JP6911460B2 - Exterior and electrochemical elements - Google Patents

Exterior and electrochemical elements Download PDF

Info

Publication number
JP6911460B2
JP6911460B2 JP2017066583A JP2017066583A JP6911460B2 JP 6911460 B2 JP6911460 B2 JP 6911460B2 JP 2017066583 A JP2017066583 A JP 2017066583A JP 2017066583 A JP2017066583 A JP 2017066583A JP 6911460 B2 JP6911460 B2 JP 6911460B2
Authority
JP
Japan
Prior art keywords
conductive portion
power generation
exterior body
generation element
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017066583A
Other languages
Japanese (ja)
Other versions
JP2018170164A (en
Inventor
知子 中村
知子 中村
長 鈴木
長 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2017066583A priority Critical patent/JP6911460B2/en
Publication of JP2018170164A publication Critical patent/JP2018170164A/en
Application granted granted Critical
Publication of JP6911460B2 publication Critical patent/JP6911460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、外装体及び電気化学素子に関する。 The present invention relates to exterior bodies and electrochemical elements.

電池の軽量化、電池デザインの自由度を高める等の目的で、外装体として金属箔と樹脂を積層して得られるラミネートフィルムを用いたラミネートセルが実用化されている。ラミネートフィルムは電池の発電素子を覆い、発電素子が水や空気と接触することを防ぐ。 For the purpose of reducing the weight of the battery and increasing the degree of freedom in battery design, a laminate cell using a laminate film obtained by laminating a metal foil and a resin as an exterior body has been put into practical use. The laminated film covers the power generation element of the battery and prevents the power generation element from coming into contact with water or air.

発電素子は、外部と電気的に接続されている必要がある。そこで、特許文献1では、発電素子に接続されたリード端子を外装体の周縁部の一端側から引き出している。リード端子を介して発電素子と外部とが電気的に接続される。 The power generation element needs to be electrically connected to the outside. Therefore, in Patent Document 1, the lead terminal connected to the power generation element is pulled out from one end side of the peripheral edge portion of the exterior body. The power generation element and the outside are electrically connected via the lead terminal.

一方でリード端子は、様々な問題の原因となる。例えば、リード端子と電極とを溶接等により接続する工程が必要になり、電気化学素子を作製する工程数が増える。また電極からリード端子が外れ、接触不良の原因となる。また外装体のリード端子を介して貼りあわせた部分は、不具合が生じやすい。さらに、リード端子の厚み分だけ発電素子全体の厚みが厚くなり、電池の小型化、高密度化を阻害する。 On the other hand, the lead terminal causes various problems. For example, a step of connecting the lead terminal and the electrode by welding or the like is required, and the number of steps of manufacturing the electrochemical element increases. In addition, the lead terminal may come off from the electrode, causing poor contact. In addition, the portion bonded via the lead terminal of the exterior body is liable to cause a problem. Further, the thickness of the entire power generation element is increased by the thickness of the lead terminal, which hinders the miniaturization and high density of the battery.

そこで特許文献2及び3には、リード端子を用いずに外部との電気的な接続をとる方法が記載されている。特許文献2には、ラミネート外装体の一部に金属層が露出する金属露出部を形成し、金属露出部と発電素子とを接続する方法が記載されている。また特許文献3には、金属層を構成する金属箔の一面に導電性被覆層を設け、導電窓を形成する方法が記載されている。 Therefore, Patent Documents 2 and 3 describe a method of making an electrical connection with the outside without using a lead terminal. Patent Document 2 describes a method of forming a metal exposed portion in which a metal layer is exposed on a part of a laminated exterior body and connecting the metal exposed portion and a power generation element. Further, Patent Document 3 describes a method of forming a conductive window by providing a conductive coating layer on one surface of a metal foil constituting the metal layer.

特開2004−319097号公報Japanese Unexamined Patent Publication No. 2004-31909 特開2015−228365号公報Japanese Unexamined Patent Publication No. 2015-228365 特開2016−207542号公報Japanese Unexamined Patent Publication No. 2016-207542

しかしながら、特許文献2に記載の方法は、金属層を露出するために樹脂層の一部を除去しており、外装体の強度が低下するおそれがある。 However, the method described in Patent Document 2 removes a part of the resin layer in order to expose the metal layer, which may reduce the strength of the exterior body.

また特許文献3に記載の方法は、導電性被覆層が金属箔の一面側全面に設けられている。この場合、導電窓以外の部分の絶縁性を保つためには、導電窓以外の部分に熱可塑性樹脂層をさらに設ける必要がある。すなわち、特許文献3に記載の方法は、外装体の熱可塑性樹脂層が設けられた部分と、導電窓が設けられた部分との間に大きな段差ができる。 Further, in the method described in Patent Document 3, a conductive coating layer is provided on the entire surface of the metal foil on one side. In this case, in order to maintain the insulating property of the portion other than the conductive window, it is necessary to further provide a thermoplastic resin layer on the portion other than the conductive window. That is, in the method described in Patent Document 3, a large step is formed between the portion of the exterior body provided with the thermoplastic resin layer and the portion provided with the conductive window.

段差がある場合、発電素子を構成する集電体の一部を導電窓まで引き出して、発電素子と外装体の導電窓とを接続する必要性が生じる。集電体の一部を引き出し、外装体の導電窓と溶接等で接続することは作業的に困難である。そのため、電気化学素子を動作させている間に、導電窓と集電体との接続が外れ、接触不良を生み出す。 When there is a step, it becomes necessary to pull out a part of the current collector constituting the power generation element to the conductive window to connect the power generation element and the conductive window of the exterior body. It is work-wise difficult to pull out a part of the current collector and connect it to the conductive window of the exterior body by welding or the like. Therefore, while the electrochemical element is being operated, the connection between the conductive window and the current collector is disconnected, resulting in poor contact.

本発明は上記問題に鑑みてなされたものであり、リード端子を設ける必要のない電気化学素子及びその電気化学素子に用いられる外装体を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an electrochemical element that does not need to be provided with a lead terminal and an exterior body used for the electrochemical element.

本発明者らは鋭意検討の結果、内部層が、厚み方向に貫通する導電部と、非導電部と、を同一面内に有する構成とすることで、リード端子が不要で、かつ、安定的に動作できる電気化学素子が得られることを見出した。
すなわち、上記課題を解決するため、以下の手段を提供する。
As a result of diligent studies, the present inventors have made a configuration in which the inner layer has a conductive portion and a non-conductive portion penetrating in the thickness direction in the same plane, so that a lead terminal is unnecessary and stable. It has been found that an electrochemical device that can operate in the same manner can be obtained.
That is, in order to solve the above problems, the following means are provided.

(1)第1の態様にかかる外装体は、発電素子を被覆する外装体であって、金属層と、前記金属層の前記発電素子側に設けられた内部層と、前記金属層の前記内部層と反対側に設けられた外部層とを有し、前記内部層は、厚み方向に貫通する導電部と、非導電部と、を同一面内に有する。 (1) The exterior body according to the first aspect is an exterior body that covers a power generation element, and is a metal layer, an inner layer provided on the power generation element side of the metal layer, and the inside of the metal layer. It has an outer layer provided on the opposite side of the layer, and the inner layer has a conductive portion and a non-conductive portion penetrating in the thickness direction in the same plane.

(2)上記態様にかかる外装体における前記導電部の平均厚みは、前記非導電部の平均厚みの0.5倍以上2.0倍以下であってもよい。 (2) The average thickness of the conductive portion in the exterior body according to the above aspect may be 0.5 times or more and 2.0 times or less the average thickness of the non-conductive portion.

(3)上記態様にかかる外装体における前記導電部と前記非導電部とは同一樹脂を含み、前記導電部は導電性材料を含んでもよい。 (3) The conductive portion and the non-conductive portion in the exterior body according to the above aspect may contain the same resin, and the conductive portion may contain a conductive material.

(4)上記態様にかかる外装体における前記外部層は、厚み方向に貫通する第2導電部と、第2非導電部と、を同一面内に有してもよい。 (4) The outer layer of the exterior body according to the above aspect may have a second conductive portion and a second non-conductive portion penetrating in the thickness direction in the same plane.

(5)上記態様にかかる外装体における前記第2導電部の平均厚みは、前記第2非導電部の平均厚みの0.5倍以上2.0倍以下であってもよい。 (5) The average thickness of the second conductive portion in the exterior body according to the above aspect may be 0.5 times or more and 2.0 times or less the average thickness of the second non-conductive portion.

(6)上記態様にかかる外装体における前記第2導電部は、前記外部層の面内方向に対して垂直な方向から見て、前記導電部と重畳する位置に設けられていてもよい。 (6) The second conductive portion in the exterior body according to the above aspect may be provided at a position overlapping with the conductive portion when viewed from a direction perpendicular to the in-plane direction of the outer layer.

(7)第2の態様にかかる電気化学素子は、上記態様にかかる外装体と、前記外装体によって被覆された発電素子と、を有し、前記発電素子と前記外装体の導電部とが電気的に接続されている。 (7) The electrochemical element according to the second aspect includes an exterior body according to the above aspect and a power generation element covered with the exterior body, and the power generation element and the conductive portion of the exterior body are electrically connected. Is connected.

