JP2007250499A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2007250499A
JP2007250499A JP2006076245A JP2006076245A JP2007250499A JP 2007250499 A JP2007250499 A JP 2007250499A JP 2006076245 A JP2006076245 A JP 2006076245A JP 2006076245 A JP2006076245 A JP 2006076245A JP 2007250499 A JP2007250499 A JP 2007250499A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
lithium ion
active material
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006076245A
Other languages
Japanese (ja)
Inventor
Katsuya Mitani
勝哉 三谷
Masaaki Kibe
昌明 木部
Hidemasa Kawai
英正 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006076245A priority Critical patent/JP2007250499A/en
Publication of JP2007250499A publication Critical patent/JP2007250499A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery improved in electrical property such as rate characteristics and cycle characteristics by using a plurality of positive electrode active materials. <P>SOLUTION: When a plurality of kinds of positive electrode active materials are used, lithium insertion and elimination reaction potential of the positive electrode material of a first positive electrode layer 2a on nearer side to the positive electrode current collector 1 is made lower than that of the positive electrode material of a second positive electrode layer 2b which is farther side from the positive electrode current collector 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に関し、詳しくは電気特性の向上に適した電極構造を有するリチウムイオン二次電池に関するものである。   The present invention relates to a lithium ion secondary battery, and more particularly to a lithium ion secondary battery having an electrode structure suitable for improving electrical characteristics.

非水電解質二次電池は様々なものが実用化されており、その一つとしてリチウムイオン二次電池がある。リチウムイオン二次電池は、小型軽量でかつ高容量であることから携帯電子、通信機器や、電動アシスト自転車、電動工具などにも用いられるようになってきているが、大電流を必要とする用途ではレート特性が充分ではなく、またサイクル特性などの電気特性についても更なる特性向上が求められている。   Various non-aqueous electrolyte secondary batteries have been put into practical use, and one of them is a lithium ion secondary battery. Lithium ion secondary batteries are small, light, and have high capacity, so they are also used in portable electronics, communication equipment, electric assist bicycles, electric tools, etc. However, the rate characteristics are not sufficient, and further improvement in characteristics is required for electrical characteristics such as cycle characteristics.

このリチウムイオン二次電池の正極活物質としては、一般的にコバルト酸リチウム、スピネルマンガン酸リチウム等がそれぞれ単独に用いられていることが多かったが、最近では特性改善のために、これらを混合して用いることも検討されている。   As the positive electrode active material of this lithium ion secondary battery, lithium cobaltate, lithium spinel manganate, etc. were generally used alone, but recently, these have been mixed to improve the characteristics. It is also considered to be used.

これらの正極活物質を混合し、正極層として用いる場合に、リチウムイオン二次電池の電位−電流プロファイルは、それぞれの電極活物質の電位−電流プロファイルを合わせたものが全体の反応プロファイルを示すが、従来は、それぞれの電極活物質が混合されて一層の正極電極を構成していたため、レート特性等の電気特性の向上は充分なものではなかった。   When these positive electrode active materials are mixed and used as the positive electrode layer, the potential-current profile of the lithium ion secondary battery is the sum of the potential-current profiles of the respective electrode active materials, indicating the overall reaction profile. Conventionally, since the respective electrode active materials are mixed to form a single positive electrode, the electrical characteristics such as the rate characteristics are not sufficiently improved.

特許文献1においては、二種の正極活物質を塗布する場合、正極集電体を挟んで、別々の正極活物質を含むスラリーを塗布し、正極を作製する技術が開示されている。   Patent Document 1 discloses a technique for producing a positive electrode by applying a slurry containing different positive electrode active materials with a positive electrode current collector sandwiched between two types of positive electrode active materials.

また、特許文献2においては、正極集電体に、LiXCo1-YNiYZで表される正極材料を複数層積層させ正極集電体に近い正極材料の層中のCoの原子比に比べ正極集電体から離れた正極材料の層中のCoの原子比が多くなるようにした技術が開示されている。 Further, in Patent Document 2, a plurality of positive electrode materials represented by Li X Co 1-Y Ni Y O Z are stacked on a positive electrode current collector, and Co atoms in a layer of the positive electrode material close to the positive electrode current collector are obtained. A technique is disclosed in which the atomic ratio of Co in the layer of the positive electrode material remote from the positive electrode current collector is larger than the ratio.

