxyethane can be used. These non-aqueous solvents may be used alone or in combination of two or more. Among these, it is preferable from the point of oxidation stability to use carbonate ester as the non-aqueous solvent.

なお、上記の実施の形態では、正極部材と負極部材との間に一枚のセパレータ部材を介在させているが、複数枚のセパレータ部材を介在させてもよい。複数枚のセパレータ部材の材質は同種でも異種でもよい。   In the above-described embodiment, one separator member is interposed between the positive electrode member and the negative electrode member, but a plurality of separator members may be interposed. The material of the plurality of separator members may be the same or different.

また、上記の実施の形態では、セパレータ部材は正極部材および負極部材と同様に複数の短冊状のセパレータ部材を用いたが、セパレータ部材は長尺状のものを用いてもよい。その場合には、セパレータ部材は九十九折りしてそのセパレータ部材間に正極部材と負極部材を介在させたり、セパレータ部材を平坦部を有する角型状に巻回してそのセパレータ部材間に正極部材と負極部材を介在させればよい。このとき、複数枚のセパレータ部材を九十九折りしたり、巻回してもよい。   In the above embodiment, a plurality of strip-shaped separator members are used as the separator member in the same manner as the positive electrode member and the negative electrode member. However, the separator member may be long. In that case, the separator member is folded into ninety nines so that the positive electrode member and the negative electrode member are interposed between the separator members, or the separator member is wound into a square shape having a flat portion and the positive electrode member is interposed between the separator members. And a negative electrode member may be interposed. At this time, a plurality of separator members may be folded or wound.

図1〜図3に示されるような非水電解液電池100を次のようにして作製した。   A nonaqueous electrolyte battery 100 as shown in FIGS. 1 to 3 was produced as follows.

板状の正極部材(正極板)11は、正極活物質としてのLiCoOと、結着剤としてのポリビニリデンフルオライド(PVdF)と、導電助剤としてのアセチレンブラックとを含有する正極合剤を、アルミニウム箔からなる集電体の表面上に塗布し、乾燥して、正極活物質層を集電体の表面上に形成することにより作製した。この際、集電体としてのアルミニウム箔の端部には正極合剤を塗布せずに、アルミニウム箔の表面が露出した部分を設けた。 The plate-like positive electrode member (positive electrode plate) 11 is made of a positive electrode mixture containing LiCoO 2 as a positive electrode active material, polyvinylidene fluoride (PVdF) as a binder, and acetylene black as a conductive additive. The positive electrode active material layer was formed on the surface of the current collector by applying it on the surface of the current collector made of aluminum foil and drying it. At this time, an end portion of the aluminum foil as a current collector was provided with a portion where the surface of the aluminum foil was exposed without applying the positive electrode mixture.

板状の負極部材(負極板)12は、負極活物質としてのグラファイト系材料と、結着剤としてのポリビニリデンフルオライド(PVdF)とを含有する負極合剤を、銅箔からなる集電体の表面上に塗布し、乾燥して、負極活物質層を集電体の表面上に形成することにより作製した。この際、集電体としての銅箔の端部には負極合剤を塗布せずに、銅箔の表面が露出した部分を設けた。   A plate-like negative electrode member (negative electrode plate) 12 is a current collector made of a copper foil containing a negative electrode mixture containing a graphite-based material as a negative electrode active material and polyvinylidene fluoride (PVdF) as a binder. The negative electrode active material layer was formed on the surface of the current collector. Under the present circumstances, the part which the surface of the copper foil exposed was provided in the edge part of the copper foil as an electrical power collector, without apply | coating a negative mix.

以上のようにして得られた正極部材11と負極部材12とを、たとえば、微孔性ポリエチレンフィルムからなるセパレータ部材13を介して密着させて、多数枚積層することにより積層体を構成した。   The positive electrode member 11 and the negative electrode member 12 obtained as described above were brought into close contact with each other via a separator member 13 made of, for example, a microporous polyethylene film, and a laminate was formed by laminating a large number of sheets.

そして、上記で得られた積層体にて、複数の正極部材11におけるアルミニウム箔の露出部を重ねて正極端子30に超音波溶接し、複数の負極部材12における銅箔の露出部を重ねて負極端子40に超音波溶接した。   Then, in the laminate obtained above, the exposed portions of the aluminum foil in the plurality of positive electrode members 11 are superposed on the positive terminal 30 and ultrasonically welded to the positive electrode terminal 30, and the exposed portions of the copper foil in the plurality of negative electrode members 12 are overlapped. The terminal 40 was ultrasonically welded.

