JP2008097879A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2008097879A
JP2008097879A JP2006275393A JP2006275393A JP2008097879A JP 2008097879 A JP2008097879 A JP 2008097879A JP 2006275393 A JP2006275393 A JP 2006275393A JP 2006275393 A JP2006275393 A JP 2006275393A JP 2008097879 A JP2008097879 A JP 2008097879A
Authority
JP
Japan
Prior art keywords
positive electrode
conductive
active material
electrode active
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006275393A
Other languages
Japanese (ja)
Inventor
Hiromi Tamakoshi
博美 玉腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2006275393A priority Critical patent/JP2008097879A/en
Publication of JP2008097879A publication Critical patent/JP2008097879A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery high in a high-rate discharge characteristic and a cycle characteristic. <P>SOLUTION: This lithium ion secondary battery includes a positive electrode 10, a negative electrode 20, a separator 30 arranged between the positive electrode 10 and the negative electrode 20, and a nonaqueous electrolyte. The positive electrode 10 includes a positive electrode collector 11, a positive electrode active material layer 12 formed on the positive electrode collector 11, and a conductive layer 13 formed on the positive electrode active material layer 12; and the thickness of the conductive layer 13 is 1-7 μm. The positive electrode active material layer 12 includes a lithium-containing composite oxide and a conductive assistant; the content A of the conductive assistant of the positive electrode active material layer 12 is 1-15 wt.% with respect to the total weight of the positive electrode active material layer 12; the conductive layer 13 contains the conductive assistant; and the content B of the conductive assistant of the conductive layer 13 is 20-80 wt.% with respect to the total weight of the conductive layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高率充放電特性及びサイクル特性が高いリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery having high charge / discharge characteristics and high cycle characteristics.

近年、携帯電話やパーソナル・デジタル・アシスタント(PDA)等の携帯機器の急激な普及に伴い、その電源として高エネルギー密度を有するリチウムイオン二次電池の需要が急速に拡大している。現在、このリチウムイオン二次電池は、携帯電話、ノート型パソコンをはじめとするモバイル情報機器用の標準電池としての地位を確立し、今後ともその性能向上が要望されている。このような状況の中で最近では、リチウムイオン二次電池の高率充放電特性及びサイクル特性を向上させる種々の提案がなされている(例えば、特許文献1参照)。   In recent years, with the rapid spread of portable devices such as mobile phones and personal digital assistants (PDAs), the demand for lithium ion secondary batteries having a high energy density as a power source is rapidly expanding. At present, this lithium ion secondary battery has established a position as a standard battery for mobile information devices such as mobile phones and notebook computers, and there is a demand for further improvement in its performance. Under such circumstances, various proposals have recently been made to improve the high rate charge / discharge characteristics and cycle characteristics of lithium ion secondary batteries (see, for example, Patent Document 1).

一方、このリチウムイオン二次電池は、上記モバイル情報機器用電源としてだけではなく、電気自動車、ハイブリッド自動車、電動工具等の高入出力用電源としても実用化が進められている。高入出力用電源としてリチウムイオン二次電池を使用する場合には、モバイル情報機器用電源としての使用に比べて、高い高率放電特性及びサイクル特性が要求される。このため、従来は、リチウムイオン二次電池と電気二重層キャパシタとを併用することにより、リチウムイオン二次電池を高入出力用電源として使用していた。また、リチウムイオン二次電池を電気二重層キャパシタと併用せずに高入出力用電源として使用する提案もなされている(例えば、特許文献2参照。)。さらに、特に高率充放電特性が要求される電気自動車やハイブリッド自動車の電源として用いられるリチウムイオン二次電池では、正極及び負極に添加する導電助剤の添加量を増加させることにより対処してきた。
特開2003−249211号公報 特開2002−260634号公報
On the other hand, this lithium ion secondary battery is being put to practical use not only as a power source for mobile information devices but also as a high input / output power source for electric vehicles, hybrid vehicles, electric tools and the like. When a lithium ion secondary battery is used as a power supply for high input / output, higher high rate discharge characteristics and cycle characteristics are required compared to use as a power supply for mobile information equipment. For this reason, conventionally, a lithium ion secondary battery has been used as a high input / output power source by using a lithium ion secondary battery and an electric double layer capacitor in combination. In addition, a proposal has been made to use a lithium ion secondary battery as a high input / output power source without using it together with an electric double layer capacitor (see, for example, Patent Document 2). Furthermore, lithium ion secondary batteries used as power sources for electric vehicles and hybrid vehicles that require particularly high rate charge / discharge characteristics have been addressed by increasing the amount of conductive additive added to the positive and negative electrodes.
JP 2003-249 211 A JP 2002-260634 A

特許文献1では、リチウムイオン二次電池の負極表面に金属粒子等を含む層を形成することにより、高率放電特性及びサイクル特性の向上を図るものであるが、正極側につては何ら考慮されていない。また、リチウムイオン二次電池と電気二重層キャパシタとを併用する方法では、電気二重層キャパシタのエネルギー密度が低く、実用上問題がある。さらに、特許文献2では、正極活物質に活性炭を導電剤として添加することにより、高エネルギー密度、高出力密度及び低温特性の向上を図るものであるが、正極活物質に活性炭を多量に添加すると、活物質塗料の流動性が低下し、集電体から塗膜が剥がれ易くなるため、活性炭の添加量には限界があり、上記特性の向上を十分に達成できない。また、正極及び負極に添加する導電助剤の添加量を増加させると、活物質量が相対的に減少し、電池容量が低下する問題もある。   In Patent Document 1, high-rate discharge characteristics and cycle characteristics are improved by forming a layer containing metal particles or the like on the negative electrode surface of a lithium ion secondary battery. However, no consideration is given to the positive electrode side. Not. Moreover, in the method using a lithium ion secondary battery and an electric double layer capacitor in combination, the energy density of the electric double layer capacitor is low, and there is a problem in practical use. Furthermore, in Patent Document 2, by adding activated carbon to the positive electrode active material as a conductive agent, high energy density, high output density, and low temperature characteristics are improved. However, when activated carbon is added in a large amount to the positive electrode active material. Since the fluidity of the active material paint is lowered and the coating film is easily peeled off from the current collector, there is a limit to the amount of activated carbon added, and the above characteristics cannot be sufficiently improved. Further, when the amount of the conductive additive added to the positive electrode and the negative electrode is increased, there is a problem that the amount of the active material is relatively decreased and the battery capacity is decreased.

本発明は上記問題を解決するものであり、電池容量を低下させることなく、高率放電特性及びサイクル特性の高いリチウムイオン二次電池を提供するものである。   The present invention solves the above problems and provides a lithium ion secondary battery having high rate discharge characteristics and high cycle characteristics without reducing the battery capacity.

本発明のリチウムイオン二次電池は、リチウムを吸蔵・放出可能な正極と、リチウムを吸蔵・放出可能な負極と、前記正極と前記負極との間に配置されたセパレータと、非水電解液とを含むリチウムイオン二次電池であって、前記正極は、正極集電体と、前記正極集電体の上に形成された正極活物質層と、前記正極活物質層の上に形成された導電層とを含み、前記導電層の厚さは、1μm以上7μm以下であり、前記正極活物質層は、リチウム含有複合酸化物と導電助剤とを含み、前記正極活物質層の前記導電助剤の含有量Aは、前記正極活物質層の全重量に対して1重量%以上15重量%以下であり、前記導電層は、導電助剤を含み、前記導電層の前記導電助剤の含有量Bは、前記導電層の全重量に対して20重量%以上80重量%以下であることを特徴とする。   A lithium ion secondary battery of the present invention includes a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium, a separator disposed between the positive electrode and the negative electrode, a non-aqueous electrolyte, A positive electrode current collector, a positive electrode active material layer formed on the positive electrode current collector, and a conductive material formed on the positive electrode active material layer. The conductive layer has a thickness of 1 μm or more and 7 μm or less, the positive electrode active material layer includes a lithium-containing composite oxide and a conductive additive, and the conductive auxiliary of the positive electrode active material layer The content A is 1% by weight or more and 15% by weight or less based on the total weight of the positive electrode active material layer, the conductive layer contains a conductive assistant, and the conductive auxiliary agent content of the conductive layer B is 20 wt% or more and 80 wt% or less with respect to the total weight of the conductive layer. It is characterized by that.

