JP7020167B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP7020167B2
JP7020167B2 JP2018028279A JP2018028279A JP7020167B2 JP 7020167 B2 JP7020167 B2 JP 7020167B2 JP 2018028279 A JP2018028279 A JP 2018028279A JP 2018028279 A JP2018028279 A JP 2018028279A JP 7020167 B2 JP7020167 B2 JP 7020167B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
current collector
secondary battery
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018028279A
Other languages
Japanese (ja)
Other versions
JP2019145331A (en
Inventor
昭信 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018028279A priority Critical patent/JP7020167B2/en
Publication of JP2019145331A publication Critical patent/JP2019145331A/en
Application granted granted Critical
Publication of JP7020167B2 publication Critical patent/JP7020167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、非水電解液二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery.

非水電解液二次電池は、携帯電話、ノートパソコン等のモバイル機器やハイブリットカー等の動力源としても広く用いられている。これらの分野の発展と共に、非水電解液二次電池の様々な性能を高めることが求められている。 The non-aqueous electrolyte secondary battery is also widely used as a power source for mobile devices such as mobile phones and notebook computers and hybrid cars. With the development of these fields, it is required to improve various performances of non-aqueous electrolyte secondary batteries.

その性能の一つが安全性である。非水電解液二次電池は、内部短絡すると異常発熱する。非水電解液二次電池の異常発熱は、その他の素子の故障の原因となりうる。 One of its performance is safety. Non-aqueous electrolyte secondary batteries generate abnormal heat when they are short-circuited internally. Abnormal heat generation of a non-aqueous electrolyte secondary battery can cause failure of other elements.

特許文献1には、非水電解液二次電池の蓄電部を構成する捲回体において、活物質が塗布されていない領域を最外周又は最内周に1周以上設けることが記載されている。内部短絡した際に、金属箔同士が直接接触することで、非水電解液二次電池の温度が異常上昇することが抑制されている。 Patent Document 1 describes that, in a winding body constituting a power storage unit of a non-aqueous electrolytic solution secondary battery, a region to which an active material is not applied is provided on the outermost circumference or the innermost circumference at least one round. .. When the metal foils come into direct contact with each other when an internal short circuit occurs, the temperature of the non-aqueous electrolyte secondary battery is suppressed from rising abnormally.

特開平8-153542号公報Japanese Unexamined Patent Publication No. 8-153542

しかしながら、近年の正極活物質層の高エネルギー密度化に伴い、充電深度が高い状態では、異常発熱を充分に抑制できない場合があった。 However, with the recent increase in energy density of the positive electrode active material layer, it may not be possible to sufficiently suppress abnormal heat generation in a state where the charging depth is high.

本発明は上記問題に鑑みてなされたものであり、外部圧力を受けた場合にも安全性に優れる非水電解液二次電池を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent safety even when subjected to external pressure.

積層体の周囲に絶縁性の保護層を捲回すると、例えば釘等の金属製の物質が非水電解液二次電池に刺さった場合でも、釘の表面を絶縁性の保護層が被覆し、内部短絡による異常発熱を抑制できることを見出した。
すなわち、上記課題を解決するため、以下の手段を提供する。
When an insulating protective layer is wound around the laminate, even if a metal substance such as a nail is stuck in the non-aqueous electrolyte secondary battery, the surface of the nail is covered with the insulating protective layer. It was found that abnormal heat generation due to an internal short circuit can be suppressed.
That is, in order to solve the above problems, the following means are provided.

(1)第1の態様にかかる非水電解液二次電池は、正極集電体と前記正極集電体の少なくとも一面に塗布された正極活物質層とを有する正極と、負極集電体と前記負極集電体の少なくとも一面に塗布された負極活物質層とを有する負極と、セパレータとを備え、前記正極と前記負極との間に前記セパレータを挟んで積層された積層体と、前記積層体の周囲を巻回する絶縁性の保護層と、前記積層体及び前記保護層を電解液と共に封入する外装体と、を備える。 (1) The non-aqueous electrolyte secondary battery according to the first aspect includes a positive electrode having a positive electrode current collector and a positive electrode active material layer coated on at least one surface of the positive electrode current collector, and a negative electrode current collector. A laminate having a negative electrode active material layer coated on at least one surface of the negative electrode current collector, a separator, and a laminate having the separator sandwiched between the positive electrode and the negative electrode, and the laminate. It includes an insulating protective layer that wraps around the body, and an exterior body that encloses the laminated body and the protective layer together with an electrolytic solution.

(2)上記態様にかかる非水電解液二次電池は、前記積層体の積層方向の少なくとも一面に、金属層とセパレータとが積層された第2積層体を有し、前記金属層は、前記正極集電体又は前記負極集電体と電気的に接続され、前記正極集電体又は前記負極集電体と等電位であってもよい。 (2) The non-aqueous electrolytic solution secondary battery according to the above aspect has a second laminated body in which a metal layer and a separator are laminated on at least one surface in the stacking direction of the laminated body, and the metal layer is the said. It may be electrically connected to the positive electrode current collector or the negative electrode current collector and have the same potential as the positive electrode current collector or the negative electrode current collector.

(3)上記態様にかかる非水電解液二次電池は、前記保護層と前記外装体との間に、粘着性物質を含む粘着部を備えてもよい。 (3) The non-aqueous electrolytic solution secondary battery according to the above aspect may include an adhesive portion containing an adhesive substance between the protective layer and the exterior body.

(4)上記態様にかかる非水電解液二次電池において、前記保護層は前記セパレータと連続的に繋がり一体化していてもよい。 (4) In the non-aqueous electrolytic solution secondary battery according to the above embodiment, the protective layer may be continuously connected and integrated with the separator.

(5)上記態様にかかる非水電解液二次電池において、前記保護層の厚みは、前記セパレータの厚みより厚くてもよい。 (5) In the non-aqueous electrolytic solution secondary battery according to the above embodiment, the thickness of the protective layer may be thicker than the thickness of the separator.

上記態様に係る非水電解液二次電池は、外部圧力を受けた場合にも安全性に優れる。 The non-aqueous electrolyte secondary battery according to the above aspect is excellent in safety even when it receives external pressure.

本実施形態にかかる非水電解液二次電池の模式図である。It is a schematic diagram of the non-aqueous electrolytic solution secondary battery which concerns on this embodiment. 本実施形態にかかる非水電解液二次電池を正極端子及び負極端子が延在する方向と直交する面で切断した断面模式図である。FIG. 5 is a schematic cross-sectional view of the non-aqueous electrolytic solution secondary battery according to the present embodiment cut along a plane orthogonal to the direction in which the positive electrode terminal and the negative electrode terminal extend. 本実施形態にかかる非水電解液二次電池の別の例の断面模式図である。It is sectional drawing of another example of the non-aqueous electrolytic solution secondary battery which concerns on this embodiment. 第2実施形態にかかる非水電解液二次電池を正極端子及び負極端子が延在する方向と直交する面で切断した断面模式図である。FIG. 5 is a schematic cross-sectional view of the non-aqueous electrolytic solution secondary battery according to the second embodiment, cut along a plane orthogonal to the direction in which the positive electrode terminal and the negative electrode terminal extend. 第3実施形態にかかる非水電解液二次電池を正極端子及び負極端子が延在する方向と直交する面で切断した断面模式図である。FIG. 5 is a schematic cross-sectional view of the non-aqueous electrolytic solution secondary battery according to the third embodiment, cut along a plane orthogonal to the direction in which the positive electrode terminal and the negative electrode terminal extend. 実施例1における非水電解液二次電池の構成を説明するための断面模式図である。It is sectional drawing for demonstrating the structure of the non-aqueous electrolytic solution secondary battery in Example 1. FIG. 実施例4における非水電解液二次電池の構成を説明するための断面模式図である。It is sectional drawing for demonstrating the structure of the non-aqueous electrolytic solution secondary battery in Example 4. FIG.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, the present embodiment will be described in detail with reference to the drawings as appropriate. The drawings used in the following description may be enlarged for convenience in order to make the features of the present invention easy to understand, and the dimensional ratios of each component may differ from the actual ones. be. The materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.

