JP2019169346A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2019169346A
JP2019169346A JP2018056087A JP2018056087A JP2019169346A JP 2019169346 A JP2019169346 A JP 2019169346A JP 2018056087 A JP2018056087 A JP 2018056087A JP 2018056087 A JP2018056087 A JP 2018056087A JP 2019169346 A JP2019169346 A JP 2019169346A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
material layer
electrode active
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018056087A
Other languages
Japanese (ja)
Other versions
JP7003775B2 (en
Inventor
田中 一正
Kazumasa Tanaka
一正 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018056087A priority Critical patent/JP7003775B2/en
Publication of JP2019169346A publication Critical patent/JP2019169346A/en
Application granted granted Critical
Publication of JP7003775B2 publication Critical patent/JP7003775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a lithium ion secondary battery having excellent cycle characteristics.SOLUTION: The lithium ion secondary battery includes a power generation element including: a positive electrode having a positive electrode current collector and a positive electrode active material layer located on at least one surface of the positive electrode current collector; a negative electrode having a negative electrode current collector and a negative electrode active material layer located on at least one surface of the negative electrode current collector, facing the positive electrode; and a separator sandwiched between the positive electrode and the negative electrode. The density of a first negative electrode active material layer located on a surface on the side not facing the positive electrode at the negative electrode located at the outermost of the power generation element is greater than the density of a second negative electrode active material layer located inner side of the power generating element with respect to the first negative electrode active material layer.SELECTED DRAWING: Figure 2

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

近年、携帯電話やパソコン等の電子機器の小型化、コードレス化が急速に進んでおり、これらの駆動用電源として、小型、軽量で高エネルギー密度を有する二次電池への要求が高まっている。   In recent years, electronic devices such as mobile phones and personal computers have been rapidly reduced in size and cordless, and the demand for secondary batteries having a small size, light weight, and high energy density as driving power sources has been increasing.

リチウムイオン二次電池に求められる特性の一つとしてサイクル特性がある。サイクル特性が低下すると、安定な充放電を長期的に行うことができなくなる。充放電時における負極の膨張、収縮、電解液の枯渇等は、サイクル特性を劣化させる要因である。   One of the characteristics required for a lithium ion secondary battery is cycle characteristics. If the cycle characteristics deteriorate, stable charge / discharge cannot be performed for a long time. The expansion and contraction of the negative electrode during charge and discharge, the depletion of the electrolyte, and the like are factors that degrade the cycle characteristics.

特許文献1には、積層された複数の負極の最外層の負極の密度を低密度にした二次電池が記載されている。複数の負極のうち低密度な負極がクッションとなり、二次電池の膨張、収縮に伴い生じる応力が緩和される。   Patent Document 1 describes a secondary battery in which the density of the negative electrode in the outermost layer of a plurality of stacked negative electrodes is reduced. A low-density negative electrode among the plurality of negative electrodes serves as a cushion, and the stress caused by the expansion and contraction of the secondary battery is relieved.

特許文献2には、電槽内の極板群と隣接する位置に電解液を吸収させた多孔体を配置した密閉式二次電池が記載されている。多孔体から電解液が供給されることで電解液の枯渇を抑制している。   Patent Document 2 describes a sealed secondary battery in which a porous body in which an electrolytic solution is absorbed is disposed at a position adjacent to an electrode plate group in a battery case. By supplying the electrolytic solution from the porous body, depletion of the electrolytic solution is suppressed.

特開2010−232011号公報JP 2010-233201 A 特開2003−17115号公報JP 2003-17115 A

しかしながら、特許文献1に記載の二次電池は、サイクル特性が十分とは言えなかった。最外層に位置する低密度な負極は、内部の負極の急激な膨張、収縮を緩和することはできるが、内部の負極の膨張、収縮自体を抑えるものではない。つまり、膨張、収縮により内部の負極に亀裂や剥離が生じる場合があり、サイクル特性が十分とは言えなかった。   However, the secondary battery described in Patent Document 1 cannot be said to have sufficient cycle characteristics. The low density negative electrode located in the outermost layer can alleviate the rapid expansion and contraction of the internal negative electrode, but does not suppress the expansion and contraction of the internal negative electrode itself. That is, cracks and peeling may occur in the internal negative electrode due to expansion and contraction, and the cycle characteristics were not sufficient.

また特許文献2に記載の密閉式二次電池は多孔体が外部に設けられているため、全体サイズが大きくなってしまう。すなわち、リチウムイオン二次電池のエネルギー密度が低下する。また電槽内の極板群のうち多孔体と隣接していない部分は、電解液が枯渇し、サイクル特性が低下してしまう。   In addition, since the sealed secondary battery described in Patent Document 2 has a porous body provided outside, the overall size becomes large. That is, the energy density of the lithium ion secondary battery is lowered. Further, the portion of the electrode plate group in the battery case that is not adjacent to the porous body is depleted of the electrolytic solution, and the cycle characteristics are deteriorated.

本発明は上記問題に鑑みてなされたものであり、サイクル特性に優れたリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a lithium ion secondary battery having excellent cycle characteristics.

本発明者等は鋭意検討の結果、最外層の負極活物質層の密度を他の部分における負極活物質層の密度より高めることで、サイクル特性が向上することを見出した。すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。   As a result of intensive studies, the present inventors have found that the cycle characteristics are improved by increasing the density of the negative electrode active material layer in the outermost layer as compared with the density of the negative electrode active material layer in other portions. That is, this invention provides the following means in order to solve the said subject.

(1)第1の態様にかかるリチウムイオン二次電池は、正極集電体と前記正極集電体の少なくとも一面に位置する正極活物質層とを有する正極と、負極集電体と前記負極集電体の少なくとも一面に位置する負極活物質層とを有し、前記正極と対向する負極と、前記正極と前記負極との間に挟まれたセパレータと、を備える発電素子と、を備え、前記発電素子の最も外側に位置する負極において前記正極と対向しない側の面に位置する第1負極活物質層の密度は、前記第1負極活物質層より前記発電素子の内側に位置する第2負極活物質層の密度より高い。 (1) A lithium ion secondary battery according to a first aspect includes a positive electrode having a positive electrode current collector and a positive electrode active material layer located on at least one surface of the positive electrode current collector, a negative electrode current collector, and the negative electrode current collector. A negative electrode active material layer located on at least one surface of the electric body, and a negative electrode facing the positive electrode, and a separator sandwiched between the positive electrode and the negative electrode, and a power generation element, The density of the first negative electrode active material layer located on the surface of the negative electrode located on the outermost side of the power generation element that does not face the positive electrode is such that the second negative electrode located on the inner side of the power generation element than the first negative electrode active material layer It is higher than the density of the active material layer.

(2)上記態様にかかるリチウムイオン二次電池において、前記第1負極活物質層の密度Dと前記第2負極活物質層の密度Dとが、1<D/D<1.7の関係を満たしてもよい。 (2) In the lithium ion secondary battery according to the above aspect, the density D 1 of the first negative electrode active material layer and the density D 2 of the second negative electrode active material layer are 1 <D 1 / D 2 <1. 7 relationship may be satisfied.