本発明により、電池容量を低下させることなく、正極の反応部位の導電性を高めることができ、高率放電特性及びサイクル特性の高いリチウムイオン二次電池を提供できる。   According to the present invention, the conductivity of the reaction site of the positive electrode can be increased without reducing the battery capacity, and a lithium ion secondary battery having high rate discharge characteristics and high cycle characteristics can be provided.

本発明のリチウムイオン二次電池は、リチウムを吸蔵・放出可能な正極と、リチウムを吸蔵・放出可能な負極と、正極と負極との間に配置されたセパレータと、非水電解液とを備えている。また、正極は、正極集電体と、正極集電体の上に形成された正極活物質層と、正極活物質層の上に形成された導電層とを備えている。導電層の厚さは、1μm以上7μm以下である。正極活物質層は、リチウム含有複合酸化物と導電助剤とを含み、正極活物質層の導電助剤の含有量Aは、正極活物質層の全重量に対して1重量%以上15重量%以下である。また、導電層は、導電助剤を含み、導電層の導電助剤の含有量Bは、導電層の全重量に対して20重量%以上80重量%以下である。   A lithium ion secondary battery according to the present invention includes a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. ing. The positive electrode includes a positive electrode current collector, a positive electrode active material layer formed on the positive electrode current collector, and a conductive layer formed on the positive electrode active material layer. The thickness of the conductive layer is 1 μm or more and 7 μm or less. The positive electrode active material layer includes a lithium-containing composite oxide and a conductive auxiliary agent, and the content A of the conductive auxiliary agent in the positive electrode active material layer is 1 wt% or more and 15 wt% with respect to the total weight of the positive electrode active material layer. It is as follows. The conductive layer contains a conductive additive, and the conductive additive content B of the conductive layer is 20% by weight to 80% by weight with respect to the total weight of the conductive layer.

上記のように、正極を正極活物質層と導電層との2層構造とし、且つ正極活物質層の導電助剤の含有量A及び導電層の導電助剤の含有量Bをそれぞれ上記範囲内とすることにより、電池容量を低下させることなく、正極の反応部位の導電性を高めることができ、高率放電特性を向上できる。また、上記導電層は、正極活物質層に比べて空隙率が高まるため、電解液の浸透性及び保液性が高まり、サイクル特性も向上する。   As described above, the positive electrode has a two-layer structure of the positive electrode active material layer and the conductive layer, and the content A of the conductive assistant in the positive electrode active material layer and the content B of the conductive assistant in the conductive layer are within the above ranges, respectively. Thus, the conductivity of the reaction site of the positive electrode can be increased without reducing the battery capacity, and the high rate discharge characteristics can be improved. Moreover, since the porosity of the conductive layer is higher than that of the positive electrode active material layer, the permeability and liquid retention of the electrolytic solution are improved, and the cycle characteristics are also improved.

上記導電助剤は、炭素材料からなることが好ましい。炭素材料は導電性が高く、電極の充放電反応に対して安定だからである。   The conductive assistant is preferably made of a carbon material. This is because the carbon material has high conductivity and is stable with respect to the charge / discharge reaction of the electrode.

上記導電層の厚さは、1μm以上7μm以下であることが好ましく、1μm以上5μm以下であることがより好ましい。導電層の厚さを薄くすることにより、同一体積中により多くの正極活物質を充填できるため、電池容量を大きくできるからである。   The thickness of the conductive layer is preferably 1 μm or more and 7 μm or less, and more preferably 1 μm or more and 5 μm or less. This is because by reducing the thickness of the conductive layer, more positive electrode active material can be filled in the same volume, so that the battery capacity can be increased.

上記導電層と上記正極活物質層との厚さの比率は、1:4〜1:30であることが好ましい。正極活物質層に対する導電層の厚さが厚くなりすぎると電池容量が低下するからであり、また導電層の厚さが薄くなりすぎると正極活物質層の導電層近傍部分の反応性が高まるだけで、正極活物質層全体の反応性を向上させる効果が小さくなるからである。   The thickness ratio between the conductive layer and the positive electrode active material layer is preferably 1: 4 to 1:30. This is because if the thickness of the conductive layer with respect to the positive electrode active material layer becomes too thick, the battery capacity decreases, and if the thickness of the conductive layer becomes too thin, the reactivity of the portion near the conductive layer of the positive electrode active material layer only increases. This is because the effect of improving the reactivity of the whole positive electrode active material layer is reduced.

上記導電層は、リチウム含有複合酸化物をさらに含むこともできる。これにより、電池容量をさらに高めることができる。   The conductive layer may further include a lithium-containing composite oxide. Thereby, the battery capacity can be further increased.

以下、本発明のリチウムイオン二次電池を図面に基づき説明する。図1は本発明のリチウムイオン二次電池に用いる電極積層体の一例を示す断面図である。図1において、電極積層体1は、リチウムを吸蔵・放出可能な正極10と、リチウムを吸蔵・放出可能な負極20と、正極10と負極20との間に配置されたセパレータ30とを備えている。   Hereinafter, the lithium ion secondary battery of this invention is demonstrated based on drawing. FIG. 1 is a cross-sectional view showing an example of an electrode laminate used in the lithium ion secondary battery of the present invention. In FIG. 1, the electrode laminate 1 includes a positive electrode 10 capable of inserting and extracting lithium, a negative electrode 20 capable of inserting and extracting lithium, and a separator 30 disposed between the positive electrode 10 and the negative electrode 20. Yes.

正極10は、正極集電体11と、正極集電体11の上に形成された正極活物質層12と、正極活物質層12の上に形成された導電層13とを備えている。正極活物質層12は、リチウム含有複合酸化物と、炭素材料からなる導電助剤とを含み、正極活物質層12の導電助剤の含有率は、正極活物質層12の全重量に対して1重量%以上15重量%以下、導電層13と正極活物質層12との厚さの比率は、1:4〜1:30に設定されている。   The positive electrode 10 includes a positive electrode current collector 11, a positive electrode active material layer 12 formed on the positive electrode current collector 11, and a conductive layer 13 formed on the positive electrode active material layer 12. The positive electrode active material layer 12 includes a lithium-containing composite oxide and a conductive additive made of a carbon material, and the content of the conductive additive in the positive electrode active material layer 12 is based on the total weight of the positive electrode active material layer 12. The thickness ratio between the conductive layer 13 and the positive electrode active material layer 12 is set to 1: 4 to 1:30.

また、導電層13は、導電助剤を含み、導電層13の導電助剤の含有量は、導電層13の全重量に対して20重量%以上80重量%以下、導電層13の厚さは、1μm以上7μm以下に設定されている。   In addition, the conductive layer 13 includes a conductive additive, and the content of the conductive additive in the conductive layer 13 is 20% by weight to 80% by weight with respect to the total weight of the conductive layer 13, and the thickness of the conductive layer 13 is It is set to 1 μm or more and 7 μm or less.

負極20は、負極集電体21と、負極集電体21の上に形成された負極活物質層22と、負極活物質層22の上に形成された導電層23とを備えている。負極活物質層22は、炭素材料からなる活物質と、炭素材料からなる導電助剤とを含み、負極活物質層22の導電助剤の含有量は、負極活物質層21の全重量に対して1重量%以上15重量%以下に設定されている。   The negative electrode 20 includes a negative electrode current collector 21, a negative electrode active material layer 22 formed on the negative electrode current collector 21, and a conductive layer 23 formed on the negative electrode active material layer 22. The negative electrode active material layer 22 includes an active material made of a carbon material and a conductive auxiliary agent made of a carbon material, and the content of the conductive auxiliary agent in the negative electrode active material layer 22 is based on the total weight of the negative electrode active material layer 21. 1 wt% or more and 15 wt% or less.