「第1実施形態」
[非水電解液二次電池]
図1は、本実施形態にかかる非水電解液二次電池の模式図である。図1に示す非水電解液二次電池100は、発電素子90と外装体20とを備える。発電素子90は、外装体20に設けられた収容空間Kに収容される。発電素子90からは正極端子12と負極端子14が延出している。図1では、理解を容易にするために、発電素子90が外装体20内に収容される直前の状態を図示している。
"First embodiment"
[Non-water electrolyte secondary battery]
FIG. 1 is a schematic diagram of a non-aqueous electrolytic solution secondary battery according to the present embodiment. The non-aqueous electrolyte secondary battery 100 shown in FIG. 1 includes a power generation element 90 and an exterior body 20. The power generation element 90 is accommodated in the accommodation space K provided in the exterior body 20. A positive electrode terminal 12 and a negative electrode terminal 14 extend from the power generation element 90. FIG. 1 illustrates a state immediately before the power generation element 90 is housed in the exterior body 20 for easy understanding.

(発電素子)
図2は、本実施形態にかかる非水電解液二次電池を正極端子12及び負極端子14が延在する方向と直交する面で切断した断面模式図である。発電素子90は、積層体10と保護層30とからなる。
(Power generation element)
FIG. 2 is a schematic cross-sectional view of the non-aqueous electrolytic solution secondary battery according to the present embodiment cut along a plane orthogonal to the direction in which the positive electrode terminal 12 and the negative electrode terminal 14 extend. The power generation element 90 includes a laminated body 10 and a protective layer 30.

<積層体>
積層体10は、正極1と負極2とセパレータ3とを備える。セパレータ3は、正極1と負極2との間に配設される。正極1は、板状(膜状)の正極集電体1Aと正極活物質層1Bとを有する。正極活物質層1Bは、正極集電体1Aの少なくとも一面に形成されている。負極2は、板状(膜状)の負極集電体2Aと負極活物質層2Bとを有する。負極活物質層2Bは、負極集電体2Aの少なくとも一面に形成されている。
<Laminated body>
The laminate 10 includes a positive electrode 1, a negative electrode 2, and a separator 3. The separator 3 is arranged between the positive electrode 1 and the negative electrode 2. The positive electrode 1 has a plate-shaped (film-shaped) positive electrode current collector 1A and a positive electrode active material layer 1B. The positive electrode active material layer 1B is formed on at least one surface of the positive electrode current collector 1A. The negative electrode 2 has a plate-shaped (film-shaped) negative electrode current collector 2A and a negative electrode active material layer 2B. The negative electrode active material layer 2B is formed on at least one surface of the negative electrode current collector 2A.

正極集電体1Aは、導電性の板材であればよく、例えば、アルミニウム、銅、ニッケル箔の金属薄板を用いることができる。また正極集電体1Aの表面には、例えば酸化アルミニウム等の絶縁性の被覆膜を形成することが好ましい。被覆膜の厚みは、50μm以下とすることが好ましい。被覆膜を形成すると、内部短絡をより抑制できる。なお、被覆膜は正極集電体1Aの導電性を若干低下させるが、全体に影響を及ぼすほどではない。 The positive electrode current collector 1A may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used. Further, it is preferable to form an insulating coating film such as aluminum oxide on the surface of the positive electrode current collector 1A. The thickness of the coating film is preferably 50 μm or less. Forming a coating film can further suppress internal short circuits. The coating film slightly reduces the conductivity of the positive electrode current collector 1A, but does not affect the whole.

正極活物質層1Bに用いる正極活物質は、イオンの吸蔵及び放出、イオンの脱離及び挿入(インターカレーション)、又は、イオンとカウンターアニオンのドープ及び脱ドープを可逆的に進行させることが可能な電極活物質を用いることができる。イオンには、例えば、リチウムイオン、ナトリウムイオン、マグネシウムイオン等を用いることができ、リチウムイオンを用いることが特に好ましい。 The positive electrode active material used for the positive electrode active material layer 1B can reversibly proceed with occlusion and release of ions, desorption and insertion (intercalation) of ions, or doping and dedoping of ions and counter anions. Electrode active material can be used. As the ion, for example, lithium ion, sodium ion, magnesium ion and the like can be used, and it is particularly preferable to use lithium ion.

例えばリチウムイオン二次電池の場合、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMn(x+y+z+a=1、0≦x<1、0≦y<1、0≦z<1、0≦a<1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセンなどを、正極活物質として用いることができる。 For example, in the case of a lithium ion secondary battery, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMnO 2 ), lithium manganese spinel (LiMn 2 O 4 ), and general formula: LiNi x . Coy Mn z M a O 2 (x + y + z + a = 1, 0 ≦ x <1, 0 ≦ y <1, 0 ≦ z <1, 0 ≦ a <1, M is Al, Mg, Nb, Ti, Cu, Zn , One or more elements selected from Cr), lithium vanadium compound (LiV 2 O 5 ), olivine type LiMPO 4 (where M is Co, Ni, Mn, Fe, Mg, (Indicating one or more elements or VO selected from Nb, Ti, Al, Zr), lithium titanate (Li 4 Ti 5 O 12 ), LiNi x Coy Al z O 2 (0.9 <x + y + z <1. Composite metal oxides such as 1), polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene and the like can be used as the positive electrode active material.

正極活物質層1Bは、導電材を有していてもよい。導電材としては、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。正極活物質のみで十分な導電性を確保できる場合は、正極活物質層1Bは導電材を含んでいなくてもよい。 The positive electrode active material layer 1B may have a conductive material. Examples of the conductive material include carbon powder such as carbon black, carbon nanotube, carbon material, metal fine powder such as copper, nickel, stainless steel and iron, a mixture of carbon material and metal fine powder, and conductive oxide such as ITO. Be done. When sufficient conductivity can be ensured only by the positive electrode active material, the positive electrode active material layer 1B may not contain the conductive material.

正極活物質層1Bは、バインダーを含む。バインダーは、公知のものを用いることができる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、が挙げられる。 The positive electrode active material layer 1B contains a binder. As the binder, a known binder can be used. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoro Fluororesin such as ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride (PVF) and the like can be mentioned.

上記の他に、バインダーとして、例えば、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムを用いてもよい。 In addition to the above, examples of the binder include vinylidenefluoride-hexafluoropropylene-based fluororubber (VDF-HFP-based fluororubber) and vinylidenefluoride-hexafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-HFP-TFE-based). Fluororubber), vinylidenefluoride-pentafluoropropylene-based fluororubber (VDF-PFP-based fluororubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-PFP-TFE-based fluororubber), vinylidenefluo Vinylidene fluoride-based fluorine such as ride-perfluoromethyl vinyl ether-tetrafluoroethylene-based fluorine rubber (VDF-PFMVE-TFE-based fluorine rubber), vinylidene fluoride-chlorotrifluoroethylene-based fluorine rubber (VDF-CTFE-based fluorine rubber) Rubber may be used.

負極活物質層2Bに用いる負極活物質は、イオンを吸蔵・放出可能な化合物であればよく、公知の非水電解液二次電池に用いられる負極活物質を使用できる。負極活物質としては、例えば、金属リチウム等のアルカリ又はアルカリ土類金属、イオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、アルミニウム、シリコン、スズ等のリチウム等の金属と化合することのできる金属、SiO(0<x<2)、二酸化スズ等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。 The negative electrode active material used in the negative electrode active material layer 2B may be any compound that can occlude and release ions, and a known negative electrode active material used in a non-aqueous electrolytic solution secondary battery can be used. Examples of the negative electrode active material include alkali or alkaline earth metals such as metallic lithium, graphite capable of storing and releasing ions (natural graphite, artificial graphite), carbon nanotubes, carbon refractory carbon, carbon easily graphitized, and low temperature. Amorphous, mainly composed of carbon materials such as calcined carbon, metals that can be combined with metals such as lithium such as aluminum, silicon, and tin, and oxides such as SiO x (0 <x <2) and tin dioxide. Examples thereof include particles containing a compound, lithium titanate (Li 4 Ti 5 O 12 ) and the like.