特開2003−257415号公報JP 2003-257415 A 特開平10−255762号公報Japanese Patent Laid-Open No. 10-255762

特許文献1では、最も外側の正極活物質を、示差走査熱量測定による発熱開始温度がより低いものを用いることにより、安全性を向上させることが記載されているが、正極集電体の片面毎に第一層、および第二層を設ける構成をとっているため、安全性にのみ配慮され、電気特性の向上は充分なものではなかった。   In Patent Document 1, it is described that the outermost positive electrode active material is improved in safety by using a material having a lower heat generation start temperature by differential scanning calorimetry, but for each side of the positive electrode current collector, Since the first layer and the second layer are provided, the safety is considered only, and the improvement of the electrical characteristics is not sufficient.

また、特許文献2では、正極集電体から離れた正極材料の層中のCoの原子比が多くなるようにすることにより、正極材料と非水電解液等との界面における反応が抑制されることが記載されているが、レート特性等の電気特性の向上は充分なものではなかった。   In Patent Document 2, the reaction at the interface between the positive electrode material and the non-aqueous electrolyte is suppressed by increasing the atomic ratio of Co in the positive electrode material layer away from the positive electrode current collector. However, the improvement in electrical characteristics such as rate characteristics was not sufficient.

本発明の課題は、複数の正極活物質を使用してレート特性、ならびにサイクル特性等の電気特性を向上したリチウムイオン二次電池を提供することにある。   The subject of this invention is providing the lithium ion secondary battery which improved the electrical characteristics, such as a rate characteristic and cycling characteristics, using the several positive electrode active material.

本発明は、前記課題を解決するため、複数の正極活物質を用いて、リチウムの挿入・脱離反応が起こる電位に応じて、正極集電体上に、電位の低いほうから順に複数の正極活物質層それぞれ独立にスラリーを作製、コーティングすることにより、それぞれの正極活物質の反応電位に応じた反応効率を向上させることによって、レート特性、ならびにサイクル特性を向上させることができることを見出した結果なされたものである。   In order to solve the above-mentioned problem, the present invention uses a plurality of positive electrode active materials to form a plurality of positive electrodes on the positive electrode current collector in order from the lowest potential according to the potential at which lithium insertion / extraction reaction occurs. Results of finding that rate characteristics as well as cycle characteristics can be improved by improving the reaction efficiency according to the reaction potential of each positive electrode active material by preparing and coating slurry independently for each active material layer It was made.

本発明のリチウムイオン二次電池は、正極電極と負極電極をセパレータを介して積層したリチウムイオン二次電池において、正極集電体上に複数の正極層を有し、前記正極集電体に近い側の前記正極層の正極活物質のリチウム挿入脱離反応電位が、前記正極集電体から遠い側の前記正極層の正極活物質のリチウム挿入脱離反応電位より低いことを特徴とする。   The lithium ion secondary battery of the present invention is a lithium ion secondary battery in which a positive electrode and a negative electrode are laminated via a separator, and has a plurality of positive electrode layers on a positive electrode current collector, and is close to the positive electrode current collector The lithium insertion / release reaction potential of the positive electrode active material of the positive electrode layer on the side is lower than the lithium insertion / release reaction potential of the positive electrode active material of the positive electrode layer on the side far from the positive electrode current collector.

また、前記複数の正極層は二層からなり、前記正極集電体に接する第一の正極層の正極活物質のリチウム挿入脱離反応電位が、前記正極集電体から遠い側の第二の正極層の正極活物質のリチウム挿入脱離反応電位より低く、前記第一の正極層の塗布量が第二の正極層の塗布量以下であることを特徴とする。前記第一の正極層の正極活物質はLiCo1/3Ni1/3Mn1/32を用いることが好ましく、前記第二の正極層の正極活物質はLiCoO2を用いることが好ましい。 The plurality of positive electrode layers are composed of two layers, and the lithium insertion / release reaction potential of the positive electrode active material of the first positive electrode layer in contact with the positive electrode current collector is a second side far from the positive electrode current collector. The positive electrode active material of the positive electrode layer is lower than the lithium insertion / release reaction potential, and the coating amount of the first positive electrode layer is less than or equal to the coating amount of the second positive electrode layer. LiCo 1/3 Ni 1/3 Mn 1/3 O 2 is preferably used as the positive electrode active material of the first positive electrode layer, and LiCoO 2 is preferably used as the positive electrode active material of the second positive electrode layer.

