JP5948660B2 - Non-aqueous electrolyte and lithium secondary battery including the same - Google Patents

Non-aqueous electrolyte and lithium secondary battery including the same Download PDF

Info

Publication number
JP5948660B2
JP5948660B2 JP2014554678A JP2014554678A JP5948660B2 JP 5948660 B2 JP5948660 B2 JP 5948660B2 JP 2014554678 A JP2014554678 A JP 2014554678A JP 2014554678 A JP2014554678 A JP 2014554678A JP 5948660 B2 JP5948660 B2 JP 5948660B2
Authority
JP
Japan
Prior art keywords
carbonate
lithium
lithium secondary
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014554678A
Other languages
Japanese (ja)
Other versions
JP2015509271A (en
Inventor
ミン リム、ヨン
ミン リム、ヨン
ヘン リー、チュル
ヘン リー、チュル
ホ アン、キョウン
ホ アン、キョウン
キュン ヤン、ドー
キュン ヤン、ドー
Original Assignee
エルジー・ケム・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ケム・リミテッド filed Critical エルジー・ケム・リミテッド
Publication of JP2015509271A publication Critical patent/JP2015509271A/en
Application granted granted Critical
Publication of JP5948660B2 publication Critical patent/JP5948660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、プロピレンカーボネート(Propylene carbonate; PC)及びリチウムビスフルオロスルホニルイミド(Lithium bis(fluorosulfonyl)imide; LiFSI)を含む非水性電解液及びこれを含むリチウム二次電池に関する。   The present invention relates to a non-aqueous electrolyte containing propylene carbonate (PC) and lithium bis (fluorosulfonyl) imide (LiFSI), and a lithium secondary battery including the same.

モバイル機器に対する技術開発と需要が増加するに伴い、エネルギー源としての二次電池の需要が急激に増加しており、このような二次電池のいずれか高いエネルギー密度と電圧を有するリチウム二次電池が実用化され、広く用いられている。   As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources has increased rapidly, and lithium secondary batteries having the higher energy density and voltage of such secondary batteries. Has been put into practical use and widely used.

リチウム二次電池の正極活物質としては、リチウム金属酸化物が用いられ、負極活物質としては、リチウム金属、リチウム合金、結晶質又は非晶質炭素又は炭素複合体が用いられている。前記活物質を適当な厚さと長さで集電体に塗布するか、或いは活物質自体をフィルム状に塗布して絶縁体であるセパレータとともに巻いたり積層して電極群を作ってから、缶又はこれと類似の容器に入れた後、電解液を注入して二次電池を製造する。   As the positive electrode active material of the lithium secondary battery, lithium metal oxide is used, and as the negative electrode active material, lithium metal, lithium alloy, crystalline or amorphous carbon, or carbon composite is used. The active material is applied to the current collector with an appropriate thickness and length, or the active material itself is applied in the form of a film and wound or laminated together with a separator as an insulator to form an electrode group. After putting it in a similar container, an electrolytic solution is injected to manufacture a secondary battery.

このようなリチウム二次電池は、正極のリチウム金属酸化物からリチウムイオンが負極の黒鉛電極に挿入(intercalation)され脱離(deintercalation)される過程を繰り返しつつ充放電が行われる。この際、リチウムは反応性が強いため炭素電極と反応してLiCO、LiO又はLiOHなどを生成させ、負極の表面に被膜を形成することができる。このような被膜を固体電解質(Solid Electrolyte Interface; SEI)被膜というが、充電初期に形成されたSEI被膜は、充放電中におけるリチウムイオンと炭素負極又は他の物質との反応を防ぐことができる。また、イオントンネル(Ion Tunnel)の役割を行って、リチウムイオンのみを通過させることができる。このイオントンネルは、リチウムイオンを溶媒化(solvation)させてともに移動する分子量の大きい電解液の有機溶媒等が炭素負極にともにコインターカレーションされ、炭素負極の構造を崩壊させることを防ぐ役割を果たす。 Such a lithium secondary battery is charged and discharged while repeating a process in which lithium ions are intercalated and deintercalated from the lithium metal oxide of the positive electrode into the graphite electrode of the negative electrode. At this time, since lithium is highly reactive, it reacts with the carbon electrode to generate Li 2 CO 3 , LiO, LiOH, or the like, and a film can be formed on the surface of the negative electrode. Such a coating is referred to as a solid electrolyte interface (SEI) coating, but the SEI coating formed at the initial stage of charging can prevent the reaction between lithium ions and the carbon negative electrode or other substances during charging and discharging. Also, it can function as an ion tunnel and allow only lithium ions to pass therethrough. This ion tunnel prevents lithium ions from solvating and co-intercalating with the carbon negative electrode, such as organic solvents in electrolytes with a large molecular weight that move together with the lithium ion and dissolve the structure of the carbon negative electrode. .

したがって、リチウム二次電池の高温サイクル特性及び低温出力を向上させるためには、必ずリチウム二次電池の負極に強固なSEI被膜を形成しなければならない。SEI被膜は、最初の充電時に一旦形成されると、それ以後の電池使用による充放電の繰り返しの際に、リチウムイオンと負極又は他の物質との反応を防ぎ、電解液と負極との間でリチウムイオンのみを通過させるイオントンネル(Ion Tunnel)としての役割を行うこととなる。   Therefore, in order to improve the high temperature cycle characteristics and low temperature output of the lithium secondary battery, a strong SEI film must be formed on the negative electrode of the lithium secondary battery. Once the SEI film is formed at the time of first charge, the reaction between lithium ions and the negative electrode or other substances is prevented during repeated charging and discharging of the battery after that, and between the electrolyte and the negative electrode. It will serve as an ion tunnel that allows only lithium ions to pass through.

一般的に、リチウムイオン電池の電解質としては、エチレンカーボネート(Ethylene Carbonate; EC)を基本とした二/三成分系電解質が用いられる。しかし、ECは融点が高いため使用温度が制限されており、低温において相当な電池性能の低下をもたらし得る。   In general, a two-component electrolyte based on ethylene carbonate (EC) is used as an electrolyte of a lithium ion battery. However, since EC has a high melting point, its use temperature is limited, and it can lead to considerable battery performance degradation at low temperatures.

本発明の解決しようとする課題は、低温出力特性を改善するだけでなく、高温サイクル特性、高温貯蔵後の出力特性、容量特性及びスウェリング特性を向上させることができるリチウム二次電池用非水性電解液及びこれを含むリチウム二次電池を提供することである。   The problem to be solved by the present invention is not only to improve low-temperature output characteristics, but also to improve the high-temperature cycle characteristics, output characteristics after high-temperature storage, capacity characteristics and swelling characteristics non-aqueous for lithium secondary batteries An electrolytic solution and a lithium secondary battery including the same are provided.

前記解決しようとする課題を解決するために、本発明は、i)プロピレンカーボネート(PC)を含む非水性有機溶媒;及びii)リチウムビスフルオロスルホニルイミド(Lithium bis(fluorosulfonyl)imide; LiFSI)を含む非水性電解液を提供する。   In order to solve the problems to be solved, the present invention includes i) a non-aqueous organic solvent containing propylene carbonate (PC); and ii) lithium bis (fluorosulfonyl) imide (LiFSI). A non-aqueous electrolyte is provided.

また、本発明は、正極活物質を含む正極;負極活物質を含む負極;前記正極と前記負極との間に介在されたセパレータ;及び前記非水性電解液を含むリチウム二次電池を提供する。   The present invention also provides a lithium secondary battery including a positive electrode including a positive electrode active material; a negative electrode including a negative electrode active material; a separator interposed between the positive electrode and the negative electrode; and the non-aqueous electrolyte.

本発明の非水性電解液によると、これを含むリチウム二次電池の初期充電時に負極で強固なSEI膜を形成させることにより、低温出力特性を向上させることはもちろん、高温サイクル特性、高温貯蔵後の出力特性、容量特性やスウェリング特性を向上させることができる。   According to the non-aqueous electrolyte of the present invention, a low-temperature output characteristic can be improved by forming a strong SEI film at the negative electrode during initial charging of a lithium secondary battery including the same, as well as high-temperature cycle characteristics, after high-temperature storage. Output characteristics, capacitance characteristics, and swelling characteristics can be improved.