また、導電層23は、導電助剤を含み、導電層23の導電助剤の含有量は、導電層23の全重量に対して20重量%以上80重量%以下、導電層23の厚さは、1μm以上7μm以下に設定されている。   In addition, the conductive layer 23 includes a conductive additive, and the content of the conductive additive in the conductive layer 23 is 20 wt% or more and 80 wt% or less with respect to the total weight of the conductive layer 23, and the thickness of the conductive layer 23 is It is set to 1 μm or more and 7 μm or less.

前述したように、高率充放電特性を向上させるためには、活物質に添加する導電助剤の量を増加させて電極の集電性を高めることが効果的である。しかし、導電助剤の添加量を増加させると、電極中に充放電に関与しない物質が増えるために容量が極端に低下したり、電極密度が上がらず容量低下を招くという問題がある。   As described above, in order to improve the high rate charge / discharge characteristics, it is effective to increase the current collecting property of the electrode by increasing the amount of the conductive additive added to the active material. However, when the additive amount of the conductive auxiliary agent is increased, there is a problem in that the capacity is extremely reduced because the number of substances not involved in charging / discharging increases in the electrode, or the electrode density is not increased and the capacity is reduced.

そこで、本発明者らは、導電助剤の含有量が高い導電層を活物質層の上に形成することによって、電池容量を低下させることなく導電性を向上させ、上記問題を解決した。上記導電層は少なくとも正極側に設ければ、高率充放電特性を向上させる効果があるが、図1のように負極側に同様の導電層を設けてもよい。   Therefore, the present inventors have improved the conductivity without reducing the battery capacity by forming a conductive layer having a high content of conductive auxiliary agent on the active material layer, thereby solving the above problem. If the conductive layer is provided at least on the positive electrode side, there is an effect of improving the high rate charge / discharge characteristics, but a similar conductive layer may be provided on the negative electrode side as shown in FIG.

また、上記導電層を電極の表面に形成するのは、高率充放電を行う場合には、その充放電反応は主に対極と対向する電極表面で起こるため、上記導電層を対極と対向する電極の表面部分に設けることにより、その反応部位の導電性が向上し、高率充放電特性が向上するからである。   The conductive layer is formed on the surface of the electrode when charging / discharging at a high rate, because the charge / discharge reaction mainly occurs on the electrode surface facing the counter electrode, so that the conductive layer faces the counter electrode. This is because by providing it on the surface portion of the electrode, the conductivity of the reaction site is improved and the high rate charge / discharge characteristics are improved.

導電層13、23の導電助剤の含有量は、導電層13、23の厚さとの関係があり、20重量%以上80重量%以下が好ましい。20重量%未満では十分な導電性が得られず、80重量%を超えると導電助剤が活物質の反応を阻害するからである。   The content of the conductive assistant in the conductive layers 13 and 23 is related to the thickness of the conductive layers 13 and 23, and is preferably 20% by weight or more and 80% by weight or less. If the amount is less than 20% by weight, sufficient conductivity cannot be obtained, and if it exceeds 80% by weight, the conductive additive inhibits the reaction of the active material.

上記導電助剤を添加した導電層13、23の空隙率は、正極活物質層12及び負極活物質層22の空隙率より高くなるため、電解液の浸透性及び保液性が向上し、サイクル特性が向上する。   Since the porosity of the conductive layers 13 and 23 to which the conductive auxiliary agent is added is higher than the porosity of the positive electrode active material layer 12 and the negative electrode active material layer 22, the permeability and liquid retention of the electrolytic solution are improved, and the cycle Improved characteristics.

正極10の活物質であるリチウム含有複合酸化物としては、例えば、LixCoO2やこれにさらにGe、Ti、Zr等の添加元素を少なくとも1種含むリチウムコバルト複合酸化物、LixNiO2等のリチウムニッケル複合酸化物、上記リチウムニッケル複合酸化物のニッケルの一部がコバルトやマンガンで置換された、リチウムニッケル・コバルト複合酸化物、リチウムマンガン・ニッケル複合酸化物、リチウムマンガン・ニッケル・コバルト複合酸化物等の層状構造のリチウム含有複合酸化物を使用できる。また、上記リチウム含有複合酸化物としては、例えば、LiyMn24やこれにさらにGe、Zr、Mg等の添加元素を少なくとも1種含むリチウムマンガン複合酸化物、Li4/3Ti5/34等のリチウムチタン複合酸化物等のスピネル構造のリチウム含有複合酸化物を使用することもできる。上記活物質は、2種以上を混合あるいは複合化して用いてもよい。 Examples of the lithium-containing composite oxide that is the active material of the positive electrode 10 include Li x CoO 2 , lithium cobalt composite oxide further containing at least one additive element such as Ge, Ti, and Zr, Li x NiO 2, and the like. Lithium-nickel composite oxide, lithium nickel-cobalt composite oxide, lithium manganese-nickel composite oxide, lithium manganese-nickel-cobalt composite, in which part of nickel in the above lithium-nickel composite oxide is replaced with cobalt or manganese A lithium-containing composite oxide having a layered structure such as an oxide can be used. Examples of the lithium-containing composite oxide include Li y Mn 2 O 4 and a lithium manganese composite oxide containing at least one additional element such as Ge, Zr, and Mg, and Li 4/3 Ti 5 / A spinel-structure lithium-containing composite oxide such as a lithium titanium composite oxide such as 3 O 4 can also be used. Two or more active materials may be mixed or combined to be used.

上記導電助剤としては、黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、気相成長炭素繊維等の炭素材料が使用できる。特に、アセチレンブラック、カーボンブラック、ケッチェンブラック、気相成長炭素繊維等の微粒子を用いると、導電層13、23を1〜5μmの厚さの薄膜層に形成しやすい。これらの導電助剤は、単独で用いても、2種以上を混合して用いてもよい。   As the conductive aid, carbon materials such as graphite, acetylene black, carbon black, ketjen black, and vapor grown carbon fiber can be used. In particular, when fine particles such as acetylene black, carbon black, ketjen black, and vapor grown carbon fiber are used, the conductive layers 13 and 23 can be easily formed as a thin film layer having a thickness of 1 to 5 μm. These conductive assistants may be used alone or in combination of two or more.

正極10は、例えば、上記正極活物質及び上記導電助剤にポリフッ化ビニリデン等の結着剤等を適宜添加した正極合剤を、アルミニウム箔等からなる正極集電体11に塗布して正極活物質層12を形成した後、さらに、上記導電助剤にポリビニルピロリドン等の結着剤等を適宜添加した導電塗布剤を、上記正極活物質層12の上に塗布して導電層13を形成することにより、帯状の成形体として形成される。上記正極合剤の塗布と上記導電塗布剤との塗布は、塗布された正極合剤が乾燥してからその上に導電塗布剤を塗布して乾燥する逐次重層塗布方法により行うことができるが、塗布された正極合剤が乾燥する前にその上に導電塗布剤を塗布して乾燥する同時重層塗布方法により行うと、乾燥工程が一工程となり製造工程が簡略化できるとともに、厚さが1〜5μmの導電層13を均一に形成できるので好ましい。なお、本実施形態では、正極10は、正極集電体11の両面に正極活物質層12と導電層13を形成した例を示したが、正極集電体11のセパレータ30側の片面のみに正極活物質層12と導電層13を形成してもよい。   The positive electrode 10 is formed by, for example, applying a positive electrode mixture obtained by appropriately adding a binder such as polyvinylidene fluoride to the positive electrode active material and the conductive auxiliary agent to a positive electrode current collector 11 made of aluminum foil or the like. After the material layer 12 is formed, the conductive layer 13 is further formed by applying a conductive coating agent, which is obtained by appropriately adding a binder such as polyvinylpyrrolidone to the conductive auxiliary agent, on the positive electrode active material layer 12. As a result, it is formed as a band-shaped molded body. The application of the positive electrode mixture and the conductive coating agent can be performed by a sequential multilayer coating method in which the applied positive electrode mixture is dried and then the conductive coating agent is applied and dried. When the applied positive electrode mixture is dried by a simultaneous multilayer coating method in which a conductive coating agent is applied and dried before drying, the drying process becomes one step and the manufacturing process can be simplified, and the thickness is 1 to 1. The conductive layer 13 having a thickness of 5 μm can be formed uniformly, which is preferable. In the present embodiment, the positive electrode 10 is shown as an example in which the positive electrode active material layer 12 and the conductive layer 13 are formed on both surfaces of the positive electrode current collector 11, but only on one surface of the positive electrode current collector 11 on the separator 30 side. The positive electrode active material layer 12 and the conductive layer 13 may be formed.