(8)上記態様にかかる電気化学素子において、前記導電部の面積は、前記発電素子の前記外装体側の一面の面積より狭い構成でもよい。 (8) In the electrochemical device according to the above aspect, the area of the conductive portion may be smaller than the area of one surface of the power generation element on the exterior body side.

(9)上記態様にかかる電気化学素子において、前記導電部の平均厚みは、前記非導電部の平均厚みの1.0倍以上1.5倍以下であってもよい。 (9) In the electrochemical device according to the above aspect, the average thickness of the conductive portion may be 1.0 times or more and 1.5 times or less the average thickness of the non-conductive portion.

(10)上記態様にかかる電気化学素子における前記発電素子は正極が露出した第1面と、負極が露出した第2面とを有し、前記第1面を被覆する前記外装体の前記金属層はAlであり、前記第2面を被覆する前記外装体の前記金属層はCu、Ni、Pt及びSUSからなる群から選択されるいずれかであってもよい。 (10) The power generation element in the electrochemical element according to the above aspect has a first surface with an exposed positive electrode and a second surface with an exposed negative electrode, and the metal layer of the exterior body covering the first surface. Is Al, and the metal layer of the exterior body covering the second surface may be any one selected from the group consisting of Cu, Ni, Pt and SUS.

上記態様に係る外装体はリード端子が不要であり、この外装体を用いることで電気化学素子は安定的に動作できる。 The exterior body according to the above aspect does not require a lead terminal, and the electrochemical element can operate stably by using this exterior body.

第1実施形態にかかる電気化学素子の断面模式図である。It is sectional drawing of the cross section of the electrochemical element which concerns on 1st Embodiment. 第1実施形態にかかる電気化学素子の別の例の断面模式図である。It is sectional drawing of another example of the electrochemical element which concerns on 1st Embodiment. 封止部を有する第1実施形態にかかる電気化学素子の断面模式図である。It is sectional drawing of the electrochemical element which concerns on 1st Embodiment which has a sealing part. 突出部を有する第1実施形態にかかる電気化学素子の断面模式図である。It is sectional drawing of the electrochemical element which concerns on 1st Embodiment which has a protrusion. 発電素子が積層体である第1実施形態にかかる電気化学素子の断面模式図である。FIG. 5 is a schematic cross-sectional view of the electrochemical element according to the first embodiment in which the power generation element is a laminated body. 発電素子が積層体である第1実施形態にかかる電気化学素子の別の例の断面模式図である。FIG. 5 is a schematic cross-sectional view of another example of the electrochemical element according to the first embodiment in which the power generation element is a laminated body. 発電素子が捲回体である第1実施形態にかかる電気化学素子の断面模式図である。FIG. 5 is a schematic cross-sectional view of the electrochemical element according to the first embodiment in which the power generation element is a wound body. 発電素子が捲回体である第1実施形態にかかる電気化学素子の別の例の断面模式図である。FIG. 5 is a schematic cross-sectional view of another example of the electrochemical element according to the first embodiment in which the power generation element is a wound body. 第2実施形態にかかる電気化学素子の断面模式図である。It is sectional drawing of the cross section of the electrochemical element which concerns on 2nd Embodiment.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, the present embodiment will be described in detail with reference to the drawings as appropriate. The drawings used in the following description may be enlarged for convenience in order to make the features of the present invention easy to understand, and the dimensional ratios of the respective components may differ from the actual ones. be. The materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.

「第1実施形態」
[電気化学素子]
図1は、第1実施形態にかかる電気化学素子の断面模式図である。図1に示すように、電気化学素子は、発電素子10と外装体20とを有する。発電素子10は、電解液が含浸されている。外装体20は、電解液が外部に漏洩すること、及び、外部の空気及び水分が発電素子10に至ることを防ぐ。
"First embodiment"
[Electrochemical element]
FIG. 1 is a schematic cross-sectional view of the electrochemical device according to the first embodiment. As shown in FIG. 1, the electrochemical element has a power generation element 10 and an exterior body 20. The power generation element 10 is impregnated with an electrolytic solution. The exterior body 20 prevents the electrolytic solution from leaking to the outside and prevents external air and moisture from reaching the power generation element 10.

(発電素子)
発電素子10は、正極1と負極2とセパレータ3とを有する。図1に示す発電素子10は、一対の正極1と負極2とが、セパレータ3を挟んで対向配置されている。
(Power generation element)
The power generation element 10 has a positive electrode 1, a negative electrode 2, and a separator 3. In the power generation element 10 shown in FIG. 1, a pair of positive electrodes 1 and 2 negative electrodes are arranged so as to face each other with the separator 3 interposed therebetween.

<正極>
正極1は、正極集電体1Aと、その一面に設けられた正極活物質層1Bとを有する。正極集電体1Aは、導電性を有する材料により構成されていればよく、例えば、アルミニウム、銅、ニッケル箔の金属薄板を用いることができる。
<Positive electrode>
The positive electrode 1 has a positive electrode current collector 1A and a positive electrode active material layer 1B provided on one surface thereof. The positive electrode current collector 1A may be made of a conductive material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.

正極活物質層1Bに用いる正極活物質は、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンとリチウムイオンのカウンターアニオン(例えば、PF )とのドープ及び脱ドープを可逆的に進行させることが可能な電極活物質を用いることができる。 The positive electrode active material used for the positive electrode active material layer 1B is occlusion of lithium ions and release, desorption and insertion of lithium ions (intercalation), or counter anions of the lithium ions and the lithium ions (e.g., PF 6 -) and An electrode active material capable of reversibly advancing the doping and dedoping of the above can be used.

例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMn(x+y+z+a=1、0≦x<1、0≦y<1、0≦z<1、0≦a<1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセンなどが挙げられる。 For example, lithium cobalt oxide (LiCoO 2), lithium nickelate (LiNiO 2), lithium manganate (LiMnO 2), lithium manganese spinel (LiMn 2 O 4), and the general formula: LiNi x Co y Mn z M a O 2 (x + y + z + a = 1, 0 ≦ x <1, 0 ≦ y <1, 0 ≦ z <1, 0 ≦ a <1, M is one type selected from Al, Mg, Nb, Ti, Cu, Zn, Cr. Composite metal oxide represented by the above elements), lithium vanadium compound (LiV 2 O 5 ), olivine type LiMPO 4 (however, M is Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr. more shows one or more elements or VO selected), lithium titanate (Li 4 Ti 5 O 12) , LiNi x Co y Al z O 2 (0.9 <x + y + z <1.1) mixed metal oxide, such as Examples include substances, polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene and the like.

また正極活物質層1Bは、導電材を有していてもよい。導電材としては、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。正極活物質のみで十分な導電性を確保できる場合は、発電素子10は導電材を含んでいなくてもよい。 Further, the positive electrode active material layer 1B may have a conductive material. Examples of the conductive material include carbon powder such as carbon black, carbon nanotubes, carbon material, metal fine powder such as copper, nickel, stainless steel and iron, a mixture of carbon material and metal fine powder, and conductive oxide such as ITO. Be done. When sufficient conductivity can be ensured only by the positive electrode active material, the power generation element 10 does not have to contain the conductive material.

また正極活物質層1Bは、バインダーを含む。バインダーは、公知のものを用いることができる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、が挙げられる。 The positive electrode active material layer 1B contains a binder. A known binder can be used. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoro Fluororesin such as ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinylidene fluoride (PVF) can be mentioned.

また、上記の他に、バインダーとして、例えば、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムを用いてもよい。 In addition to the above, as binders, for example, vinylidene fluoride-hexafluoropropylene-based fluororubber (VDF-HFP-based fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-HFP-) TFE-based fluorine rubber), vinylidene fluoride-pentafluoropropylene-based fluorine rubber (VDF-PFP-based fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene-based fluorine rubber (VDF-PFP-TFE-based fluorine rubber), Vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene-based fluororubber (VDF-PFMVE-TFE-based fluororubber), vinylidene fluoride-chlorotrifluoroethylene-based fluororubber (VDF-CTFE-based fluororubber), etc. Fluoroethylene rubber may be used.

<負極>
負極2は、負極集電体2Aと、その一面に設けられた負極活物質層2Bとを有する。負極集電体2A、導電材及びバインダーは、正極と同様のものを用いることができる。負極に用いるバインダーは正極に挙げたものの他に、例えば、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂等を用いてもよい。
<Negative electrode>
The negative electrode 2 has a negative electrode current collector 2A and a negative electrode active material layer 2B provided on one surface thereof. As the negative electrode current collector 2A, the conductive material and the binder, the same ones as those of the positive electrode can be used. As the binder used for the negative electrode, for example, cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide resin, polyamide-imide resin, acrylic resin and the like may be used in addition to those listed for the positive electrode.