実験例1に基づいて、実施例1、及び比較例1から3のリチウム二次電池のSOC(充電深度)に伴う低温出力特性を測定した結果を示すグラフである。6 is a graph showing results of measuring low-temperature output characteristics associated with SOC (charge depth) of lithium secondary batteries of Example 1 and Comparative Examples 1 to 3 based on Experimental Example 1. FIG. 実験例2に基づいて、実施例1、及び比較例1から3のリチウム二次電池のサイクル数に伴う容量特性を測定した結果を示すグラフである。6 is a graph showing results of measuring capacity characteristics according to the number of cycles of lithium secondary batteries of Example 1 and Comparative Examples 1 to 3 based on Experimental Example 2. FIG. 実験例3に基づいて、実施例1、及び比較例1から3のリチウム二次電池の高温貯蔵後、貯蔵期間に伴うSOC 50%での出力特性を測定した結果を示すグラフである。It is a graph which shows the result of having measured the output characteristic in 50% of SOC accompanying a storage period after high temperature storage of the lithium secondary battery of Example 1 and Comparative Examples 1 to 3 based on Experimental Example 3. 実験例4に基づいて、実施例1、及び比較例1から3のリチウム二次電池の高温貯蔵後、貯蔵期間に伴う容量特性を測定した結果を示すグラフである。It is a graph which shows the result of having measured the capacity | capacitance characteristic accompanying a storage period after high temperature storage of the lithium secondary battery of Example 1 and Comparative Examples 1 to 3 based on Experimental Example 4. 実験例5に基づいて、実施例1、及び比較例1から3のリチウム二次電池の高温貯蔵後、貯蔵期間に伴うスウェリング(swelling)特性を測定した結果を示すグラフである。6 is a graph showing results of measuring swelling characteristics associated with a storage period after high-temperature storage of lithium secondary batteries of Example 1 and Comparative Examples 1 to 3 based on Experimental Example 5. FIG. 実験例6に基づいて、実施例1と2、及び比較例4のリチウム二次電池のSOC(充電深度) に伴う低温出力特性を測定した結果を示すグラフである。7 is a graph showing results of measuring low-temperature output characteristics associated with SOC (charge depth) of lithium secondary batteries of Examples 1 and 2 and Comparative Example 4 based on Experimental Example 6. FIG. 実験例7に基づいて、実施例1と2、及び比較例4のリチウム二次電池のサイクル数に伴う容量特性を測定した結果を示すグラフである。10 is a graph showing results of measuring capacity characteristics according to the number of cycles of lithium secondary batteries of Examples 1 and 2 and Comparative Example 4 based on Experimental Example 7. FIG. 実験例8に基づいて、実施例1と2、及び比較例4のリチウム二次電池の高温貯蔵後、貯蔵期間に伴う容量特性を測定した結果を示すグラフである。It is a graph which shows the result of having measured the capacity | capacitance characteristic with a storage period after high temperature storage of the lithium secondary battery of Examples 1 and 2 and the comparative example 4 based on Experimental example 8. FIG.

以下、本発明に対する理解を助けるために、本発明をさらに詳細に説明する。本明細書及び特許請求の範囲に用いられた用語や単語は、通常的且つ辞典的な意味に限定して解釈されてはならず、発明者は、自分の発明を最善の方法で説明するために用語の概念を適切に定義することができるとの原則に立脚して、本発明の技術的思想に符合する意味と概念として解釈されるべきである。   Hereinafter, the present invention will be described in more detail in order to facilitate understanding of the present invention. Terms and words used in this specification and claims should not be construed to be limited to ordinary and dictionary meanings, and the inventor should describe his invention in the best possible manner. Based on the principle that the concept of terms can be appropriately defined, it should be interpreted as a meaning and concept consistent with the technical idea of the present invention.

本発明の一実施例に係る非水性電解液は、プロピレンカーボネート(Propylene Carbonate; PC)を含む非水性有機溶媒及びリチウムビスフルオロスルホニルイミド(Lithium bis(fluorosulfonyl)imide; LiFSI)を含むことができる。   The non-aqueous electrolyte according to an embodiment of the present invention may include a non-aqueous organic solvent including propylene carbonate (PC) and lithium bis (fluorosulfonyl) imide (LiFSI).

本発明の一実施例によると、プロピレンカーボネート(PC)の溶媒下にリチウムビスフルオロスルホニルイミドを組み合わせて用いる場合、初期充電時に負極で強固なSEI膜を形成させることにより、低温出力特性を向上させることはもちろん、 55℃以上の高温サイクル動作時に生じることのできる正極表面の分解を抑制し、電解液の酸化反応を防止し、スウェリング(swelling)現象を抑制して電池の容量を向上させることができる。   According to one embodiment of the present invention, when lithium bisfluorosulfonylimide is used in combination under a solvent of propylene carbonate (PC), a low-temperature output characteristic is improved by forming a strong SEI film on the negative electrode during initial charging. Of course, to suppress the decomposition of the positive electrode surface that can occur during high-temperature cycle operation of 55 ° C or higher, to prevent the oxidation reaction of the electrolyte, to suppress the swelling phenomenon and to improve the capacity of the battery Can do.

一般的に、リチウムイオン電池の電解質として、エチレンカーボネート(Ethylene Carbonate; EC)を基本とした二/三成分系電解質が用いられてきた。しかし、ECは融点が高いため使用温度が制限されており、低温において相当な電池性能の低下をもたらす。これに反し、プロピレンカーボネートを含む電解質は、エチレンカーボネートの電解質よりは広い温度範囲を有しつつ、電解質として優れた役割を行える長所がある。   In general, a two-component electrolyte based on ethylene carbonate (EC) has been used as an electrolyte of a lithium ion battery. However, since EC has a high melting point, its use temperature is limited, and the battery performance is considerably lowered at low temperatures. On the other hand, an electrolyte containing propylene carbonate has an advantage that it can perform an excellent role as an electrolyte while having a wider temperature range than an electrolyte of ethylene carbonate.

しかし、溶媒としてプロピレンカーボネートをLiPFなどのリチウム塩とともに用いる場合、プロピレンカーボネートは、炭素電極を用いるリチウムイオン電池でSEI被膜を形成する過程、及びプロピレンカーボネートによって溶媒化されたリチウムイオンが炭素層の間に挿入される過程において、莫大な容量の非可逆反応が生じることがある。これは、高温サイクル特性などの電池の性能が低下する問題を引き起こすことがある。 However, when propylene carbonate is used together with a lithium salt such as LiPF 6 as a solvent, propylene carbonate is a process of forming an SEI film in a lithium ion battery using a carbon electrode, and lithium ions solvated by propylene carbonate are formed in the carbon layer. An enormous volume of irreversible reaction may occur during the intercalation process. This can cause problems such as high temperature cycling characteristics that degrade battery performance.

また、プロピレンカーボネートによって溶媒化されたリチウムイオンが、負極を構成する炭素層に挿入される際、炭素表面層の剥離(exfoliation)が進み得る。このような剥離は、炭素層の間で溶媒が分解される際に発生する気体が炭素層の間に大きなねじれを誘発することで発生し得る。このような炭素表面層の剥離や電解液の分解は継続して進行され得、これによりプロピレンカーボネートを含む電解液を炭素系負極材と併用する場合に効果的なSEIが生成されず、リチウムイオンが挿入され得ないことがある。   Further, when lithium ions solvated with propylene carbonate are inserted into the carbon layer constituting the negative electrode, exfoliation of the carbon surface layer can proceed. Such exfoliation may occur when a gas generated when the solvent is decomposed between the carbon layers induces a large twist between the carbon layers. Such peeling of the carbon surface layer and decomposition of the electrolytic solution can be continued, and thus, when using an electrolytic solution containing propylene carbonate together with a carbon-based negative electrode material, effective SEI is not generated, and lithium ion May not be inserted.

本発明では、エチレンカーボネートの使用による低温特性の問題を、融点が低いプロピレンカーボネートを用いて解決し、プロピレンカーボネートとLiPFなどのリチウム塩をともに用いる場合の前記のような問題点をリチウムビスフルオロスルホニルイミドを用いて、これらを組み合わせることで解決できるものである。 In the present invention, the problem of low-temperature characteristics due to the use of ethylene carbonate is solved by using propylene carbonate having a low melting point, and the above-described problems when using both propylene carbonate and a lithium salt such as LiPF 6 are solved. This can be solved by combining these using sulfonylimide.