(3)上記態様にかかるリチウムイオン二次電池において、前記第2負極活物質層の密度Dが1.0g/cm以上であってもよい。 (3) In the lithium ion secondary battery according to the above aspect, the density D 2 of the second negative electrode active material layer may be 1.0 g / cm 3 or more.

上記態様にかかるリチウムイオン二次電池は、サイクル特性に優れる。   The lithium ion secondary battery according to the above aspect is excellent in cycle characteristics.

本実施形態にかかるリチウムイオン二次電池の断面模式図である。It is a cross-sectional schematic diagram of the lithium ion secondary battery concerning this embodiment. 本実施形態にかかるリチウムイオン二次電池の発電素子を拡大した模式図である。It is the schematic diagram which expanded the electric power generating element of the lithium ion secondary battery concerning this embodiment.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。   Hereinafter, the present embodiment will be described in detail with appropriate reference to the drawings. In the drawings used in the following description, in order to make the characteristics of the present invention easier to understand, there are cases where the characteristic parts are enlarged for the sake of convenience, and the dimensional ratios of the respective components are different from actual ones. is there. The materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately modified and implemented without departing from the scope of the invention.

[リチウムイオン二次電池]
図1は、本実施形態にかかるリチウムイオン二次電池100の断面模式図である。図1に示すように、リチウムイオン二次電池100は、発電素子40と外装体50とを備える。発電素子40には電解液が含浸されている。外装体50は、電解液が外部に漏洩すること、及び、外部の空気及び水分が発電素子40に至ることを防ぐ。
[Lithium ion secondary battery]
FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery 100 according to the present embodiment. As shown in FIG. 1, the lithium ion secondary battery 100 includes a power generation element 40 and an exterior body 50. The power generation element 40 is impregnated with an electrolytic solution. The exterior body 50 prevents the electrolyte from leaking to the outside, and prevents external air and moisture from reaching the power generation element 40.

(発電素子)
発電素子40は、正極20と負極30とセパレータ10とを有する。図1に示す発電素子40は、一対の正極20と負極30とが、セパレータ10を挟んで対向配置されている。正極20及び負極30の積層数は問わない。また発電素子40は、捲回体でもよい。
(Power generation element)
The power generation element 40 includes the positive electrode 20, the negative electrode 30, and the separator 10. In the power generation element 40 shown in FIG. 1, a pair of a positive electrode 20 and a negative electrode 30 are disposed to face each other with the separator 10 interposed therebetween. The number of stacked positive electrodes 20 and negative electrodes 30 is not limited. The power generating element 40 may be a wound body.

「正極」
正極20は、正極集電体22と、正極集電体22の少なくも一面に位置する正極活物質層24とを有する。
"Positive electrode"
The positive electrode 20 includes a positive electrode current collector 22 and a positive electrode active material layer 24 located on at least one surface of the positive electrode current collector 22.

正極集電体22は、導電性の板材であればよく、酸化電位側でリチウムとの反応性が低いアルミニウム箔、ニッケル箔などの金属薄板を用いることができる。特にアルミニウム箔を好適に用いることができる。   The positive electrode current collector 22 may be a conductive plate material, and a thin metal plate such as an aluminum foil or a nickel foil that has low reactivity with lithium on the oxidation potential side can be used. In particular, an aluminum foil can be suitably used.

正極活物質層24は、正極活物質とバインダーとを有し、必要に応じて導電助剤を有する。   The positive electrode active material layer 24 includes a positive electrode active material and a binder, and includes a conductive additive as necessary.

正極活物質は、イオンの吸蔵及び放出、イオンの脱離及び挿入(インターカレーション)、又は、イオンとイオンのカウンターアニオン(例えば、PF )とのドープ及び脱ドープを可逆的に進行させることが可能な電極活物質を用いることができる。 The positive electrode active material reversibly advances ion insertion and extraction, ion desorption and insertion (intercalation), or ion and ion counter anion (for example, PF 6 ). The electrode active material which can be used can be used.

例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMn(x+y+z+a=1、0≦x<1、0≦y<1、0≦z<1、0≦a<1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセンなどが挙げられる。 For example, lithium cobalt oxide (LiCoO 2), lithium nickelate (LiNiO 2), lithium manganate (LiMnO 2), lithium manganese spinel (LiMn 2 O 4), and the general formula: LiNi x Co y Mn z M a O 2 (x + y + z + a = 1, 0 ≦ x <1, 0 ≦ y <1, 0 ≦ z <1, 0 ≦ a <1, M is one type selected from Al, Mg, Nb, Ti, Cu, Zn, Cr Complex metal oxides represented by the above elements), lithium vanadium compounds (LiV 2 O 5 ), olivine-type LiMPO 4 (where M is Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr) One or more elements or VO selected from the above, lithium titanate (Li 4 Ti 5 O 12 ), LiNi x Co y Al z O 2 (0.9 <x + y + z < 1.1) and the like, and polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene and the like.

導電助剤は、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。正極活物質のみで十分な導電性を確保できる場合は、リチウムイオン二次電池100は導電助剤を含んでいなくてもよい。   Examples of the conductive assistant include carbon powders such as carbon blacks, carbon nanotubes, carbon materials, metal fine powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and metal fine powders, and conductive oxides such as ITO. It is done. In the case where sufficient conductivity can be ensured with only the positive electrode active material, the lithium ion secondary battery 100 may not include a conductive additive.

また正極活物質層は、バインダーを含む。バインダーは、公知のものを用いることができる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、が挙げられる。   The positive electrode active material layer includes a binder. A well-known thing can be used for a binder. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoro Fluorine resins such as ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), and polyvinyl fluoride (PVF).

「負極」
負極30は、負極集電体32と、負極集電体32の少なくとも一面に位置する負極活物質層34とを有する。
"Negative electrode"
The negative electrode 30 includes a negative electrode current collector 32 and a negative electrode active material layer 34 located on at least one surface of the negative electrode current collector 32.

負極集電体32は、導電性の板材であればよく、還元電位側でリチウムとの反応性の低い銅箔、ステンレス箔などを用いることができる。特に銅箔を好適に用いることができる。   The negative electrode current collector 32 may be a conductive plate material, and may be a copper foil, a stainless steel foil, or the like having low reactivity with lithium on the reduction potential side. In particular, a copper foil can be suitably used.

負極活物質層34は、負極活物質とバインダーとを有し、必要に応じて導電助剤を有する。   The negative electrode active material layer 34 includes a negative electrode active material and a binder, and includes a conductive additive as necessary.