次に、樹脂からなる外側の保護層と、アルミニウムからなる中間のガスバリア層と、樹脂からなる内側の接着層とを積層して一体化したアルミニウムラミネートフィルムを作製した。このアルミニウムラミネートフィルムからなる外装部材20の内部に上記の積層体を収納した。その後、外装部材20の外周部のうち、一部を電解液注入口として用いるために開放状態のままにしておき、それ以外の外装部材20の外周部を熱溶着した。   Next, an aluminum laminated film in which an outer protective layer made of resin, an intermediate gas barrier layer made of aluminum, and an inner adhesive layer made of resin were laminated and integrated was produced. The above laminate was housed inside the exterior member 20 made of this aluminum laminate film. Thereafter, a part of the outer periphery of the exterior member 20 was left open in order to use it as an electrolyte inlet, and the other outer periphery of the exterior member 20 was thermally welded.

そして、上記の電解液注入口からノズルを挿入して、電池100の内部に非水電解液を注入した。非水電解液は、電解質を非水溶媒に溶解して調製した。電解質としては、非水溶媒中にLiPFを1.0mol/Lの濃度で溶解したものを使用した。非水溶媒としては、炭酸プロピレンと炭酸エチレンと炭酸ジエチルとを体積比で5:25:70の割合で混合したものを使用した。 Then, a nozzle was inserted from the electrolyte solution injection port, and a nonaqueous electrolyte solution was injected into the battery 100. The non-aqueous electrolyte was prepared by dissolving the electrolyte in a non-aqueous solvent. As the electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / L in a non-aqueous solvent was used. As the non-aqueous solvent, a mixture of propylene carbonate, ethylene carbonate, and diethyl carbonate at a volume ratio of 5:25:70 was used.

次に、電解液注入口として用いた外周部の一部を仮封止し、所定の条件下で初充電を実施した後、仮封止を再び開放し、減圧しながら熱溶着して本封止した。   Next, a part of the outer periphery used as the electrolyte solution inlet is temporarily sealed, and after initial charging under predetermined conditions, the temporary sealing is opened again, and heat sealing is performed while reducing the pressure, and then the main seal is sealed. Stopped.

このようにして、本発明例と比較例の非水電解液電池100をそれぞれ10個(試料番号1〜10)作製した。   In this way, ten non-aqueous electrolyte batteries 100 of the present invention and comparative examples (sample numbers 1 to 10) were produced.

上記の構成において、本発明例の非水電解液電池100では、図2と図3に示すように、17枚(No.1〜No.17)の正極部材11と18枚(No.1〜No.18)の負極部材12を積層して容量4Ahの電池を作製した。なお、この際、本発明例のすべての正極部材11と負極部材12の各々の質量を計量器により測定した。   In the above configuration, in the non-aqueous electrolyte battery 100 of the present invention example, as shown in FIGS. 2 and 3, 17 (No. 1 to No. 17) positive electrode members 11 and 18 (No. 1 to No. 1). No. 18) negative electrode member 12 was laminated to produce a battery with a capacity of 4 Ah. At this time, the masses of all the positive electrode members 11 and the negative electrode members 12 of the example of the present invention were measured with a measuring instrument.

本発明例の電池のすべての試料に用いられた正極板と負極板の質量の最大値、最小値、中心値、平均値および標準偏差を表1に示す。   Table 1 shows the maximum value, the minimum value, the center value, the average value, and the standard deviation of the masses of the positive electrode plate and the negative electrode plate used in all the samples of the battery of the present invention.

Figure 2009181931
Figure 2009181931

図2と図3に示すように、正極部材11は、積層順No.1〜No.17に従って質量が大きくなるように積層し、負極部材12は、積層順No.1〜No.18に従って質量が大きくなるように積層した。   As shown in FIG. 2 and FIG. 1-No. The negative electrode member 12 is laminated in the order of lamination No. 1-No. 18 was laminated so as to increase the mass.