本発明の一実施例によると、前記リチウムビスフルオロスルホニルイミドは非水性電解液中の濃度が0.1mole/lから2mole/lであることが好ましく、0.6 mole/lから1.5 mole/lがさらに好ましい。前記リチウムビスフルオロスルホニルイミドの濃度が前記範囲未満であれば、電池の低温出力改善及び高温サイクル特性の改善の効果が僅かなものであり、前記リチウムビスフルオロスルホニルイミドの濃度が前記範囲を超えると、電池の充放電時に電解液内の副反応が過度に発生し、スウェリング(swelling)現象が起こることがある。   According to an embodiment of the present invention, the concentration of the lithium bisfluorosulfonylimide in the non-aqueous electrolyte is preferably 0.1 mole / l to 2 mole / l, and 0.6 mole / l to 1.5 mole. More preferred is / l. If the concentration of the lithium bisfluorosulfonylimide is less than the above range, the effect of improving the low-temperature output of the battery and improving the high-temperature cycle characteristics is slight, and when the concentration of the lithium bisfluorosulfonylimide exceeds the above range When the battery is charged / discharged, a side reaction in the electrolyte may occur excessively, and a swelling phenomenon may occur.

このような副反応をさらに防止するため、本発明の非水性電解液には、リチウム塩をさらに含むことができる。前記リチウム塩は、当分野で通常用いられるリチウム塩を用いることができ、例えばLiPF、LiBF、LiSbF、LiAsF、LiClO、LiN(CFSO)、LiN(CFSO)、CFSOLi、LiC(CFSO)及びLiCBOからなる群から選ばれるいずれか、又はこれらのうち2種以上の混合物を含むことができる。 In order to further prevent such a side reaction, the nonaqueous electrolytic solution of the present invention may further contain a lithium salt. As the lithium salt, a lithium salt usually used in the art can be used. For example, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 One selected from the group consisting of SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) 3 and LiC 4 BO 8 , or a mixture of two or more of these may be included.

本発明の一実施例によると、前記リチウム塩とリチウムビスフルオロスルホニルイミドの混合比を調節することにより、リチウム二次電池の低温出力特性、高温貯蔵後の容量特性及びサイクル特性を向上させることができる。   According to one embodiment of the present invention, by adjusting the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide, the low temperature output characteristics, the capacity characteristics after high temperature storage and the cycle characteristics of the lithium secondary battery can be improved. it can.

具体的には、前記リチウム塩とリチウムビスフルオロスルホニルイミドの混合比はモル比で、1:6から9であることが好ましい。前記リチウム塩とリチウムビスフルオロスルホニルイミドの混合比が前記モル比の範囲外の場合、電池の充放電時に電解液内の副反応が過度に発生し、スウェリング(swelling)現象が起こることがある。具体的には、前記リチウム塩とリチウムビスフルオロスルホニルイミドの混合比がモル比で、1:6未満の場合、リチウムイオン電池でSEI被膜を形成する過程、及びプロピレンカーボネートによって溶媒化されたリチウムイオンが負極の間に挿入される過程において莫大な容量の非可逆反応が生じることがあり、負極表面層(例えば、炭素表面層)の剥離や電解液の分解により、二次電池の低温出力改善、高温貯蔵後、サイクル特性及び容量特性の改善の効果が僅かであり得る。   Specifically, the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide is preferably 1: 6 to 9 in molar ratio. If the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide is outside the range of the molar ratio, side reactions in the electrolyte may occur excessively during battery charging / discharging, and a swelling phenomenon may occur. . Specifically, when the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide is less than 1: 6, the process of forming the SEI film in the lithium ion battery, and lithium ions solvated with propylene carbonate An enormous capacity irreversible reaction may occur in the process of inserting between the negative electrodes, improving the low-temperature output of the secondary battery by peeling the negative electrode surface layer (for example, the carbon surface layer) or decomposing the electrolyte, After high temperature storage, the effect of improving cycle characteristics and capacity characteristics may be slight.

一方、本発明の一実施例に係る非水性有機溶媒として、プロピレンカーボネートは非水性有機溶媒100重量部を基準に5重量部から60重量部、好ましくは10重量部から50重量部で含まれ得る。前記プロピレンカーボネートの含量が5重量部より少ないと、高温サイクル時に正極表面の分解によりガスが持続的に生じて電池の厚さが増加されるスウェリング現象が発生することがあり、60重量部を超える場合、初期充電時に負極で強固なSEI膜を形成させ難い可能性がある。   Meanwhile, as a non-aqueous organic solvent according to an embodiment of the present invention, propylene carbonate may be included in an amount of 5 to 60 parts by weight, preferably 10 to 50 parts by weight, based on 100 parts by weight of the non-aqueous organic solvent. . If the content of propylene carbonate is less than 5 parts by weight, a swelling phenomenon may occur in which gas is continuously generated due to decomposition of the positive electrode surface during a high-temperature cycle and the thickness of the battery is increased. If it exceeds, it may be difficult to form a strong SEI film on the negative electrode during initial charging.

また、前記プロピレンカーボネートの他に、非水性電解液に含まれ得る非水性有機溶媒としては、電池の充放電過程で酸化反応などによる分解が最小化され得て、添加剤とともに目的とする特性を発揮することができるものであれば制限がない。   In addition to the propylene carbonate, the non-aqueous organic solvent that can be included in the non-aqueous electrolyte solution can minimize degradation due to oxidation reaction during the charge / discharge process of the battery, and has the desired characteristics together with the additive. There is no limit as long as it can be demonstrated.

本発明の一実施例に係る非水性有機溶媒は、好ましくは、エチレンカーボネート(EC)を含まないことが好ましく、例えば、エチルプロピオネート(Ethyl Propionate; EP)、メチルプロピオネート(Methyl Propionate; MP)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)、エステル系、エーテル系やケトン系有機溶媒からなる群から選ばれるいずれか、又はこれらのうち2種以上の混合物をさらに含むことができる。   The non-aqueous organic solvent according to one embodiment of the present invention preferably does not contain ethylene carbonate (EC), such as ethyl propionate (EP), methyl propionate (Methyl Propionate; MP), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), ester Any one selected from the group consisting of organic, etheric and ketone organic solvents, or a mixture of two or more of these can be further included.

一方、本発明の一実施例に係る非水性電解液は、ビニリデンカーボネート系化合物及びスルトン(sultone)系化合物をさらに含むことができる。   Meanwhile, the non-aqueous electrolyte according to an embodiment of the present invention may further include a vinylidene carbonate compound and a sultone compound.

前記ビニレンカーボネート系化合物は、SEI膜を形成する役割をすることができる。前記ビニレンカーボネート系化合物の種類は、前記役割をすることができるものであれば制限はなく、例えば、ビニレンカーボネート(vinylene carbonate; VC)、ビニレンエチレンカーボネート(vinylene ethylene carbonate; VEC)、又はこれらの混合物を含むことができる。この中でも特に、ビニレンカーボネートを含むことが好ましい。   The vinylene carbonate-based compound can serve to form an SEI film. The type of the vinylene carbonate-based compound is not limited as long as it can perform the above-described role, and for example, vinylene carbonate (VC), vinylene ethylene carbonate (VEC), or a mixture thereof. Can be included. Among these, it is particularly preferable to contain vinylene carbonate.

また、本発明の一実施例に係りさらに含まれ得るスルトン系化合物は、電池の低温出力及び高温サイクル特性を向上させる役割をすることができる。前記スルトン系化合物の種類は、前記役割をすることができるものであれば制限はなく、例えば、前記1,3-プロパンスルトン(1,3-propane sultone; PS)、1,4-ブタンスルトン、1,3-プロペンスルトンからなる群から選ばれるいずれか、又はこれらの2種以上の混合物を含むことができる。この中でも特に1,3-プロパンスルトンを含むことが好ましい。   In addition, the sultone-based compound that can be further included in one embodiment of the present invention can improve the low-temperature output and high-temperature cycle characteristics of the battery. The type of the sultone-based compound is not limited as long as it can perform the above-mentioned role. For example, the 1,3-propane sultone (PS), 1,4-butane sultone, Any one selected from the group consisting of 1,3-propene sultone, or a mixture of two or more thereof. Among these, it is particularly preferable to contain 1,3-propane sultone.

一方、本発明の一実施例に係るリチウム二次電池は、正極活物質を含む正極;負極活物質を含む負極;前記正極と前記負極との間に介在されたセパレータ;及び前記非水性電解液を含むことができる。   Meanwhile, a lithium secondary battery according to an embodiment of the present invention includes a positive electrode including a positive electrode active material; a negative electrode including a negative electrode active material; a separator interposed between the positive electrode and the negative electrode; and the non-aqueous electrolyte. Can be included.