負極活物質は、公知の負極活物質を使用できる。負極活物質としては、例えば、金属リチウム、リチウムイオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、アルミニウム、シリコン、スズ等のリチウムと化合することのできる金属、SiO(0<x<2)、二酸化スズ等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。 A known negative electrode active material can be used as the negative electrode active material. Examples of the negative electrode active material include carbon materials such as metallic lithium, graphite capable of occluding and releasing lithium ions (natural graphite, artificial graphite), carbon nanotubes, non-graphitizable carbon, graphitizable carbon, and low-temperature calcined carbon. Metals that can be combined with lithium such as aluminum, silicon and tin, amorphous compounds mainly composed of oxides such as SiO x (0 <x <2) and tin dioxide, lithium titanate (Li 4 Ti 5 And particles containing O 12 ) and the like.

これらの中でも負極活物質としてシリコン(Si)や酸化シリコン(SiO)を用いると、高容量なリチウムイオン二次電池を実現できる。リチウムイオン二次電池の容量は主に電極の活物質に依存する。シリコン(Si)や酸化シリコン(SiO)の理論容量は、黒鉛の理論容量(372mAh/g)に比べてはるかに大きい。 Among these, when silicon (Si) or silicon oxide (SiO x ) is used as the negative electrode active material, a high-capacity lithium ion secondary battery can be realized. The capacity of the lithium ion secondary battery mainly depends on the active material of the electrode. The theoretical capacity of silicon (Si) or silicon oxide (SiO x ) is much larger than that of graphite (372 mAh / g).

SiやSiOは充電時に大きな体積膨張を伴う。SiはLiと化合すると、最大で4倍、体積膨張する。本実施形態にかかるリチウムイオン二次電池100は、発電素子40の最外層に位置する負極活物質層34が、発電素子40の内部に位置する負極活物質層34の膨張を抑える。そのため、負極活物質としてSiやSiOを用いた場合でも、負極活物質層34と負極集電体32との剥離、負極活物質層34の亀裂等が抑制される。 Si and SiO x are accompanied by a large volume expansion during charging. When Si combines with Li, it expands in volume up to 4 times. In the lithium ion secondary battery 100 according to the present embodiment, the negative electrode active material layer 34 located in the outermost layer of the power generation element 40 suppresses the expansion of the negative electrode active material layer 34 located inside the power generation element 40. Therefore, even when Si or SiO x is used as the negative electrode active material, peeling between the negative electrode active material layer 34 and the negative electrode current collector 32, cracking of the negative electrode active material layer 34, and the like are suppressed.

また負極30において金属リチウムの析出、溶解反応を用いる場合(金属リチウム負極を用いる場合)、負極活物質層34は初期状態では無くてもよい。電解液中のリチウムイオンが負極集電体32の一面に金属リチウムとして析出するためである。また充放電に寄与するリチウム量が不足することに備えて、充放電前の初期状態から集電体の一面にリチウム箔を設けてもよい。   Further, when the deposition and dissolution reaction of metallic lithium is used in the negative electrode 30 (when a metallic lithium negative electrode is used), the negative electrode active material layer 34 may not be in the initial state. This is because lithium ions in the electrolytic solution are deposited as metallic lithium on one surface of the negative electrode current collector 32. In preparation for the shortage of the amount of lithium contributing to charging / discharging, a lithium foil may be provided on one surface of the current collector from the initial state before charging / discharging.

導電助剤及びバインダーは、正極と同様のものを用いることができる。負極30に用いるバインダーは正極20に挙げた他に、例えば、カルボキシメチルセルロース(CMC)、スチレン・ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアクリル酸(PAA)等を用いてもよい。   As the conductive auxiliary agent and the binder, the same materials as those for the positive electrode can be used. The binder used for the negative electrode 30 is, for example, carboxymethylcellulose (CMC), styrene / butadiene rubber (SBR), polyimide (PI), polyamideimide (PAI), polyacrylic acid (PAA), etc. May be.

図2は、本実施形態にかかるリチウムイオン二次電池の発電素子を拡大した模式図である。発電素子40の最も外側に位置する負極30Aにおいて正極20と対向しない側の面に位置する第1負極活物質層301の密度Dは、第1負極活物質層301より発電素子40の内側に位置する第2負極活物質層302の密度Dより高い。第2負極活物質層302は、第1負極30Aより内側に位置する第2負極30Bのいずれの負極活物質層でもよい。 FIG. 2 is an enlarged schematic diagram of the power generation element of the lithium ion secondary battery according to the present embodiment. Density D 1 of the first anode active material layer 301 located on the surface of the positive electrode 20 not facing the side in the negative electrode 30A is located outermost of the power generating element 40, the inside of the power generating element 40 from the first negative electrode active material layer 301 It is higher than the density D 2 of the second negative electrode active material layer 302 positioned. The second negative electrode active material layer 302 may be any negative electrode active material layer of the second negative electrode 30B located inside the first negative electrode 30A.

第2負極活物質層302の密度とは、第1負極活物質層301より発電素子40の内側に位置する負極活物質層のいずれかの密度を意味する。すなわち、第1負極活物質層301より発電素子40の内側に位置するすべての負極活物質層の平均密度を意味するものではない。   The density of the second negative electrode active material layer 302 means the density of any one of the negative electrode active material layers positioned inside the power generation element 40 from the first negative electrode active material layer 301. That is, it does not mean the average density of all the negative electrode active material layers positioned inside the power generation element 40 from the first negative electrode active material layer 301.

第1負極活物質層301の密度Dが高密度であると、第1負極活物質層301内に膨張できる隙間が少なくなる。膨張できる隙間が少ない第1負極活物質層301が発電素子40の最外層に位置すると、内部に位置する第2負極活物質層302の膨張が制限される。 When the density D 1 of the first negative electrode active material layer 301 is high, the gap that can expand in the first negative electrode active material layer 301 is reduced. When the first negative electrode active material layer 301 having a small gap that can be expanded is located in the outermost layer of the power generation element 40, the expansion of the second negative electrode active material layer 302 positioned therein is limited.

リチウムイオン二次電池100のサイクル特性の低下の原因の一つに、電解液が分解することに伴う電解液の枯渇がある。電解液は、負極30に生じた新生面との副反応により枯渇する。新生面は、負極活物質層34と負極集電体32との間の剥離、負極活物質層34のクラックにより生じる。負極活物質層34と負極集電体32との間の剥離、負極活物質層34のクラックは、負極活物質層34の膨張、収縮により生じる。つまり、第1負極活物質層301が発電素子40の内部に位置する第2負極活物質層302の膨張、収縮を制限することで、リチウムイオン二次電池100のサイクル特性が向上する。   One of the causes of the deterioration of the cycle characteristics of the lithium ion secondary battery 100 is the depletion of the electrolytic solution accompanying the decomposition of the electrolytic solution. The electrolyte is depleted by a side reaction with the new surface generated in the negative electrode 30. The new surface is generated due to separation between the negative electrode active material layer 34 and the negative electrode current collector 32 and cracks in the negative electrode active material layer 34. Separation between the negative electrode active material layer 34 and the negative electrode current collector 32 and cracks in the negative electrode active material layer 34 are caused by expansion and contraction of the negative electrode active material layer 34. That is, the cycle characteristics of the lithium ion secondary battery 100 are improved by limiting the expansion and contraction of the second negative electrode active material layer 302 in which the first negative electrode active material layer 301 is located inside the power generation element 40.