負極20の活物質である炭素材料としては、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭等を使用できる。また、負極20に用いる導電助剤は正極10で用いる導電助剤と同様のものが使用できる。   Examples of the carbon material that is the active material of the negative electrode 20 include graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, mesocarbon microbeads, carbon fibers, activated carbon, and the like. . In addition, the same conductive aid used for the positive electrode 10 can be used for the negative electrode 20.

負極20は、例えば、上記負極活物質及び上記導電助剤にポリフッ化ビニリデン等の結着剤等を適宜添加した負極合剤を、銅箔等からなる負極集電体21に塗布して負極活物質層22を形成した後、さらに、上記導電助剤にポリビニルピロリドン等の結着剤等を適宜添加した導電塗布剤を、上記負極活物質層22の上に塗布して導電層23を形成することにより、帯状の成形体として形成される。これら以外については、負極20は、正極10と同様にして製造できる。   The negative electrode 20 is formed by, for example, applying a negative electrode mixture obtained by appropriately adding a binder such as polyvinylidene fluoride to the negative electrode active material and the conductive auxiliary agent to a negative electrode current collector 21 made of copper foil or the like. After the material layer 22 is formed, a conductive layer 23 is formed by further applying a conductive coating agent appropriately added with a binder such as polyvinylpyrrolidone to the conductive auxiliary agent on the negative electrode active material layer 22. As a result, it is formed as a band-shaped molded body. Other than these, the negative electrode 20 can be manufactured in the same manner as the positive electrode 10.

セパレータ30としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂からなる微孔性セパレータが好適に用いられる。セパレータ30の厚さは、例えば、15〜30μmとすればよい。   As the separator 30, for example, a microporous separator made of a polyolefin resin such as polyethylene or polypropylene is preferably used. The thickness of the separator 30 may be, for example, 15 to 30 μm.

電極積層体1を用いてリチウムイオン二次電池を製造するには、例えば、電極積層体1の負極20がセパレータ30と接する面とは反対面を、さらにセパレータで覆った後、電極積層体1を捲回し、正極端子及び負極端子を形成する。その後、電極積層体1を金属製の円筒形電池缶、角形電池缶等に挿入して蓋を取り付けた後、注液口から電解液を注液すればよい。また、金属製の電池缶に代えて、例えば、アルミラミネートフィルム等で形成した袋状ケースに電極積層体1を挿入した後、電解液を注液し、最後に袋状ケースの開口部を封口してもよい。   In order to manufacture a lithium ion secondary battery using the electrode laminate 1, for example, the surface opposite to the surface where the negative electrode 20 of the electrode laminate 1 is in contact with the separator 30 is further covered with the separator, and then the electrode laminate 1 Is wound to form a positive electrode terminal and a negative electrode terminal. Thereafter, the electrode stack 1 may be inserted into a metal cylindrical battery can, a rectangular battery can, or the like and a lid may be attached, and then an electrolyte may be injected from the injection port. Further, instead of a metal battery can, for example, after the electrode laminate 1 is inserted into a bag-like case formed of an aluminum laminate film or the like, an electrolytic solution is injected, and finally the opening of the bag-like case is sealed. May be.

上記電解液としては、溶媒に電解質塩を溶解させた非水電解液が使用される。非水電解液に用いる溶媒は、高誘電率の有機溶媒が好ましい。高電圧充電が可能になるからである。この高誘電率の有機溶媒としては、エーテル、エステル、カーボネート類等が好適に用いられる。特に、誘電率が高いエステル(誘電率30以上)を混合して用いることが好ましい。このような誘電率が高いエステルとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、エチレングリコールサルファイト等のイオウ系エステル等が挙げられ、特に環状のエステルが好ましく、とりわけエチレンカーボネート等の環状カーボネートが好ましい。   As the electrolytic solution, a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a solvent is used. The solvent used for the non-aqueous electrolyte is preferably an organic solvent having a high dielectric constant. This is because high voltage charging becomes possible. As the organic solvent having a high dielectric constant, ethers, esters, carbonates and the like are preferably used. In particular, it is preferable to use a mixture of esters having a high dielectric constant (dielectric constant of 30 or more). Examples of the ester having a high dielectric constant include sulfur-based esters such as ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, and ethylene glycol sulfite. Cyclic esters are particularly preferable, especially ethylene carbonate. A cyclic carbonate such as

上記非水電解液の溶媒に溶解させる電解質塩としては、リチウムの過塩素酸塩、有機ホウ素リチウム塩、トリフロロメタンスルホン酸塩等の含フッ素化合物の塩、又はイミド塩等が好適に用いられる。このような電解質塩の具体例としては、例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiC49SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23、LiCn2n+1SO3(n≧2、但し、nは4以下が好ましい。)、LiN(Rf3OSO22〔ここで、Rfはフルオロアルキル基を表す。〕等が単独で、又は2種以上を混合して用いられる。特に、LiPF6やLiBF4等が充放電特性が良好なことから望ましい。これらの含フッ素有機リチウム塩はアニオン性が大きく、且つイオン分離しやすいので上記溶媒に溶解しやすいからである。電解液中における電解質塩の濃度は、特に限定されるものではないが、0.5mol/L以上1.7mol/L以下が好ましく、0.8mol/L以上1.2mol/L以下がより好ましい。 As the electrolyte salt to be dissolved in the solvent of the nonaqueous electrolytic solution, a salt of a fluorine-containing compound such as lithium perchlorate, lithium organic boron, and trifluoromethanesulfonate, or an imide salt is preferably used. . Specific examples of the electrolyte salt, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2, where n is preferably 4 or less), LiN (Rf 3 OSO 2 ) 2 [wherein Rf represents a fluoroalkyl group. ] Etc. are used alone or in admixture of two or more. In particular, LiPF 6 and LiBF 4 are desirable because of their good charge / discharge characteristics. This is because these fluorine-containing organic lithium salts have a large anionic property and are easily ion-separated, so that they are easily dissolved in the solvent. The concentration of the electrolyte salt in the electrolytic solution is not particularly limited, but is preferably 0.5 mol / L or more and 1.7 mol / L or less, and more preferably 0.8 mol / L or more and 1.2 mol / L or less.

次に、実施例に基づき本発明をより具体的に説明する。但し、本発明は以下の実施例のみに限定されるものではない。   Next, based on an Example, this invention is demonstrated more concretely. However, the present invention is not limited to the following examples.

(実施例1)
<正極の作製>
正極活物質であるマンガンニッケルコバルト酸リチウム86重量部と、導電助剤である黒鉛9.2重量部及びアセチレンブラック1.8重量部と、結着剤であるポリフッ化ビニリデン3重量部とを、N−メチル−2−ピロリドンに混合して正極合剤塗料を作製した。また、導電助剤であるアセチレンブラック60重量部と、結着剤であるポリビニルピロリドン40重量部とを、N−メチル−2−ピロリドンに混合して導電塗布剤塗料を作製した。
(Example 1)
<Preparation of positive electrode>
86 parts by weight of lithium manganese cobaltate as a positive electrode active material, 9.2 parts by weight of graphite as a conductive additive and 1.8 parts by weight of acetylene black, and 3 parts by weight of polyvinylidene fluoride as a binder, A positive electrode mixture paint was prepared by mixing with N-methyl-2-pyrrolidone. Further, 60 parts by weight of acetylene black as a conductive auxiliary agent and 40 parts by weight of polyvinylpyrrolidone as a binder were mixed with N-methyl-2-pyrrolidone to prepare a conductive coating agent paint.