負極活物質層2Bに用いる負極活物質は、リチウムイオンを吸蔵・放出可能な化合物であればよく、公知の負極活物質を使用できる。負極活物質としては、例えば、金属リチウム、リチウムイオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、アルミニウム、シリコン、スズ等のリチウムと化合することのできる金属、SiO(0<x<2)、二酸化スズ等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。 The negative electrode active material used for the negative electrode active material layer 2B may be any compound that can occlude and release lithium ions, and a known negative electrode active material can be used. Examples of the negative electrode active material include carbon materials such as metallic lithium, graphite capable of storing and releasing lithium ions (natural graphite, artificial graphite), carbon nanotubes, non-graphitizable carbon, easily graphitized carbon, and low-temperature calcined carbon. Metals that can be combined with lithium such as aluminum, silicon, and tin, SiO x (0 <x <2), amorphous compounds mainly composed of oxides such as tin dioxide, lithium titanate (Li 4 Ti 5) Examples include particles containing O 12 ) and the like.

<セパレータ>
セパレータ3は、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いはセルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
<Separator>
The separator 3 may be formed from an electrically insulating porous structure, for example, a monolayer of a film made of polyethylene, polypropylene or polyolefin, a laminate or a stretched film of a mixture of the above resins, or cellulose, polyester and Examples thereof include fibrous nonwoven fabrics made of at least one constituent material selected from the group consisting of polypropylene.

<電解液>
電解液には、リチウム塩等を含む電解質溶液(電解質水溶液、有機溶媒を使用する電解質溶液) を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いため、充電時の耐用電圧が低く制限される。そのため、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。
<Electrolytic solution>
As the electrolyte solution, an electrolyte solution containing a lithium salt or the like (electrolyte aqueous solution, electrolyte solution using an organic solvent) can be used. However, since the decomposition voltage of the aqueous electrolyte solution is electrochemically low, the withstand voltage during charging is low and limited. Therefore, it is preferable that the electrolyte solution uses an organic solvent (non-aqueous electrolyte solution).

非水電解質溶液は、非水溶媒に電解質が溶解されており、非水溶媒として環状カーボネートと、鎖状カーボネートと、を含有してもよい。 The non-aqueous electrolyte solution has an electrolyte dissolved in a non-aqueous solvent, and may contain a cyclic carbonate and a chain carbonate as the non-aqueous solvent.

環状カーボネートとしては、電解質を溶媒和することができるものを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネートなどを用いることができる。 As the cyclic carbonate, one capable of solvating an electrolyte can be used. For example, ethylene carbonate, propylene carbonate, butylene carbonate and the like can be used.

鎖状カーボネートは、環状カーボネートの粘性を低下させることができる。例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。その他、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどを混合して使用してもよい。 The chain carbonate can reduce the viscosity of the cyclic carbonate. For example, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate can be mentioned. In addition, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane and the like may be mixed and used.

非水溶媒中の環状カーボネートと鎖状カーボネートの割合は体積にして1:9〜1:1にすることが好ましい。 The ratio of cyclic carbonate to chain carbonate in the non-aqueous solvent is preferably 1: 9 to 1: 1 in volume.

電解質としては、例えば、LiPF、LiClO、LiBF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等のリチウム塩が使用できる。なお、これらのリチウム塩は1種を単独で使用してもよく、2種以上を併用してもよい。特に、電離度の観点から、LiPFを含むことが好ましい。 Examples of the electrolyte include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , and LiN (CF 3 CF). 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB and other lithium salts can be used. One of these lithium salts may be used alone, or two or more thereof may be used in combination. In particular, from the viewpoint of the degree of ionization, it is preferable to contain LiPF 6.

LiPFを非水溶媒に溶解する際は、非水電解質溶液中の電解質の濃度を、0.5〜2.0mol/Lに調整することが好ましい。電解質の濃度が0.5mol/L以上であると、非水電解液のリチウムイオン濃度を充分に確保することができ、充放電時に十分な容量が得られやすい。また、電解質の濃度が2.0mol/L以内に抑えることで、非水電解液の粘度上昇を抑え、リチウムイオンの移動度を充分に確保することができ、充放電時に十分な容量が得られやすくなる。 When dissolving LiPF 6 in a non-aqueous solvent, it is preferable to adjust the concentration of the electrolyte in the non-aqueous electrolyte solution to 0.5 to 2.0 mol / L. When the concentration of the electrolyte is 0.5 mol / L or more, the lithium ion concentration of the non-aqueous electrolyte solution can be sufficiently secured, and a sufficient capacity can be easily obtained during charging / discharging. Further, by suppressing the concentration of the electrolyte to 2.0 mol / L or less, it is possible to suppress an increase in the viscosity of the non-aqueous electrolyte solution, to sufficiently secure the mobility of lithium ions, and to obtain a sufficient capacity during charging and discharging. It will be easier.

LiPFをその他の電解質と混合する場合にも、非水電解液中のリチウムイオン濃度が0.5〜2.0mol/Lに調整することが好ましく、LiPFからのリチウムイオン濃度がその50mol%以上含まれることがさらに好ましい。 Even when LiPF 6 is mixed with other electrolytes, it is preferable to adjust the lithium ion concentration in the non-aqueous electrolyte solution to 0.5 to 2.0 mol / L, and the lithium ion concentration from LiPF 6 is 50 mol% thereof. It is more preferable that the above is contained.

(外装体)
外装体20は、発電素子10及び電解液を密封する。外装体20は、金属層21と、内部層22と、外部層23とを有する。
(Exterior body)
The exterior body 20 seals the power generation element 10 and the electrolytic solution. The exterior body 20 has a metal layer 21, an inner layer 22, and an outer layer 23.

金属層21は、外部から侵入する水分や空気を遮断する。金属層21は、導電性を有する金属であれば特に限定されない。例えば、Al、Cu、Ni、Pt及びSUS等を用いることができる。 The metal layer 21 blocks moisture and air that enter from the outside. The metal layer 21 is not particularly limited as long as it is a conductive metal. For example, Al, Cu, Ni, Pt, SUS and the like can be used.

金属層21は、後述する内部層22を介して発電素子10と電気的に接続される。発電素子10の正極1と電気的に接続される金属層21は、正極電位で腐食しにくい材料であることが好ましく、具体的にはAlを用いることが好ましい。一方で、発電素子10の負極2と電気的に接続される金属層21は、リチウムイオンと反応しにくい材料であることが好ましく、具体的にはCu、Ni、Pt、SUSのいずれかを用いることが好ましい。 The metal layer 21 is electrically connected to the power generation element 10 via an inner layer 22, which will be described later. The metal layer 21 electrically connected to the positive electrode 1 of the power generation element 10 is preferably made of a material that is not easily corroded at the positive electrode potential, and specifically, Al is preferably used. On the other hand, the metal layer 21 electrically connected to the negative electrode 2 of the power generation element 10 is preferably a material that does not easily react with lithium ions, and specifically, any one of Cu, Ni, Pt, and SUS is used. Is preferable.

すなわち、発電素子10の正極1が露出した第1面を被覆する金属層21はAlが好ましく、発電素子10の負極2が露出した第2面を被覆する金属層21はCu、Ni、Pt及びSUSからなる群から選択されるいずれかであることが好ましい。 That is, the metal layer 21 that covers the first surface of the power generation element 10 with the exposed positive electrode 1 is preferably Al, and the metal layer 21 that covers the second surface of the power generation element 10 with the negative electrode 2 exposed is Cu, Ni, Pt, and It is preferably one selected from the group consisting of SUS.

内部層22は、内部層22が延在する面内方向と垂直な厚み方向に貫通する導電部22Aと、それ以外の非導電部22Bとを有する。導電部22Aと非導電部22Bとは、同一面内に一体で形成されている。内部層22は、単層でも複数層でもよい。 The inner layer 22 has a conductive portion 22A penetrating in the thickness direction perpendicular to the in-plane direction in which the inner layer 22 extends, and a non-conductive portion 22B other than the conductive portion 22A. The conductive portion 22A and the non-conductive portion 22B are integrally formed in the same plane. The inner layer 22 may be a single layer or a plurality of layers.

導電部22Aは、金属層21と発電素子10とを電気的に繋ぐ。導電部22Aには、導電性材料が分散した樹脂を用いることができる。導電性材料としては、炭素材料、金属、導電性高分子等が挙げられる。樹脂は、熱融着性樹脂を用いることが好ましく、例えばポリエチレン(PE)、ポリプロピレン(PP)等を用いることができる。 The conductive portion 22A electrically connects the metal layer 21 and the power generation element 10. A resin in which a conductive material is dispersed can be used for the conductive portion 22A. Examples of the conductive material include carbon materials, metals, conductive polymers and the like. As the resin, it is preferable to use a heat-sealing resin, and for example, polyethylene (PE), polypropylene (PP) and the like can be used.

非導電部22Bは、発電素子10が外部の素子等と接触し短絡することを防ぐ。非導電部22Bには樹脂を用いることができる。非導電部22Bを構成する樹脂は、導電部22Aを構成する樹脂と同一であることが好ましい。 The non-conductive portion 22B prevents the power generation element 10 from coming into contact with an external element or the like and causing a short circuit. A resin can be used for the non-conductive portion 22B. The resin constituting the non-conductive portion 22B is preferably the same as the resin constituting the conductive portion 22A.