ここで、前記正極活物質は、マンガン系スピネル(spinel)活物質、リチウム金属酸化物又はこれらの混合物を含むことができる。さらに、前記リチウム金属酸化物は、リチウム-マンガン系酸化物、リチウム-ニッケル-マンガン系酸化物、リチウム-マンガン-コバルト系酸化物及びリチウム-ニッケル-マンガン-コバルト系酸化物からなる群から選ばれ得、より具体的には、LiCoO、LiNiO、LiMnO、LiMnO、Li(NiaCobMnc)O(ここで、0<a<1、0<b<1、0<c<1、a+b+c=1)、LiNi1-YCoYO、LiCo1-YMnYO、LiNi1-YMnYO(ここで、0≦Y<1)、Li(NiaCobMnc)O(0<a<2、0<b<2、0<c<2、a+b+c=2)、LiMn2-zNizO、LiMn2-zCozO(ここで、0<Z<2)を含むことができる。 Here, the positive active material may include a manganese-based spinel active material, a lithium metal oxide, or a mixture thereof. Further, the lithium metal oxide is selected from the group consisting of lithium-manganese oxide, lithium-nickel-manganese oxide, lithium-manganese-cobalt oxide, and lithium-nickel-manganese-cobalt oxide. More specifically, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (where 0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1), LiNi 1-Y Co Y O 2 , LiCo 1-Y Mn Y O 2 , LiNi 1-Y Mn Y O 2 (where 0 ≦ Y <1) , Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), LiMn 2-z Ni z O 4 , LiMn 2-z Co z O 4 (where 0 <Z <2) may be included.

一方、前記負極活物質としては、結晶質炭素、非晶質炭素又は炭素複合体のような炭素系負極活物質が単独で又は2種以上が混合され用いられ得、好ましくは、結晶質炭素として天然黒鉛と人造黒鉛のような黒鉛質(graphite)炭素を含むことができる。   On the other hand, as the negative electrode active material, a carbon-based negative electrode active material such as crystalline carbon, amorphous carbon, or a carbon composite may be used alone or in combination of two or more, preferably as crystalline carbon Graphite carbon such as natural graphite and artificial graphite can be included.

また、前記セパレータは、多孔性高分子フィルム、例えばエチレン単独重合体、プロピレン単独重合体、エチレン/ブテン共重合体、エチレン/ヘキセン共重合体及びエチレン/メタクリレート共重合体などのようなポリオレフィン系高分子で製造した多孔性高分子フィルムが単独で又は2種以上が積層されたものであり得る。これ以外に、通常の多孔性不織布、例えば高融点のガラス繊維、ポリエチレンテレフタレート繊維などからなる不織布を用いることができ、これに限定されるものではない。
[発明を実施するための形態]
The separator is a porous polymer film, for example, a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and an ethylene / methacrylate copolymer. The porous polymer film manufactured by the molecule | numerator may be what was individual, or 2 or more types were laminated | stacked. In addition to this, a normal porous nonwoven fabric, for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber or the like can be used, but is not limited thereto.
[Mode for Carrying Out the Invention]

以下、実施例及び実験例を挙げてさらに説明するが、本発明はこれらの実施例及び実験例により限定されるものではない。   Hereinafter, although an example and an experimental example are given and explained further, the present invention is not limited by these examples and an experimental example.

[非水性電解液の製造]   [Production of non-aqueous electrolyte]

プロピレンカーボネート(PC):エチルメチルカーボネート(EMC):ジメチルカーボネート(DMC)= 2:4:4(体積比)の組成を有する非水性有機溶媒及び非水性電解液の総量を基準に、LiPF0.1mole/l及びリチウムビスフルオロスルホニルイミド(LiFSI)0.9 mole/l、ビニレンカーボネート(VC)3重量%及び1,3-プロパンスルトン(PS)0.5重量%を添加して、非水性電解液を製造した。 Based on the total amount of non-aqueous organic solvent and non-aqueous electrolyte having a composition of propylene carbonate (PC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) = 2: 4: 4 (volume ratio), LiPF 60 0.1 mole / l and 0.9 mole / l lithium bisfluorosulfonylimide (LiFSI), 3% by weight vinylene carbonate (VC) and 0.5% by weight 1,3-propane sultone (PS) were added to make the mixture non-aqueous. An electrolyte was produced.

[リチウム二次電池の製造]
正極活物質としてLiMnO及びLi(Ni0.33Co0.33Mn0.33)Oの混合物96重量%、導電材としてカーボンブラック(carbon black)3重量%、バインダーとしてポリビニリデンフルオライド(PVdF)3重量%を溶媒のN-メチル-2-ピロリドン(NMP)に添加して正極混合物スラリーを製造した。前記正極混合物スラリーを厚さ20μm程度の正極集電体であるアルミニウム(Al)薄膜に塗布し、乾燥して正極を製造した後、ロールプレス(roll press)を実施して正極を製造した。
[Manufacture of lithium secondary batteries]
96% by weight of a mixture of LiMn 2 O 4 and Li (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 as a positive electrode active material, 3% by weight of carbon black as a conductive material, and polyvinylidene fluoride as a binder A positive electrode mixture slurry was prepared by adding 3% by weight of ride (PVdF) to the solvent N-methyl-2-pyrrolidone (NMP). The positive electrode mixture slurry was applied to an aluminum (Al) thin film as a positive electrode current collector having a thickness of about 20 μm and dried to produce a positive electrode, and then a roll press was performed to produce a positive electrode.

また、負極活物質として炭素粉末、バインダーとしてPVdF、導電材としてカーボンブラック(carbon black)をそれぞれ96重量%、3重量%及び1重量%とし、溶媒のNMPに添加して負極混合物スラリーを製造した。前記負極混合物スラリーを厚さ10μmの負極集電体である銅(Cu)薄膜に塗布し、乾燥して負極を製造した後、ロールプレス(roll press)を実施して負極を製造した。   Further, a negative electrode active material was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive material to 96 wt%, 3 wt%, and 1 wt%, respectively, and adding them to NMP as a solvent. . The negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 μm, and dried to produce a negative electrode, and then a roll press was performed to produce a negative electrode.

このように製造された正極と負極をPEセパレータとともに通常の方法でポリマー型電池の製作後、製造された前記非水性電解液を注液して、リチウム二次電池の製造を完成した。   The positive electrode and negative electrode manufactured in this way were manufactured together with a PE separator by a conventional method, and then the manufactured non-aqueous electrolyte was injected to complete the manufacture of a lithium secondary battery.

非水性電解液の総量を基準に、LiPF0.1 mole /lとリチウムビスフルオロスルホニルイミド(LiFSI)0.6 mole/lを用いたことを除いては、実施例1と同一の方法で行い、非水性電解液及びリチウム二次電池を製造した。 In the same manner as in Example 1, except that LiPF 6 0.1 mole / l and lithium bisfluorosulfonylimide (LiFSI) 0.6 mole / l were used based on the total amount of the non-aqueous electrolyte. A non-aqueous electrolyte and a lithium secondary battery were manufactured.

[比較例1]
エチレンカーボネート(EC):エチルメチルカーボネート(EMC):ジメチルカーボネート(DMC)= 3:3:4(体積比)の組成を有する非水性有機溶媒を用いて、リチウム塩として LiPFを単独で用いたことを除いては、実施例1と同一の方法で行い、非水性電解液及びリチウム二次電池を製造した。
[Comparative Example 1]
Using a non-aqueous organic solvent having a composition of ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) = 3: 3: 4 (volume ratio), LiPF 6 was used alone as a lithium salt. Except for this, a non-aqueous electrolyte and a lithium secondary battery were produced in the same manner as in Example 1.

[比較例2]
エチレンカーボネート(EC):エチルメチルカーボネート(EMC):ジメチルカーボネート(DMC)= 3:3:4(体積比)の組成を有する非水性有機溶媒を用いたことを除いては、実施例1と同一の方法で行い、非水性電解液及びリチウム二次電池を製造した。
[Comparative Example 2]
Same as Example 1 except that a non-aqueous organic solvent having a composition of ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) = 3: 3: 4 (volume ratio) was used. Thus, a non-aqueous electrolyte and a lithium secondary battery were produced.

[比較例3]
リチウム塩として LiPFを単独で用いたことを除いては、実施例1と同一の方法で行い、非水性電解液及びリチウム二次電池を製造した。
[Comparative Example 3]
A non-aqueous electrolyte and a lithium secondary battery were manufactured in the same manner as in Example 1 except that LiPF 6 was used alone as a lithium salt.