負極集電体2A、導電材及びバインダーは、正極1と同様のものを用いることができる。負極に用いるバインダーは正極に挙げたものの他に、例えば、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂等を用いてもよい。 As the negative electrode current collector 2A, the conductive material, and the binder, the same ones as those of the positive electrode 1 can be used. As the binder used for the negative electrode, for example, cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide resin, polyamide-imide resin, acrylic resin and the like may be used in addition to those listed for the positive electrode.

正極1及び負極2のそれぞれには、外部との電気的接続のための正極端子12と負極端子14とが設けられている(図1参照)。正極端子12及び負極端子14は、アルミニウム、ニッケル、銅等の導電材料から形成されている。正極端子12は正極1と接続され、負極端子14は負極2と接続される。接続方法は、溶接でもネジ止めでもよい。正極端子12及び負極端子14は短絡を防ぐために、絶縁テープで保護することが好ましい。 Each of the positive electrode 1 and the negative electrode 2 is provided with a positive electrode terminal 12 and a negative electrode terminal 14 for electrical connection with the outside (see FIG. 1). The positive electrode terminal 12 and the negative electrode terminal 14 are formed of a conductive material such as aluminum, nickel, and copper. The positive electrode terminal 12 is connected to the positive electrode 1, and the negative electrode terminal 14 is connected to the negative electrode 2. The connection method may be welding or screwing. It is preferable to protect the positive electrode terminal 12 and the negative electrode terminal 14 with insulating tape in order to prevent a short circuit.

セパレータ3は、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン又はポリプロピレン等のポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いはセルロース、ポリエステル、ポリアクリロニトリル、ポリアミド、ポリエチレン及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。 The separator 3 may be formed of an electrically insulating porous structure, for example, a monolayer of a film made of a polyolefin such as polyethylene or polypropylene, a laminate, a stretched film of a mixture of the above resins, or cellulose or polyester. , Polyacrylonitrile, polyamide, polyethylene and a fiber non-woven fabric made of at least one constituent material selected from the group consisting of polypropylene.

セパレータ3の厚みは5μm以上30μm以下であることが好ましく、8μm以上20μm以下であることがより好ましく、10μmであることがさらに好ましい。 The thickness of the separator 3 is preferably 5 μm or more and 30 μm or less, more preferably 8 μm or more and 20 μm or less, and further preferably 10 μm.

積層体10の積層方向の両端は、セパレータ3又は負極2であることが好ましい。積層体10が異常発熱する場合、熱源の主は正極1である。正極1を積層体10の内側に設けることで、外部から侵入してきた釘等の金属体が正極1に到達しにくくなる。その結果、熱源である正極1が発熱することを抑制でき、積層体10全体の異常発熱を抑制できる。また絶縁性のセパレータ3が外部に近い側に存在すると、外部圧力を受けた場合の短絡をより抑制できる。 Both ends of the laminated body 10 in the stacking direction are preferably a separator 3 or a negative electrode 2. When the laminate 10 generates abnormal heat, the main heat source is the positive electrode 1. By providing the positive electrode 1 inside the laminated body 10, it becomes difficult for a metal body such as a nail that has entered from the outside to reach the positive electrode 1. As a result, it is possible to suppress heat generation of the positive electrode 1 which is a heat source, and it is possible to suppress abnormal heat generation of the entire laminated body 10. Further, when the insulating separator 3 is present on the side close to the outside, a short circuit when receiving an external pressure can be further suppressed.

<保護層>
保護層30は、積層体10の周囲を巻回する。正極端子12及び負極端子14が延在する方向は、これらの端子を避けて巻回し難いため、正極端子12及び負極端子14が延在する方向を軸として巻回することが好ましい。
<Protective layer>
The protective layer 30 winds around the laminated body 10. Since it is difficult to wind the positive electrode terminal 12 and the negative electrode terminal 14 in the extending direction while avoiding these terminals, it is preferable to wind the positive electrode terminal 12 and the negative electrode terminal 14 around the extending direction.

保護層30は、絶縁性を有する。保護層30には、セパレータ3と同様の材料を用いることができる。 The protective layer 30 has an insulating property. The same material as the separator 3 can be used for the protective layer 30.

保護層30の厚みは、セパレータ3より厚いことが好ましい。具体的には、保護層30の厚みは、10μm以上40μm以下であることが好ましく、10μm以上30μm以下であることがより好ましく、20μmであることがさらに好ましい。 The thickness of the protective layer 30 is preferably thicker than that of the separator 3. Specifically, the thickness of the protective layer 30 is preferably 10 μm or more and 40 μm or less, more preferably 10 μm or more and 30 μm or less, and further preferably 20 μm.

保護層30の巻回数は1周以上であり、2周以上であることが好ましい。一方で放熱性の観点からは、4周以下であることが好ましく、3周以下であることがより好ましい。 The number of turns of the protective layer 30 is one or more, and preferably two or more. On the other hand, from the viewpoint of heat dissipation, it is preferably 4 laps or less, and more preferably 3 laps or less.

保護層30は、非水電解液二次電池100に釘等の金属体が刺さった場合に、金属体に纏わりつく。保護層30は絶縁性を有するため、釘等の金属体が刺さった場合でも、内部短絡を抑制できる。 The protective layer 30 clings to the metal body when a metal body such as a nail is stuck in the non-aqueous electrolytic solution secondary battery 100. Since the protective layer 30 has an insulating property, it is possible to suppress an internal short circuit even when a metal body such as a nail is pierced.

図3は、本実施形態にかかる非水電解液二次電池の別の例の断面模式図である。図3に示す非水電解液二次電池101は、保護層30が積層体10のセパレータ3と連続的に繋がり、一体化している。セパレータ3を延出させ、保護層30として機能させることで、余計な部材の増加を避けることができる。図3では積層体10の積層方向の両端のセパレータ3を延出させ保護層30として用いているが、積層体10の積層方向のいずれのセパレータ3を延出させ保護層30として用いてもよい。 FIG. 3 is a schematic cross-sectional view of another example of the non-aqueous electrolytic solution secondary battery according to the present embodiment. In the non-aqueous electrolytic solution secondary battery 101 shown in FIG. 3, the protective layer 30 is continuously connected to and integrated with the separator 3 of the laminated body 10. By extending the separator 3 and making it function as the protective layer 30, it is possible to avoid an increase in unnecessary members. In FIG. 3, the separators 3 at both ends of the laminated body 10 in the laminating direction are extended and used as the protective layer 30, but any of the separators 3 in the laminating direction of the laminated body 10 may be extended and used as the protective layer 30. ..

(外装体)
外装体20は、その内部に積層体10及び電解液を密封するものである。外装体20は、電解液の外部への漏出や、外部からの非水電解液二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されない。
(Exterior body)
The exterior body 20 seals the laminated body 10 and the electrolytic solution inside the exterior body 20. The exterior body 20 is not particularly limited as long as it can prevent the leakage of the electrolytic solution to the outside and the intrusion of water and the like into the non-aqueous electrolytic solution secondary battery 100 from the outside.

例えば図2に示すように、外装体20として金属箔を高分子膜で両側からコーティングした金属ラミネートフィルムを用いてもよい。図2に示す外装体20は、金属箔21と、金属箔21の積層体10側の内面を被覆する樹脂層22と、金属箔21の積層体10と反対側の外面を被覆する樹脂層23と、を有する。 For example, as shown in FIG. 2, a metal laminating film in which a metal foil is coated from both sides with a polymer film may be used as the exterior body 20. The exterior body 20 shown in FIG. 2 has a metal foil 21, a resin layer 22 that covers the inner surface of the metal foil 21 on the laminated body 10 side, and a resin layer 23 that covers the outer surface of the metal foil 21 on the opposite side of the laminated body 10. And have.