第1負極活物質層301の密度Dと第2負極活物質層302の密度Dとは、1<D/D<1.7の関係を満たすことが好ましく、1.1≦D/D<1.6の関係を満たすことがより好ましく、1.1≦D/D<1.4の関係を満たすことがさらに好ましい。 And the density D 1 of the first anode active material layer 301 and the density D 2 of the second anode active material layer 302, 1 <It is preferable to satisfy the relation of D 1 / D 2 <1.7, 1.1 ≦ D 1 / D 2 <1.6 is more preferable, and 1.1 ≦ D 1 / D 2 <1.4 is more preferable.

第1負極活物質層301及び第2負極活物質層302の密度は、作製時における圧延時に加える圧力により制御される。D/Dが1.7より大きくなるような発電素子40は、作製することが難しい。またD/Dが1.7より大きくなると、第1負極活物質層301の内部抵抗と第2負極活物質層302の内部抵抗との差が大きくなり、充放電反応が不均一になる。内部抵抗の低い反応しやすい負極に充放電反応が集中しやすくなり、サイクル特性が低下する。 The densities of the first negative electrode active material layer 301 and the second negative electrode active material layer 302 are controlled by the pressure applied during rolling during production. It is difficult to produce the power generating element 40 in which D 1 / D 2 is larger than 1.7. When D 1 / D 2 is greater than 1.7, the difference between the internal resistance of the first negative electrode active material layer 301 and the internal resistance of the second negative electrode active material layer 302 becomes large, and the charge / discharge reaction becomes uneven. . The charge / discharge reaction tends to concentrate on the negative electrode which has a low internal resistance and is easy to react, and the cycle characteristics deteriorate.

第2負極活物質層302の密度Dは1.0g/cm以上であることが好ましく、1.2g/cm以上であることが好ましい。また第1負極活物質層301の密度Dは1.2g/cm以上であることが好ましく、1.4g/cm以上であることが好ましい。第1負極活物質層301及び第2負極活物質層302が上記関係であれば、それぞれの負極活物質層の密度関係を調整しやすい。また第2負極活物質層302の密度Dは1.0g/cm以上であれば、負極の体積膨張が大きくなりすぎることもない。 The density D 2 of the second negative electrode active material layer 302 is preferably 1.0 g / cm 3 or more, and preferably 1.2 g / cm 3 or more. The density D 1 of the first negative electrode active material layer 301 is preferably 1.2 g / cm 3 or more, and preferably 1.4 g / cm 3 or more. If the first negative electrode active material layer 301 and the second negative electrode active material layer 302 have the above relationship, it is easy to adjust the density relationship between the respective negative electrode active material layers. The density D 2 of the second anode active material layer 302 as long as 1.0 g / cm 3 or more, nor a volume expansion of the negative electrode becomes too large.

また発電素子40の最も外側に位置する負極30Aにおいて正極20と対向する面に位置する第3負極活物質層303の密度Dは、第1負極活物質層301の密度Dと第2負極活物質層302の密度Dの間であることが好ましい。負極活物質層34の密度は、負極活物質層34の膨張量と相関関係を有する。負極活物質層34の密度が、発電素子40の内側から外側に向かって段階的に変化することで、負極活物質層34の膨張、収縮に伴い、局所的に大きな応力が加わることを抑制できる。 The density D 3 of the third negative electrode active material layer 303 positioned on the positive electrode 20 and the surface facing the negative electrode 30A is located outermost of the power generating element 40, and the density D 1 of the first anode active material layer 301 and the second anode It is preferably between the density D 2 of the active material layer 302. The density of the negative electrode active material layer 34 has a correlation with the expansion amount of the negative electrode active material layer 34. Since the density of the negative electrode active material layer 34 changes stepwise from the inside to the outside of the power generation element 40, it is possible to suppress the application of large stress locally as the negative electrode active material layer 34 expands and contracts. .

また発電素子40の最も外側に位置する負極30Aにおける負極活物質層34の平均密度は、発電素子40の内側に位置する負極30Bにおける負極活物質層34の平均密度より高いことが好ましい。ここで、負極における負極活物質層の平均密度とは、負極集電体32を挟んで両面に位置する負極活物質層34の平均密度を意味する。   The average density of the negative electrode active material layer 34 in the negative electrode 30 </ b> A located on the outermost side of the power generation element 40 is preferably higher than the average density of the negative electrode active material layer 34 in the negative electrode 30 </ b> B located on the inner side of the power generation element 40. Here, the average density of the negative electrode active material layer in the negative electrode means the average density of the negative electrode active material layers 34 located on both sides of the negative electrode current collector 32.

負極における負極活物質層の平均密度及び各負極活物質層の平均密度は以下のようにして求める。まず発電素子40から負極30、正極20及びセパレータ10を分離する。そして負極30を所定の大きさ(例えば3cm×5cm)で打ち抜き、打ち抜き部分の重量と厚みを計測する(測定1)。次いで、負極の打ち抜き部分の一面に位置する負極活物質層を剥離する。一面の負極活物質層を剥離すると、負極集電体とその片面に形成された負極活物質層が残る。残存した負極集電体及び活物質層の重量と厚みを計測する(測定2)。最後に、打ち抜き部分の反対側の面の負極活物質層を剥離する。剥離により負極集電体のみが残り、負極集電体の重量と厚みを計測する(測定3)。測定1から測定3の結果を基に逆算することで、負極における負極活物質層の平均密度及び各負極活物質層の平均密度が求められる。   The average density of the negative electrode active material layer and the average density of each negative electrode active material layer in the negative electrode are determined as follows. First, the negative electrode 30, the positive electrode 20, and the separator 10 are separated from the power generation element 40. Then, the negative electrode 30 is punched with a predetermined size (for example, 3 cm × 5 cm), and the weight and thickness of the punched portion are measured (Measurement 1). Next, the negative electrode active material layer located on one surface of the punched portion of the negative electrode is peeled off. When the negative electrode active material layer on one surface is peeled off, the negative electrode current collector and the negative electrode active material layer formed on one surface thereof remain. The weight and thickness of the remaining negative electrode current collector and active material layer are measured (Measurement 2). Finally, the negative electrode active material layer on the surface opposite to the punched portion is peeled off. Only the negative electrode current collector remains by peeling, and the weight and thickness of the negative electrode current collector are measured (Measurement 3). By calculating backward based on the results of Measurement 1 to Measurement 3, the average density of the negative electrode active material layer and the average density of each negative electrode active material layer in the negative electrode are obtained.

「セパレータ」
セパレータ10は、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いはセルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
"Separator"
The separator 10 only needs to be formed of an electrically insulating porous structure, for example, a single layer of a film made of polyethylene, polypropylene, or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose, polyester, and Examples thereof include a fiber nonwoven fabric made of at least one constituent material selected from the group consisting of polypropylene.