[比較例4]
非水性電解液の総量を基準に 、LiPF 0.1 mole /lとリチウムビスフルオロスルホニルイミド(LiFSI)0.5 mole/lを用いたことを除いては、実施例1と同一の方法で行い、非水性電解液及びリチウム二次電池を製造した。
[Comparative Example 4]
In the same manner as in Example 1 except that LiPF 6 0.1 mole / l and lithium bisfluorosulfonylimide (LiFSI) 0.5 mole / l were used based on the total amount of the non-aqueous electrolyte. A non-aqueous electrolyte and a lithium secondary battery were manufactured.

[実験例1]
<低温出力特性試験>
実施例1及び比較例1から3のリチウム二次電池を、-30℃でSOC(充電深度)別に0.5Cで10秒間放電して発生する電圧差で低温出力を計算した。その結果を図1に示した。
[Experiment 1]
<Low temperature output characteristics test>
The low temperature output was calculated by the voltage difference generated by discharging the lithium secondary batteries of Example 1 and Comparative Examples 1 to 3 at −30 ° C. for 10 seconds at 0.5 C for each SOC (depth of charge). The results are shown in FIG.

図1を参照すると、実施例1のリチウム二次電池は、比較例1から3のリチウム二次電池に比べてSOC 20%から出力特性が優れており、SOCが60%以降から出力特性が比較例等とさらに著しい差を見せ始めた。また、SOCが100%の場合、実施例1のリチウム二次電池は、比較例1から3のリチウム二次電池に比べて約1.2から1.4倍程度以上、低温出力特性が向上することが分かる。   Referring to FIG. 1, the lithium secondary battery of Example 1 is superior in output characteristics from SOC 20% compared with the lithium secondary batteries in Comparative Examples 1 to 3, and the output characteristics are compared from SOC after 60%. It started to show a marked difference from the examples. When the SOC is 100%, the lithium secondary battery of Example 1 is about 1.2 to 1.4 times higher than the lithium secondary batteries of Comparative Examples 1 to 3, and the low temperature output characteristics are improved. I understand that.

これは、非水性有機溶媒としてエチレンカーボネートを用いずにプロピレンカーボネートを用いることにより、低温特性を著しく改善できることを確認することができる。   This can confirm that the low temperature characteristics can be remarkably improved by using propylene carbonate without using ethylene carbonate as the non-aqueous organic solvent.

[実験例2]
<高温(55℃)サイクル特性試験>
実施例1及び比較例1から3のリチウム二次電池を、55℃で定電流/定電圧(CC/ CV)の条件で4.2V/38mAまで1Cで充電した後、定電流(CC)の条件で3.03Vまで3Cに放電し、その放電容量を測定した。これを1から900サイクルで繰り返し実施し、測定した放電容量を図2に示した。
[Experiment 2]
<High temperature (55 ° C) cycle characteristic test>
The lithium secondary batteries of Example 1 and Comparative Examples 1 to 3 were charged at 1 C to 4.2 V / 38 mA under the condition of constant current / constant voltage (CC / CV) at 55 ° C., and then the constant current (CC) It discharged to 3C to 3.03V on condition, and the discharge capacity was measured. This was repeated in 1 to 900 cycles, and the measured discharge capacity is shown in FIG.

図2から分かるように、200回目のサイクルまでは、本発明に係る実施例1のリチウム二次電池は、比較例1から3のリチウム二次電池と類似した容量保有率を示したが、約360回目のサイクル以降から容量保有率において著しい差を示した。   As can be seen from FIG. 2, up to the 200th cycle, the lithium secondary battery of Example 1 according to the present invention showed a capacity retention similar to the lithium secondary batteries of Comparative Examples 1 to 3, From the 360th cycle onward, there was a significant difference in capacity retention.

したがって、本発明の実施例によりプロピレンカーボネートとリチウムビスフルオロスルホニルイミドとを組み合わせて使用したリチウム二次電池(実施例1)は、比較例1から比較例3に比べて55℃の高温条件においてサイクル特性に伴う放電容量特性が著しく優れていることが分かった。   Therefore, the lithium secondary battery (Example 1) using a combination of propylene carbonate and lithium bisfluorosulfonylimide according to the example of the present invention is cycled at a high temperature condition of 55 ° C. as compared with Comparative Examples 1 to 3. It was found that the discharge capacity characteristics accompanying the characteristics are remarkably excellent.

[実験例3]
<高温貯蔵後の出力特性>
実施例1及び比較例1から3のリチウム二次電池を60℃で14週間貯蔵した後、SOC 50%において5Cで10秒間放電して発生する電圧差で出力を計算した。その結果を図3に示した。
[Experiment 3]
<Output characteristics after high temperature storage>
The lithium secondary batteries of Example 1 and Comparative Examples 1 to 3 were stored at 60 ° C. for 14 weeks, and then the output was calculated by the voltage difference generated by discharging at 50 ° C. for 10 seconds at 5C. The results are shown in FIG.

図3を参照すると、60℃で貯蔵後SOC 50%での出力特性は、本発明の実施例1によりプロピレンカーボネートとリチウムビスフルオロスルホニルイミドとを組み合わせて用いたリチウム二次電池が、比較例1から比較例3に比べて著しく優れていることを確認することができる。具体的に、実施例1の場合、貯蔵期間2週から出力特性が増加しており、貯蔵期間が増加して貯蔵期間14週までも高温条件でも持続的に出力特性が向上することが確認できる。これに反して、比較例1及び3は、初期出力特性から実施例1と差があり、貯蔵期間14週目には、実施例と著しい差を見せた。また、比較例2の場合、初期出力特性は実施例1と類似していたが、貯蔵期間2週目から徐々に減少し、貯蔵期間14週目には比較例1及び3と同様に実施例1と著しい差を見せた。   Referring to FIG. 3, the output characteristics at SOC 50% after storage at 60 ° C. are the same as those of the lithium secondary battery using the combination of propylene carbonate and lithium bisfluorosulfonylimide according to Example 1 of the present invention. Therefore, it can be confirmed that it is remarkably superior to Comparative Example 3. Specifically, in the case of Example 1, the output characteristics increased from the storage period of 2 weeks, and it can be confirmed that the storage characteristics increase and the output characteristics are continuously improved up to the storage period of up to 14 weeks or at high temperatures. . On the other hand, Comparative Examples 1 and 3 differed from Example 1 in terms of initial output characteristics, and showed a significant difference from the Example at the storage period of 14 weeks. In the case of Comparative Example 2, the initial output characteristics were similar to Example 1, but gradually decreased from the second week of the storage period, and in the same manner as in Comparative Examples 1 and 3 at the 14th week of the storage period. It showed a significant difference from 1.

[実験例4]
<高温貯蔵後の容量特性試験>
実施例1及び比較例1から3のリチウム二次電池を60℃で14週間貯蔵後、定電流/定電圧(CC/CV)の条件で4.2V/38mAまで1Cで充電した後、定電流(CC)の条件で3.0Vまで1Cで放電し、その放電容量を測定した。その結果を図4に示した。
[Experimental Example 4]
<Capacity characteristic test after high temperature storage>
After the lithium secondary batteries of Example 1 and Comparative Examples 1 to 3 were stored at 60 ° C. for 14 weeks and then charged at a constant current / constant voltage (CC / CV) condition of 4.2 V / 38 mA at 1 C, the constant current Under the condition of (CC), the battery was discharged at 1 C to 3.0 V, and the discharge capacity was measured. The results are shown in FIG.

図4を参照すると、貯蔵期間2週まで比較例1から3及び実施例1の容量特性に差がなかったが、貯蔵期間4週以後比較例1から3の場合、貯蔵期間が増加するに伴って容量特性が徐々に減少し、貯蔵期間8週以後実施例1は、比較例1から3の容量特性とその差が徐々に大きくなることが分かる。   Referring to FIG. 4, there was no difference in capacity characteristics between Comparative Examples 1 to 3 and Example 1 until the storage period of 2 weeks, but in the case of Comparative Examples 1 to 3 after the storage period of 4 weeks, the storage period increased. It can be seen that the capacity characteristics gradually decrease, and the difference between the capacity characteristics of Comparative Examples 1 to 3 and Example 1 gradually increases in Example 1 after the storage period of 8 weeks.

したがって、実施例1のリチウム二次電池は、比較例1から3のリチウム二次電池に比べて高温貯蔵後の容量特性が改善される効果があることを確認することができる。   Therefore, it can be confirmed that the lithium secondary battery of Example 1 has an effect of improving the capacity characteristics after high-temperature storage as compared with the lithium secondary batteries of Comparative Examples 1 to 3.