金属箔21としては例えばアルミ箔を用いることができる。樹脂層22及び樹脂層23には、ポリプロピレン等の高分子膜を利用できる。樹脂層22を構成する材料と樹脂層23を構成する材料は異なっていてもよい。例えば、外側の材料としては融点の高い高分子、例えば、ポリエチレンテレフタレート(PET)、ポリアミド(PA)等を用い、内側の高分子膜の材料としてはポリエチレン(PE)、ポリプロピレン(PP)等を用いることができる。 As the metal foil 21, for example, an aluminum foil can be used. A polymer film such as polypropylene can be used for the resin layer 22 and the resin layer 23. The material constituting the resin layer 22 and the material constituting the resin layer 23 may be different. For example, a polymer having a high melting point, for example, polyethylene terephthalate (PET), polyamide (PA), etc. is used as the outer material, and polyethylene (PE), polypropylene (PP), etc. are used as the material of the inner polymer film. be able to.

図1に示す外装体20は、凹部を有する第1面と第2面とが折りたたまれて収容空間Kを構成する。第1面と第2面とは、外周をシールして密着する。外装体20は、図1に示すものに限られず、二枚のフィルムを接合したものでもよい。凹部は、二枚のフィルムのそれぞれに設けてもよいし、一方のフィルムのみに設けてもよい。 In the exterior body 20 shown in FIG. 1, a first surface and a second surface having recesses are folded to form an accommodation space K. The first surface and the second surface are in close contact with each other by sealing the outer circumference. The exterior body 20 is not limited to the one shown in FIG. 1, and may be a bonded body of two films. The recess may be provided in each of the two films, or may be provided in only one of the films.

(非水電解液)
非水電解液は、外装体20内に封入され積層体10内に含浸する。
非水電解液には、リチウム塩等を含む電解質溶液(電解質水溶液、有機溶媒を使用する電解質溶液) を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いため、充電時の耐用電圧が低く制限される。そのため、有機溶媒を使用する電解質溶液(非水電解液溶液)であることが好ましい。
(Non-water electrolyte)
The non-aqueous electrolytic solution is sealed in the exterior body 20 and impregnated in the laminated body 10.
As the non-aqueous electrolyte solution, an electrolyte solution containing a lithium salt or the like (electrolyte aqueous solution, electrolyte solution using an organic solvent) can be used. However, since the decomposition voltage of the aqueous electrolyte solution is electrochemically low, the withstand voltage during charging is low and limited. Therefore, it is preferable to use an electrolyte solution (non-aqueous electrolyte solution) that uses an organic solvent.

非水電解液は、非水溶媒に電解質が溶解されており、非水溶媒として環状カーボネートと、鎖状カーボネートと、を含有してもよい。 The non-aqueous electrolyte solution has an electrolyte dissolved in a non-aqueous solvent, and may contain a cyclic carbonate and a chain carbonate as the non-aqueous solvent.

環状カーボネートとしては、電解質を溶媒和することができるものを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネートなどを用いることができる。環状カーボネートは、プロピレンカーボネートを少なくとも含むことが好ましい。 As the cyclic carbonate, one capable of solvating an electrolyte can be used. For example, ethylene carbonate, propylene carbonate, butylene carbonate and the like can be used. The cyclic carbonate preferably contains at least propylene carbonate.

鎖状カーボネートは、環状カーボネートの粘性を低下させることができる。例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。その他、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、γ-ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタンなどを混合して使用してもよい。 The chain carbonate can reduce the viscosity of the cyclic carbonate. For example, diethyl carbonate, dimethyl carbonate and ethylmethyl carbonate can be mentioned. In addition, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane and the like may be mixed and used.

非水溶媒中の環状カーボネートと鎖状カーボネートの割合は体積にして1:9~1:1にすることが好ましい。 The ratio of cyclic carbonate to chain carbonate in the non-aqueous solvent is preferably 1: 9 to 1: 1 in volume.

電解質としては、金属塩を用いることができる。例えば、LiPF、LiClO、LiBF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等のリチウム塩が使用できる。なお、これらのリチウム塩は1種を単独で使用してもよく、2種以上を併用してもよい。特に、電離度の観点から、電解質としてLiPFを含むことが好ましい。 As the electrolyte, a metal salt can be used. For example, LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ). 2. Lithium salts such as LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB can be used. It should be noted that one of these lithium salts may be used alone, or two or more thereof may be used in combination. In particular, from the viewpoint of the degree of ionization, it is preferable to contain LiPF 6 as the electrolyte.

LiPFを非水溶媒に溶解する際は、非水電解液中の電解質の濃度を、0.5~2.0mol/Lに調整することが好ましい。電解質の濃度が0.5mol/L以上であると、非水電解液のリチウムイオン濃度を充分に確保することができ、充放電時に十分な容量が得られやすい。また、電解質の濃度が2.0mol/L以内に抑えることで、非水電解液の粘度上昇を抑え、リチウムイオンの移動度を充分に確保することができ、充放電時に十分な容量が得られやすくなる。 When dissolving LiPF 6 in a non-aqueous solvent, it is preferable to adjust the concentration of the electrolyte in the non-aqueous electrolyte solution to 0.5 to 2.0 mol / L. When the concentration of the electrolyte is 0.5 mol / L or more, the lithium ion concentration of the non-aqueous electrolytic solution can be sufficiently secured, and a sufficient capacity can be easily obtained at the time of charging / discharging. Further, by suppressing the concentration of the electrolyte within 2.0 mol / L, it is possible to suppress the increase in the viscosity of the non-aqueous electrolyte solution, sufficiently secure the mobility of lithium ions, and obtain a sufficient capacity during charging and discharging. It will be easier.

LiPFをその他の電解質と混合する場合にも、非水電解液中のリチウムイオン濃度が0.5~2.0mol/Lに調整することが好ましく、LiPFからのリチウムイオン濃度がその50mol%以上含まれることがさらに好ましい。 Even when LiPF 6 is mixed with other electrolytes, it is preferable to adjust the lithium ion concentration in the non-aqueous electrolyte solution to 0.5 to 2.0 mol / L, and the lithium ion concentration from LiPF 6 is 50 mol% thereof. It is more preferable that the above is contained.

[非水電解液二次電池の製造方法]
まず、正極1及び負極2を作製する。正極1と負極2とは、活物質となる物質が異なるだけであり、同様の製造方法で作製できる。
[Manufacturing method of non-aqueous electrolyte secondary battery]
First, the positive electrode 1 and the negative electrode 2 are manufactured. The positive electrode 1 and the negative electrode 2 differ only in the material used as the active material, and can be manufactured by the same manufacturing method.

正極活物質、バインダー及び溶媒を混合して塗料を作製する。必要に応じ導電材を更に加えても良い。溶媒としては例えば、水、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等を用いることができる。正極活物質、導電材、バインダーの構成比率は、質量比で80wt%~90wt%:0.1wt%~10wt%:0.1wt%~10wt%であることが好ましい。これらの質量比は、全体で100wt%となるように調整される。 A paint is prepared by mixing a positive electrode active material, a binder and a solvent. If necessary, a conductive material may be further added. As the solvent, for example, water, N-methyl-2-pyrrolidone, N, N-dimethylformamide and the like can be used. The composition ratio of the positive electrode active material, the conductive material, and the binder is preferably 80 wt% to 90 wt%: 0.1 wt% to 10 wt%: 0.1 wt% to 10 wt% in terms of mass ratio. These mass ratios are adjusted to be 100 wt% as a whole.

塗料を構成するこれらの成分の混合方法は特に制限されず、混合順序もまた特に制限されない。上記塗料を、正極集電体1Aに塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。負極についても、同様に負極集電体2A上に塗料を塗布する。 The method of mixing these components constituting the paint is not particularly limited, and the mixing order is also not particularly limited. The above paint is applied to the positive electrode current collector 1A. The coating method is not particularly limited, and a method usually adopted when manufacturing an electrode can be used. For example, a slit die coat method and a doctor blade method can be mentioned. Similarly, for the negative electrode, the paint is applied on the negative electrode current collector 2A.