積層前に測定した1枚目(No.1)から17枚目(No.17)までの正極部材11の質量を図4と図5に示す。図4では、本発明例のすべての試料10個について積層順No.1〜No.17と正極板の各質量との関係を示し、図5では、本発明例の試料番号1〜10ごとに積層順No.1〜No.17と正極板の各質量との関係を示す。   The masses of the positive electrode member 11 from the first sheet (No. 1) to the 17th sheet (No. 17) measured before lamination are shown in FIGS. In FIG. 4, the stacking order No. for all 10 samples of the present invention example. 1-No. 17 and the respective masses of the positive electrode plate are shown. In FIG. 1-No. The relationship between 17 and each mass of a positive electrode plate is shown.

また、積層前に測定した1枚目(No.1)から18枚目(No.18)までの負極部材12の質量を図6と図7に示す。図6では、本発明例のすべての試料10個について積層順No.1〜No.18と負極板の各質量との関係を示し、図7では、本発明例の試料番号1〜10ごとに積層順No.1〜No.18と負極板の各質量との関係を示す。   Moreover, the mass of the negative electrode member 12 from the 1st sheet | seat (No. 1) measured before lamination | stacking to the 18th sheet | seat (No. 18) is shown in FIG. 6 and FIG. In FIG. 6, the stacking order No. for all 10 samples of the present invention example. 1-No. 18 and the respective masses of the negative electrode plate are shown. In FIG. 1-No. The relationship between 18 and each mass of a negative electrode plate is shown.

図2と図3に示すように、セパレータ部材13を間に介在して17枚の正極部材11と18枚の負極部材12を積層すると、すなわち、負極/セパレータ/正極/セパレータ/負極/セパレータ/正極・・・負極/セパレータ/正極/セパレータ/負極の順に積層すると、正極部材11の表裏面の数に相当する34面の正負極対向面が存在する。34面の正負極対向面の各々について、正極活物質層質量に対する負極活物質層質量の比率(AC比)を測定した。なお、本発明例の正極部材11の各々の集電体として用いられた各アルミニウム箔の質量は等しいと仮定し、負極部材12の各々の集電体として用いられた各銅箔の質量は等しいと仮定した。なお、集電体の表と裏の活物質は分離して重量を測定できないので、正極活物質層質量と負極活物質層質量は集電体表裏に等量塗布されているとして算出した。   As shown in FIGS. 2 and 3, 17 positive electrode members 11 and 18 negative electrode members 12 are laminated with a separator member 13 interposed therebetween, that is, negative electrode / separator / positive electrode / separator / negative electrode / separator / When stacked in the order of positive electrode... Negative electrode / separator / positive electrode / separator / negative electrode, there are 34 positive and negative electrode facing surfaces corresponding to the number of front and back surfaces of the positive electrode member 11. For each of the 34 positive and negative electrode facing surfaces, the ratio (AC ratio) of the negative electrode active material layer mass to the positive electrode active material layer mass was measured. In addition, the mass of each aluminum foil used as each collector of the positive electrode member 11 of this invention example is equal, and the mass of each copper foil used as each collector of the negative electrode member 12 is equal. Assumed. In addition, since the active material of the front and back of a collector cannot isolate | separate and measure a weight, the positive electrode active material layer mass and the negative electrode active material layer mass were computed on the collector front and back being equivalently applied.

34面の正負極対向面を、上記の積層順に従って、極間順No.1〜No.34として、極間順No.1〜No.34とAC比との関係を図8と図9に示す。図8では、本発明例のすべての試料10個について極間順No.1〜No.34とAC比との関係を示し、図9では、本発明例の試料番号1〜10ごとに極間順No.1〜No.34とAC比との関係を示す。   The positive and negative electrode facing surfaces of the 34th surface are arranged in the order of distance No. 1-No. 34, the inter-electrode order No. 1-No. The relationship between 34 and the AC ratio is shown in FIGS. In FIG. 8, the inter-electrode order No. for all 10 samples of the example of the present invention. 1-No. 34 and the AC ratio. In FIG. 1-No. 34 shows the relationship between AC and AC ratio.