本発明によれば、複数種の正極活物質を用いるリチウムイオン二次電池において、正極活物質固有のリチウムイオン挿入・脱離電位の低い正極活物質を含む正極層を正極集電体に近い側に配置することにより、反応効率を向上させた結果、レート特性、ならびにサイクル特性を向上させることができる。   According to the present invention, in a lithium ion secondary battery using a plurality of types of positive electrode active materials, the positive electrode layer containing the positive electrode active material having a low lithium ion insertion / desorption potential specific to the positive electrode active material is closer to the positive electrode current collector. As a result of improving the reaction efficiency, rate characteristics and cycle characteristics can be improved.

本発明のリチウムイオン二次電池は、正極電極と負極電極をセパレータを介して積層し、電池外装体に収納して非水電解液を注液した後、封止して製造する。   The lithium ion secondary battery of the present invention is manufactured by laminating a positive electrode and a negative electrode through a separator, storing the battery in a battery outer package, injecting a non-aqueous electrolyte, and then sealing.

本発明のリチウムイオン二次電池において用いることのできる正極活物質としてはLiMO2(ただしMは、少なくとも一つの遷移金属を表す)である複合酸化物、たとえばLiCoO2、LiNiO2、LiMn24、LiCo1/3Ni1/3Mn1/32などがあげられる。例えばアルミニウム箔からなる正極集電体上に複数の正極層を形成するが、正極集電体に近い側の正極層は、リチウム挿入脱離反応電位の低い正極活物質、例えばLiCo1/3Ni1/3Mn1/32をカーボンブラックのような導電助剤、ポリフッ化ビニリデン(PVdF)のような結着剤をN−メチル−2−ピロリドン(NMP)に分散させることにより、スラリーを調製し、このスラリーを例えば、アルミ箔上に塗布することによりコーティングし、乾燥させ形成する。正極集電体の片面に形成した後、裏面にも同様に形成し両面に正極層を形成する。その後、リチウム挿入脱離反応電位の高い正極活物質、たとえばLiCoO2を、カーボンブラックのような導電助剤、PVdFのような結着剤をNMPに分散させ、スラリーを調製し、上述の正極集電体に近い側の正極層上に塗布、乾燥することにより、正極集電体から遠い側の正極層として両面に形成し、圧縮して正極電極を作製する。このとき正極集電体により近い側の正極層の塗布量が正極集電体により遠い側の正極層の塗布量以下とするとよりよい。なお、塗布量とは単位面積あたりの活物質の固体成分(電極活物質、導電助材、結着材)の重量としている。また、ここで用いたLiCo1/3Ni1/3Mn1/32、LiCoO2のほか、複数の正極層について、正極集電体により近い側の正極層の正極活物質のリチウム挿入脱離反応電位が、正極集電体により遠い側の正極活物質のリチウム挿入脱離反応電位より低いものであれば、特に限定されるものではない。 The positive electrode active material that can be used in the lithium ion secondary battery of the present invention is a composite oxide that is LiMO 2 (where M represents at least one transition metal), such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4. LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and the like. For example, a plurality of positive electrode layers are formed on a positive electrode current collector made of an aluminum foil. The positive electrode layer on the side close to the positive electrode current collector is a positive electrode active material having a low lithium insertion / release reaction potential, for example, LiCo 1/3 Ni Dispersing 1/3 Mn 1/3 O 2 in N-methyl-2-pyrrolidone (NMP) with a conductive aid such as carbon black and a binder such as polyvinylidene fluoride (PVdF) The slurry is prepared and coated, for example, by applying it on an aluminum foil and dried to form. After forming on one surface of the positive electrode current collector, the same is formed on the back surface, and a positive electrode layer is formed on both surfaces. Thereafter, a positive electrode active material having a high lithium insertion / elimination reaction potential, such as LiCoO 2 , is dispersed in NMP with a conductive aid such as carbon black and a binder such as PVdF, and a slurry is prepared. By coating and drying on the positive electrode layer on the side close to the electric body, the positive electrode layer on the side far from the positive electrode current collector is formed on both sides and compressed to produce a positive electrode. At this time, it is better that the coating amount of the positive electrode layer closer to the positive electrode current collector is less than or equal to the coating amount of the positive electrode layer farther from the positive electrode current collector. The coating amount is the weight of the solid component (electrode active material, conductive additive, binder) of the active material per unit area. Further, in addition to LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiCoO 2 used here, lithium insertion / extraction of the positive electrode active material of the positive electrode layer closer to the positive electrode current collector for a plurality of positive electrode layers. There is no particular limitation as long as the separation reaction potential is lower than the lithium insertion / elimination reaction potential of the cathode active material farther from the cathode current collector.