続いて、正極集電体1A及び負極集電体2A上に塗布された塗料中の溶媒を除去する。除去方法は特に限定されない。例えば、塗料が塗布された正極集電体1A及び負極集電体2Aを、80℃~150℃の雰囲気下で乾燥させればよい。そして、正極1及び負極2が完成する。 Subsequently, the solvent in the paint applied on the positive electrode current collector 1A and the negative electrode current collector 2A is removed. The removal method is not particularly limited. For example, the positive electrode current collector 1A and the negative electrode current collector 2A coated with the paint may be dried in an atmosphere of 80 ° C. to 150 ° C. Then, the positive electrode 1 and the negative electrode 2 are completed.

次いで、作製した正極1及び負極2の間と、捲きこむ際に外側となる部分にセパレータ3を配設する。そして、正極1、負極2及びセパレータ3の一端側を軸として、これらを捲回する。 Next, the separator 3 is arranged between the produced positive electrode 1 and the negative electrode 2 and in a portion that becomes an outer side when rolled up. Then, the positive electrode 1, the negative electrode 2, and the separator 3 are wound around one end side as an axis.

最後に、積層体10を外装体20に封入する。非水電解液は外装体20内に注入する。非水電解液を注入後に減圧、加熱等を行うことで、積層体10内に非水電解液が含浸する。外装体20は、熱等を加えて封止する。 Finally, the laminated body 10 is enclosed in the exterior body 20. The non-aqueous electrolytic solution is injected into the exterior body 20. The non-aqueous electrolytic solution is impregnated into the laminate 10 by reducing the pressure, heating, or the like after injecting the non-aqueous electrolytic solution. The exterior body 20 is sealed by applying heat or the like.

上述のように、本実施形態にかかる非水電解液二次電池100,101は、保護層30で積層体10を巻回している。そのため、釘等の金属体が刺し込まれた場合でも、金属体の表面に絶縁性の保護層30が纏わりつくことで、非水電解液二次電池100,101の短絡を抑制できる。 As described above, in the non-aqueous electrolytic solution secondary batteries 100 and 101 according to the present embodiment, the laminated body 10 is wound around the protective layer 30. Therefore, even when a metal body such as a nail is pierced, the insulating protective layer 30 clings to the surface of the metal body, so that short circuits of the non-aqueous electrolytic solution secondary batteries 100 and 101 can be suppressed.

「第2実施形態」
図4は、第2実施形態にかかる非水電解液二次電池を正極端子及び負極端子が延在する方向と直交する面で切断した断面模式図である。図4に示す非水電解液二次電池102は、粘着部40を有する点が第1実施形態にかかる非水電解液二次電池100と異なる。その他の構成は同一であり、同一の構成には同一の符号を付し、説明を省く。
"Second embodiment"
FIG. 4 is a schematic cross-sectional view of the non-aqueous electrolytic solution secondary battery according to the second embodiment, cut along a plane orthogonal to the direction in which the positive electrode terminal and the negative electrode terminal extend. The non-aqueous electrolytic solution secondary battery 102 shown in FIG. 4 is different from the non-aqueous electrolytic solution secondary battery 100 according to the first embodiment in that it has an adhesive portion 40. Other configurations are the same, and the same configurations are designated by the same reference numerals and explanations are omitted.

粘着部40は、保護層30と外装体20との間に設けられる。粘着部40は、電解液耐性のある両面テープ等を用いることができる。例えば、ポリプロピレン基材にポリイソブチレンゴムの粘着層が形成された物、ブチルゴム等のゴム、飽和炭化水素樹脂等を用いることができる。 The adhesive portion 40 is provided between the protective layer 30 and the exterior body 20. For the adhesive portion 40, a double-sided tape or the like having resistance to an electrolytic solution can be used. For example, a product in which an adhesive layer of polyisobutylene rubber is formed on a polypropylene base material, rubber such as butyl rubber, a saturated hydrocarbon resin, or the like can be used.

釘等の金属体が刺さった場合においても、粘着部40を構成する粘着性物質がまず釘等の金属体に纏わりつく。その状態で金属体が保護層30に侵入すると、保護層30がより金属体に纏わりつきやすくなる。その結果、非水電解液二次電池102に釘等の金属体が刺さった場合でも、金属体に保護層が纏わりつき、内部短絡が生じることをより抑制できる。 Even when a metal body such as a nail is pierced, the adhesive substance constituting the adhesive portion 40 first clings to the metal body such as a nail. If the metal body invades the protective layer 30 in that state, the protective layer 30 is more likely to cling to the metal body. As a result, even when a metal body such as a nail is stuck in the non-aqueous electrolytic solution secondary battery 102, the protective layer is attached to the metal body, and it is possible to further suppress the occurrence of an internal short circuit.

上述のように、本実施形態にかかる非水電解液二次電池102は、粘着部40により保護層30が刺し込まれた釘等の金属体に纏わりつきやすい。そのため非水電解液二次電池102の短絡をより抑制できる。 As described above, the non-aqueous electrolytic solution secondary battery 102 according to the present embodiment tends to cling to a metal body such as a nail into which the protective layer 30 is pierced by the adhesive portion 40. Therefore, the short circuit of the non-aqueous electrolytic solution secondary battery 102 can be further suppressed.

「第3実施形態」
図5は、第3実施形態にかかる非水電解液二次電池を正極端子及び負極端子が延在する方向と直交する面で切断した断面模式図である。図5に示す非水電解液二次電池103は、第2積層体50を有する点が第1実施形態にかかる非水電解液二次電池100と異なる。その他の構成は同一であり、同一の構成には同一の符号を付し、説明を省く。
"Third embodiment"
FIG. 5 is a schematic cross-sectional view of the non-aqueous electrolytic solution secondary battery according to the third embodiment, cut along a plane orthogonal to the direction in which the positive electrode terminal and the negative electrode terminal extend. The non-aqueous electrolytic solution secondary battery 103 shown in FIG. 5 is different from the non-aqueous electrolytic solution secondary battery 100 according to the first embodiment in that it has the second laminated body 50. Other configurations are the same, and the same configurations are designated by the same reference numerals and explanations are omitted.

第2積層体50は、積層体10の積層方向の少なくとも一面に設けられる。第2積層体50は、セパレータ3と金属層4とが交互に積層されている。 The second laminated body 50 is provided on at least one surface of the laminated body 10 in the laminating direction. In the second laminated body 50, the separator 3 and the metal layer 4 are alternately laminated.

金属層4は、正極端子12又は負極端子14(図1参照)に接続されている。金属層4は、正極1の正極集電体1A又は負極2の負極集電体2Aと等電位である。金属層4は、正極集電体1Aや負極集電体2Aと同様の材料を用いることができる。金属層4の表面には、酸化膜等の絶縁膜が形成されていることが好ましい。金属層4が絶縁膜を有すると、内部短絡がより抑制される。 The metal layer 4 is connected to the positive electrode terminal 12 or the negative electrode terminal 14 (see FIG. 1). The metal layer 4 has the same potential as the positive electrode current collector 1A of the positive electrode 1 or the negative electrode current collector 2A of the negative electrode 2. For the metal layer 4, the same material as the positive electrode current collector 1A and the negative electrode current collector 2A can be used. It is preferable that an insulating film such as an oxide film is formed on the surface of the metal layer 4. When the metal layer 4 has an insulating film, internal short circuits are further suppressed.

金属層4は金属からなり、放熱性に優れる。そのため、第2積層体50を設けることで、積層体10の発熱を抑制できる。また第2積層体50に釘等の金属体が刺さって短絡した場合でも、低抵抗な金属箔同士が短絡することで、積層体10の異常発熱を抑制できる。 The metal layer 4 is made of metal and has excellent heat dissipation. Therefore, by providing the second laminated body 50, heat generation of the laminated body 10 can be suppressed. Further, even when a metal body such as a nail is pierced into the second laminated body 50 and a short circuit occurs, the abnormal heat generation of the laminated body 10 can be suppressed by short-circuiting the metal foils having low resistance.

第2積層体50の金属層4及びセパレータ3の積層数は、それぞれ少なくとも一層以上あればよい。これらの積層数は、放熱性の観点からは2層以上であることが好ましく、3層以上であることがより好ましい。一方で、非水電解液二次電池103の大型化を避けるためには、3層以下であることが好ましく、2層以下であることがより好ましい。 The number of layers of the metal layer 4 and the separator 3 of the second laminated body 50 may be at least one layer or more. From the viewpoint of heat dissipation, the number of these layers is preferably two or more, and more preferably three or more. On the other hand, in order to avoid increasing the size of the non-aqueous electrolyte secondary battery 103, the number of layers is preferably 3 or less, and more preferably 2 or less.