一方、比較例の非水電解液電池100では、無作為に選んだ17枚(No.1〜No.17)の正極部材11と18枚(No.1〜No.18)の負極部材12を積層して容量4Ahの電池を作製した。なお、この際、比較例のすべての正極部材11と負極部材12の各々の質量を測定した。   On the other hand, in the non-aqueous electrolyte battery 100 of the comparative example, 17 (No. 1 to No. 17) positive electrode members 11 and 18 (No. 1 to No. 18) negative electrode members 12 randomly selected are used. A battery having a capacity of 4 Ah was produced by stacking. At this time, the mass of each of the positive electrode member 11 and the negative electrode member 12 of the comparative example was measured.

比較例の電池のすべての試料に用いられた正極板と負極板の質量の最大値、最小値、中心値、平均値および標準偏差を表2に示す。   Table 2 shows the maximum value, the minimum value, the center value, the average value, and the standard deviation of the masses of the positive electrode plate and the negative electrode plate used in all the samples of the battery of the comparative example.

Figure 2009181931
Figure 2009181931

積層前に測定した1枚目(No.1)から17枚目(No.17)までの正極部材11の質量を図10と図11に示す。図10では、比較例のすべての試料10個について積層順No.1〜No.17と正極板の各質量との関係を示し、図11では、比較例の試料番号1〜10ごとに積層順No.1〜No.17と正極板の各質量との関係を示す。   The mass of the positive electrode member 11 from the first sheet (No. 1) to the 17th sheet (No. 17) measured before lamination is shown in FIGS. In FIG. 10, the stacking order No. for all 10 samples of the comparative examples. 1-No. 17 and the respective masses of the positive electrode plate are shown. In FIG. 1-No. The relationship between 17 and each mass of a positive electrode plate is shown.

また、積層前に測定した1枚目(No.1)から18枚目(No.18)までの負極部材12の質量を図12と図13に示す。図12では、比較例のすべての試料10個について積層順No.1〜No.18と負極板の各質量との関係を示し、図13では、比較例の試料番号1〜10ごとに積層順No.1〜No.18と負極板の各質量との関係を示す。   Moreover, the mass of the negative electrode member 12 from the 1st sheet (No. 1) to the 18th sheet (No. 18) measured before lamination is shown in FIGS. In FIG. 12, the stacking order No. for all 10 samples of the comparative examples. 1-No. 18 and the respective masses of the negative electrode plate are shown. In FIG. 1-No. The relationship between 18 and each mass of a negative electrode plate is shown.

比較例においても、上記の本発明例と同様にして、34面の正負極対向面の各々について、正極活物質層質量に対する負極活物質層質量の比率(AC比)を測定した。なお、正極部材11の各々の集電体として用いられた各アルミニウム箔の質量は等しいと仮定し、負極部材12の各々の集電体として用いられた各銅箔の質量は等しいと仮定して、正極活物質層質量と負極活物質層質量を算出した。   Also in the comparative example, the ratio (AC ratio) of the negative electrode active material layer mass to the positive electrode active material layer mass was measured for each of the 34 positive and negative electrode facing surfaces in the same manner as in the present invention example. It is assumed that the mass of each aluminum foil used as each current collector of the positive electrode member 11 is equal, and the mass of each copper foil used as each current collector of the negative electrode member 12 is equal. The positive electrode active material layer mass and the negative electrode active material layer mass were calculated.

34面の正負極対向面を、上記の積層順に従って、極間順No.1〜No.34として、極間順No.1〜No.34とAC比との関係を図14と図15に示す。図14では、比較例のすべての試料10個について極間順No.1〜No.34とAC比との関係を示し、図15では、比較例の試料番号1〜10ごとに極間順No.1〜No.34とAC比との関係を示す。   The positive and negative electrode facing surfaces of the 34th surface are arranged in the order of distance No. 1-No. 34, the inter-electrode order No. 1-No. FIG. 14 and FIG. 15 show the relationship between 34 and the AC ratio. In FIG. 1-No. 34 and the AC ratio. In FIG. 1-No. 34 shows the relationship between AC and AC ratio.

図8〜図9と図14〜図15を比較すると、本発明例の各試料においては、正負極各対向面における正極活物質層質量に対する負極活物質層質量の比率(AC比)は、比較例のAC比に比べてばらつきが小さいことがわかる。   Comparing FIGS. 8 to 9 and FIGS. 14 to 15, in each sample of the example of the present invention, the ratio (AC ratio) of the negative electrode active material layer mass to the positive electrode active material layer mass on each positive and negative electrode facing surface is a comparison. It can be seen that the variation is small compared to the AC ratio of the example.