導電部22Aの平均厚みは、非導電部22Bの平均厚みの0.5倍以上2.0倍以下であることが好ましく、0.7倍以上1.5倍以下であることがより好ましく、1.0倍であることがさらに好ましい。ここで「平均厚み」は、発電素子10をラミネートする前の状態(外装体20を発電素子10から剥がした状態)における平均厚みを意味し、発電素子10の一面10Aに対して垂直な面で切断した断面における5点平均を意味する。 The average thickness of the conductive portion 22A is preferably 0.5 times or more and 2.0 times or less, and more preferably 0.7 times or more and 1.5 times or less of the average thickness of the non-conductive portion 22B. It is more preferably 0.0 times. Here, the "average thickness" means the average thickness in the state before laminating the power generation element 10 (the state in which the exterior body 20 is peeled off from the power generation element 10), and is a plane perpendicular to one surface 10A of the power generation element 10. It means the average of 5 points in the cut section.

導電部22Aの平均厚みと非導電部22Bの平均厚みとが大幅に異なると、導電部22Aと非導電部22Bの間に段差ができる。段差は、外装体20と発電素子10との密着性の低下や、導電部と非導電部との接合不良の原因となる。一方で、導電部22Aと非導電部22Bとの厚み差が2倍程度であれば、外装体20をラミネートする際の圧力により段差を緩和できる。 If the average thickness of the conductive portion 22A and the average thickness of the non-conductive portion 22B are significantly different, a step is formed between the conductive portion 22A and the non-conductive portion 22B. The step causes a decrease in the adhesion between the exterior body 20 and the power generation element 10 and a poor connection between the conductive portion and the non-conductive portion. On the other hand, if the thickness difference between the conductive portion 22A and the non-conductive portion 22B is about twice, the step can be relaxed by the pressure when laminating the exterior body 20.

また図1に示すように、発電素子10の外装体20側の一面10Aの面積が、導電部22Aの面積より広い場合は、導電部22Aの平均厚みは、非導電部22Bの平均厚みの1.0倍以上1.5倍以下であることがより好ましい。導電部22Aの厚みが、非導電部22Bの厚みより厚ければ、発電素子10と非導電部22Bが先に接触することがなく、発電素子10と導電部22Aとの接触状態をより向上できる。 Further, as shown in FIG. 1, when the area of one surface 10A on the exterior body 20 side of the power generation element 10 is larger than the area of the conductive portion 22A, the average thickness of the conductive portion 22A is 1 of the average thickness of the non-conductive portion 22B. More preferably, it is 0.0 times or more and 1.5 times or less. If the thickness of the conductive portion 22A is thicker than the thickness of the non-conductive portion 22B, the power generation element 10 and the non-conductive portion 22B do not come into contact first, and the contact state between the power generation element 10 and the conductive portion 22A can be further improved. ..

図2は、第1実施形態にかかる電気化学素子の別の例の断面模式図である。図2に示す電気化学素子101は、導電部22Aの厚みが、非導電部22Bの厚みより薄い。この場合、発電素子10と導電部22Aの接触させるために、導電部22Aの面積を発電素子10の一面10Aの面積より広くしている点が、図1に係る電気化学素子100と異なる。 FIG. 2 is a schematic cross-sectional view of another example of the electrochemical device according to the first embodiment. In the electrochemical element 101 shown in FIG. 2, the thickness of the conductive portion 22A is thinner than the thickness of the non-conductive portion 22B. In this case, it differs from the electrochemical element 100 according to FIG. 1 in that the area of the conductive portion 22A is made wider than the area of one surface 10A of the power generation element 10 in order to bring the power generation element 10 into contact with the conductive portion 22A.

図2に示すように導電部22Aの面積が発電素子10の一面10Aの面積より大きいと、発電素子10の側面と外装体20の間の空間を広くとる必要があり、電気化学素子101のエネルギー密度の低下をもたらす。 As shown in FIG. 2, when the area of the conductive portion 22A is larger than the area of one surface 10A of the power generation element 10, it is necessary to widen the space between the side surface of the power generation element 10 and the exterior body 20, and the energy of the electrochemical element 101 is increased. It causes a decrease in density.

導電部22Aの厚みが、非導電部22Bの厚みと同じ又はそれ以上厚い場合、導電部22Aの面積は、発電素子10の外装体20側の一面10Aの面積より狭いことが好ましい。一方で、導電部22Aの面積が、発電素子10の外装体20側の一面10Aの面積に対して小さすぎると、導電部22Aに過剰な電流が集中する。そこで、導電部22Aの面積は、発電素子10の外装体20側の一面10Aの面積の0.1倍以上1.0倍以下であることが好ましい。 When the thickness of the conductive portion 22A is the same as or thicker than the thickness of the non-conductive portion 22B, the area of the conductive portion 22A is preferably smaller than the area of one surface 10A on the exterior body 20 side of the power generation element 10. On the other hand, if the area of the conductive portion 22A is too small with respect to the area of one surface 10A on the exterior body 20 side of the power generation element 10, an excessive current is concentrated on the conductive portion 22A. Therefore, the area of the conductive portion 22A is preferably 0.1 times or more and 1.0 times or less the area of one surface 10A on the exterior body 20 side of the power generation element 10.

外部層23は、外部層23が延在する面内方向と垂直な厚み方向に貫通する第2導電部23Aと、第2非導電部23Bと、を有する。第2導電部23Aと第2非導電部23Bとは、同一面内に一体で形成されている。 The outer layer 23 has a second conductive portion 23A and a second non-conductive portion 23B that penetrate in the thickness direction perpendicular to the in-plane direction in which the outer layer 23 extends. The second conductive portion 23A and the second non-conductive portion 23B are integrally formed in the same plane.

第2導電部23Aは、金属層21と外部素子とを電気的に繋ぐ。つまり、内部層22の導電部22Aと外部層23の第2導電部23Aとによって発電素子10と外部素子とが電気的に接続される。外部層23は、単層でも複数層でもよい。 The second conductive portion 23A electrically connects the metal layer 21 and the external element. That is, the power generation element 10 and the external element are electrically connected by the conductive portion 22A of the inner layer 22 and the second conductive portion 23A of the outer layer 23. The outer layer 23 may be a single layer or a plurality of layers.

第2導電部23A及び第2非導電部23Bは、内部層22の導電部22Aと非導電部22Bと同様の材料を用いることができる。一方で、外部層23を構成する樹脂は、熱融着性を必要とせず、融点の高い材料であることが好ましい。具体的には、ポリエチレンテレフタラート(PET)、ポリアミド等が好ましい。 For the second conductive portion 23A and the second non-conductive portion 23B, the same materials as the conductive portion 22A and the non-conductive portion 22B of the inner layer 22 can be used. On the other hand, the resin constituting the outer layer 23 does not require heat-sealing properties and is preferably a material having a high melting point. Specifically, polyethylene terephthalate (PET), polyamide and the like are preferable.

第2導電部23Aは、外部層23の面内方向に対して垂直な方向から見て、導電部22Aと重畳する位置に設けられていることが好ましい。導電部22Aと第2導電部23Aの平面視の位置が重畳することで、発電素子10から外部素子までの導電パスが直線的になる。その結果、電気化学素子100の素子抵抗が高くなることが抑制される。 The second conductive portion 23A is preferably provided at a position where it overlaps with the conductive portion 22A when viewed from a direction perpendicular to the in-plane direction of the outer layer 23. By superimposing the positions of the conductive portion 22A and the second conductive portion 23A in a plan view, the conductive path from the power generation element 10 to the external element becomes linear. As a result, it is suppressed that the element resistance of the electrochemical element 100 becomes high.

また第2導電部23Aの面積は、発電素子10の外装体20側の一面10Aの面積の0.1倍以上であることが好ましい。第2導電部23Aの面積が小さすぎると、第2導電部23Aに過剰な電流が集中する。第2導電部23Aの面積は大きい分には特に問わないが、外部素子との短絡を防ぐために、発電素子10の外装体20側の一面10Aの面積の1.0倍以下であることが好ましい。 Further, the area of the second conductive portion 23A is preferably 0.1 times or more the area of one surface 10A on the exterior body 20 side of the power generation element 10. If the area of the second conductive portion 23A is too small, an excessive current concentrates on the second conductive portion 23A. The area of the second conductive portion 23A is not particularly limited as long as it is large, but it is preferably 1.0 times or less the area of one surface 10A on the exterior body 20 side of the power generation element 10 in order to prevent a short circuit with the external element. ..

第2導電部23Aの平均厚みは、第2非導電部23Bの平均厚みの0.5倍以上2.0倍以下であることが好ましく、0.7倍以上1.5倍以下であることがより好ましく、1.0倍であることがさらに好ましい。導電部23Aの平均厚みと非導電部23Bの平均厚みとが大幅に異なると、導電部23Aと非導電部23Bの間に段差ができ、導電部23Aと非導電部23Bの境界に応力が集中しやすくなる。 The average thickness of the second conductive portion 23A is preferably 0.5 times or more and 2.0 times or less, and 0.7 times or more and 1.5 times or less the average thickness of the second non-conductive portion 23B. More preferably, it is more preferably 1.0 times. If the average thickness of the conductive portion 23A and the average thickness of the non-conductive portion 23B are significantly different, a step is formed between the conductive portion 23A and the non-conductive portion 23B, and stress is concentrated on the boundary between the conductive portion 23A and the non-conductive portion 23B. It will be easier to do.