(電解液)
電解液は、発電素子40内に含浸される。電解液には、リチウム塩等を含む電解質溶液(電解質水溶液、有機溶媒を使用する非水系電解質溶液)を使用することができる。
(Electrolyte)
The electrolytic solution is impregnated in the power generation element 40. As the electrolytic solution, an electrolyte solution containing a lithium salt or the like (electrolyte aqueous solution, non-aqueous electrolyte solution using an organic solvent) can be used.

非水電解質溶液は、非水溶媒に電解質が溶解されており、非水溶媒として環状カーボネートと、鎖状カーボネートと、を含有してもよい。   In the non-aqueous electrolyte solution, an electrolyte is dissolved in a non-aqueous solvent, and a cyclic carbonate and a chain carbonate may be contained as a non-aqueous solvent.

環状カーボネートとしては、電解質を溶媒和することができるものを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネートなどを用いることができる。   As cyclic carbonate, what can solvate electrolyte can be used. For example, ethylene carbonate, propylene carbonate, butylene carbonate, and the like can be used.

鎖状カーボネートは、環状カーボネートの粘性を低下させることができる。例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。その他、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどを混合して使用してもよい。   The chain carbonate can reduce the viscosity of the cyclic carbonate. Examples thereof include diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate. In addition, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like may be mixed and used.

非水溶媒中の環状カーボネートと鎖状カーボネートの割合は体積にして1:9〜1:1にすることが好ましい。   The ratio of the cyclic carbonate and the chain carbonate in the non-aqueous solvent is preferably 1: 9 to 1: 1 by volume.

電解質としては、例えば、LiPF、LiClO、LiBF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等のリチウム塩が使用できる。なお、これらのリチウム塩は1種を単独で使用してもよく、2種以上を併用してもよい。特に、電離度の観点から、LiPFを含むことが好ましい。 Examples of the electrolyte include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2) 2, LiN ( CF 3 SO 2) (C 4 F 9 SO 2), LiN (CF 3 CF 2 CO) 2, lithium salts such as LiBOB can be used. In addition, these lithium salts may be used individually by 1 type, and may use 2 or more types together. In particular, LiPF 6 is preferably included from the viewpoint of the degree of ionization.

LiPFを非水溶媒に溶解する際は、非水電解質溶液中の電解質の濃度を、0.5〜2.0mol/Lに調整することが好ましい。電解質の濃度が0.5mol/L以上であると、非水電解液のリチウムイオン濃度を充分に確保することができ、充放電時に十分な容量が得られやすい。また、電解質の濃度が2.0mol/L以内に抑えることで、非水電解液の粘度上昇を抑え、リチウムイオンの移動度を充分に確保することができ、充放電時に十分な容量が得られやすくなる。 When LiPF 6 is dissolved in a non-aqueous solvent, the concentration of the electrolyte in the non-aqueous electrolyte solution is preferably adjusted to 0.5 to 2.0 mol / L. When the concentration of the electrolyte is 0.5 mol / L or more, the lithium ion concentration of the nonaqueous electrolytic solution can be sufficiently secured, and a sufficient capacity can be easily obtained during charging and discharging. Moreover, by suppressing the electrolyte concentration to within 2.0 mol / L, it is possible to suppress an increase in the viscosity of the non-aqueous electrolyte, to sufficiently secure the mobility of lithium ions, and to obtain a sufficient capacity during charging and discharging. It becomes easy.

LiPFをその他の電解質と混合する場合にも、非水電解液中のリチウムイオン濃度が0.5〜2.0mol/Lに調整することが好ましく、LiPFからのリチウムイオン濃度がその50mol%以上含まれることがさらに好ましい。 Even when LiPF 6 is mixed with another electrolyte, the lithium ion concentration in the non-aqueous electrolyte is preferably adjusted to 0.5 to 2.0 mol / L, and the lithium ion concentration from LiPF 6 is 50 mol%. More preferably, it is contained.

(外装体)
外装体50は、その内部に発電素子40及び電解液を密封するものである。外装体50は、電解液の外部への漏出や、外部からの電池内部への水分等の侵入等を抑止するものである。
(Exterior body)
The exterior body 50 seals the power generating element 40 and the electrolytic solution therein. The outer package 50 prevents leakage of the electrolytic solution to the outside, penetration of moisture and the like from the outside into the battery, and the like.

図1に示すように、外装体50は、発電素子40から順に、熱融着樹脂層52と、金属層54と、耐熱樹脂層56と、を有する。熱融着樹脂層52の材料としては、ポリエチレン、ポリプロピレン等のポリオレフィンを使用できる。金属層54の材料としては、アルミニウム、ステンレス等を使用できる。耐熱樹脂層56の材料としては、融点の高い高分子、例えば、ポリエチレンテレフタレート(PET)、ポリアミド(PA)等を使用できる。   As shown in FIG. 1, the exterior body 50 includes a heat-sealing resin layer 52, a metal layer 54, and a heat-resistant resin layer 56 in order from the power generation element 40. As a material of the heat sealing resin layer 52, polyolefin such as polyethylene and polypropylene can be used. As a material of the metal layer 54, aluminum, stainless steel or the like can be used. As a material of the heat resistant resin layer 56, a polymer having a high melting point, such as polyethylene terephthalate (PET), polyamide (PA), or the like can be used.

(端子)
端子60は、アルミニウム、ニッケルなどの導電材料から形成されている。端子は、一方が負極端子61、他方が正極端子62である。端子60の一端(内側端部)は発電素子40に接続され、他端(外側端部)は外装体50の外部に延出する。2つの端子60は、それぞれ同じ方向に延出してもよいし、異なる方向に延出してもよい。負極端子61は負極集電体32に接続され、正極端子62は正極集電体22に接続される。接続方法は特に問わず、溶接、ネジ止め等を用いることができる。
(Terminal)
The terminal 60 is made of a conductive material such as aluminum or nickel. One of the terminals is a negative terminal 61 and the other is a positive terminal 62. One end (inner end) of the terminal 60 is connected to the power generation element 40, and the other end (outer end) extends to the outside of the exterior body 50. The two terminals 60 may extend in the same direction or in different directions. The negative electrode terminal 61 is connected to the negative electrode current collector 32, and the positive electrode terminal 62 is connected to the positive electrode current collector 22. The connection method is not particularly limited, and welding, screwing, or the like can be used.

[リチウムイオン二次電池の作製方法]
本実施形態にかかるリチウムイオン二次電池100は、例えば以下のような方法で製造することができる。
[Method for manufacturing lithium ion secondary battery]
The lithium ion secondary battery 100 according to the present embodiment can be manufactured, for example, by the following method.

まず、正極20及び負極30を作製する。正極20と負極30とは、活物質となる物質が異なるだけであり、同様の製造方法で作製できる。   First, the positive electrode 20 and the negative electrode 30 are produced. The positive electrode 20 and the negative electrode 30 differ only in the substance used as an active material, and can be produced by the same manufacturing method.