以上のようにして作製された本発明例と比較例の電池各10個を用いて、下記の条件で充放電サイクル試験を実施した。   A charge / discharge cycle test was carried out under the following conditions using 10 batteries of the present invention example and the comparative example produced as described above.

(試験条件)
充電:4A/4.2Vで開始し、終止電流が0.04Aになるまで
休止:10分
放電:4Aで開始し、2.7Vになるまで
サイクル数:500サイクル
充放電サイクル試験を500サイクル行った後の4Aにおける容量維持率を算出した。容量維持率は、初期容量に対する500サイクル後の放電容量の比率を100分率で求めた。その結果を表3に示す。
(Test conditions)
Charging: Start at 4A / 4.2V, until the end current reaches 0.04A Pause: 10 minutes Discharge: Start at 4A, until 2.7V Number of cycles: 500 cycles Perform 500 cycles of charge / discharge cycle test After that, the capacity retention rate at 4A was calculated. The capacity retention rate was determined by dividing the ratio of the discharge capacity after 500 cycles to the initial capacity at 100 minutes. The results are shown in Table 3.

Figure 2009181931
Figure 2009181931

表3の結果から明らかなように、比較例の電池の容量維持率の平均値が約81%であるのに対し、本発明例の電池の容量維持率の平均値が約91%と優れており、本発明によれば、複数の正極部材と負極部材がセパレータ部材を間に介在して交互に積層されている電池において、容量維持率(サイクル寿命)を向上させることができることがわかる。   As is apparent from the results of Table 3, the average value of the capacity retention rate of the battery of the comparative example is about 81%, whereas the average value of the capacity maintenance rate of the battery of the present invention example is about 91%. Thus, according to the present invention, it is understood that the capacity retention rate (cycle life) can be improved in a battery in which a plurality of positive electrode members and negative electrode members are alternately stacked with separator members interposed therebetween.

今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものであることが意図される。   It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the scope of claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the scope of claims. .

この発明の電池は、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源、自動車用の電源等に利用することができる。   The battery of the present invention can be used as a power source for portable electronic devices such as a mobile phone and a portable personal computer, a power source for automobiles, and the like.

本発明の一つの実施の形態として非水電解液電池の一例を示す概略的な平面図である。1 is a schematic plan view showing an example of a non-aqueous electrolyte battery as one embodiment of the present invention. 図1のII−II線に沿った方向から見た断面を拡大して示す部分断面図である。It is a fragmentary sectional view which expands and shows the cross section seen from the direction along the II-II line of FIG. 図1のIII−III線に沿った方向から見た断面を拡大して示す部分断面図である。It is a fragmentary sectional view which expands and shows the cross section seen from the direction along the III-III line of FIG. 本発明例のすべての試料10個について積層順No.1〜No.17と正極板の各質量との関係を示す図である。For all 10 samples of the present invention, the stacking order No. 1-No. It is a figure which shows the relationship between 17 and each mass of a positive electrode plate. 本発明例の試料番号1〜10ごとに積層順No.1〜No.17と正極板の各質量との関係を示す図である。For each of sample numbers 1 to 10 in the example of the present invention, the stacking order No. 1-No. It is a figure which shows the relationship between 17 and each mass of a positive electrode plate. 本発明例のすべての試料10個について積層順No.1〜No.18と負極板の各質量との関係を示す図である。For all 10 samples of the present invention, the stacking order No. 1-No. It is a figure which shows the relationship between 18 and each mass of a negative electrode plate. 本発明例の試料番号1〜10ごとに積層順No.1〜No.18と負極板の各質量との関係を示す図である。For each of sample numbers 1 to 10 in the example of the present invention, the stacking order No. 1-No. It is a figure which shows the relationship between 18 and each mass of a negative electrode plate. 本発明例のすべての試料10個について極間順No.1〜No.34とAC比との関係を示す図である。For all 10 samples of the example of the present invention, the no. 1-No. It is a figure which shows the relationship between 34 and AC ratio. 本発明例の試料番号1〜10ごとに極間順No.1〜No.34とAC比との関係を示す図である。For each of the sample numbers 1 to 10 of the example of the present invention, the inter-electrode order No. 1-No. It is a figure which shows the relationship between 34 and AC ratio. 比較例のすべての試料10個について積層順No.1〜No.17と正極板の各質量との関係を示す図である。For all 10 samples of the comparative examples, the stacking order No. 1-No. It is a figure which shows the relationship between 17 and each mass of a positive electrode plate. 比較例の試料番号1〜10ごとに積層順No.1〜No.17と正極板の各質量との関係を示す図である。For each sample number 1 to 10 in the comparative example, the stacking order No. 1-No. It is a figure which shows the relationship between 17 and each mass of a positive electrode plate. 比較例のすべての試料10個について積層順No.1〜No.18と負極板の各質量との関係を示す図である。For all 10 samples of the comparative examples, the stacking order No. 1-No. It is a figure which shows the relationship between 18 and each mass of a negative electrode plate. 比較例の試料番号1〜10ごとに積層順No.1〜No.18と負極板の各質量との関係を示す図である。For each sample number 1 to 10 in the comparative example, the stacking order No. 1-No. It is a figure which shows the relationship between 18 and each mass of a negative electrode plate. 比較例のすべての試料10個について極間順No.1〜No.34とAC比との関係を示す図である。For all 10 samples of the comparative examples, the inter-electrode order No. 1-No. It is a figure which shows the relationship between 34 and AC ratio. 比較例の試料番号1〜10ごとに極間順No.1〜No.34とAC比との関係を示す図である。For each of sample numbers 1 to 10 of the comparative example, the inter-electrode order No. 1-No. It is a figure which shows the relationship between 34 and AC ratio.