また導電部22Aと第2導電部23Aの総厚と、非導電部22Bと第2非導電部23Bの総厚とは等しいことが好ましく、具体的には0.5倍以上2.0倍以下であることが好ましく、0.7倍以上1.5倍以下であることがより好ましく、1.0倍であることがさらに好ましい。 Further, it is preferable that the total thickness of the conductive portion 22A and the second conductive portion 23A is equal to the total thickness of the non-conductive portion 22B and the second non-conductive portion 23B, specifically, 0.5 times or more and 2.0 times or less. Is more preferable, 0.7 times or more and 1.5 times or less is more preferable, and 1.0 times or more is further preferable.

第2導電部23Aと第2非導電部23Bの平均厚み差が大きい場合でも、導電部22Aと非導電部22Bとの厚みの違いにより、全体として厚み差が生じることを緩和できる。その結果、外装体20の外表面に段差が形成されることが避けられる。 Even when the average thickness difference between the second conductive portion 23A and the second non-conductive portion 23B is large, it is possible to alleviate the difference in thickness as a whole due to the difference in thickness between the conductive portion 22A and the non-conductive portion 22B. As a result, it is possible to avoid forming a step on the outer surface of the exterior body 20.

上述のように、本実施形態にかかる電気化学素子は、導電部22A、金属層21及び第2導電部23Aを介して外部素子との導通をとることができる。そのため、リード端子を用いる必要が無く、リード端子を設ける工程の増加、リード端子による接触不良の発生、リード端子を介した部分でも外装体の剥離、等が生じることを抑制できる。また内部層22及び外部層23において、導電部22Aと非導電部22B、及び、第2導電部23Aと第2非導電部23Bが、それぞれ同一面内に一体形成されているため、外装体20の封止性が高まる。 As described above, the electrochemical element according to the present embodiment can be electrically connected to the external element via the conductive portion 22A, the metal layer 21, and the second conductive portion 23A. Therefore, it is not necessary to use the lead terminal, and it is possible to suppress an increase in the number of steps for providing the lead terminal, occurrence of poor contact due to the lead terminal, peeling of the outer body even at the portion via the lead terminal, and the like. Further, in the inner layer 22 and the outer layer 23, the conductive portion 22A and the non-conductive portion 22B, and the second conductive portion 23A and the second non-conductive portion 23B are integrally formed in the same plane, so that the exterior body 20 is formed. The sealing property of is improved.

以上、本実施形態について図面を参照して詳述したが、各構成及びそれらの組み合わせ等は一例であり、構成の付加、省略、置換、及びその他の変更が可能である。 Although the present embodiment has been described in detail with reference to the drawings, each configuration and a combination thereof are examples, and the configurations can be added, omitted, replaced, and other changes can be made.

例えば、図3に示す電気化学素子102に示すように、外装体20同士が接合する端部に、絶縁性の封止部24を設けてもよい。金属層21は等電位であるため、金属層21の端部が露出していると、短絡の原因となる。例えば、正極1に接続された金属層21と、負極2に接続された金属層21とが接触すると、発電素子10は短絡する。 For example, as shown in the electrochemical element 102 shown in FIG. 3, an insulating sealing portion 24 may be provided at an end portion where the exterior bodies 20 are joined to each other. Since the metal layer 21 has an equipotential potential, if the end portion of the metal layer 21 is exposed, it causes a short circuit. For example, when the metal layer 21 connected to the positive electrode 1 and the metal layer 21 connected to the negative electrode 2 come into contact with each other, the power generation element 10 is short-circuited.

また端部を封止部24で完全に封止するのではなく、図4に示す電気化学素子103のように、内部層22の非導電部22Bを金属層21より突出させ、突出部26を設けてもよい。突出部26により金属層21同士が短絡することを防ぐことができる。 Further, instead of completely sealing the end portion with the sealing portion 24, the non-conductive portion 22B of the inner layer 22 is projected from the metal layer 21 as in the electrochemical element 103 shown in FIG. 4, and the protruding portion 26 is projected. It may be provided. The protruding portion 26 can prevent the metal layers 21 from being short-circuited with each other.

また図5に示す電気化学素子104のように、発電素子11は積層体でもよい。図5に示す発電素子11は、正極1と負極2とがセパレータ3を介して複数積層されている。複数の正極1のそれぞれの正極集電体1Aは互いに接続され、複数の負極2のそれぞれの負極集電体2Aは互いに接続されている。そのため、各正極1及び各負極2は、正極集電体1A及び負極集電体2Aを介して外部素子と電気的に接続される。 Further, as in the electrochemical element 104 shown in FIG. 5, the power generation element 11 may be a laminated body. In the power generation element 11 shown in FIG. 5, a plurality of positive electrodes 1 and 2 negative electrodes are laminated via a separator 3. The positive electrode current collectors 1A of the plurality of positive electrodes 1 are connected to each other, and the negative electrode current collectors 2A of the plurality of negative electrodes 2 are connected to each other. Therefore, each positive electrode 1 and each negative electrode 2 are electrically connected to an external element via the positive electrode current collector 1A and the negative electrode current collector 2A.

また図6に示す電気化学素子105のように、積層体である発電素子12の積層方向は、外装体20の延在方向でもよい。図6に示す発電素子12は、図5に示す発電素子11と積層体の積層方向が異なる。図6に示す電気化学素子105においても、複数の正極1のそれぞれの正極集電体1Aは互いに接続され、複数の負極2のそれぞれの負極集電体2Aは互いに接続されている。そのため、各正極1及び各負極2は、正極集電体1A及び負極集電体2Aを介して外部素子と電気的に接続される。 Further, as in the electrochemical element 105 shown in FIG. 6, the stacking direction of the power generation element 12 which is a laminated body may be the extending direction of the exterior body 20. The power generation element 12 shown in FIG. 6 has a different stacking direction from the power generation element 11 shown in FIG. Also in the electrochemical element 105 shown in FIG. 6, the positive electrode current collectors 1A of the plurality of positive electrodes 1 are connected to each other, and the negative electrode current collectors 2A of the plurality of negative electrodes 2 are connected to each other. Therefore, each positive electrode 1 and each negative electrode 2 are electrically connected to an external element via the positive electrode current collector 1A and the negative electrode current collector 2A.

また図7に示す電気化学素子106のように、発電素子13は捲回体でもよい。図7に示す発電素子13は、正極1、セパレータ3、負極2、セパレータ3を順に積層し、一端側を軸に捲いて得られる。正極1と負極2とはセパレータ3を介して対向し、電気化学反応を行う。 Further, as in the electrochemical element 106 shown in FIG. 7, the power generation element 13 may be a wound body. The power generation element 13 shown in FIG. 7 is obtained by stacking a positive electrode 1, a separator 3, a negative electrode 2, and a separator 3 in this order and winding them around one end side. The positive electrode 1 and the negative electrode 2 face each other via the separator 3 and carry out an electrochemical reaction.

また捲回体の捲き軸方向は、外装体20の延在方向に限られず、外装体20の厚み方向でもよい。図8に示す電気化学素子107は、捲回体である発電素子14の捲き軸方向が、外装体20の厚み方向になっている。図8は、電気化学素子107を発電素子14の捲き軸中心を通る面で切断した断面図である。図8に示す発電素子14は、図7に示す発電素子13と捲き軸方向が異なる。図8に示す発電素子14は、正極1、セパレータ3、負極2、セパレータ3を順に積層し、一端側を軸に捲いて得られる。この際、正極1の正極集電体1Aは捲き軸方向の一端側に突出しており、負極2の負極集電体2Aは捲き軸方向の他端側に突出している。外装体20で発電素子14を被覆すると、正極集電体1Aの突出した部分及び負極集電体2Aの突出した部分がそれぞれ内部層22の導電部22Aと電気的に接続される。 Further, the winding axis direction of the wound body is not limited to the extending direction of the exterior body 20, and may be the thickness direction of the exterior body 20. In the electrochemical element 107 shown in FIG. 8, the winding axis direction of the power generation element 14 which is a wound body is the thickness direction of the exterior body 20. FIG. 8 is a cross-sectional view of the electrochemical element 107 cut along a plane passing through the center of the winding shaft of the power generation element 14. The power generation element 14 shown in FIG. 8 has a different winding axis direction from the power generation element 13 shown in FIG. 7. The power generation element 14 shown in FIG. 8 is obtained by stacking a positive electrode 1, a separator 3, a negative electrode 2, and a separator 3 in this order and winding them around one end side. At this time, the positive electrode current collector 1A of the positive electrode 1 projects to one end side in the winding axis direction, and the negative electrode current collector 2A of the negative electrode 2 projects to the other end side in the winding axis direction. When the power generation element 14 is covered with the exterior body 20, the protruding portion of the positive electrode current collector 1A and the protruding portion of the negative electrode current collector 2A are electrically connected to the conductive portion 22A of the inner layer 22, respectively.