次に、先ず、厚さ15μmのアルミニウム箔(集電体)の片面に上記正極合剤塗料を塗布し、正極合剤塗料が乾燥する前にその上に上記導電塗布剤塗料を塗布して乾燥させて、集電体の片面に正極活物質層と導電層を形成した。その後、ロールプレス機により、正極活物質層の厚さが30μm及び導電層の厚さが5μmとなるように圧縮成形した後、切断し、ニッケル製のリード体を溶接して、帯状の正極を作製した。上記正極活物質層の全重量に対する導電助剤の含有量Aは11重量%であり、上記導電層の全重量に対する導電助剤の含有量Bは60重量%である。また、上記各層の導電助剤の含有量A及びBと、別途測定した上記各層の単位面積あたりの塗布重量とから、上記正極活物質層と上記導電層とを合わせた全体での導電助剤の含有量の平均値を求めると、12.8重量%となった。   Next, first, the positive electrode mixture paint is applied to one side of an aluminum foil (current collector) having a thickness of 15 μm, and before the positive electrode mixture paint is dried, the conductive coating agent paint is applied thereon and dried. Thus, a positive electrode active material layer and a conductive layer were formed on one side of the current collector. After that, it is compression-molded by a roll press so that the thickness of the positive electrode active material layer is 30 μm and the thickness of the conductive layer is 5 μm, and then cut, welded with a nickel lead body, and a belt-like positive electrode is formed. Produced. The content A of the conductive assistant relative to the total weight of the positive electrode active material layer is 11% by weight, and the content B of the conductive assistant relative to the total weight of the conductive layer is 60% by weight. Moreover, from the content A and B of the conductive assistant in each layer and the coating weight per unit area of each layer separately measured, the total conductive assistant including the positive electrode active material layer and the conductive layer is combined. The average value of the contents of was found to be 12.8% by weight.

<負極の作製>
負極活物質である黒鉛88重量部と、導電助剤であるアセチレンブラック5重量部と、結着剤であるポリフッ化ビニリデン7重量部とを、N−メチル−2−ピロリドンに混合して負極合剤塗料を作製した。また、導電助剤であるアセチレンブラック60重量部と、結着剤であるポリビニルピロリドン40重量部とを、N−メチル−2−ピロリドンに混合して導電塗布剤塗料を作製した。
<Production of negative electrode>
N-methyl-2-pyrrolidone was mixed with 88 parts by weight of graphite as a negative electrode active material, 5 parts by weight of acetylene black as a conductive additive, and 7 parts by weight of polyvinylidene fluoride as a binder. An agent paint was prepared. Further, 60 parts by weight of acetylene black as a conductive auxiliary agent and 40 parts by weight of polyvinylpyrrolidone as a binder were mixed with N-methyl-2-pyrrolidone to prepare a conductive coating agent paint.

次に、先ず、厚さ8μmの銅箔(集電体)の片面に上記負極合剤塗料を塗布し、負極合剤塗料が乾燥する前にその上に上記導電塗布剤塗料を塗布して乾燥させて、集電体の片面に負極活物質層と導電層を形成した。その後、ロールプレス機により、負極活物質層の厚さが40μm及び導電層の厚さが5μmとなるように圧縮成形した後、切断し、ニッケル製のリード体を溶接して、帯状の負極を作製した。上記負極活物質層の全重量に対する導電助剤の含有量は5重量%であり、上記導電層の全重量に対する導電助剤の含有量は60重量%である。   Next, first, the negative electrode mixture paint is applied to one side of a copper foil (current collector) having a thickness of 8 μm, and before the negative electrode mixture paint is dried, the conductive coating agent paint is applied thereon and dried. Thus, a negative electrode active material layer and a conductive layer were formed on one side of the current collector. After that, it is compression-molded by a roll press machine so that the thickness of the negative electrode active material layer is 40 μm and the thickness of the conductive layer is 5 μm, and then cut, welded with a nickel lead body, and a strip-shaped negative electrode is formed. Produced. The content of the conductive additive relative to the total weight of the negative electrode active material layer is 5% by weight, and the content of the conductive additive relative to the total weight of the conductive layer is 60% by weight.

<非水電解液の調製>
非水電解液として、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)との体積比1:2の混合溶媒に、LiPF6を1.0mol/L溶解させたものを調製した。
<Preparation of non-aqueous electrolyte>
As a nonaqueous electrolytic solution, a solution in which LiPF 6 was dissolved at 1.0 mol / L in a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) in a volume ratio of 1: 2 was prepared.

<電池の作製>
上記帯状の正極の正極活物質層側を、厚さ25μmの微孔性ポリエチレンセパレータ(空隙率:41%)を介して、上記帯状の負極の負極活物質層側に重ねて電極積層体を形成した後、アルミラミネートフィルム製の袋状ケースに収容し、上記非水電解液を注液した。最後に袋状ケースの開口部を封口して、リチウムイオン二次電池を作製した。
<Production of battery>
A positive electrode active material layer side of the belt-like positive electrode is overlapped with a negative electrode active material layer side of the belt-like negative electrode through a 25 μm-thick microporous polyethylene separator (porosity: 41%) to form an electrode laminate. After that, it was housed in a bag-like case made of an aluminum laminate film, and the non-aqueous electrolyte was injected. Finally, the opening of the bag-like case was sealed to produce a lithium ion secondary battery.

(実施例2)
正極を下記のように作製した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode was produced as follows.

正極活物質であるマンガンニッケルコバルト酸リチウム88重量部と、導電助剤である黒鉛9.8重量部及びアセチレンブラック0.4重量部と、結着剤であるポリフッ化ビニリデン1.8重量部とを、N−メチル−2−ピロリドンに混合して正極合剤塗料を作製した。また、正極活物質であるマンガンニッケルコバルト酸リチウム55.5重量部と、導電助剤であるアセチレンブラック23.9重量部と、結着剤であるポリビニルピロリドン20.6重量部とを、N−メチル−2−ピロリドンに混合して導電塗布剤塗料を作製した。   88 parts by weight of lithium manganese cobaltate as a positive electrode active material, 9.8 parts by weight of graphite as a conductive additive and 0.4 parts by weight of acetylene black, and 1.8 parts by weight of polyvinylidene fluoride as a binder Was mixed with N-methyl-2-pyrrolidone to prepare a positive electrode mixture paint. Further, 55.5 parts by weight of lithium manganese cobaltate as a positive electrode active material, 23.9 parts by weight of acetylene black as a conductive auxiliary agent, and 20.6 parts by weight of polyvinylpyrrolidone as a binder are mixed with N- A conductive coating material paint was prepared by mixing with methyl-2-pyrrolidone.

次に、先ず、厚さ15μmのアルミニウム箔(集電体)の片面に上記正極合剤塗料を塗布し、正極合剤塗料が乾燥する前にその上に上記導電塗布剤塗料を塗布して乾燥させて、集電体の片面に正極活物質層と導電層を形成した。その後、ロールプレス機により、正極活物質層の厚さが28μm及び導電層の厚さが7μmとなるように圧縮成形した後、切断し、ニッケル製のリード体を溶接して、帯状の正極を作製した。上記正極活物質層の全重量に対する導電助剤の含有量Aは10.2重量%であり、上記導電層の全重量に対する導電助剤の含有量Bは23.9重量%である。また、上記各層の導電助剤の含有量A及びBと、別途測定した上記各層の単位面積あたりの塗布重量とから、上記正極活物質層と上記導電層とを合わせた全体での導電助剤の含有量の平均値を求めると、11重量%となった。   Next, first, the positive electrode mixture paint is applied to one side of an aluminum foil (current collector) having a thickness of 15 μm, and before the positive electrode mixture paint is dried, the conductive coating agent paint is applied thereon and dried. Thus, a positive electrode active material layer and a conductive layer were formed on one side of the current collector. After that, it is compression-molded by a roll press machine so that the thickness of the positive electrode active material layer becomes 28 μm and the thickness of the conductive layer becomes 7 μm, then cut, welded with a nickel lead body, Produced. The content A of the conductive assistant relative to the total weight of the positive electrode active material layer is 10.2% by weight, and the content B of the conductive assistant relative to the total weight of the conductive layer is 23.9% by weight. Moreover, from the content A and B of the conductive assistant in each layer and the coating weight per unit area of each layer separately measured, the total conductive assistant including the positive electrode active material layer and the conductive layer is combined. The average value of the contents of was 11% by weight.