符号の説明Explanation of symbols

10:発電要素、11:正極部材、12:負極部材、13:セパレータ部材、20:外装部材、30:正極端子、40:負極端子、100:電池。   10: power generation element, 11: positive electrode member, 12: negative electrode member, 13: separator member, 20: exterior member, 30: positive electrode terminal, 40: negative electrode terminal, 100: battery.

Claims (1)

正極活物質と集電体からなる複数の正極部材と、
負極活物質と集電体からなる複数の負極部材とが、セパレータ部材を間に介在させて交互に積層されている電池において、
前記複数の正極部材は所定の積層方向に沿って前記正極部材の各々の質量が大きくなるように積層され、前記複数の負極部材は前記所定の積層方向に沿って前記負極部材の各々の質量が大きくなるように積層されている、電池。
A plurality of positive electrode members comprising a positive electrode active material and a current collector;
In a battery in which a plurality of negative electrode members made of a negative electrode active material and a current collector are alternately stacked with a separator member interposed therebetween,
The plurality of positive electrode members are stacked such that the mass of each of the positive electrode members increases along a predetermined stacking direction, and the plurality of negative electrode members has a mass of each of the negative electrode members along the predetermined stacking direction. Batteries that are stacked to be larger.
JP2008022413A 2008-02-01 2008-02-01 battery Active JP5205995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022413A JP5205995B2 (en) 2008-02-01 2008-02-01 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022413A JP5205995B2 (en) 2008-02-01 2008-02-01 battery

Publications (2)

Publication Number Publication Date
JP2009181931A true JP2009181931A (en) 2009-08-13
JP5205995B2 JP5205995B2 (en) 2013-06-05

Family

ID=41035714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022413A Active JP5205995B2 (en) 2008-02-01 2008-02-01 battery

Country Status (1)

Country Link
JP (1) JP5205995B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027414A (en) * 2008-07-22 2010-02-04 Murata Mfg Co Ltd Manufacturing method for battery
JP2015115097A (en) * 2013-12-09 2015-06-22 株式会社豊田自動織機 Manufacturing method of electrode assembly, power storage device, and manufacturing apparatus for electrode assembly