正極活物質、バインダー及び溶媒を混合して塗料を作製する。必要に応じ導電助剤を更に加えても良い。溶媒としては例えば、水、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等を用いることができる。正極活物質、導電助剤、バインダーの構成比率は、重量比で80wt%〜90wt%:0.1wt%〜10wt%:0.1wt%〜10wt%であることが好ましい。これらの重量比は、全体で100wt%となるように調整される。   A positive electrode active material, a binder, and a solvent are mixed to prepare a paint. You may add a conductive support agent further as needed. As the solvent, for example, water, N-methyl-2-pyrrolidone, N, N-dimethylformamide or the like can be used. The constituent ratio of the positive electrode active material, the conductive additive, and the binder is preferably 80 wt% to 90 wt%: 0.1 wt% to 10 wt%: 0.1 wt% to 10 wt% in terms of weight ratio. These weight ratios are adjusted to 100 wt% as a whole.

塗料を構成するこれらの成分の混合方法は特に制限されず、混合順序もまた特に制限されない。上記塗料を、正極集電体22に塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。負極についても、同様に負極集電体32に塗料を塗布する。   The mixing method of these components constituting the paint is not particularly limited, and the mixing order is not particularly limited. The paint is applied to the positive electrode current collector 22. There is no restriction | limiting in particular as an application | coating method, The method employ | adopted when producing an electrode normally can be used. Examples thereof include a slit die coating method and a doctor blade method. Similarly, a coating material is applied to the negative electrode current collector 32 for the negative electrode.

続いて、正極集電体22及び負極集電体32上に塗布された塗料中の溶媒を除去する。除去方法は特に限定されない。例えば、塗料が塗布された正極集電体22及び負極集電体32を、80℃〜150℃の雰囲気下で乾燥させる。最後に必要に応じて圧延し、正極20及び負極30が完成する。負極活物質層34の密度の違いは、圧延処理時に加える圧力を変えることで変更できる。   Subsequently, the solvent in the paint applied on the positive electrode current collector 22 and the negative electrode current collector 32 is removed. The removal method is not particularly limited. For example, the positive electrode current collector 22 and the negative electrode current collector 32 to which the paint is applied are dried in an atmosphere of 80 ° C. to 150 ° C. Finally, rolling is performed as necessary to complete the positive electrode 20 and the negative electrode 30. The difference in the density of the negative electrode active material layer 34 can be changed by changing the pressure applied during the rolling process.

発電素子40が積層体の場合は、正極20、負極30及びセパレータ10を積層する。また発電素子40が捲回体の場合は、正極20、負極30及びセパレータ10の一端側を軸として、これらを捲回する。いずれの場合でも、セパレータ10は、正極20と負極30と間に配設する。   When the power generating element 40 is a laminate, the positive electrode 20, the negative electrode 30, and the separator 10 are laminated. When the power generating element 40 is a wound body, the positive electrode 20, the negative electrode 30, and one end side of the separator 10 are wound around each other. In any case, the separator 10 is disposed between the positive electrode 20 and the negative electrode 30.

最後に、作製した発電素子40を外装体50に封入し、電解液を外装体50内に注入することで、本実施形態にかかるリチウムイオン二次電池100が完成する。   Finally, the produced power generation element 40 is sealed in the exterior body 50, and the electrolytic solution is injected into the exterior body 50, whereby the lithium ion secondary battery 100 according to the present embodiment is completed.

以上、本実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。   As mentioned above, although this embodiment was explained in full detail with reference to drawings, each composition in each embodiment, those combinations, etc. are examples, and addition, abbreviation, and substitution of composition are within the range which does not deviate from the meaning of the present invention. , And other changes are possible.

「実施例1」
(負極の作製)
負極集電体として厚さ10μmの銅箔を用意した。
"Example 1"
(Preparation of negative electrode)
A copper foil having a thickness of 10 μm was prepared as a negative electrode current collector.

負極活物質としては平均粒径が2.5μmのシリコン粉末を用いた。この平均粒径は複数の負極活物質の粒径の平均値であり、粒度分布測定で得られた分布曲線における積算値が50%である粒子の直径(D50)である。粒子の粒度分布は、レーザ回折・散乱法(マイクロトラック法)を用いた粒度分布測定装置により測定した。   As the negative electrode active material, silicon powder having an average particle size of 2.5 μm was used. This average particle diameter is an average value of the particle diameters of a plurality of negative electrode active materials, and is the diameter (D50) of a particle having an integrated value of 50% in a distribution curve obtained by particle size distribution measurement. The particle size distribution of the particles was measured by a particle size distribution measuring apparatus using a laser diffraction / scattering method (microtrack method).

上述の負極活物質と、導電助剤として用意したアセチレンブラックと、バインダーとして用意したポリアミドイミド(PAI)とを混合し負極合剤とした。負極活物質と、導電助剤と、バインダーは重量比で80:5:15とした。この負極合剤を、N−メチル−2−ピロリドンに分散させて負極合剤塗料を作製した。そして、厚さ10μmの銅箔の一面に、所定の塗布量で負極合剤塗料を塗布した。なお負極合剤塗料の塗布量は、正極の充電容量に対して1.05〜1.2倍の充電容量比となるように調整した。そして塗布後に、100℃で乾燥させ、溶媒を除去して負極活物質層を形成した。その後、負極活物質層をロールプレスにより加圧成形した。なお発電素子の内部に位置する負極と、発電素子の最外層に位置する負極とで、印加する圧力を変えて、各部分における負極活物質層の密度を制御した。最後に、バインダーであるポリアミドイミドをより強固に結着させるために、真空下にて350℃で3時間熱処理し、これを実施例1に係る負極とした。   The negative electrode active material described above, acetylene black prepared as a conductive auxiliary agent, and polyamideimide (PAI) prepared as a binder were mixed to obtain a negative electrode mixture. The weight ratio of the negative electrode active material, the conductive additive, and the binder was 80: 5: 15. This negative electrode mixture was dispersed in N-methyl-2-pyrrolidone to prepare a negative electrode mixture paint. And the negative mix paint was apply | coated by the predetermined application quantity on one surface of 10-micrometer-thick copper foil. The coating amount of the negative electrode mixture paint was adjusted so that the charge capacity ratio was 1.05 to 1.2 times the charge capacity of the positive electrode. And after application | coating, it was made to dry at 100 degreeC, the solvent was removed, and the negative electrode active material layer was formed. Thereafter, the negative electrode active material layer was pressure-formed by a roll press. The density of the negative electrode active material layer in each part was controlled by changing the applied pressure between the negative electrode located inside the power generation element and the negative electrode located in the outermost layer of the power generation element. Finally, in order to bind polyamideimide as a binder more firmly, heat treatment was performed at 350 ° C. for 3 hours under vacuum, and this was used as the negative electrode according to Example 1.