(実施例3)
負極に導電層を形成しなかった以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Example 3)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that no conductive layer was formed on the negative electrode.

(実施例4)
負極を下記のように作製した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 4
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode was produced as described below.

負極活物質である黒鉛95重量部と、導電助剤であるアセチレンブラック1.4重量部と、結着剤であるポリフッ化ビニリデン3.6重量部とを、N−メチル−2−ピロリドンに混合して負極合剤塗料を作製した。また、負極活物質である黒鉛51重量部と、導電助剤であるアセチレンブラック23重量部と、結着剤であるポリビニルピロリドン26重量部とを、N−メチル−2−ピロリドンに混合して導電塗布剤塗料を作製した。   N-methyl-2-pyrrolidone is mixed with 95 parts by weight of graphite as a negative electrode active material, 1.4 parts by weight of acetylene black as a conductive auxiliary agent, and 3.6 parts by weight of polyvinylidene fluoride as a binder. Thus, a negative electrode mixture paint was prepared. Further, 51 parts by weight of graphite as a negative electrode active material, 23 parts by weight of acetylene black as a conductive auxiliary agent, and 26 parts by weight of polyvinyl pyrrolidone as a binder are mixed with N-methyl-2-pyrrolidone to conduct electricity. An application paint was prepared.

次に、先ず、厚さ8μmの銅箔(集電体)の片面に上記負極合剤塗料を塗布し、負極合剤塗料が乾燥する前にその上に上記導電塗布剤塗料を塗布して乾燥させて、集電体の片面に負極活物質層と導電層を形成した。その後、ロールプレス機により、負極活物質層の厚さが36μm及び導電層の厚さが9μmとなるように圧縮成形した後、切断し、ニッケル製のリード体を溶接して、帯状の負極を作製した。上記負極活物質層の全重量に対する導電助剤の含有量は1.4重量%であり、上記導電層の全重量に対する導電助剤の含有量は23重量%である。   Next, first, the negative electrode mixture paint is applied to one side of a copper foil (current collector) having a thickness of 8 μm, and before the negative electrode mixture paint is dried, the conductive coating agent paint is applied thereon and dried. Thus, a negative electrode active material layer and a conductive layer were formed on one side of the current collector. After that, after compression molding so that the thickness of the negative electrode active material layer is 36 μm and the thickness of the conductive layer is 9 μm by a roll press machine, cutting is performed, a nickel lead body is welded, and a strip-shaped negative electrode is formed. Produced. The content of the conductive additive relative to the total weight of the negative electrode active material layer is 1.4% by weight, and the content of the conductive additive relative to the total weight of the conductive layer is 23% by weight.

(比較例1)
正極に導電層を形成しなかった以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative Example 1)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that no conductive layer was formed on the positive electrode.

(比較例2)
正極の導電層の厚さを10μmとした以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative Example 2)
A lithium ion secondary battery was fabricated in the same manner as in Example 1 except that the thickness of the conductive layer of the positive electrode was 10 μm.

(比較例3)
正極を下記のように作製した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative Example 3)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode was produced as follows.

正極活物質であるマンガンニッケルコバルト酸リチウム86重量部と、導電助剤である黒鉛9.6重量部及びアセチレンブラック1.7重量部と、結着剤であるポリフッ化ビニリデン2.7重量部とを、N−メチル−2−ピロリドンに混合して正極合剤塗料を作製した。また、正極活物質であるマンガンニッケルコバルト酸リチウム74重量部と、導電助剤であるアセチレンブラック15重量部と、結着剤であるポリビニルピロリドン11重量部とを、N−メチル−2−ピロリドンに混合して導電塗布剤塗料を作製した。   86 parts by weight of lithium manganese cobaltate as a positive electrode active material, 9.6 parts by weight of graphite as a conductive additive and 1.7 parts by weight of acetylene black, 2.7 parts by weight of polyvinylidene fluoride as a binder, Was mixed with N-methyl-2-pyrrolidone to prepare a positive electrode mixture paint. Further, 74 parts by weight of lithium manganese cobaltate as a positive electrode active material, 15 parts by weight of acetylene black as a conductive auxiliary agent, and 11 parts by weight of polyvinylpyrrolidone as a binder are added to N-methyl-2-pyrrolidone. A conductive coating material was prepared by mixing.

次に、先ず、厚さ15μmのアルミニウム箔(集電体)の片面に上記正極合剤塗料を塗布し、正極合剤塗料が乾燥する前にその上に上記導電塗布剤塗料を塗布して乾燥させて、集電体の片面に正極活物質層と導電層を形成した。その後、ロールプレス機により、正極活物質層の厚さが30μm及び導電層の厚さが7μmとなるように圧縮成形した後、切断し、ニッケル製のリード体を溶接して、帯状の正極を作製した。上記正極活物質層の全重量に対する導電助剤の含有量Aは11.3重量%であり、上記導電層の全重量に対する導電助剤の含有量Bは15重量%である。本比較例は、導電層の導電助剤の含有量B(15重量%)が、本発明の請求の範囲よりも小さくなっている例である。   Next, first, the positive electrode mixture paint is applied to one side of an aluminum foil (current collector) having a thickness of 15 μm, and before the positive electrode mixture paint is dried, the conductive coating agent paint is applied thereon and dried. Thus, a positive electrode active material layer and a conductive layer were formed on one side of the current collector. After that, it is compression-molded by a roll press machine so that the thickness of the positive electrode active material layer is 30 μm and the thickness of the conductive layer is 7 μm, then cut, welded with a nickel lead body, Produced. The content A of the conductive assistant with respect to the total weight of the positive electrode active material layer is 11.3 wt%, and the content B of the conductive assistant with respect to the total weight of the conductive layer is 15 wt%. This comparative example is an example in which the content B (15% by weight) of the conductive additive in the conductive layer is smaller than the claims of the present invention.

実施例1〜4及び比較例1〜3の各電池の正極活物質層と正極導電層の構成を表1に示す。   Table 1 shows the configurations of the positive electrode active material layers and the positive electrode conductive layers of the batteries of Examples 1 to 4 and Comparative Examples 1 to 3.

Figure 2008097879
Figure 2008097879

<放電試験>
実施例1〜4及び比較例1〜3の各電池を、20℃において1C、4.1Vの定電流定電圧で1.5時間充電を行った。その後、1Cで2.7Vまで放電した時の放電容量(1C放電容量)を測定した。その結果を表2に示す。
<Discharge test>
The batteries of Examples 1 to 4 and Comparative Examples 1 to 3 were charged with a constant current and a constant voltage of 1 C and 4.1 V at 20 ° C. for 1.5 hours. Then, the discharge capacity (1 C discharge capacity) when discharged to 2.7 V at 1 C was measured. The results are shown in Table 2.

また、上記各電池を、20℃において1C、4.1Vの定電流定電圧で1.5時間充電を行った。その後、20Cで2.5Vまで放電した時の放電容量(20C放電容量)を測定し、1C放電容量に対する20C放電容量の割合(放電率)を求めた。その結果を表2に示す。   The batteries were charged at 20 ° C. with a constant current and a constant voltage of 4.1 V for 1.5 hours. Then, the discharge capacity (20 C discharge capacity) when discharged to 2.5 V at 20 C was measured, and the ratio (discharge rate) of the 20 C discharge capacity to the 1 C discharge capacity was determined. The results are shown in Table 2.