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963671A (en) * 1982-09-30 1984-04-11 Japan Storage Battery Co Ltd Alkaline storage battery
JPH11144764A (en) * 1997-11-06 1999-05-28 Toshiba Corp Lithium ion secondary battery and battery assembly using the lithium ion secondary battery
JP2002042863A (en) * 2000-07-28 2002-02-08 Japan Science & Technology Corp Thin-film solid lithium ion secondary battery
JP2003242963A (en) * 2002-02-19 2003-08-29 Mitsubishi Chemicals Corp Battery
JP2003282142A (en) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd Thin film laminate, thin film battery, capacitor, and manufacturing method and device of thin film laminate
JP2004111219A (en) * 2002-09-18 2004-04-08 Nissan Motor Co Ltd Laminate secondary cell, cell pack module made of a plurality of laminated secondary cells, cell pack made of a plurality of cell pack modules, and electric car loading either thereof
JP2006012703A (en) * 2004-06-29 2006-01-12 Shin Kobe Electric Mach Co Ltd Secondary battery
JP2007103130A (en) * 2005-10-03 2007-04-19 Geomatec Co Ltd Thin film solid secondary battery and method of manufacturing thin film solid secondary battery
JP2007207510A (en) * 2006-01-31 2007-08-16 Toyota Motor Corp Electrode stack and bipolar secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963671A (en) * 1982-09-30 1984-04-11 Japan Storage Battery Co Ltd Alkaline storage battery
JPH11144764A (en) * 1997-11-06 1999-05-28 Toshiba Corp Lithium ion secondary battery and battery assembly using the lithium ion secondary battery
JP2002042863A (en) * 2000-07-28 2002-02-08 Japan Science & Technology Corp Thin-film solid lithium ion secondary battery
JP2003242963A (en) * 2002-02-19 2003-08-29 Mitsubishi Chemicals Corp Battery
JP2003282142A (en) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd Thin film laminate, thin film battery, capacitor, and manufacturing method and device of thin film laminate
JP2004111219A (en) * 2002-09-18 2004-04-08 Nissan Motor Co Ltd Laminate secondary cell, cell pack module made of a plurality of laminated secondary cells, cell pack made of a plurality of cell pack modules, and electric car loading either thereof
JP2006012703A (en) * 2004-06-29 2006-01-12 Shin Kobe Electric Mach Co Ltd Secondary battery
JP2007103130A (en) * 2005-10-03 2007-04-19 Geomatec Co Ltd Thin film solid secondary battery and method of manufacturing thin film solid secondary battery
JP2007207510A (en) * 2006-01-31 2007-08-16 Toyota Motor Corp Electrode stack and bipolar secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027414A (en) * 2008-07-22 2010-02-04 Murata Mfg Co Ltd Manufacturing method for battery
JP2015115097A (en) * 2013-12-09 2015-06-22 株式会社豊田自動織機 Manufacturing method of electrode assembly, power storage device, and manufacturing apparatus for electrode assembly

Also Published As

Publication number Publication date
JP5205995B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
KR101968980B1 (en) Case for Secondary Battery Comprising an insulating layer and Lithium Secondary Battery Comprising the Same
KR101768195B1 (en) Method for Preparing Positive Electrode Having Insulation Coating portion and Positive Electrode Prepared Thereby
EP2238643B1 (en) Pouch-type lithium secondary battery
US20100119940A1 (en) Secondary battery
JP2016035900A (en) Non-aqueous electrolyte battery and battery pack
JP2008097879A (en) Lithium ion secondary battery
KR102264734B1 (en) Nonaqueous electrolyte and lithium secondary battery comprising the same
US9893350B2 (en) Lithium secondary battery
US9831526B2 (en) Lithium secondary battery
KR101744120B1 (en) Pouch-typed Secondary Battery of Improved Safety of Nail Penetration Test
JP7408905B2 (en) Secondary battery manufacturing method and its manufacturing equipment
JP6070691B2 (en) Nonaqueous electrolyte secondary battery
JP5964102B2 (en) Manufacturing method of battery having flat electrode body
CN111164817A (en) Lithium ion secondary battery
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
JP2013206724A (en) Nonaqueous electrolyte secondary battery
JP5205995B2 (en) battery
JP2007250499A (en) Lithium ion secondary battery
KR20190125085A (en) Separators for lithium secondary battery and lithium secondary battery comprising the same
JP5217723B2 (en) Battery manufacturing method
JP6952883B2 (en) Electrode group, non-aqueous electrolyte battery and battery pack
JP6778396B2 (en) Non-aqueous electrolyte secondary battery
KR102080507B1 (en) Electrode Assembly Comprising Reinforcing Member Capable of Minimizing Deformation of Electrode and Stacked Structure of Unit Cell by Protecting Unit Cell from External Impact
KR20160066202A (en) Battery Cell Having Fixing Member Installed on Outer Surface of Battery Case and Method for Manufacturing the Same
CN112335091A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5205995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150