[実験例5]
<高温貯蔵後のスウェリング(swelling)特性試験>
実施例1及び比較例1から3のリチウム二次電池を60℃で14週間貯蔵後、SOC 95%で貯蔵した後、電池の厚さを測定してその結果を図5に示した。
[Experimental Example 5]
<Swelling characteristics test after high temperature storage>
The lithium secondary batteries of Example 1 and Comparative Examples 1 to 3 were stored at 60 ° C. for 14 weeks and then stored at SOC 95%, and the thickness of the battery was measured. The results are shown in FIG.

図5を参照すると、比較例1から3のリチウム二次電池の場合、貯蔵期間2週以後から電池の厚さが著しく増加した反面、実施例1のリチウム二次電池は、比較例等に比べて厚さの増加幅が小さかった。   Referring to FIG. 5, in the case of the lithium secondary batteries of Comparative Examples 1 to 3, the thickness of the battery has been remarkably increased after the storage period of 2 weeks, whereas the lithium secondary battery of Example 1 is compared with the comparative examples and the like. The increase in thickness was small.

これは、プロピレンカーボネートとリチウムビスフルオロスルホニルイミドとを組み合わせて用いることにより、高温貯蔵後、貯蔵期間が増加しても電池のスウェリング抑制効果を向上させることができることが分かる。   This shows that by using propylene carbonate and lithium bisfluorosulfonylimide in combination, even if the storage period is increased after high temperature storage, the swelling suppression effect of the battery can be improved.

[実験例6]
<LiPF及びLiFSIのモル比に伴う低温出力特性試験>
LiPF及びLiFSIのモル比に伴う低温出力特性を調べるために、実施例1と2、及び比較例4のリチウム二次電池を-30℃でSOC(充電深度)別に0.5Cで10秒間放電し、発生する電圧差で低温出力を計算した。その結果を図6に示した。
[Experimental Example 6]
<Low temperature output characteristics test with the molar ratio of LiPF 6 and LiFSI>
In order to investigate the low temperature output characteristics according to the molar ratio of LiPF 6 and LiFSI, the lithium secondary batteries of Examples 1 and 2 and Comparative Example 4 were discharged at −30 ° C. for 10 seconds at 0.5 ° C. by SOC (depth of charge). Then, the low temperature output was calculated from the generated voltage difference. The results are shown in FIG.

図6を参照すると、LiPF及びLiFSIのモル比が1:9である実施例1のリチウム二次電池は、LiPF及びLiFSIのモル比が1:5である比較例4のリチウム二次電池に比べてSOC 20%から出力特性が著しく優れており、SOC 60%以後から出力特性が比較例4のリチウム二次電池とさらに著しい差を見せ始めた。 Referring to FIG. 6, the lithium secondary battery of Example 1 in which the molar ratio of LiPF 6 and LiFSI is 1: 9 is the lithium secondary battery of Comparative Example 4 in which the molar ratio of LiPF 6 and LiFSI is 1: 5. Compared with the SOC, the output characteristics are remarkably excellent from 20% SOC, and the output characteristics start to show a marked difference from the lithium secondary battery of Comparative Example 4 after the SOC 60%.

また、LiPF及びLiFSIのモル比が1:6である実施例2のリチウム二次電池は、LiPF及びLiFSIのモル比が1:9である実施例1のリチウム二次電池に比べて低温出力特性が減少した。 The lithium secondary battery of Example 2 in which the molar ratio of LiPF 6 and LiFSI is 1: 6 is lower than that of the lithium secondary battery of Example 1 in which the molar ratio of LiPF 6 and LiFSI is 1: 9. Output characteristics decreased.

一方、LiPF及びLiFSIのモル比が1:6である実施例2のリチウム二次電池は、LiPF及びLiFSIのモル比が1:5である比較例4のリチウム二次電池と類似した出力特性を見せたが、SOC 90%以上から比較例4のリチウム二次電池に比べて低温出力特性が向上したことが分かる。 On the other hand, the lithium secondary battery of Example 2 in which the molar ratio of LiPF 6 and LiFSI is 1: 6 is similar to the lithium secondary battery of Comparative Example 4 in which the molar ratio of LiPF 6 and LiFSI is 1: 5. Although the characteristics are shown, it can be seen that the low-temperature output characteristics are improved as compared with the lithium secondary battery of Comparative Example 4 from SOC 90% or more.

したがって、LiPF及びLiFSIのモル比を調節することにより、リチウム二次電池の低温出力特性を向上させることができることを確認することができる。 Therefore, it can be confirmed that the low temperature output characteristics of the lithium secondary battery can be improved by adjusting the molar ratio of LiPF 6 and LiFSI.

[実験例7]
<LiPF及びLiFSIのモル比に伴う高温(55℃)サイクル特性試験>
LiPF及びLiFSIのモル比に伴う高温(55℃)サイクル特性を調べるために、実施例1と2、及び比較例4のリチウム二次電池を、55℃で定電流/定電圧(CC/CV)の条件で4.2V / 38mAまで1Cで充電した後、定電流(CC)の条件で3.03Vまで3Cで放電し、その放電容量を測定した。これを1から1000サイクルで繰り返し実施し、測定した放電容量を図7に示した。
[Experimental Example 7]
<High temperature (55 ° C) cycle characteristics test with molar ratio of LiPF 6 and LiFSI>
In order to investigate the high temperature (55 ° C.) cycle characteristics associated with the molar ratio of LiPF 6 and LiFSI, the lithium secondary batteries of Examples 1 and 2 and Comparative Example 4 were subjected to constant current / constant voltage (CC / CV) at 55 ° C. ) Was charged at 1 C to 4.2 V / 38 mA under the condition of 3), then discharged at 3 C to 3.03 V under the constant current (CC) condition, and the discharge capacity was measured. This was repeated for 1 to 1000 cycles, and the measured discharge capacity is shown in FIG.

図7で分かるように、約70回目のサイクルまでは、本発明に係る実施例1のリチウム二次電池は、比較例4のリチウム二次電池と類似した容量保有率を見せたが、約70回目のサイクル以後から1000回目のサイクルまで容量保有率において約7%以上の著しい差を示した。   As can be seen in FIG. 7, until about the 70th cycle, the lithium secondary battery of Example 1 according to the present invention showed a capacity retention similar to the lithium secondary battery of Comparative Example 4, but about 70 From the second cycle to the 1000th cycle, there was a remarkable difference of about 7% or more in capacity retention.

一方、実施例2のリチウム二次電池は、約600回目のサイクルまで容量保有率において比較例4と著しい差を見せた。比較例4のリチウム二次電池は、サイクル数が増加するに伴い、グラフの傾きが著しく低下することが確認できる。また、実施例2のリチウム二次電池は、比較例4のリチウム二次電池に比べて900回目のサイクルから1000回目のサイクルまでの容量保有率において、約3から5%程度の差を見せることが分かる。   On the other hand, the lithium secondary battery of Example 2 showed a significant difference from Comparative Example 4 in capacity retention until the approximately 600th cycle. It can be confirmed that the slope of the graph of the lithium secondary battery of Comparative Example 4 significantly decreases as the number of cycles increases. In addition, the lithium secondary battery of Example 2 shows a difference of about 3 to 5% in capacity retention from the 900th cycle to the 1000th cycle as compared with the lithium secondary battery of Comparative Example 4. I understand.

したがって、LiPF及びLiFSIのモル比が1:6から1:9の場合、この範囲外の場合に比べて、リチウム二次電池の高温(55℃)サイクル特性が著しく優れていることを確認することができる。 Therefore, when the molar ratio of LiPF 6 and LiFSI is 1: 6 to 1: 9, it is confirmed that the high temperature (55 ° C.) cycle characteristics of the lithium secondary battery are remarkably superior to those outside this range. be able to.

[実験例8]
<LiPF及びLiFSIのモル比に伴う高温貯蔵(60℃)後の容量特性試験>
LiPF及びLiFSIのモル比に伴う高温貯蔵(60℃)後の容量特性試験を確認するために、実施例1と2、及び比較例4のリチウム二次電池を60℃で14週間貯蔵後、定電流/定電圧(CC/CV)の条件で4.2V/38mAまで1Cで充電した後、定電流(CC)の条件で3.0Vまで1Cで放電し、その放電容量を測定した。その結果を図8に示した。
[Experimental Example 8]
<Capacitance characteristic test after high temperature storage (60 ° C.) according to the molar ratio of LiPF 6 and LiFSI>
In order to confirm the capacity characteristic test after high temperature storage (60 ° C.) according to the molar ratio of LiPF 6 and LiFSI, the lithium secondary batteries of Examples 1 and 2 and Comparative Example 4 were stored at 60 ° C. for 14 weeks. After charging at 1 C to 4.2 V / 38 mA under constant current / constant voltage (CC / CV) conditions, the battery was discharged at 1 C to 3.0 V under constant current (CC) conditions, and the discharge capacity was measured. The results are shown in FIG.