<サイクル試験>
実施例1〜4及び比較例1〜3の各電池を、20℃において1Cで、正極理論容量の50%まで充電した後、1C、5C、10Cでそれぞれ放電を行い、放電開始から5秒後に測定される電池電圧を電流に対してプロットし、そのプロットした点を通る直線の傾きから電池の抵抗(サイクル試験前の抵抗)を測定した。次に、上記電池を、50℃の環境下で10Cで10s充電/10Cで10s放電を1サイクルとして10万サイクル充放電を行った。その後、上記と同様にしてサイクル試験後の抵抗を測定した。上記結果から、下記数式により各電池の抵抗上昇率を計算した。その結果を比較例1の電池の抵抗上昇率を100とした相対値で表2に示す。
<Cycle test>
Each battery of Examples 1 to 4 and Comparative Examples 1 to 3 was charged at 1C at 20 ° C. to 50% of the theoretical capacity of the positive electrode, and then discharged at 1C, 5C, and 10C, and after 5 seconds from the start of discharge. The measured battery voltage was plotted against the current, and the resistance of the battery (resistance before the cycle test) was measured from the slope of the straight line passing through the plotted points. Next, the above battery was charged and discharged for 100,000 cycles under the environment of 50 ° C. with 10 s charging at 10 C / 10 s discharging at 10 C as one cycle. Thereafter, the resistance after the cycle test was measured in the same manner as described above. From the above results, the resistance increase rate of each battery was calculated by the following formula. The results are shown in Table 2 as relative values with the resistance increase rate of the battery of Comparative Example 1 as 100.

(数1)
抵抗上昇率(%)=(サイクル試験後の抵抗−サイクル試験前の抵抗)/(サイクル試験前の抵抗)×100
(Equation 1)
Resistance increase rate (%) = (resistance after cycle test−resistance before cycle test) / (resistance before cycle test) × 100

Figure 2008097879
Figure 2008097879

表2から、実施例1〜4では、正極活物質層上に導電層を設けることにより、比較例1〜3に比べて容量低下を招くことなく放電率を高めることができ、高率放電特性に優れているとともに、サイクル試験後の抵抗上昇率も抑制することができた。比較例1の正極は、実施例1の正極と導電助剤の含有量Aが同じ11重量%であるが、導電層を有していないため、実施例1とは特性に大きな差が生じた。また、比較例2は、実施例1とは正極の導電層の厚さが異なるだけであるが、導電層の厚さが厚くなりすぎたため、却って正極活物質層の反応が抑制されてしまい、特性が低下する結果となった。比較例3は、導電層における導電助剤の含有量Bが20重量%未満であるため、導電層として充分に機能せず、実施例1〜4に比べて特性が劣るものとなった。また、実施例2の正極において、活物質層と導電層とを合わせた全体での導電助剤の含有量の平均値が、比較例1と同じ11重量%であるにもかかわらず、比較例1より上記特性が大幅に向上したことから明らかなように、本発明により、導電助剤としての炭素材料を効率的に機能させることが可能となり、少量の導電助剤でも高い反応効率を有する正極を構成することができる。このため、高率放電特性及びサイクル特性に優れたリチウムイオン二次電池を得ることができる。   From Table 2, in Examples 1-4, by providing a conductive layer on the positive electrode active material layer, it is possible to increase the discharge rate without incurring a capacity decrease as compared with Comparative Examples 1-3, and high rate discharge characteristics. The resistance increase rate after the cycle test could be suppressed. The positive electrode of Comparative Example 1 has the same content A of 11% by weight as that of the positive electrode of Example 1, but does not have a conductive layer, and thus has a large difference in characteristics from Example 1. . Further, Comparative Example 2 is different from Example 1 only in the thickness of the conductive layer of the positive electrode, but because the thickness of the conductive layer is too thick, the reaction of the positive electrode active material layer is suppressed on the contrary, As a result, the characteristics deteriorated. Since the content B of the conductive auxiliary agent in the conductive layer was less than 20% by weight, Comparative Example 3 did not function sufficiently as a conductive layer, and the characteristics were inferior to those of Examples 1 to 4. Moreover, in the positive electrode of Example 2, although the average value of the content of the conductive auxiliary agent in the total of the active material layer and the conductive layer was 11% by weight, which was the same as Comparative Example 1, the Comparative Example As is apparent from the fact that the above characteristics were significantly improved from 1, the present invention makes it possible to efficiently function a carbon material as a conductive additive, and a positive electrode having a high reaction efficiency even with a small amount of conductive aid. Can be configured. For this reason, a lithium ion secondary battery excellent in high rate discharge characteristics and cycle characteristics can be obtained.

以上説明したように本発明は、電池容量を低下させることなく、高率放電特性及びサイクル特性の高いリチウムイオン二次電池を提供でき、携帯電話、ノート型パソコン等のモバイル情報機器用電源としてだけではなく、電気自動車、ハイブリッド自動車、電動工具等の高入出力用電源として幅広く利用可能である。   As described above, the present invention can provide a lithium ion secondary battery with high rate discharge characteristics and high cycle characteristics without reducing the battery capacity, and only as a power source for mobile information devices such as mobile phones and notebook computers. Instead, it can be widely used as a power source for high input / output of electric vehicles, hybrid vehicles, electric tools and the like.

本発明のリチウムイオン二次電池の電極積層体の一例を示す断面図である。It is sectional drawing which shows an example of the electrode laminated body of the lithium ion secondary battery of this invention.

符号の説明Explanation of symbols

1 電極積層体
10 正極
11 正極集電体
12 正極活物質層
13 導電層
20 負極
21 負極集電体
22 負極活物質層
23 導電層
30 セパレータ
DESCRIPTION OF SYMBOLS 1 Electrode laminated body 10 Positive electrode 11 Positive electrode collector 12 Positive electrode active material layer 13 Conductive layer 20 Negative electrode 21 Negative electrode collector 22 Negative electrode active material layer 23 Conductive layer 30 Separator

Claims (4)

リチウムを吸蔵・放出可能な正極と、リチウムを吸蔵・放出可能な負極と、前記正極と前記負極との間に配置されたセパレータと、非水電解液とを含むリチウムイオン二次電池であって、
前記正極は、正極集電体と、前記正極集電体の上に形成された正極活物質層と、前記正極活物質層の上に形成された導電層とを含み、
前記導電層の厚さは、1μm以上7μm以下であり、
前記正極活物質層は、リチウム含有複合酸化物と導電助剤とを含み、
前記正極活物質層の前記導電助剤の含有量Aは、前記正極活物質層の全重量に対して1重量%以上15重量%以下であり、
前記導電層は、導電助剤を含み、
前記導電層の前記導電助剤の含有量Bは、前記導電層の全重量に対して20重量%以上80重量%以下であることを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery comprising: a positive electrode capable of inserting and extracting lithium; a negative electrode capable of inserting and extracting lithium; a separator disposed between the positive electrode and the negative electrode; and a non-aqueous electrolyte. ,
The positive electrode includes a positive electrode current collector, a positive electrode active material layer formed on the positive electrode current collector, and a conductive layer formed on the positive electrode active material layer,
The conductive layer has a thickness of 1 μm or more and 7 μm or less,
The positive electrode active material layer includes a lithium-containing composite oxide and a conductive additive,
The content A of the conductive additive in the positive electrode active material layer is 1 wt% or more and 15 wt% or less with respect to the total weight of the positive electrode active material layer,
The conductive layer includes a conductive aid,
The lithium ion secondary battery, wherein a content B of the conductive assistant in the conductive layer is 20% by weight to 80% by weight with respect to a total weight of the conductive layer.
前記導電助剤は、炭素材料からなる請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the conductive additive is made of a carbon material. 前記導電層と前記正極活物質層との厚さの比率が、1:4〜1:30である請求項1又は2に記載のリチウムイオン二次電池。   3. The lithium ion secondary battery according to claim 1, wherein a thickness ratio between the conductive layer and the positive electrode active material layer is 1: 4 to 1:30. 前記導電層は、リチウム含有複合酸化物をさらに含む請求項1〜3のいずれか1項に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the conductive layer further includes a lithium-containing composite oxide.
JP2006275393A 2006-10-06 2006-10-06 Lithium ion secondary battery Withdrawn JP2008097879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006275393A JP2008097879A (en) 2006-10-06 2006-10-06 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006275393A JP2008097879A (en) 2006-10-06 2006-10-06 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2008097879A true JP2008097879A (en) 2008-04-24