金属層4の厚みは、正極集電体1A及び負極集電体2Aの厚みより厚いことが好ましい。具体的には、金属層4の厚みは、5μm以上20μm以下であることが好ましく、5μm以上15μm以下であることがより好ましく、10μmであることがさらに好ましい。 The thickness of the metal layer 4 is preferably thicker than the thickness of the positive electrode current collector 1A and the negative electrode current collector 2A. Specifically, the thickness of the metal layer 4 is preferably 5 μm or more and 20 μm or less, more preferably 5 μm or more and 15 μm or less, and further preferably 10 μm.

上述のように、本実施形態にかかる非水電解液二次電池103は、第2積層体50を有することで、保護層30を設けた場合でも放熱性を高めることができる。その結果、非水電解液二次電池103の異常発熱をより抑制できる。 As described above, the non-aqueous electrolytic solution secondary battery 103 according to the present embodiment has the second laminated body 50, so that the heat dissipation can be improved even when the protective layer 30 is provided. As a result, the abnormal heat generation of the non-aqueous electrolyte secondary battery 103 can be further suppressed.

以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the configurations and combinations thereof in each embodiment are examples, and the configurations may be added or omitted within a range not deviating from the gist of the present invention. , Replacements, and other changes are possible.

「実施例1」
(正極の作製)
正極活物質には、コバルト酸リチウム(LiCoO)を用いた。この正極活物質を1.90質量部と、アセチレンブラックを5質量部と、ポリフッ化ビニリデン(PVDF)を5質量部と、をN-メチル-2-ピロリドン(NMP)中に分散させ、スラリーを調製した。得られたスラリーを厚さ20μmのアルミ箔の両面に塗工した。塗工量は0.325g/1540.25mmである。その後、温度140℃で30分間乾燥した。
"Example 1"
(Preparation of positive electrode)
Lithium cobalt oxide (LiCoO 2 ) was used as the positive electrode active material. 1.90 parts by mass of this positive electrode active material, 5 parts by mass of acetylene black, and 5 parts by mass of polyvinylidene fluoride (PVDF) are dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a slurry. Prepared. The obtained slurry was applied to both sides of an aluminum foil having a thickness of 20 μm. The coating amount is 0.325 g / 1540.25 mm 2 . Then, it dried at a temperature of 140 degreeC for 30 minutes.

次に、ロールプレス装置を用いて線圧1000kgf/cmでプレス処理し正極のロールを得た。そして、正極のロールから一端側に10mm角のタブ溶接箇所を有する正極1を切り出した。正極1の長さは77mm、幅は70mmとした。そして正極のタブ溶接箇所から正極活物質(塗膜)を、メチルエチルケトン(MEK)を染み込ませた綿棒で擦り剥がした。 Next, a roll of the positive electrode was obtained by pressing with a linear pressure of 1000 kgf / cm using a roll press device. Then, a positive electrode 1 having a 10 mm square tab welded portion on one end side was cut out from the roll of the positive electrode. The length of the positive electrode 1 was 77 mm and the width was 70 mm. Then, the positive electrode active material (coating film) was scraped off from the tab welded portion of the positive electrode with a cotton swab impregnated with methyl ethyl ketone (MEK).

(負極の作製)
天然黒鉛粉末(負極活物質)を90質量部と、PVDFを10質量部とを、NMP中に分散させてスラリーを調製した。得られたスラリーを厚さ15μmの銅箔上に塗工し、銅箔の一方の面は、0.162g/1540.25mmの塗工量で塗布した。その後温度140℃で30分間減圧乾燥した。
(Manufacturing of negative electrode)
A slurry was prepared by dispersing 90 parts by mass of natural graphite powder (negative electrode active material) and 10 parts by mass of PVDF in NMP. The obtained slurry was applied onto a copper foil having a thickness of 15 μm, and one surface of the copper foil was applied with a coating amount of 0.162 g / 1540.25 mm 2 . Then, it was dried under reduced pressure at a temperature of 140 ° C. for 30 minutes.

次いで、ロールプレス装置を用いてプレス処理することにより、負極ロールを得た。負極ロールから一端側に10mm角のタブ溶接箇所を有する負極2を切り出した。負極2の長さは79mm、幅は71mmであった。そして負極のタブ溶接箇所から負極活物質(塗膜)を、MEKを染み込ませた綿棒で擦り剥がし、負極を得た。 Then, a negative electrode roll was obtained by pressing using a roll press device. A negative electrode 2 having a 10 mm square tab welded portion on one end side was cut out from the negative electrode roll. The negative electrode 2 had a length of 79 mm and a width of 71 mm. Then, the negative electrode active material (coating film) was scraped off from the tab welded portion of the negative electrode with a cotton swab impregnated with MEK to obtain a negative electrode.

(セパレータの準備)
膜厚20μmのポリエチレン微多孔膜(空孔率:40%、シャットダウン温度:134℃)を用意した。このセパレータを長さ81mm、幅72mmに切り出した。
(Preparation of separator)
A polyethylene microporous membrane having a film thickness of 20 μm (porosity: 40%, shutdown temperature: 134 ° C.) was prepared. This separator was cut out to a length of 81 mm and a width of 72 mm.

(積層体の作製)
図6に示すように、セパレータ3、負極2、セパレータ3、正極1の順に積層されたものを1つの単位Cとして、これを3層積層した。さらに、積層体10の積層方向の一端側はセパレータ3で、他端側は負極2となるように、セパレータ3と負極2とをさらに積層した。
(Preparation of laminated body)
As shown in FIG. 6, the separator 3, the negative electrode 2, the separator 3, and the positive electrode 1 are laminated in this order as one unit C, and three layers are laminated. Further, the separator 3 and the negative electrode 2 are further laminated so that one end side of the laminated body 10 in the stacking direction is the separator 3 and the other end side is the negative electrode 2.

(保護層の作製)
保護層30は、図6に示すようにセパレータと同じ材料を用いた。保護層は、積層体の周囲を1巻させた後、端部をテープで固定した。
(Preparation of protective layer)
As shown in FIG. 6, the protective layer 30 uses the same material as the separator. The protective layer was wound around the laminate once, and then the ends were fixed with tape.

(非水電解液)
電解質としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒に、LiPFを1.0mol/Lとなるように溶解させた非水電解質溶液を用意した。混合溶媒におけるECとDECとの体積比は、EC:DEC=30:70とした。
(Non-water electrolyte)
A non-aqueous electrolyte solution in which LiPF 6 was dissolved at 1.0 mol / L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) as an electrolyte was prepared. The volume ratio of EC to DEC in the mixed solvent was EC: DEC = 30: 70.

(電池の作製)
保護層が捲回された積層体を非水電解液と共にアルミラミネートに封入し、実施例1の電池セルを作製した。
(Battery production)
The laminated body in which the protective layer was wound was enclosed in an aluminum laminate together with a non-aqueous electrolytic solution to prepare a battery cell of Example 1.

(電池の表面温度の測定)
作製した実施例1の電池セルを0.1Cの定電流密度で充電終止電圧である4.3V(vs.Li/Li)まで充電を行った。さらに4.3V(vs.Li/Li)の定電圧を維持し、電流値が0.05Cの電流密度に低下するまで定電圧充電を行った。なお、電流密度は1Cを158mA/gとして測定を行った。そして、電池の表面の到達温度を測定した。
(Measurement of battery surface temperature)
The prepared battery cell of Example 1 was charged with a constant current density of 0.1 C to a charge end voltage of 4.3 V (vs. Li / Li + ). Further, a constant voltage of 4.3 V (vs. Li / Li + ) was maintained, and constant voltage charging was performed until the current value decreased to a current density of 0.05 C. The current density was measured with 1C as 158 mA / g. Then, the temperature reached on the surface of the battery was measured.