「第2実施形態」
図9は、第2実施形態にかかる電気化学素子108の断面模式図である。図9に示す電気化学素子108は、外装体30の構成が第1実施形態にかかる電気化学素子100の外装体20の構成と異なる。外装体30は、金属層21と内部層22と外部層33とを有する点は第1実施形態にかかる外装体20と同一であるが、外部層33が非導電部のみからなる点が異なる。第1実施形態と同一の構成については、同一の符号を付す。
"Second embodiment"
FIG. 9 is a schematic cross-sectional view of the electrochemical element 108 according to the second embodiment. In the electrochemical element 108 shown in FIG. 9, the configuration of the exterior body 30 is different from the configuration of the exterior body 20 of the electrochemical element 100 according to the first embodiment. The exterior body 30 is the same as the exterior body 20 according to the first embodiment in that it has a metal layer 21, an inner layer 22, and an outer layer 33, except that the outer layer 33 is composed of only a non-conductive portion. The same components as those in the first embodiment are designated by the same reference numerals.

外部層33が非導電部のみからなる場合、発電素子10と外部素子との接続は、金属層21の端部を用いて行う。金属層21の端部に外部素子を接続することで、正極1及び負極2と外部素子とが、金属層21及び導電部22Aを介して接続される。 When the outer layer 33 is composed of only the non-conductive portion, the power generation element 10 and the external element are connected by using the end portion of the metal layer 21. By connecting the external element to the end of the metal layer 21, the positive electrode 1 and the negative electrode 2 and the external element are connected via the metal layer 21 and the conductive portion 22A.

外部層33には、第1実施形態にかかる非導電部22Bと同様の材料を用いることができる。外部層33は、導電部を形成する必要がない。そのため、外部層33の強度は、第1実施形態にかかる外部層23より高くなる。また外部層33が導電性を有さないことで、外部機器と電気化学素子108が接触しても外部機器と電気化学素子108とが短絡することがより抑制され、安全性が高まる。 For the outer layer 33, the same material as the non-conductive portion 22B according to the first embodiment can be used. The outer layer 33 does not need to form a conductive portion. Therefore, the strength of the outer layer 33 is higher than that of the outer layer 23 according to the first embodiment. Further, since the outer layer 33 does not have conductivity, even if the external device and the electrochemical element 108 come into contact with each other, the short circuit between the external device and the electrochemical element 108 is further suppressed, and the safety is enhanced.

[電気化学素子の製造方法]
電気化学素子の発電素子は、公知の方法で作製することができる。以下、図1に示す発電素子10を例に製造方法について具体的に説明する。
[Manufacturing method of electrochemical device]
The power generation element of the electrochemical element can be manufactured by a known method. Hereinafter, the manufacturing method will be specifically described by taking the power generation element 10 shown in FIG. 1 as an example.

まず、正極1及び負極2を作製する。正極1と負極2とは、活物質となる物質が異なるだけであり、同様の製造方法で作製できる。 First, the positive electrode 1 and the negative electrode 2 are manufactured. The positive electrode 1 and the negative electrode 2 differ only in the material used as the active material, and can be produced by the same manufacturing method.

正極活物質、バインダー及び溶媒を混合して塗料を作製する。必要に応じ導電材を更に加えても良い。溶媒としては例えば、水、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等を用いることができる。正極活物質、導電材、バインダーの構成比率は、質量比で80wt%〜98wt%:0.1wt%〜10wt%:0.1wt%〜10wt%であることが好ましい。これらの質量比は、全体で100wt%となるように調整される。 A coating material is prepared by mixing a positive electrode active material, a binder and a solvent. If necessary, a conductive material may be further added. As the solvent, for example, water, N-methyl-2-pyrrolidone, N, N-dimethylformamide and the like can be used. The composition ratio of the positive electrode active material, the conductive material, and the binder is preferably 80 wt% to 98 wt%: 0.1 wt% to 10 wt%: 0.1 wt% to 10 wt% in terms of mass ratio. These mass ratios are adjusted so as to be 100 wt% as a whole.

塗料を構成するこれらの成分の混合方法は特に制限されず、混合順序もまた特に制限されない。上記塗料を、正極集電体1Aに塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。負極についても、同様に負極集電体2A上に塗料を塗布する。 The method of mixing these components constituting the paint is not particularly limited, and the mixing order is also not particularly limited. The above paint is applied to the positive electrode current collector 1A. The coating method is not particularly limited, and a method usually adopted when producing an electrode can be used. For example, the slit die coat method and the doctor blade method can be mentioned. Similarly, for the negative electrode, a paint is applied on the negative electrode current collector 2A.

続いて、正極集電体1A及び負極集電体2A上に塗布された塗料中の溶媒を除去する。除去方法は特に限定されない。例えば、塗料が塗布された正極集電体1A及び負極集電体2Aを、80℃〜150℃の雰囲気下で乾燥させればよい。そして、正極1及び負極2が完成する。 Subsequently, the solvent in the paint applied on the positive electrode current collector 1A and the negative electrode current collector 2A is removed. The removal method is not particularly limited. For example, the positive electrode current collector 1A and the negative electrode current collector 2A coated with the paint may be dried in an atmosphere of 80 ° C. to 150 ° C. Then, the positive electrode 1 and the negative electrode 2 are completed.

最後に、正極1と負極2とをセパレータ3を介して挟むことで、発電素子10が作製される。 Finally, the power generation element 10 is manufactured by sandwiching the positive electrode 1 and the negative electrode 2 with the separator 3 interposed therebetween.

次いで、外装体20を作製する。外装体20は、金属層21と、内部層22と、外部層23とからなる。金属層に内部層、外部層を直接形成する方法と、それぞれ別々に作製しておいて積層する方法、及びこれらを併用する方法がある。積層は、加熱プレスや接着剤により貼り合わせる。積層に接着剤を使用する場合には、導電性の接着剤を使用する。 Next, the exterior body 20 is manufactured. The exterior body 20 includes a metal layer 21, an inner layer 22, and an outer layer 23. There are a method of directly forming an inner layer and an outer layer on a metal layer, a method of preparing each separately and laminating them, and a method of using these in combination. Lamination is performed by heating press or adhesive. When an adhesive is used for lamination, a conductive adhesive is used.

内部層22は、例えば二色成形技術を用いて作製できる。樹脂と導電材料が混在した樹脂組成物を所定パターンで射出成型し、その周縁部は導電材料を含まない樹脂組成物のみで射出成形することで、導電部22Aと非導電部22Bとが一体化した内部層22が形成される。 The inner layer 22 can be manufactured, for example, by using a two-color molding technique. A resin composition in which a resin and a conductive material are mixed is injection-molded in a predetermined pattern, and the peripheral portion thereof is injection-molded only with a resin composition containing no conductive material, whereby the conductive portion 22A and the non-conductive portion 22B are integrated. The inner layer 22 is formed.

内部層22を構成する導電部22Aと非導電部22Bの厚みは、金型内に射出する各々の樹脂組成物の量により調整できる。外部層23も同様の手段で作製できる。 The thickness of the conductive portion 22A and the non-conductive portion 22B constituting the inner layer 22 can be adjusted by adjusting the amount of each resin composition injected into the mold. The outer layer 23 can also be produced by the same means.

そして、作製した発電素子10を外装体20に封入する。電解液は外装体20内に注入してもよいし、発電素子10を電解液に含浸させてもよい。外装体20は、熱等を加えてラミネートすることで封止する。 Then, the produced power generation element 10 is enclosed in the exterior body 20. The electrolytic solution may be injected into the exterior body 20, or the power generation element 10 may be impregnated with the electrolytic solution. The exterior body 20 is sealed by applying heat or the like and laminating.

「実施例1」
まず、外装体を作製した。内部層は、構成する樹脂をポリプロピレン(PP)とし、導電部には導電性フィラーとしてカーボンを混入させた。また外部層は、構成する樹脂をポリエチレンテレフタラート(PET)とし、第2導電部には導電性フィラーとしてカーボンを混入させた。金属層は、正極に接続される側をAlとし、負極に接続される側をCuとした。
"Example 1"
First, an exterior body was produced. The inner layer was made of polypropylene (PP) as a constituent resin, and carbon was mixed into the conductive portion as a conductive filler. In the outer layer, the constituent resin was polyethylene terephthalate (PET), and carbon was mixed in the second conductive portion as a conductive filler. The metal layer was made of Al on the side connected to the positive electrode and Cu on the side connected to the negative electrode.