本発明のリチウムイオン二次電池において負極活物質として、天然黒鉛、人造黒鉛等を用いることができる。負極電極は例えば銅箔からなる負極集電体上に負極活物質をカーボンブラックなどの導電助剤、ポリフッ化ビニリデン(PVdF)のような結着剤をN−メチル−2−ピロリドン(NMP)に分散させることにより、スラリーを調製し、このスラリーを例えば、銅箔上に塗布することによりコーティングし、乾燥させ、圧縮して作製する。   In the lithium ion secondary battery of the present invention, natural graphite, artificial graphite or the like can be used as the negative electrode active material. For example, the negative electrode is formed on a negative electrode current collector made of copper foil, the negative electrode active material is a conductive additive such as carbon black, and a binder such as polyvinylidene fluoride (PVdF) is N-methyl-2-pyrrolidone (NMP). A slurry is prepared by dispersing, and the slurry is coated, for example, by applying on a copper foil, dried and compressed.

セパレータとしてはポリプロピレン、ポリエチレン等のポリオレフィン樹脂、フッ素樹脂等の多孔性フィルムなどが使用できる。   As the separator, a polyolefin resin such as polypropylene or polyethylene, a porous film such as a fluororesin, or the like can be used.

電解液としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エーテル等の脂肪カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−ジエトキシエタン、エトキメトキシエタン等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキシラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾノジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル等の非プロトン性溶媒一種、あるいは二種以上を混合して使用し、これらの有機溶媒に溶解するリチウム塩を溶解させる。リチウム塩としては、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、Li(CF3SO22、LiBr、LiCl、低脂肪酸カルボン酸リチウム、イミド類が挙げられる。また、電解液に代えてポリマー電解質を用いてもよい。 Examples of the electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, and vinylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate, methyl formate, and methyl acetate. , Fatty carboxylic acid esters such as propionate ether, γ-lactones such as γ-butyrolactone, chain ethers such as 1,2-diethoxyethane and ethoxymethoxyethane, and cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran Dimethyl sulfoxide, 1,3-dioxirane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, Ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether One kind of aprotic solvent such as the above or a mixture of two or more kinds is used to dissolve the lithium salt dissolved in these organic solvents. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , Li (CF 3 SO 2 ) 2 , LiBr, LiCl, low fatty acid carboxylic acid lithium, and imides. Further, a polymer electrolyte may be used instead of the electrolytic solution.

以下、本発明を実施例に基づき、図面を参照してさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically based on examples with reference to the drawings.

(実施例1)
図1は、本発明のリチウムイオン二次電池の正極電極の構成を説明する断面図である。正極活物質を95重量部、導電助剤としてカーボンブラックを2重量部、結着剤としてPVdFを3重量部となるように混合し、これをNMP溶液と混合してスラリーを調整し、このスラリーを厚さ15μmのアルミニウム製の集電体の片面にドクターブレード法により塗布して活物質層を形成した。
Example 1
FIG. 1 is a cross-sectional view illustrating the configuration of the positive electrode of the lithium ion secondary battery of the present invention. The slurry was prepared by mixing 95 parts by weight of the positive electrode active material, 2 parts by weight of carbon black as a conductive additive, and 3 parts by weight of PVdF as a binder, and mixing this with an NMP solution to prepare a slurry. Was applied to one side of an aluminum current collector with a thickness of 15 μm by a doctor blade method to form an active material layer.

実際の手順としては、正極集電体1に接する第一の正極層2aとして、LiCo1/3Ni1/3Mn1/32を活物質として含む層を、正極集電体1から遠い側の第二の正極層2bとして、LiCoO2を活物質として含む層をアルミニウムからなる正極集電体1の上に順に塗布、乾燥し、リチウムイオン二次電池の正極層を作製した。全体の正極層に対する第一の正極層2aの塗布量を25%として正極層を作製した。 As an actual procedure, as the first positive electrode layer 2 a in contact with the positive electrode current collector 1, a layer containing LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as an active material is far from the positive electrode current collector 1. As the second positive electrode layer 2b on the side, a layer containing LiCoO 2 as an active material was sequentially applied onto the positive electrode current collector 1 made of aluminum and dried to prepare a positive electrode layer of a lithium ion secondary battery. The positive electrode layer was produced by setting the coating amount of the first positive electrode layer 2a to the entire positive electrode layer to 25%.