(釘刺し試験)
充電状態の電池に直径2.5mmの釘を150mm/sのスピードで刺し、釘刺し試験を行った。試験は5セルに対して行い、目視で評価した。
(Nail piercing test)
A nail with a diameter of 2.5 mm was pierced into a charged battery at a speed of 150 mm / s, and a nail piercing test was conducted. The test was performed on 5 cells and evaluated visually.

積層体の具体的な構成の要点を表1にまとめ、電池の表面温度及び釘指し試験の結果を表2にまとめた。 The main points of the specific configuration of the laminated body are summarized in Table 1, and the surface temperature of the battery and the result of the nail pointing test are summarized in Table 2.

「実施例2」
実施例2は、正極活物質をLiNi0.83Co0.12Al0.05にした点以外は、実施例1と同様にした。積層体の具体的な構成の要点を表1にまとめ、電池の表面温度及び釘指し試験の結果を表2にまとめた。
"Example 2"
Example 2 was the same as that of Example 1 except that the positive electrode active material was LiNi 0.83 Co 0.12 Al 0.05 O 2 . The main points of the specific configuration of the laminated body are summarized in Table 1, and the surface temperature of the battery and the result of the nail pointing test are summarized in Table 2.

「実施例3」
実施例3は、正極活物質をLiNi0.6Co0.2Al0.2にした点以外は、実施例1と同様にした。積層体の具体的な構成の要点を表1にまとめ、電池の表面温度及び釘指し試験の結果を表2にまとめた。
"Example 3"
Example 3 was the same as that of Example 1 except that the positive electrode active material was LiNi 0.6 Co 0.2 Al 0.2 O 2 . The main points of the specific configuration of the laminated body are summarized in Table 1, and the surface temperature of the battery and the result of the nail pointing test are summarized in Table 2.

「実施例4」
実施例4は、図7に示すように積層体10の積層方向の両面に第2積層体50を積層した点以外は実施例1と同様とした。第2積層体50は、セパレータ3、正極集電体1A、セパレータ3、負極集電体2Aが順に積層されたものとした。積層体の具体的な構成の要点を表1にまとめ、電池の表面温度及び釘指し試験の結果を表2にまとめた。
"Example 4"
Example 4 was the same as that of Example 1 except that the second laminated body 50 was laminated on both sides of the laminated body 10 in the stacking direction as shown in FIG. 7. In the second laminated body 50, the separator 3, the positive electrode current collector 1A, the separator 3, and the negative electrode current collector 2A were laminated in this order. The main points of the specific configuration of the laminated body are summarized in Table 1, and the surface temperature of the battery and the result of the nail pointing test are summarized in Table 2.

「実施例5」
積層体と外装体の間に粘着層を設けた点以外は、実施例1と同様とした。粘着層は蓄電素子の面積よりも大きくした。粘着層には、アクリル系樹脂を用いた。積層体の具体的な構成の要点を表1にまとめ、電池の表面温度及び釘指し試験の結果を表2にまとめた。
"Example 5"
The same procedure as in Example 1 was carried out except that an adhesive layer was provided between the laminated body and the outer body. The adhesive layer was made larger than the area of the power storage element. Acrylic resin was used for the adhesive layer. The main points of the specific configuration of the laminated body are summarized in Table 1, and the surface temperature of the battery and the result of the nail pointing test are summarized in Table 2.

「実施例6」
実施例6は、正極活物質をLiNi0.83Co0.12Al0.05にした点以外は、実施例5と同様にした。積層体の具体的な構成の要点を表1にまとめ、電池の表面温度及び釘指し試験の結果を表2にまとめた。
"Example 6"
Example 6 was the same as in Example 5 except that the positive electrode active material was LiNi 0.83 Co 0.12 Al 0.05 O 2 . The main points of the specific configuration of the laminated body are summarized in Table 1, and the surface temperature of the battery and the result of the nail pointing test are summarized in Table 2.

「実施例7」
実施例7は、正極活物質をLiNi0.6Co0.2Al0.2にした点以外は、実施例5と同様にした。積層体の具体的な構成の要点を表1にまとめ、電池の表面温度及び釘指し試験の結果を表2にまとめた。
"Example 7"
Example 7 was the same as that of Example 5 except that the positive electrode active material was LiNi 0.6 Co 0.2 Al 0.2 O 2 . The main points of the specific configuration of the laminated body are summarized in Table 1, and the surface temperature of the battery and the result of the nail pointing test are summarized in Table 2.

「実施例8」
実施例8は、積層体と外装体の間に粘着層を設けた点以外は、実施例4と同様とした。粘着層は蓄電素子の面積よりも大きくした。粘着層には、アクリル系樹脂を用いた。積層体の具体的な構成の要点を表1にまとめ、電池の表面温度及び釘指し試験の結果を表2にまとめた。
"Example 8"
Example 8 was the same as that of Example 4 except that an adhesive layer was provided between the laminated body and the exterior body. The adhesive layer was made larger than the area of the power storage element. Acrylic resin was used for the adhesive layer. The main points of the specific configuration of the laminated body are summarized in Table 1, and the surface temperature of the battery and the result of the nail pointing test are summarized in Table 2.

「実施例9」
実施例9は、セパレータ3、正極集電体1A、セパレータ3、負極集電体2Aが順に積層された第2積層体50を積層体10の積層方向の両面にさらに1組ずつ追加した点以外は実施例4と同様とした。積層体の具体的な構成の要点を表1にまとめ、電池の表面温度及び釘指し試験の結果を表2にまとめた。
"Example 9"
In the ninth embodiment, a second laminated body 50 in which the separator 3, the positive electrode current collector 1A, the separator 3, and the negative electrode current collector 2A are laminated in this order is further added to both sides of the laminated body 10 in the stacking direction. Was the same as in Example 4. The main points of the specific configuration of the laminated body are summarized in Table 1, and the surface temperature of the battery and the result of the nail pointing test are summarized in Table 2.

「実施例10」
実施例10は、セパレータ3、正極集電体1A、セパレータ3、負極集電体2Aが順に積層された第2積層体50を積層体10の積層方向の両面にさらに2組ずつ追加した点以外は実施例4と同様とした。積層体の具体的な構成の要点を表1にまとめ、電池の表面温度及び釘指し試験の結果を表2にまとめた。
"Example 10"
In the tenth embodiment, two sets of the second laminated body 50 in which the separator 3, the positive electrode current collector 1A, the separator 3, and the negative electrode current collector 2A are laminated in this order are added to both sides of the laminated body 10 in the stacking direction. Was the same as in Example 4. The main points of the specific configuration of the laminated body are summarized in Table 1, and the surface temperature of the battery and the result of the nail pointing test are summarized in Table 2.

「比較例1」
比較例1は、保護層を設けなかった点以外は、実施例1と同様にした。積層体の具体的な構成の要点を表1にまとめ、電池の表面温度及び釘指し試験の結果を表2にまとめた。
"Comparative Example 1"
Comparative Example 1 was the same as that of Example 1 except that the protective layer was not provided. The main points of the specific configuration of the laminated body are summarized in Table 1, and the surface temperature of the battery and the result of the nail pointing test are summarized in Table 2.

「比較例2」
比較例2は、正極活物質をLiNi0.83Co0.12Al0.05にした点以外は、比較例1と同様にした。積層体の具体的な構成の要点を表1にまとめ、電池の表面温度及び釘指し試験の結果を表2にまとめた。
"Comparative Example 2"
Comparative Example 2 was the same as that of Comparative Example 1 except that the positive electrode active material was LiNi 0.83 Co 0.12 Al 0.05 O 2 . The main points of the specific configuration of the laminated body are summarized in Table 1, and the surface temperature of the battery and the result of the nail pointing test are summarized in Table 2.

「比較例3」
比較例3は、正極活物質をLiNi0.6Co0.2Al0.2にした点以外は、比較例1と同様にした。積層体の具体的な構成の要点を表1にまとめ、電池の表面温度及び釘指し試験の結果を表2にまとめた。
"Comparative Example 3"
Comparative Example 3 was the same as that of Comparative Example 1 except that the positive electrode active material was LiNi 0.6 Co 0.2 Al 0.2 O 2 . The main points of the specific configuration of the laminated body are summarized in Table 1, and the surface temperature of the battery and the result of the nail pointing test are summarized in Table 2.