導電部と第2導電部の面積は同一であり、導電部と第2導電部を含む導電領域の面積を平面視で4.3cmとした。また内部層の導電部及び非導電部の平均厚みは、いずれも30μmにした。また同様に、外部層の第2導電部及び第2非導電部の平均厚みも30μmにした。すなわち、導電部の平均厚みに対する非導電部の平均厚みは1.0倍であり、第2導電部の平均厚みに対する第2非導電部の平均厚みは1.0倍であった。 The areas of the conductive portion and the second conductive portion are the same, and the area of the conductive region including the conductive portion and the second conductive portion is set to 4.3 cm 2 in a plan view. The average thickness of the conductive portion and the non-conductive portion of the inner layer was set to 30 μm. Similarly, the average thickness of the second conductive portion and the second non-conductive portion of the outer layer was also set to 30 μm. That is, the average thickness of the non-conductive portion was 1.0 times the average thickness of the conductive portion, and the average thickness of the second non-conductive portion was 1.0 times the average thickness of the second conductive portion.

次いで、発電素子を作製した。正極は、アルミ箔からなる正極集電体の一面に、正極活物質層を塗工した。正極活物質層は、94質量部のLiCoO(活物質)と、2質量部のカーボン(導電材)と、4質量部のポリフッ化ビニリデン(PVDF、バインダー)とを有する。 Next, a power generation element was manufactured. For the positive electrode, a positive electrode active material layer was applied to one surface of a positive electrode current collector made of aluminum foil. The positive electrode active material layer has 94 parts by mass of LiCoO 2 (active material), 2 parts by mass of carbon (conductive material), and 4 parts by mass of polyvinylidene fluoride (PVDF, binder).

同様に、銅箔からなる負極集電体の一面に、負極活物質層を塗工して負極を作製した。負極活物質層は、95質量部の黒鉛(活物質)と、1質量部のカーボン(導電材)と、1.5質量部のスチレンブタジエンゴム(SBR、バインダー)と、2.5質量部のカルボキシメチルセルロース(CMC、バインダー)とを有する。 Similarly, a negative electrode active material layer was applied to one surface of a negative electrode current collector made of copper foil to prepare a negative electrode. The negative electrode active material layer consists of 95 parts by mass of graphite (active material), 1 part by mass of carbon (conductive material), 1.5 parts by mass of styrene-butadiene rubber (SBR, binder), and 2.5 parts by mass. It has carboxymethyl cellulose (CMC, binder).

そして、セパレータとしてポリエチレンを用い、正極活物質層及び負極活物質層が互いにセパレータ側に向くように配置し、発電素子を作製した。発電素子の積層面の面積は、4.3cmとした。すなわち、外装体の導電領域(導電部及び第2導電部)の面積は、発電素子の積層面の面積と同一とした。 Then, polyethylene was used as the separator, and the positive electrode active material layer and the negative electrode active material layer were arranged so as to face each other toward the separator side to manufacture a power generation element. The area of the laminated surface of the power generation element was 4.3 cm 2 . That is, the area of the conductive region (conductive portion and the second conductive portion) of the exterior body was set to be the same as the area of the laminated surface of the power generation element.

得られた発電素子と電解液とを、作製した外装体内に封入し、電気化学素子を作製した。電解液は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを体積比で3:4:3とした溶媒中に、リチウム塩として1.0M(mol/L)のLiPFが添加したものを用いた。 The obtained power generation element and the electrolytic solution were sealed in the prepared exterior body to prepare an electrochemical device. The electrolytic solution is 1.0 M (mol / L) as a lithium salt in a solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 4: 3. The one to which LiPF 6 was added was used.

電気化学素子の耐久性を確認するために、充放電を100サイクル行った。そして、100サイクル後の故障率を測定した。サイクル試験は、100個サンプル行い、初回の発電容量に対して80%以下の値しか得られなくなったサンプルを故障として扱った。 In order to confirm the durability of the electrochemical element, charging and discharging were performed for 100 cycles. Then, the failure rate after 100 cycles was measured. In the cycle test, 100 samples were performed, and the sample in which a value of 80% or less was obtained with respect to the initial power generation capacity was treated as a failure.

またインピーダンス測定により電気化学素子の抵抗値を求めた。インピーダンスの測定条件は、10mVの印加電圧で、100mHzから100kHzまで交流周波数を変えながら間100点で計測した。そして、1kHzでの値を比較した。 Moreover, the resistance value of the electrochemical element was obtained by impedance measurement. The impedance measurement condition was an applied voltage of 10 mV, and the impedance was measured at 100 points while changing the AC frequency from 100 MHz to 100 kHz. Then, the values at 1 kHz were compared.

(実施例2〜4)
実施例2〜4では、内部層の導電部及び外部層の第2導電部を構成する導電材料を表1に示す材料に変えた点が実施例1と異なる。実施例1〜4に示すように、何れの導電材料を用いた場合も抵抗は充分小さかった。
(Examples 2 to 4)
Examples 2 to 4 differ from Example 1 in that the conductive materials constituting the conductive portion of the inner layer and the second conductive portion of the outer layer are changed to the materials shown in Table 1. As shown in Examples 1 to 4, the resistance was sufficiently small when any of the conductive materials was used.

(実施例5及び6)
実施例5及び6では、内部層の導電部と非導電部の厚みを変更した点が実施例1と異なる。導電部の厚みを固定し、非導電部の厚みを変更した。
(Examples 5 and 6)
Examples 5 and 6 differ from Example 1 in that the thicknesses of the conductive portion and the non-conductive portion of the inner layer are changed. The thickness of the conductive part was fixed, and the thickness of the non-conductive part was changed.

厚み比率が小さすぎると、抵抗値が上昇した。導電部が非導電部より薄すぎるため、内部の発電素子との接触が困難になったと考えられる。また、厚み比率が小さすぎる又は大きすぎると、100サイクル試験後の故障率が増加した。これは、充放電時の正極活物質層及び負極活物質層の膨張、収縮により、発電素子と内部層の導電部との接触不良が生じたり、導電部と非導電部の接合部でクラック等が発生したためと考えられる。 If the thickness ratio was too small, the resistance value increased. It is considered that the conductive portion is too thin as the non-conductive portion, which makes it difficult to contact the internal power generation element. Further, if the thickness ratio was too small or too large, the failure rate after the 100-cycle test increased. This is because the expansion and contraction of the positive electrode active material layer and the negative electrode active material layer during charging and discharging cause poor contact between the power generation element and the conductive part of the inner layer, cracks at the joint between the conductive part and the non-conductive part, etc. It is probable that this occurred.

(実施例7及び8)
実施例7及び8では、外部層の第2導電部と第2非導電部の厚みを変更した点が実施例1と異なる。第2導電部の厚みを固定し、第2非導電部の厚みを変更した。
(Examples 7 and 8)
Examples 7 and 8 differ from Example 1 in that the thicknesses of the second conductive portion and the second non-conductive portion of the outer layer are changed. The thickness of the second conductive portion was fixed, and the thickness of the second non-conductive portion was changed.

厚み比率が小さすぎる又は大きすぎると、100サイクル試験後の故障率が増加した。これは外部層の導電部と非導電部接合部に段差が生じ、充放電時の膨張、収縮の応力により、接合部でクラック等が発生したためと考えられる。また厚み比率が小さすぎると抵抗値が上昇した。外部層と内部層と合わせての導電部の総厚みが非導電部の総厚みよりも薄すぎるため、内部の発電素子との接触が困難になったと考えられる。 If the thickness ratio was too small or too large, the failure rate after the 100 cycle test increased. It is considered that this is because a step is generated between the conductive portion and the non-conductive portion of the outer layer, and cracks and the like are generated at the joint portion due to the stress of expansion and contraction during charging and discharging. If the thickness ratio was too small, the resistance value increased. It is considered that the total thickness of the conductive portion including the outer layer and the inner layer is too thin than the total thickness of the non-conductive portion, so that the contact with the internal power generation element becomes difficult.

(実施例9)
実施例9では、内部層の導電部と非導電部の厚み、及び、外部層の第2導電部と第2非導電部の厚みを変更した点が実施例1と異なる。導電部と第2導電部の総厚と、非導電部と第2非導電部の総厚とは等しかった。
(Example 9)
Example 9 is different from Example 1 in that the thicknesses of the conductive portion and the non-conductive portion of the inner layer and the thicknesses of the second conductive portion and the second non-conductive portion of the outer layer are changed. The total thickness of the conductive part and the second conductive part was equal to the total thickness of the non-conductive part and the second non-conductive part.

実施例9では、内部層と外部層とで厚みのずれが緩和されるため、100サイクル試験後の故障率も少なかった。 In Example 9, since the difference in thickness between the inner layer and the outer layer was alleviated, the failure rate after the 100-cycle test was also small.

(実施例10及び11)
実施例10および11では、発電素子の積層面の面積に対する導電領域の面積を変更し、内部層の導電部と非導電部の厚みを変更した点が実施例1と異なる。
(Examples 10 and 11)
Examples 10 and 11 differ from Example 1 in that the area of the conductive region with respect to the area of the laminated surface of the power generation element is changed, and the thicknesses of the conductive portion and the non-conductive portion of the inner layer are changed.