負極活物質としては、人造黒鉛を用いた。負極活物質を95重量部、導電助剤としてカーボンブラックを2重量部、結着剤としてPVdFを3重量部となるように混合し、これをNMP溶液と混合してスラリーを調製し、このスラリーを厚さ20μmの銅製の集電体の両面にドクターブレード法により塗布して負極活物質層を得た。   Artificial graphite was used as the negative electrode active material. A slurry is prepared by mixing 95 parts by weight of the negative electrode active material, 2 parts by weight of carbon black as a conductive assistant, and 3 parts by weight of PVdF as a binder, and mixing this with an NMP solution. Was applied to both sides of a copper current collector with a thickness of 20 μm by the doctor blade method to obtain a negative electrode active material layer.

上述した正極層、負極層、およびセパレータを用いて二次電池を組み立て、電解液を注入しリチウムイオン電池を作製した。電解液はエチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(混合容積比:EC/DEC=30/70)に1モル/lの濃度でLiPF6を溶解させて用いた。 A secondary battery was assembled using the above-described positive electrode layer, negative electrode layer, and separator, and an electrolyte was injected to produce a lithium ion battery. The electrolyte was used by dissolving LiPF 6 at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (mixing volume ratio: EC / DEC = 30/70).

(実施例2)
全体の正極層に対する第一の正極層の塗布量を50%としたほかは、実施例1と同様にリチウムイオン二次電池を作製した。
(Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount of the first positive electrode layer applied to the entire positive electrode layer was 50%.

(比較例1)
全体の正極層に対する第一の正極層の塗布量を60%としたほかは、実施例1と同様にリチウムイオン二次電池を作製した。
(Comparative Example 1)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the coating amount of the first positive electrode layer with respect to the entire positive electrode layer was 60%.

(比較例2)
正極集電体に接する第一の正極層として、LiCoO2を活物質として含む層の塗布量を75%とし、正極集電体から遠い側の第二の正極層として、LiCo1/3Ni1/3Mn1/32を活物質として含む層の塗布量を25%としたほかは、実施例1と同様にリチウムイオン二次電池を作製した。
(Comparative Example 2)
As a first positive electrode layer in contact with the positive electrode current collector, a coating amount of a layer containing LiCoO 2 as an active material is 75%, and as a second positive electrode layer far from the positive electrode current collector, LiCo 1/3 Ni 1 is used. / 3 A lithium ion secondary battery was fabricated in the same manner as in Example 1 except that the coating amount of the layer containing Mn 1/3 O 2 as an active material was 25%.

(比較例3)
図2は、従来のリチウムイオン電池の正極電極の構成を説明する断面図である。正極活物質としてLiCoO2を75重量部、LiCo1/3Ni1/3Mn1/32を25重量部で混合し、スラリーを作製し、正極集電体1の上に塗布し、正極層2を形成した他は、実施例1と同様にリチウムイオン二次電池を作製した。
(Comparative Example 3)
FIG. 2 is a cross-sectional view illustrating the configuration of the positive electrode of a conventional lithium ion battery. As a positive electrode active material, 75 parts by weight of LiCoO 2 and 25 parts by weight of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 are mixed to prepare a slurry, which is applied onto the positive electrode current collector 1, A lithium ion secondary battery was produced in the same manner as in Example 1 except that the layer 2 was formed.