Figure 0007020167000001
Figure 0007020167000001

Figure 0007020167000002
Figure 0007020167000002

1 正極
1A 正極集電体
1B 正極活物質層
2 負極
2A 負極集電体
2B 負極活物質層
3 セパレータ
4 金属層
10 積層体
12 正極端子
14 負極端子
20 外装体
21 金属層
22、23 樹脂層
30 保護層
40 粘着部
50 第2積層体
90 発電素子
100 非水電解液二次電池
K 収容空間
1 Positive electrode 1A Positive electrode current collector 1B Positive electrode active material layer 2 Negative electrode 2A Negative electrode current collector 2B Negative electrode active material layer 3 Separator 4 Metal layer 10 Laminated body 12 Positive electrode terminal 14 Negative electrode terminal 20 Exterior 21 Metal layer 22, 23 Resin layer 30 Protective layer 40 Adhesive part 50 Second laminated body 90 Power generation element 100 Non-aqueous electrolyte secondary battery K Accommodation space

Claims (3)

正極集電体と前記正極集電体の少なくとも一面に塗布された正極活物質層とを有する正極と、負極集電体と前記負極集電体の少なくとも一面に塗布された負極活物質層とを有する負極と、セパレータとを備え、前記正極と前記負極との間に前記セパレータを挟んで積層された積層体と、
前記積層体の周囲を巻回する絶縁性の保護層と、
前記積層体及び前記保護層を電解液と共に封入する外装体と、を備え、
前記保護層の厚みは、前記セパレータの厚みより厚く、
前記保護層と前記外装体との間に、粘着性物質を含む粘着部を備え、
前記粘着部は、前記保護層の最外面と前記外装体の内面とを粘着する、非水電解液二次電池。
A positive electrode having a positive electrode current collector and a positive electrode active material layer coated on at least one surface of the positive electrode current collector, and a negative electrode active material layer coated on at least one surface of the negative electrode current collector and the negative electrode current collector. A laminate having a negative electrode and a separator, and laminated with the separator sandwiched between the positive electrode and the negative electrode.
An insulating protective layer that wraps around the laminate and
The laminated body and the outer body that encloses the protective layer together with the electrolytic solution are provided.
The thickness of the protective layer is thicker than the thickness of the separator.
An adhesive portion containing an adhesive substance is provided between the protective layer and the exterior body.
The adhesive portion is a non-aqueous electrolyte secondary battery that adheres the outermost surface of the protective layer to the inner surface of the exterior body .
前記積層体の積層方向の少なくとも一面に、金属層とセパレータとが積層された第2積層体を有し、
前記金属層は、前記正極集電体又は前記負極集電体と電気的に接続され、前記正極集電体又は前記負極集電体と等電位である、請求項1に記載の非水電解液二次電池。
A second laminated body in which a metal layer and a separator are laminated is provided on at least one surface of the laminated body in the laminating direction.
The non-aqueous electrolytic solution according to claim 1, wherein the metal layer is electrically connected to the positive electrode current collector or the negative electrode current collector and has the same potential as the positive electrode current collector or the negative electrode current collector. Secondary battery.
前記保護層は前記セパレータと連続的に繋がり一体化している、請求項1又は2に記載の非水電解液二次電池。
The non-aqueous electrolytic solution secondary battery according to claim 1 or 2 , wherein the protective layer is continuously connected and integrated with the separator.
JP2018028279A 2018-02-20 2018-02-20 Non-aqueous electrolyte secondary battery Active JP7020167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018028279A JP7020167B2 (en) 2018-02-20 2018-02-20 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018028279A JP7020167B2 (en) 2018-02-20 2018-02-20 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2019145331A JP2019145331A (en) 2019-08-29
JP7020167B2 true JP7020167B2 (en) 2022-02-16

Family

ID=67773942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018028279A Active JP7020167B2 (en) 2018-02-20 2018-02-20 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP7020167B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102326080B1 (en) * 2018-05-08 2021-11-11 주식회사 엘지에너지솔루션 Case for lithium metal secondary battery, lithiium metal secondary batter comprising the same and manufacturing method thereof
JP2022057666A (en) * 2020-09-30 2022-04-11 トヨタ自動車株式会社 battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151159A (en) 2000-09-01 2002-05-24 Nisshinbo Ind Inc Lithium battery
JP2007265873A (en) 2006-03-29 2007-10-11 Dainippon Printing Co Ltd Battery
JP2010287466A (en) 2009-06-12 2010-12-24 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2011216408A (en) 2010-04-01 2011-10-27 Denso Corp Lithium secondary battery, and manufacturing method thereof
JP2012155888A (en) 2011-01-24 2012-08-16 Amaz Techno-Consultant Llc Square shaped battery electrode body unit
JP2014071985A (en) 2012-09-28 2014-04-21 Shin Kobe Electric Mach Co Ltd Lithium ion battery
JP2015028865A (en) 2013-07-30 2015-02-12 株式会社豊田自動織機 Power storage device
JP2017500708A (en) 2014-01-10 2017-01-05 エルジー・ケム・リミテッド Electrode assembly having safety separation membrane and secondary battery including the same
WO2017169130A1 (en) 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Lamination type lithium ion battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151159A (en) 2000-09-01 2002-05-24 Nisshinbo Ind Inc Lithium battery
JP2007265873A (en) 2006-03-29 2007-10-11 Dainippon Printing Co Ltd Battery
JP2010287466A (en) 2009-06-12 2010-12-24 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2011216408A (en) 2010-04-01 2011-10-27 Denso Corp Lithium secondary battery, and manufacturing method thereof
JP2012155888A (en) 2011-01-24 2012-08-16 Amaz Techno-Consultant Llc Square shaped battery electrode body unit
JP2014071985A (en) 2012-09-28 2014-04-21 Shin Kobe Electric Mach Co Ltd Lithium ion battery
JP2015028865A (en) 2013-07-30 2015-02-12 株式会社豊田自動織機 Power storage device
JP2017500708A (en) 2014-01-10 2017-01-05 エルジー・ケム・リミテッド Electrode assembly having safety separation membrane and secondary battery including the same
WO2017169130A1 (en) 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Lamination type lithium ion battery

Also Published As

Publication number Publication date
JP2019145331A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2017038041A1 (en) Non-aqueous electrolyte secondary battery
JP6610692B2 (en) Electrode and storage element
JP6874472B2 (en) Lithium ion secondary battery
JP7020167B2 (en) Non-aqueous electrolyte secondary battery
JP6962231B2 (en) Non-aqueous electrolyte secondary battery
JP2019164965A (en) Lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
CN111164817A (en) Lithium ion secondary battery
JP2018170142A (en) Lithium ion secondary battery
US20210083316A1 (en) Secondary cell with nonaqueous electrolyte
JP6908073B2 (en) Non-aqueous electrolyte secondary battery
JP2018174110A (en) Current collector and lithium ion secondary battery
JP2018170162A (en) Nonaqueous electrolyte secondary battery
WO2021192256A1 (en) Electrode body, electricity storage element, and electricity storage module
CN112335091A (en) Lithium ion secondary battery
US20230290938A1 (en) Negative electrode active material, negative electrode and lithium-ion secondary battery
US20220393167A1 (en) Lithium ion secondary battery
US20220384794A1 (en) Lithium ion secondary battery
WO2021192258A1 (en) Electrode body, power storage element, and power storage module
JP6904393B2 (en) Method for manufacturing negative electrode for lithium ion secondary battery, lithium ion secondary battery and lithium ion secondary battery
JP5888067B2 (en) Porous sheet and secondary battery using the same
WO2021010185A1 (en) Positive electrode and lithium ion secondary battery
US20220384796A1 (en) Lithium ion secondary battery
US20220311007A1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6911460B2 (en) Exterior and electrochemical elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R150 Certificate of patent or registration of utility model

Ref document number: 7020167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150