図8を参照すると、貯蔵期間1週まで実施例1と2及び比較例4のリチウム二次電池の容量特性に差がなかったが、貯蔵期間2週以後、実施例1と2のリチウム二次電池は、比較例4のリチウム二次電池に比べて容量特性の差が大きくなることが分かる。   Referring to FIG. 8, there was no difference in the capacity characteristics of the lithium secondary batteries of Examples 1 and 2 and Comparative Example 4 until the storage period of 1 week, but the lithium secondary batteries of Examples 1 and 2 after the storage period of 2 weeks. It can be seen that the battery has a larger difference in capacity characteristics than the lithium secondary battery of Comparative Example 4.

具体的に検討してみると、実施例1のリチウム二次電池は、貯蔵期間14週までグラフの傾きが緩やかであった。この結果、実施例1のリチウム二次電池は、貯蔵期間14週目に比較例4のリチウム二次電池に比べて、容量保有率が約6%以上までの差を見せた。   When specifically examined, the slope of the graph of the lithium secondary battery of Example 1 was gentle until the storage period of 14 weeks. As a result, the lithium secondary battery of Example 1 showed a difference in capacity retention up to about 6% or more compared with the lithium secondary battery of Comparative Example 4 at the 14-week storage period.

一方、比較例4のリチウム二次電池は、貯蔵期間2週以後からグラフの傾きが著しく低下しつつ、貯蔵期間が増加するに伴い容量特性が徐々に減少することが確認できる。   On the other hand, it can be confirmed that the capacity characteristic of the lithium secondary battery of Comparative Example 4 gradually decreases as the storage period increases, while the slope of the graph decreases significantly after the storage period of 2 weeks.

したがって、LiPF及びLiFSIのモル比を調節することにより、リチウム二次電池の高温貯蔵特性を向上させることができ、特にLiPF及びLiFSIのモル比が1:6から1:9の場合、この範囲外の場合に比べてリチウム二次電池の高温貯蔵特性が著しく優れていることが確認できる。 Therefore, by adjusting the molar ratio of LiPF 6 and LiFSI, the high temperature storage characteristics of the lithium secondary battery can be improved, especially when the molar ratio of LiPF 6 and LiFSI is 1: 6 to 1: 9. It can be confirmed that the high-temperature storage characteristics of the lithium secondary battery are remarkably superior compared to the case outside the range.

本発明の一実施例に係る非水性電解液は、リチウム二次電池に適用する場合、リチウム二次電池の初期充電時に負極で強固なSEI膜を形成させることにより、低温出力特性を向上させることはもちろん、高温サイクル特性、高温貯蔵後の出力特性、容量特性及びスウェリング特性を向上させることができるため、リチウム二次電池に有用に適用することができる。   When applied to a lithium secondary battery, the non-aqueous electrolyte according to an embodiment of the present invention improves low-temperature output characteristics by forming a strong SEI film at the negative electrode during initial charging of the lithium secondary battery. Needless to say, the high-temperature cycle characteristics, the output characteristics after high-temperature storage, the capacity characteristics, and the swelling characteristics can be improved, so that it can be usefully applied to a lithium secondary battery.

Claims (11)

i)カーボネート系溶媒からなる非水性有機溶媒;及び
ii)リチウム塩及びリチウムビスフルオロスルホニルイミド(Lithium bis (fluorosulfonyl)imide; LiFSI)を含み、
前記カーボネート系溶媒は、プロピレンカーボネート(PC)、エチルメチルカーボネート(EMC)及びジメチルカーボネート(DMC)からなり、
前記プロピレンカーボネート(PC)、エチルメチルカーボネート(EMC)及びジメチルカーボネート(DMC)の体積比は2:4:4であり、
前記リチウム塩と前記リチウムビスフルオロスルホニルイミドの混合比は、モル比で1:6から1:9であり、
前記リチウムビスフルオロスルホニルイミドは、非水性電解液中の濃度が0.6 mole/lから1.5 mole/lであることを特徴とする非水性電解液。
i) a non-aqueous organic solvent comprising a carbonate-based solvent; and ii) a lithium salt and lithium bisfluorosulfonylimide (LiFSI),
The carbonate solvent comprises propylene carbonate (PC) , ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC),
The volume ratio of propylene carbonate (PC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) is 2: 4: 4,
The mixing ratio of the lithium bisfluorosulfonylimide and the lithium salt is 1 molar ratio: 6 to 1: 9 der is,
The non-aqueous electrolytic solution is characterized in that the lithium bisfluorosulfonylimide has a concentration in the non-aqueous electrolytic solution of 0.6 mole / l to 1.5 mole / l .
前記非水性電解液は、エチレンカーボネート(EC)を含まないことを特徴とする請求項1に記載の非水性電解液。 The non-aqueous electrolyte according to claim 1, wherein the non-aqueous electrolyte does not contain ethylene carbonate (EC). 前記プロピレンカーボネートの含量は、前記非水性有機溶媒100重量部を基準に5重量部から60重量部であることを特徴とする請求項1または2に記載の非水性電解液。 The non-aqueous electrolyte according to claim 1 or 2 , wherein the content of the propylene carbonate is 5 to 60 parts by weight based on 100 parts by weight of the non-aqueous organic solvent. 前記プロピレンカーボネートの含量は、前記非水性有機溶媒100重量部を基準に10重量部から50重量部であることを特徴とする請求項に記載の非水性電解液。 The non-aqueous electrolyte according to claim 3 , wherein the content of the propylene carbonate is 10 to 50 parts by weight based on 100 parts by weight of the non-aqueous organic solvent. 前記非水性電解液は、ビニレンカーボネート系化合物及びスルトン系化合物をさらに含むことを特徴とする請求項1からの何れか1項に記載の非水性電解液。 The nonaqueous electrolytic solution according to any one of claims 1 to 4 , wherein the nonaqueous electrolytic solution further includes a vinylene carbonate compound and a sultone compound. 前記ビニレンカーボネート系化合物は、ビニレンカーボネート(vinylene carbonate)、ビニレンエチレンカーボネート(vinylene ethylene carbonate)、又はこれらの混合物を含むことを特徴とする請求項に記載の非水性電解液。 The non-aqueous electrolyte according to claim 5 , wherein the vinylene carbonate-based compound includes vinylene carbonate, vinylene ethylene carbonate, or a mixture thereof. 前記スルトン系化合物は、1,3−プロパンスルトン(1,3−propane sultone)、1,4−ブタンスルトン及び1,3−プロペンスルトンからなる群から選ばれるいずれか、又はこれらのうち2種以上の混合物を含むことを特徴とする請求項またはに記載の非水性電解液。 The sultone-based compound is selected from the group consisting of 1,3-propane sultone, 1,4-butane sultone, and 1,3-propene sultone, or two or more of these The non-aqueous electrolytic solution according to claim 5 or 6 , comprising a mixture. 前記リチウム塩は、LiPF、LiBF、LiSbF、LiAsF、LiClO、LiN(CSO、LiN(CFSO、CFSOLi、LiC(CFSO及びLiCBOからなる群から選ばれるいずれか、又はこれらうち2種以上の混合物を含むことを特徴とする請求項1に記載の非水性電解液。 The lithium salt, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2, CF 3 SO 3 Li, LiC (CF 3 SO 2) 3 and LiC 4 one selected from the group consisting of BO 8, or a non-aqueous electrolyte solution according to claim 1, characterized in that it comprises these among two or more thereof. 正極活物質を含む正極;
負極活物質を含む負極;
前記正極と前記負極との間に介在されたセパレータ;及び
請求項1からの何れか1項に記載の非水性電解液を含むリチウム二次電池。
A positive electrode comprising a positive electrode active material;
A negative electrode comprising a negative electrode active material;
A separator interposed between the positive electrode and the negative electrode; and a lithium secondary battery comprising the nonaqueous electrolytic solution according to any one of claims 1 to 8 .
前記負極活物質は、炭素系負極活物質であることを含む請求項に記載のリチウム二次電池。 The lithium secondary battery according to claim 9 , wherein the negative electrode active material is a carbon-based negative electrode active material. 前記負極活物質は、黒鉛質(graphite)の炭素であることを含む請求項10に記載のリチウム二次電池。 11. The lithium secondary battery according to claim 10 , wherein the negative electrode active material includes graphite carbon.
JP2014554678A 2012-12-24 2013-12-24 Non-aqueous electrolyte and lithium secondary battery including the same Active JP5948660B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2012-0152043 2012-12-24
KR20120152043 2012-12-24
KR1020130161528A KR20140082573A (en) 2012-12-24 2013-12-23 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR10-2013-0161528 2013-12-23
PCT/KR2013/012101 WO2014104710A1 (en) 2012-12-24 2013-12-24 Non-aqueous electrolyte and lithium secondary battery including same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016041620A Division JP2016164879A (en) 2012-12-24 2016-03-03 Nonaqueous electrolyte and lithium secondary battery including the same