Family

ID=39380522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006275393A Withdrawn JP2008097879A (en) 2006-10-06 2006-10-06 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2008097879A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243345A (en) * 2010-05-17 2011-12-01 Konica Minolta Holdings Inc Electrode for lithium ion battery, and method of manufacturing the same
WO2012017546A1 (en) * 2010-08-05 2012-02-09 トヨタ自動車株式会社 Secondary battery
WO2013073795A1 (en) * 2011-11-17 2013-05-23 주식회사 샤인 Electrode assembly, method for manufacturing same, and battery charging and discharging method
WO2013125305A1 (en) * 2012-02-23 2013-08-29 トヨタ自動車株式会社 Sealed nonaqueous electrolyte secondary battery
CN104106158A (en) * 2012-02-23 2014-10-15 日产自动车株式会社 Bipolar electrode and bipolar lithium-ion secondary battery using same
CN105375063A (en) * 2015-12-16 2016-03-02 中山市应用化学研究所 Novel lithium battery core unit and manufacturing method thereof
CN105406029A (en) * 2015-12-15 2016-03-16 珠海银隆新能源有限公司 Preparation method of lithium-ion battery positive pole piece or negative pole piece
CN105406082A (en) * 2015-12-17 2016-03-16 佛山市南海区欣源电子有限公司 Composite pole piece of high-magnification lithium ion battery positive pole and preparation method of composite pole piece
JP2016207636A (en) * 2015-04-17 2016-12-08 現代自動車株式会社Hyundai Motor Company Positive electrode for lithium ion battery and lithium ion battery using the same
CN107230774A (en) * 2016-03-23 2017-10-03 宁德新能源科技有限公司 Cathode pole piece and lithium ion battery
US10236537B2 (en) 2014-04-21 2019-03-19 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
JP2019121529A (en) * 2018-01-09 2019-07-22 トヨタ自動車株式会社 Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing positive electrode plate for lithium ion secondary battery
CN110931845A (en) * 2019-11-04 2020-03-27 浙江锋锂新能源科技有限公司 Composite positive plate, preparation method and solid-liquid mixed lithium storage battery

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243345A (en) * 2010-05-17 2011-12-01 Konica Minolta Holdings Inc Electrode for lithium ion battery, and method of manufacturing the same
US8980472B2 (en) 2010-08-05 2015-03-17 Toyota Jidosha Kabushiki Kaisha Secondary battery
WO2012017546A1 (en) * 2010-08-05 2012-02-09 トヨタ自動車株式会社 Secondary battery
JP5605662B2 (en) * 2010-08-05 2014-10-15 トヨタ自動車株式会社 Secondary battery
WO2013073795A1 (en) * 2011-11-17 2013-05-23 주식회사 샤인 Electrode assembly, method for manufacturing same, and battery charging and discharging method
US9768449B2 (en) 2011-11-17 2017-09-19 Jenax Inc. Electrode assembly, method for fabricating same, and battery charging and discharging method
US9972860B2 (en) 2012-02-23 2018-05-15 Nissan Motor Co., Ltd. Bipolar electrode and bipolar lithium-ion secondary battery using same
KR101691271B1 (en) * 2012-02-23 2016-12-29 도요타지도샤가부시키가이샤 Sealed nonaqueous electrolyte secondary battery
KR20140127883A (en) * 2012-02-23 2014-11-04 도요타지도샤가부시키가이샤 Sealed nonaqueous electrolyte secondary battery
CN104137306A (en) * 2012-02-23 2014-11-05 丰田自动车株式会社 Sealed nonaqueous electrolyte secondary battery
EP2819219A1 (en) * 2012-02-23 2014-12-31 Nissan Motor Co., Ltd Bipolar electrode and bipolar lithium-ion secondary battery using same
EP2819219A4 (en) * 2012-02-23 2015-01-21 Nissan Motor Bipolar electrode and bipolar lithium-ion secondary battery using same
CN104106158A (en) * 2012-02-23 2014-10-15 日产自动车株式会社 Bipolar electrode and bipolar lithium-ion secondary battery using same
US10347950B2 (en) 2012-02-23 2019-07-09 Toyota Jidosha Kabushiki Kaisha Sealed nonaqueous electrolyte secondary battery
KR20140123531A (en) * 2012-02-23 2014-10-22 닛산 지도우샤 가부시키가이샤 Bipolar electrode and bipolar lithium-ion secondary battery using same
WO2013125305A1 (en) * 2012-02-23 2013-08-29 トヨタ自動車株式会社 Sealed nonaqueous electrolyte secondary battery
KR101647910B1 (en) * 2012-02-23 2016-08-11 닛산 지도우샤 가부시키가이샤 Bipolar electrode and bipolar lithium-ion secondary battery using same
JP2013175309A (en) * 2012-02-23 2013-09-05 Toyota Motor Corp Closed type nonaqueous electrolyte secondary battery
US10236537B2 (en) 2014-04-21 2019-03-19 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
JP2016207636A (en) * 2015-04-17 2016-12-08 現代自動車株式会社Hyundai Motor Company Positive electrode for lithium ion battery and lithium ion battery using the same
CN105406029A (en) * 2015-12-15 2016-03-16 珠海银隆新能源有限公司 Preparation method of lithium-ion battery positive pole piece or negative pole piece
CN105375063A (en) * 2015-12-16 2016-03-02 中山市应用化学研究所 Novel lithium battery core unit and manufacturing method thereof
CN105406082A (en) * 2015-12-17 2016-03-16 佛山市南海区欣源电子有限公司 Composite pole piece of high-magnification lithium ion battery positive pole and preparation method of composite pole piece
CN107230774A (en) * 2016-03-23 2017-10-03 宁德新能源科技有限公司 Cathode pole piece and lithium ion battery
JP2019121529A (en) * 2018-01-09 2019-07-22 トヨタ自動車株式会社 Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing positive electrode plate for lithium ion secondary battery
JP7013876B2 (en) 2018-01-09 2022-02-01 トヨタ自動車株式会社 A method for manufacturing a positive electrode plate for a lithium ion secondary battery, a lithium ion secondary battery, and a positive electrode plate for a lithium ion secondary battery.
CN110931845A (en) * 2019-11-04 2020-03-27 浙江锋锂新能源科技有限公司 Composite positive plate, preparation method and solid-liquid mixed lithium storage battery
CN110931845B (en) * 2019-11-04 2022-08-05 浙江锋锂新能源科技有限公司 Composite positive plate, preparation method and solid-liquid mixed lithium storage battery

Similar Documents

Publication Publication Date Title
JP2008097879A (en) Lithium ion secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
KR20190054920A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2007273183A (en) Negative electrode and secondary battery
JP5664685B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP6184810B2 (en) Non-aqueous secondary battery
JP2016048624A (en) Lithium secondary battery
JP2015125948A (en) Lithium ion secondary battery
KR101613285B1 (en) Composite electrode comprising different electrode active material and electrode assembly
JP5793411B2 (en) Lithium secondary battery
JP5066804B2 (en) Lithium ion secondary battery
KR20190131721A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR101872086B1 (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
JP2007134245A (en) Electrolyte solution and battery
JP2007335318A (en) Nonaqueous electrolyte secondary battery
CN112447941B (en) Nonaqueous electrolyte secondary battery
JP2011040333A (en) Nonaqueous electrolyte secondary battery
JP2019169346A (en) Lithium ion secondary battery
JP2002216768A (en) Nonaqueous secondary battery
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP5655828B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5846031B2 (en) Lithium ion secondary battery and non-aqueous electrolyte
JP2020155378A (en) Electrolyte for lithium ion secondary battery, and lithium ion secondary battery
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105