(正極の作製)
正極活物質として用意したLiCoOと、導電助剤として用意したアセチレンブラックと、バインダーとして用意したポリフッ化ビニリデン(PVDF)とを混合し、正極合剤とした。正極活物質と、導電助剤と、バインダーは重量比で90:5:5とした。この正極合剤を、N−メチル−2−ピロリドンに分散させて正極合剤塗料を作製した。そして、厚さ20μmのアルミニウム箔の一面に、所定の塗布量で正極合剤を塗布した。そして塗布後に、100℃で乾燥させ、溶媒を除去して正極活物質層を形成した。その後、正極活物質層をロールプレスにより加圧成形し、実施例1に係る正極を作製した。
(Preparation of positive electrode)
LiCoO 2 prepared as a positive electrode active material, acetylene black prepared as a conductive auxiliary agent, and polyvinylidene fluoride (PVDF) prepared as a binder were mixed to obtain a positive electrode mixture. The weight ratio of the positive electrode active material, the conductive additive, and the binder was 90: 5: 5. This positive electrode mixture was dispersed in N-methyl-2-pyrrolidone to prepare a positive electrode mixture paint. Then, a positive electrode mixture was applied to one surface of an aluminum foil having a thickness of 20 μm with a predetermined application amount. And after application | coating, it was made to dry at 100 degreeC, the solvent was removed, and the positive electrode active material layer was formed. Thereafter, the positive electrode active material layer was pressure-formed by a roll press to produce a positive electrode according to Example 1.

(評価用リチウムイオン二次電池の作製 フルセル)
作製した負極と正極とを、厚さ16μmのポリプロピレン製のセパレータを介して交互に積層し、負極4枚と正極3枚とを積層することで積層体を作製した。最外層に位置する負極活物質層(第1負極活物質層)の密度は1.1g/cmであり、最外層から2枚目の負極の内側の負極活物質層(第2負極活物質層)の密度は1.0g/cmであった。
(Production of lithium ion secondary battery for evaluation full cell)
The produced negative electrode and positive electrode were alternately laminated via a polypropylene separator having a thickness of 16 μm, and a laminate was produced by laminating four negative electrodes and three positive electrodes. The density of the negative electrode active material layer (first negative electrode active material layer) located in the outermost layer is 1.1 g / cm 3 , and the negative electrode active material layer (second negative electrode active material) inside the second negative electrode from the outermost layer The density of the layer) was 1.0 g / cm 3 .

積層体の負極において、負極活物質層を設けていない銅箔の突起端部にニッケル製の負極端子を取り付けた。また積層体の正極においては、正極活物質層を設けていないアルミニウム箔の突起端部にアルミニウム製の正極端子を超音波溶接機によって取り付けた。   In the negative electrode of the laminate, a negative electrode terminal made of nickel was attached to the protruding end portion of the copper foil not provided with the negative electrode active material layer. Moreover, in the positive electrode of the laminated body, an aluminum positive electrode terminal was attached to the protruding end portion of the aluminum foil not provided with the positive electrode active material layer by an ultrasonic welding machine.

そしてこの積層体を、ラミネートフィルムの外装体内に挿入して周囲の1箇所を除いてヒートシールすることにより閉口部を形成した。外装体内には、FECとDECとが体積比3:7の割合で配合された溶媒と、リチウム塩として1.5M(mol/L)のLiPFが添加された非水電解液と、を注入した。そして、残りの1箇所を真空シール機によって減圧しながらヒートシールで密封し、リチウムイオン二次電池(フルセル)を作製した。 And this closed body was inserted in the exterior body of the laminate film, and heat-sealed except for the surrounding 1 place, and the closed part was formed. The outer package is injected with a solvent in which FEC and DEC are mixed at a volume ratio of 3: 7, and a nonaqueous electrolytic solution to which 1.5M (mol / L) LiPF 6 is added as a lithium salt. did. And the remaining 1 place was sealed by heat sealing, reducing pressure with a vacuum sealing machine, and the lithium ion secondary battery (full cell) was produced.

「実施例2〜5及び比較例1、2」
第2負極活物質層の密度を1.0g/cmに固定し、第1負極活物質層の密度を変更した点が実施例1に係るリチウムイオン二次電池と異なる。その他の条件は、実施例1と同様とした。
"Examples 2 to 5 and Comparative Examples 1 and 2"
The difference from the lithium ion secondary battery according to Example 1 is that the density of the second negative electrode active material layer is fixed to 1.0 g / cm 3 and the density of the first negative electrode active material layer is changed. Other conditions were the same as in Example 1.

「実施例6〜10及び比較例3、4」
第2負極活物質層の密度を1.2g/cmに変更して固定し、第1負極活物質層の密度を変更した点が実施例1に係るリチウムイオン二次電池と異なる。その他の条件は、実施例1と同様とした。
“Examples 6 to 10 and Comparative Examples 3 and 4”
The difference from the lithium ion secondary battery according to Example 1 is that the density of the second negative electrode active material layer is changed and fixed to 1.2 g / cm 3 and the density of the first negative electrode active material layer is changed. Other conditions were the same as in Example 1.

「実施例11〜13及び比較例5、6」
第2負極活物質層の密度を1.4g/cmに変更して固定し、第1負極活物質層の密度を変更した点が実施例1に係るリチウムイオン二次電池と異なる。その他の条件は、実施例1と同様とした。
"Examples 11 to 13 and Comparative Examples 5 and 6"
The difference from the lithium ion secondary battery according to Example 1 is that the density of the second negative electrode active material layer is changed to 1.4 g / cm 3 and fixed, and the density of the first negative electrode active material layer is changed. Other conditions were the same as in Example 1.

「実施例14、15及び比較例7、8」
第2負極活物質層の密度を1.6g/cmに変更して固定し、第1負極活物質層の密度を変更した点が実施例1に係るリチウムイオン二次電池と異なる。その他の条件は、実施例1と同様とした。
“Examples 14 and 15 and Comparative Examples 7 and 8”
The difference from the lithium ion secondary battery according to Example 1 is that the density of the second negative electrode active material layer is changed to 1.6 g / cm 3 and fixed, and the density of the first negative electrode active material layer is changed. Other conditions were the same as in Example 1.

「実施例16〜20及び比較例9」
第2負極活物質層の密度を0.95g/cmに変更して固定し、第1負極活物質層の密度を変更した点が実施例1に係るリチウムイオン二次電池と異なる。その他の条件は、実施例1と同様とした。
"Examples 16 to 20 and Comparative Example 9"
It differs from the lithium ion secondary battery according to Example 1 in that the density of the second negative electrode active material layer was changed to 0.95 g / cm 3 and fixed, and the density of the first negative electrode active material layer was changed. Other conditions were the same as in Example 1.