上述のようにして得られたリチウムイオン二次電池のレート特性、および容量維持率を測定した。レート特性は電池電圧4.2Vまで充電し(充電条件:電流0.2C、2.5時間、20℃)0.2Cで電池電圧3.0Vまで放電して得られた放電容量に対する1.0Cで電池電圧3.0Vまで放電して得られた放電容量の比率を比較例3を100%として表し、容量維持率は、充放電サイクル条件として、充電(上限電圧4.2V、電流0.2C、2.5時間、20℃)放電(下限電圧3.0V、電流0.2C、20℃)とした場合の1サイクル目の放電容量に対する500サイクル目の放電容量の比率を比較例3を100%として表した。実施例1、実施例2、比較例1〜比較例3のレート特性と容量維持率を表1に、レート特性と第一の正極層の塗布量の全体の正極層の塗布量に対する割合との関係を図3に示した。   The rate characteristics and capacity retention rate of the lithium ion secondary battery obtained as described above were measured. The rate characteristic is 1.0 C relative to the discharge capacity obtained by charging the battery voltage to 4.2 V (charging condition: current 0.2 C, 2.5 hours, 20 ° C.) and discharging to 0.2 V battery voltage at 0.2 C. The ratio of the discharge capacity obtained by discharging the battery voltage to 3.0V was expressed as Comparative Example 3 as 100%, and the capacity maintenance rate was charged (upper limit voltage 4.2V, current 0.2C) as the charge / discharge cycle conditions. , 2.5 hours, 20 ° C.) The ratio of the discharge capacity at the 500th cycle to the discharge capacity at the first cycle when the discharge (lower limit voltage is 3.0 V, current 0.2 C, 20 ° C.) is set to 100 in Comparative Example 3. Expressed as%. The rate characteristics and capacity retention rates of Example 1, Example 2, and Comparative Examples 1 to 3 are shown in Table 1. The rate characteristics and the ratio of the coating amount of the first positive electrode layer to the total coating amount of the positive electrode layer The relationship is shown in FIG.

Figure 2007250499
Figure 2007250499

これらの結果から、正極層を1層とした比較例3に対し実施例1ではレート特性が4%、サイクルにおける容量維持率が10%向上し、実施例2ではレート特性が1%、サイクルにおける容量維持率が9%向上したことがわかる。   From these results, compared to Comparative Example 3 in which the positive electrode layer is one layer, the rate characteristic is improved by 4% in Example 1 and the capacity retention rate in the cycle is improved by 10%. In Example 2, the rate characteristic is increased by 1% and in the cycle. It can be seen that the capacity retention rate improved by 9%.

また、比較例3に対し比較例1では、レート特性は同等であるが、容量維持率が3%向上し、比較例2では、レート特性が2%、容量維持率が3%悪化したことがわかる。   Further, in Comparative Example 1, the rate characteristic is the same as that in Comparative Example 3, but the capacity retention rate is improved by 3%, and in Comparative Example 2, the rate characteristic is deteriorated by 2% and the capacity maintenance ratio is deteriorated by 3%. Recognize.

なお本実施例ではLiCoO2とLiCo1/3Ni1/3Mn1/32の例を示したが、反応電位の低いものから順に、2種以上を選択し配置すれば本実施例に限らず本発明の効果が得られる。 In this example, LiCoO 2 and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 are shown as examples. However, if two or more kinds are selected and arranged in order from the lowest reaction potential, the present example is used. The effects of the present invention are not limited.

本発明のリチウムイオン二次電池の正極電極の構成を説明する断面図。Sectional drawing explaining the structure of the positive electrode of the lithium ion secondary battery of this invention. 従来のリチウムイオン二次電池の正極電極の構成を説明する断面図。Sectional drawing explaining the structure of the positive electrode of the conventional lithium ion secondary battery. レート特性と第一の正極層の塗布量の全体の正極層の塗布量に対する割合を示す図。The figure which shows the ratio with respect to the coating amount of the whole positive electrode layer of a rate characteristic and the coating amount of a 1st positive electrode layer.

符号の説明Explanation of symbols

1 正極集電体
2a 第一の正極層
2b 第二の正極層
2 正極層
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2a 1st positive electrode layer 2b 2nd positive electrode layer 2 Positive electrode layer

Claims (4)