Publications (2)

Publication Number Publication Date
JP2015509271A JP2015509271A (en) 2015-03-26
JP5948660B2 true JP5948660B2 (en) 2016-07-06

Family

ID=51733470

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014554678A Active JP5948660B2 (en) 2012-12-24 2013-12-24 Non-aqueous electrolyte and lithium secondary battery including the same
JP2016041620A Pending JP2016164879A (en) 2012-12-24 2016-03-03 Nonaqueous electrolyte and lithium secondary battery including the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016041620A Pending JP2016164879A (en) 2012-12-24 2016-03-03 Nonaqueous electrolyte and lithium secondary battery including the same

Country Status (6)

Country Link
US (1) US9620819B2 (en)
EP (1) EP2922136B1 (en)
JP (2) JP5948660B2 (en)
KR (2) KR20140082573A (en)
TW (1) TWI536635B (en)
WO (1) WO2014104710A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2797155B1 (en) * 2013-02-20 2017-04-05 Lg Chem, Ltd. Non-aqueous electrolyte and lithium secondary battery comprising same
JP6067851B2 (en) 2013-02-20 2017-01-25 エルジー・ケム・リミテッド Electrolytic solution additive for lithium secondary battery, non-aqueous electrolytic solution containing the electrolytic solution additive, and lithium secondary battery
US10109885B2 (en) * 2014-05-07 2018-10-23 Sila Nanotechnologies, Inc. Complex electrolytes and other compositions for metal-ion batteries
WO2016048104A1 (en) * 2014-09-26 2016-03-31 주식회사 엘지화학 Non aqueous electrolyte and lithium secondary battery comprising same
TWI624974B (en) 2014-09-26 2018-05-21 Lg化學股份有限公司 Non-aqueous electrolyte solution and lithium secondary battery comprising the same
US11437646B2 (en) 2014-09-26 2022-09-06 Lg Energy Solution, Ltd. Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR101802018B1 (en) 2014-09-26 2017-11-27 주식회사 엘지화학 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR101797271B1 (en) 2014-09-26 2017-11-13 주식회사 엘지화학 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR20160037102A (en) 2014-09-26 2016-04-05 주식회사 엘지화학 Non-aqueous liquid eletrolyte and lithium secondary battery comprising the same
KR101797290B1 (en) 2014-09-26 2017-12-12 주식회사 엘지화학 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
WO2016052752A1 (en) * 2014-10-03 2016-04-07 株式会社日本触媒 Method for manufacturing electrolyte material
WO2016081525A1 (en) * 2014-11-20 2016-05-26 Coors Tek Fluorochemicals, Inc. Concentrated electrolyte solution
JP6246983B2 (en) 2015-06-23 2017-12-13 株式会社日本触媒 Conductive material, production method and purification method thereof, and non-aqueous electrolyte and antistatic agent using the conductive material
CN108140891B (en) 2015-10-15 2021-06-04 中央硝子株式会社 Electrolyte for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
JP2017191740A (en) * 2016-04-15 2017-10-19 国立大学法人 東京大学 Lithium ion secondary battery
WO2018094101A1 (en) * 2016-11-16 2018-05-24 Sillion, Inc. Additive enhancements for ionic liquid electrolytes in li-ion batteries
JP6954306B2 (en) * 2016-12-02 2021-10-27 日本電気株式会社 Lithium ion secondary battery
JP7113248B2 (en) * 2017-03-22 2022-08-05 パナソニックIpマネジメント株式会社 Negative electrode for secondary battery, manufacturing method thereof, and secondary battery
KR20190005314A (en) 2017-07-06 2019-01-16 에스케이케미칼 주식회사 Novel oxalate compounds, method for preparing the same and electrolyte for secondary battery comprising the same
KR102264636B1 (en) * 2017-11-30 2021-06-15 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for secondary battery and secondary battery comprising the same
JP7169763B2 (en) 2018-04-09 2022-11-11 日産自動車株式会社 Non-aqueous electrolyte secondary battery
JP7257109B2 (en) * 2018-06-01 2023-04-13 株式会社日本触媒 Non-aqueous electrolyte and lithium-ion secondary battery
EP3905408B1 (en) 2018-12-28 2023-02-01 SANYO Electric Co., Ltd. Non-aqueous electrolyte secondary battery and method for manufacturing same
US20220077499A1 (en) 2018-12-28 2022-03-10 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP7488770B2 (en) 2018-12-28 2024-05-22 三洋電機株式会社 Nonaqueous electrolyte secondary battery and method of manufacturing same
WO2022209063A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Secondary battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699349B1 (en) * 1994-03-21 2007-10-10 Centre National De La Recherche Scientifique (Cnrs) Ionic conducting material having good anticorrosive properties
US7709157B2 (en) 2002-10-23 2010-05-04 Panasonic Corporation Non-aqueous electrolyte secondary battery and electrolyte for the same
JP4847675B2 (en) * 2002-10-23 2011-12-28 パナソニック株式会社 Nonaqueous electrolyte secondary battery and electrolyte used therefor
JP5125559B2 (en) * 2008-02-04 2013-01-23 株式会社Gsユアサ Non-aqueous electrolyte battery and manufacturing method thereof
EP2355213B1 (en) 2008-11-11 2014-10-01 LG Chem, Ltd. Lithium secondary battery containing a non-aqueous electrolytic solution
JP2011150958A (en) * 2010-01-25 2011-08-04 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
WO2012021029A2 (en) * 2010-08-13 2012-02-16 주식회사 엘지화학 Non-aqueous electrolyte solution for a lithium secondary battery, and lithium secondary battery comprising same
CN102074734A (en) 2010-09-30 2011-05-25 张家港市国泰华荣化工新材料有限公司 Electrolyte solution of fluorine-containing lithium sulfonimide salt and application thereof
KR101614068B1 (en) * 2011-01-04 2016-04-21 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP6065367B2 (en) * 2011-06-07 2017-01-25 ソニー株式会社 Nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP6007915B2 (en) * 2011-10-17 2016-10-19 宇部興産株式会社 Non-aqueous electrolyte and power storage device using the same

Also Published As

Publication number Publication date
EP2922136B1 (en) 2017-11-29
TWI536635B (en) 2016-06-01
JP2016164879A (en) 2016-09-08
KR20150129636A (en) 2015-11-20
EP2922136A1 (en) 2015-09-23
US20140186722A1 (en) 2014-07-03
CN104011927A (en) 2014-08-27
US9620819B2 (en) 2017-04-11
TW201503457A (en) 2015-01-16
WO2014104710A1 (en) 2014-07-03
KR20140082573A (en) 2014-07-02
EP2922136A4 (en) 2015-10-21
KR101634910B1 (en) 2016-06-29
JP2015509271A (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP5948660B2 (en) Non-aqueous electrolyte and lithium secondary battery including the same
JP5932150B2 (en) Non-aqueous electrolyte and lithium secondary battery including the same
JP6094843B2 (en) Electrolytic solution additive for lithium secondary battery, non-aqueous electrolytic solution containing the electrolytic solution additive, and lithium secondary battery
KR101639858B1 (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR101492686B1 (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary cell comprising the same
EP2887441B1 (en) Electrolyte additive for lithium secondary battery, non-aqueous electrolyte comprising electrolyte additive, and lithium secondary battery
KR101582043B1 (en) Lithium secondary battery with improved output and cycling characteristics
KR101481860B1 (en) Method for Preparation of Lithium Secondary Battery
KR20160037102A (en) Non-aqueous liquid eletrolyte and lithium secondary battery comprising the same
KR101633961B1 (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR20150044004A (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR101640634B1 (en) Non-aqueous liquid electrolyte and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160517

R150 Certificate of patent or registration of utility model

Ref document number: 5948660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250