(容量維持率測定試験)
実施例及び比較例で作製したリチウムイオン二次電池について、二次電池充放電試験装置(北斗電工株式会社製)を用い、25℃の環境下でサイクル特性の測定を行った。0.5Cで4.3Vまで定電流定電圧充電し、1Cで3.0Vまで定電流放電する充放電サイクルを100サイクル繰り返し、100サイクル後の容量維持率を測定し、サイクル特性をサイクル維持率(単位:%)として評価した。なお、評価値は、5サンプルの平均値とした。その結果を表1に示す。
(Capacity maintenance rate measurement test)
About the lithium ion secondary battery produced by the Example and the comparative example, the cycle characteristic was measured in 25 degreeC environment using the secondary battery charging / discharging test apparatus (made by Hokuto Denko Co., Ltd.). 100 cycles of charge / discharge cycles of constant current and constant voltage charge to 4.3V at 0.5C and constant current discharge to 3.0V at 1C, capacity retention rate after 100 cycles is measured, cycle characteristics are represented by cycle retention rate It was evaluated as (unit:%). The evaluation value was an average value of 5 samples. The results are shown in Table 1.

(セルの膨張率)
実施例及び比較例で作製したリチウムイオン二次電池について、セルの膨張率を測定した。セル膨張率は、(「1サイクル後のリチウムイオン二次電池の厚み」−「動作前のリチウムイオン二次電池の厚み」)/(「動作前のリチウムイオン二次電池の厚み」)で求められる。リチウムイオン二次電池の厚みは、発電素子の積層方向におけるリチウムイオン二次電池の厚みを外装体の外から測定する。
(Cell expansion rate)
About the lithium ion secondary battery produced by the Example and the comparative example, the expansion coefficient of the cell was measured. The cell expansion coefficient is obtained by (“thickness of lithium ion secondary battery after one cycle” − “thickness of lithium ion secondary battery before operation”) / (“thickness of lithium ion secondary battery before operation”). It is done. As for the thickness of the lithium ion secondary battery, the thickness of the lithium ion secondary battery in the stacking direction of the power generation elements is measured from the outside of the outer package.

Figure 2019169346
Figure 2019169346

10 セパレータ
20 正極
22 正極集電体
24 正極活物質層
30 負極
32 負極集電体
34 負極活物質層
40 発電素子
50 外装体
52 熱融着樹脂層
54 金属層
56 耐熱樹脂層
60 端子
61 負極端子
62 正極端子
100 リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 10 Separator 20 Positive electrode 22 Positive electrode current collector 24 Positive electrode active material layer 30 Negative electrode 32 Negative electrode current collector 34 Negative electrode active material layer 40 Power generation element 50 Exterior body 52 Thermal fusion resin layer 54 Metal layer 56 Heat resistant resin layer 60 Terminal 61 Negative electrode terminal 62 Positive terminal 100 Lithium ion secondary battery

Claims (3)

正極集電体と前記正極集電体の少なくとも一面に位置する正極活物質層とを有する正極と、
負極集電体と前記負極集電体の少なくとも一面に位置する負極活物質層とを有し、前記正極と対向する負極と、
前記正極と前記負極との間に挟まれたセパレータと、を備える発電素子と、を備え、
前記発電素子の最も外側に位置する負極において前記正極と対向しない側の面に位置する第1負極活物質層の密度は、前記第1負極活物質層より前記発電素子の内側に位置する第2負極活物質層の密度より高い、リチウムイオン二次電池。
A positive electrode having a positive electrode current collector and a positive electrode active material layer located on at least one surface of the positive electrode current collector;
A negative electrode current collector and a negative electrode active material layer located on at least one surface of the negative electrode current collector, and a negative electrode facing the positive electrode;
A power generation element comprising a separator sandwiched between the positive electrode and the negative electrode,
The density of the first negative electrode active material layer located on the surface of the negative electrode located on the outermost side of the power generation element that is not opposed to the positive electrode is a second density located on the inner side of the power generation element than the first negative electrode active material layer. A lithium ion secondary battery having a density higher than that of the negative electrode active material layer.
前記第1負極活物質層の密度Dと前記第2負極活物質層の密度Dとが、1<D/D<1.7の関係を満たす、請求項1に記載のリチウムイオン二次電池。 Wherein the first and the density D 1 of the negative electrode active material layer and the density D 2 of the second anode active material layer is, 1 <satisfy the relationship D 1 / D 2 <1.7, the lithium ion according to claim 1 Secondary battery. 前記第2負極活物質層の密度Dが1.0g/cm以上である、請求項1または2に記載のリチウムイオン二次電池。 3. The lithium ion secondary battery according to claim 1, wherein a density D 2 of the second negative electrode active material layer is 1.0 g / cm 3 or more.
JP2018056087A 2018-03-23 2018-03-23 Lithium ion secondary battery Active JP7003775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018056087A JP7003775B2 (en) 2018-03-23 2018-03-23 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018056087A JP7003775B2 (en) 2018-03-23 2018-03-23 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2019169346A true JP2019169346A (en) 2019-10-03
JP7003775B2 JP7003775B2 (en) 2022-02-10

Family

ID=68108414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018056087A Active JP7003775B2 (en) 2018-03-23 2018-03-23 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP7003775B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258031A (en) * 2020-02-11 2021-08-13 宁德新能源科技有限公司 Battery with a battery cell
WO2021234501A1 (en) * 2020-05-22 2021-11-25 株式会社半導体エネルギー研究所 Secondary battery and vehicle having secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130317A (en) * 2016-01-19 2017-07-27 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery having wound electrode body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130317A (en) * 2016-01-19 2017-07-27 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery having wound electrode body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258031A (en) * 2020-02-11 2021-08-13 宁德新能源科技有限公司 Battery with a battery cell
CN113258031B (en) * 2020-02-11 2022-11-18 宁德新能源科技有限公司 Battery with a battery cell
WO2021234501A1 (en) * 2020-05-22 2021-11-25 株式会社半導体エネルギー研究所 Secondary battery and vehicle having secondary battery

Also Published As

Publication number Publication date
JP7003775B2 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
JP4988169B2 (en) Lithium secondary battery
JP2019140054A (en) Positive electrode and non-aqueous electrolyte secondary battery
JP2019169376A (en) Positive electrode and lithium ion secondary battery
JP2019164967A (en) Negative electrode active material, negative electrode abd lithium ion secondary battery
JP6610692B2 (en) Electrode and storage element
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP2019164965A (en) Lithium ion secondary battery
JP6981027B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP6897228B2 (en) Active material, electrodes and lithium-ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2019164964A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2018170142A (en) Lithium ion secondary battery
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP6962231B2 (en) Non-aqueous electrolyte secondary battery
JP7020167B2 (en) Non-aqueous electrolyte secondary battery
JP7064709B2 (en) Negative negative for lithium ion secondary battery and lithium ion secondary battery
JP2018174110A (en) Current collector and lithium ion secondary battery
JP7017108B2 (en) Active materials, electrodes and lithium-ion secondary batteries
JP2021096901A (en) Lithium ion secondary battery
JP2020167000A (en) Electrode and nonaqueous electrolyte secondary battery
US20220393167A1 (en) Lithium ion secondary battery
JP7243380B2 (en) Electrodes and non-aqueous electrolyte secondary batteries
US20220384794A1 (en) Lithium ion secondary battery
WO2021192256A1 (en) Electrode body, electricity storage element, and electricity storage module
JP2022147190A (en) Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 7003775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150