実施例10は、非導電部の厚みが導電部の厚みより厚いため、発電素子は導電部よりも先に非導電部と接触する。ラミネート時の圧力により初期の導通は確保できたが、抵抗値は高く、100サイクル試験後の故障率が増加した。充放電時の膨張、収縮により、発電素子と内部層の導電部との接触不良が生じたためと考えられる。これに対し導電部の厚みが非導電部の厚みより厚い実施例11は、抵抗値及び故障率のいずれも良好な結果であった。 In the tenth embodiment, since the thickness of the non-conductive portion is thicker than the thickness of the conductive portion, the power generation element comes into contact with the non-conductive portion before the conductive portion. Initial continuity could be ensured by the pressure during laminating, but the resistance value was high and the failure rate after the 100-cycle test increased. It is probable that the expansion and contraction during charging and discharging caused poor contact between the power generation element and the conductive portion of the inner layer. On the other hand, in Example 11 in which the thickness of the conductive portion was larger than the thickness of the non-conductive portion, both the resistance value and the failure rate were good results.

Figure 0006911460
Figure 0006911460

1…正極、1A…正極集電体、1B…正極活物質層、2…負極、2A…負極集電体、2B…負極活物質層、3…セパレータ、10,11,12…発電素子、10A…一面、20…外装体、21…金属層、22…内部層、22A…導電部、22B…非導電部、23…外部層、23A…第2導電部、23B…第2非導電部、24…封止部、26…突出部、100,101,102,103,104,105…電気化学素子 1 ... Positive electrode, 1A ... Positive electrode current collector, 1B ... Positive electrode active material layer, 2 ... Negative electrode, 2A ... Negative electrode current collector, 2B ... Negative electrode active material layer, 3 ... Separator, 10, 11, 12 ... Power generation element, 10A One side, 20 ... exterior body, 21 ... metal layer, 22 ... inner layer, 22A ... conductive part, 22B ... non-conductive part, 23 ... outer layer, 23A ... second conductive part, 23B ... second non-conductive part, 24 ... Sealing part, 26 ... Protruding part, 100, 101, 102, 103, 104, 105 ... Electrochemical element

Claims (8)

発電素子を被覆する外装体であって、
金属層と、前記金属層の前記発電素子側に設けられた内部層と、前記金属層の前記内部層と反対側に設けられた外部層とを有し、
前記内部層は、厚み方向に貫通する導電部と、非導電部と、を同一面内に有し、
前記外部層は、厚み方向に貫通する第2導電部と、第2非導電部と、を同一面内に有し、
前記発電素子は正極が露出した第1面と、負極が露出した第2面とを有し、
前記第1面を被覆する前記外装体の前記金属層はAlであり、
前記第2面を被覆する前記外装体の前記金属層はCu、Ni、Pt及びSUSからなる群から選択されるいずれかであり、
前記内部層は、前記導電部の平均厚みと前記非導電部の平均厚みとが異なり、
前記内部層の前記導電部の平均厚みと前記外部層の前記第2導電部の平均厚みとの総厚と、前記内部層の前記非導電部の平均厚みと前記外部層の前記第2非導電部の平均厚みの総厚と、が等しい、外装体。
An exterior body that covers a power generation element
It has a metal layer, an inner layer provided on the power generation element side of the metal layer, and an outer layer provided on the side opposite to the inner layer of the metal layer.
The inner layer has a conductive portion and a non-conductive portion penetrating in the thickness direction in the same plane.
The outer layer has a second conductive portion and a second non-conductive portion penetrating in the thickness direction in the same plane.
The power generation element has a first surface with an exposed positive electrode and a second surface with an exposed negative electrode.
The metal layer of the exterior body covering the first surface is Al.
The metal layer of the outer package body covering the second face Ri der one selected from the group consisting of Cu, Ni, Pt and SUS,
In the inner layer, the average thickness of the conductive portion and the average thickness of the non-conductive portion are different.
The total thickness of the conductive portion of the inner layer and the average thickness of the second conductive portion of the outer layer, the average thickness of the non-conductive portion of the inner layer, and the second non-conductive portion of the outer layer. An exterior body that is equal to the total thickness of the average thickness of the part.
前記導電部の平均厚みは、前記非導電部の平均厚みの0.5倍以上2.0倍以下である、請求項1に記載の外装体。 The exterior body according to claim 1, wherein the average thickness of the conductive portion is 0.5 times or more and 2.0 times or less the average thickness of the non-conductive portion. 前記導電部と前記非導電部とは同一樹脂を含み、前記導電部は導電性材料を含む、請求項1又は2に記載の外装体。 The exterior body according to claim 1 or 2, wherein the conductive portion and the non-conductive portion contain the same resin, and the conductive portion contains a conductive material. 前記第2導電部の平均厚みは、前記第2非導電部の平均厚みの0.5倍以上2.0倍以下である、請求項に記載の外装体。 The average thickness of the second conductive portion, the second is less than 2.0 times 0.5 times or more the average thickness of the non-conductive portion, the exterior body of claim 1. 前記第2導電部は、前記外部層の面内方向に対して垂直な方向から見て、前記導電部と重畳する位置に設けられている、請求項1〜4のいずれか一項に記載の外装体。 The second conductive portion according to any one of claims 1 to 4, wherein the second conductive portion is provided at a position where the second conductive portion overlaps with the conductive portion when viewed from a direction perpendicular to the in-plane direction of the outer layer. Exterior body. 請求項1〜のいずれか一項に記載の外装体と、前記外装体によって被覆された発電素子と、を有し、前記発電素子と前記外装体の導電部とが電気的に接続されている、電気化学素子。 The exterior body according to any one of claims 1 to 5 and a power generation element covered with the exterior body are provided, and the power generation element and the conductive portion of the exterior body are electrically connected to each other. There is an electrochemical element. 前記導電部の面積は、前記発電素子の前記外装体側の一面の面積がより狭い、請求項に記載の電気化学素子。 The electrochemical element according to claim 6 , wherein the area of the conductive portion is smaller than the area of one surface of the power generation element on the exterior body side. 前記導電部の平均厚みは、前記非導電部の平均厚みの1.0倍以上1.5倍以下である、請求項に記載の電気化学素子。 The electrochemical device according to claim 7 , wherein the average thickness of the conductive portion is 1.0 times or more and 1.5 times or less the average thickness of the non-conductive portion.
JP2017066583A 2017-03-30 2017-03-30 Exterior and electrochemical elements Active JP6911460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017066583A JP6911460B2 (en) 2017-03-30 2017-03-30 Exterior and electrochemical elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066583A JP6911460B2 (en) 2017-03-30 2017-03-30 Exterior and electrochemical elements

Publications (2)

Publication Number Publication Date
JP2018170164A JP2018170164A (en) 2018-11-01
JP6911460B2 true JP6911460B2 (en) 2021-07-28

Family

ID=64019366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017066583A Active JP6911460B2 (en) 2017-03-30 2017-03-30 Exterior and electrochemical elements

Country Status (1)

Country Link
JP (1) JP6911460B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575065U (en) * 1978-11-17 1980-05-23
JP2856365B2 (en) * 1991-03-15 1999-02-10 株式会社村田製作所 Flat power supply element
JP2002246008A (en) * 1997-11-10 2002-08-30 Ngk Insulators Ltd Lithium secondary battery
JP4107054B2 (en) * 2002-11-08 2008-06-25 日産自動車株式会社 Thin battery
JP4305277B2 (en) * 2004-05-18 2009-07-29 堺化学工業株式会社 Electrode interface protective film forming agent and lithium secondary battery for lithium secondary battery
JP4720384B2 (en) * 2005-09-01 2011-07-13 日産自動車株式会社 Bipolar battery
JP5034651B2 (en) * 2007-04-24 2012-09-26 トヨタ自動車株式会社 Non-aqueous electrolyte battery current collector, method for producing current collector for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP6694246B2 (en) * 2014-08-18 2020-05-13 昭和電工パッケージング株式会社 Thin electricity storage device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018170164A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US10396352B2 (en) Non-aqueous electrolyte battery, method for manufacturing same, and non-aqueous electrolyte battery system
JP2010020974A (en) Flat rechargeable battery and method of manufacturing the same
JP2011175847A (en) Outer package for electrochemical device, and electrochemical device
JP6874472B2 (en) Lithium ion secondary battery
JP2019164964A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2021192289A1 (en) Current collector, power storage element, and power storage module
JP7020167B2 (en) Non-aqueous electrolyte secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2018170142A (en) Lithium ion secondary battery
JP6962231B2 (en) Non-aqueous electrolyte secondary battery
JP5109441B2 (en) Lithium ion secondary battery manufacturing method and lithium ion secondary battery
JP7069938B2 (en) Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery using it
JP2020149920A (en) Lithium secondary battery
JP6855882B2 (en) Positive electrode and lithium ion secondary battery
JP2011216209A (en) Laminated battery and its manufacturing method
JP6908073B2 (en) Non-aqueous electrolyte secondary battery
JP6911460B2 (en) Exterior and electrochemical elements
JP2018170162A (en) Nonaqueous electrolyte secondary battery
JP7024540B2 (en) Electrochemical element
CN112335091B (en) Lithium ion secondary battery
JP7276317B2 (en) Non-aqueous electrolyte secondary battery
US20150340690A1 (en) Energy storage device
JP2021096901A (en) Lithium ion secondary battery
JP2016085884A (en) battery
JPWO2019182110A1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6911460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150