正極電極と負極電極をセパレータを介して積層したリチウムイオン電池において、正極集電体上に複数の正極層を有し、前記正極集電体に近い側の前記正極層の正極活物質のリチウム挿入脱離反応電位が、前記正極集電体から遠い側の前記正極層の正極活物質のリチウム挿入脱離反応電位より低いことを特徴とするリチウムイオン二次電池。   In a lithium ion battery in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween, a plurality of positive electrode layers are provided on a positive electrode current collector, and lithium is inserted into the positive electrode active material of the positive electrode layer on the side close to the positive electrode current collector A lithium ion secondary battery, wherein a desorption reaction potential is lower than a lithium insertion desorption reaction potential of a positive electrode active material of the positive electrode layer far from the positive electrode current collector. 正極電極と負極電極をセパレータを介して積層したリチウムイオン電池において、正極集電体上に二層の正極層を有し、前記正極集電体に接する第一の正極層の正極活物質のリチウム挿入脱離反応電位が、前記正極集電体から遠い側の第二の正極層の正極活物質のリチウム挿入脱離反応電位より低く、前記第一の正極層の塗布量が第二の正極層の塗布量以下であることを特徴とする請求項1記載のリチウムイオン二次電池。   In a lithium ion battery in which a positive electrode and a negative electrode are laminated via a separator, the positive electrode active material lithium of the first positive electrode layer having two positive electrode layers on the positive electrode current collector and in contact with the positive electrode current collector The insertion / desorption reaction potential is lower than the lithium insertion / release reaction potential of the positive electrode active material of the second positive electrode layer far from the positive electrode current collector, and the coating amount of the first positive electrode layer is the second positive electrode layer The lithium ion secondary battery according to claim 1, wherein the amount is less than or equal to the amount of coating. 前記第一の正極層の正極活物質がLiCo1/3Ni1/3Mn1/32であることを特徴とする請求項2に記載のリチウムイオン二次電池。 3. The lithium ion secondary battery according to claim 2, wherein the positive electrode active material of the first positive electrode layer is LiCo 1/3 Ni 1/3 Mn 1/3 O 2 . 前記第二の正極層の正極活物質がLiCoO2であることを特徴とする請求項2または3に記載のリチウムイオン二次電池。 4. The lithium ion secondary battery according to claim 2 , wherein the positive electrode active material of the second positive electrode layer is LiCoO 2. 5 .
JP2006076245A 2006-03-20 2006-03-20 Lithium ion secondary battery Pending JP2007250499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006076245A JP2007250499A (en) 2006-03-20 2006-03-20 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006076245A JP2007250499A (en) 2006-03-20 2006-03-20 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2007250499A true JP2007250499A (en) 2007-09-27

Family

ID=38594543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006076245A Pending JP2007250499A (en) 2006-03-20 2006-03-20 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2007250499A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105017A (en) * 2007-10-25 2009-05-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2015011959A (en) * 2013-07-02 2015-01-19 三菱マテリアル株式会社 Lithium ion secondary battery
WO2015079546A1 (en) * 2013-11-29 2015-06-04 株式会社日立製作所 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018147790A (en) * 2017-03-07 2018-09-20 日産自動車株式会社 Positive electrode for lithium ion secondary battery and battery using the same
JP2022534232A (en) * 2019-05-24 2022-07-28 三星エスディアイ株式会社 Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105017A (en) * 2007-10-25 2009-05-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2015011959A (en) * 2013-07-02 2015-01-19 三菱マテリアル株式会社 Lithium ion secondary battery
WO2015079546A1 (en) * 2013-11-29 2015-06-04 株式会社日立製作所 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018147790A (en) * 2017-03-07 2018-09-20 日産自動車株式会社 Positive electrode for lithium ion secondary battery and battery using the same
JP2022534232A (en) * 2019-05-24 2022-07-28 三星エスディアイ株式会社 Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
JP7282925B2 (en) 2019-05-24 2023-05-29 三星エスディアイ株式会社 Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
JP5213015B2 (en) Lithium ion secondary battery
JP5948660B2 (en) Non-aqueous electrolyte and lithium secondary battery including the same
CN108808098B (en) Method for manufacturing lithium ion secondary battery
US20050186474A1 (en) Positive electrodes for lithium batteries and their methods of fabrication
WO2015037451A1 (en) Lithium ion secondary battery
JP5263954B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP6054517B2 (en) Nonaqueous electrolyte secondary battery
WO2014141875A1 (en) Lithium secondary cell pack, as well as electronic device, charging system, and charging method using said pack
JP2009252705A (en) Non-aqueous electrolyte secondary battery
JP2008097879A (en) Lithium ion secondary battery
WO2014133165A1 (en) Lithium-ion secondary cell
WO2011004483A1 (en) Polymer gel electrolyte and polymer secondary battery using same
JP6241015B2 (en) Lithium secondary battery
JP2009009727A (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using it
JP7276957B2 (en) lithium ion secondary battery
US9831526B2 (en) Lithium secondary battery
JP5234739B2 (en) Method for producing lithium ion secondary battery
JP2007250499A (en) Lithium ion secondary battery
JP2009170384A (en) Lithium secondary battery
JP5326923B2 (en) Non-aqueous electrolyte secondary battery
KR20140098447A (en) Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
JP5023649B2 (en) Lithium ion secondary battery
JP2004158213A (en) Manufacturing method of nonaqueous electrolyte secondary battery
KR20200126781A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
US20140093789A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same