JP5326923B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5326923B2
JP5326923B2 JP2009188905A JP2009188905A JP5326923B2 JP 5326923 B2 JP5326923 B2 JP 5326923B2 JP 2009188905 A JP2009188905 A JP 2009188905A JP 2009188905 A JP2009188905 A JP 2009188905A JP 5326923 B2 JP5326923 B2 JP 5326923B2
Authority
JP
Japan
Prior art keywords
weight
secondary battery
electrolyte secondary
lifop
bsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009188905A
Other languages
Japanese (ja)
Other versions
JP2011040333A (en
Inventor
智典 加古
勝志 西江
雄大 川副
真也 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2009188905A priority Critical patent/JP5326923B2/en
Publication of JP2011040333A publication Critical patent/JP2011040333A/en
Application granted granted Critical
Publication of JP5326923B2 publication Critical patent/JP5326923B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は非水電解液二次電池の電解液への添加剤に関するものである。   The present invention relates to an additive to an electrolyte solution of a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池をはじめとする非水電解液二次電池は、高エネルギー密度、高出力などの優れた特徴をもっているため、携帯電話、ビデオカメラ、パソコンなどの携帯型電子機器の電源として広く利用されており、今後はより大型にして電気自動車などの電源に使用することが検討されている。   Non-aqueous electrolyte secondary batteries, including lithium ion secondary batteries, have excellent features such as high energy density and high output, so they are widely used as power sources for portable electronic devices such as mobile phones, video cameras, and personal computers. In the future, it is being considered to use it for a power source such as an electric vehicle with a larger size.

非水電解液二次電池の正極活物質にはリチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)、スピネル型マンガン酸化物(LiMn)等の種々の化合物が用いられ、これ等の化合物は4V(vs Li/Li)以上の極めて貴な電位での充放電が可能であるため、高い放電電圧を有する非水電解液二次電池を得ることができる。 Various compounds such as lithium cobalt composite oxide (LiCoO 2 ), lithium nickel composite oxide (LiNiO 2 ), spinel-type manganese oxide (LiMn 2 O 4 ) are included in the positive electrode active material of the non-aqueous electrolyte secondary battery. Since these compounds are used and can be charged and discharged at an extremely noble potential of 4 V (vs Li / Li + ) or higher, a non-aqueous electrolyte secondary battery having a high discharge voltage can be obtained.

また、負極活物質には、金属リチウム、リチウム合金、リチウムの吸蔵・放出が可能な炭素材料などの種々のものが検討されているが、なかでも炭素材料を使用すると、サイクル寿命の長い電池が得られ、かつ安全性が高いという利点がある。   In addition, various negative electrode active materials such as metallic lithium, lithium alloys, and carbon materials capable of occluding and releasing lithium have been studied. Among them, when a carbon material is used, a battery having a long cycle life can be obtained. There is an advantage that it is obtained and has high safety.

さらに、電解液には、エチレンカーボネートやプロピレンカーボネートなどの高誘電率溶媒である環状カーボネートと、ジメチルカーボネートやジエチルカーボネートなどの低粘度溶媒である鎖状カーボネートとの混合系溶媒に、LiPFやLiBF等のリチウム塩を溶解させた電解液が使用されている。 Furthermore, the electrolyte includes a mixed solvent of a cyclic carbonate that is a high dielectric constant solvent such as ethylene carbonate or propylene carbonate and a chain carbonate that is a low viscosity solvent such as dimethyl carbonate or diethyl carbonate, and LiPF 6 or LiBF. An electrolytic solution in which a lithium salt such as 4 is dissolved is used.

非水電解液二次電池の電極は、正極・負極とも、金属製のシート状集電体の表面に、活物質、結着剤、導電助剤などの粉末と有機溶剤とを混合した合剤ペーストを塗布し、乾燥し、ロールプレスなどでプレスして、合剤層の厚みを調整することによって製造されている。そして、この電極を、積層または巻回した発電要素とし、非水電解液とともに容器に収納し、非水電解液二次電池としている。   The electrode of the non-aqueous electrolyte secondary battery is a mixture of a positive electrode and a negative electrode in which a powder of an active material, a binder, a conductive additive, etc. and an organic solvent are mixed on the surface of a metal sheet current collector The paste is applied, dried, and pressed by a roll press or the like to adjust the thickness of the mixture layer. This electrode is used as a power generation element that is laminated or wound, and is housed in a container together with a non-aqueous electrolyte solution to form a non-aqueous electrolyte secondary battery.

最近では、電気自動車などの移動体用の電源としての非水電解液二次電池の需要もたかまってきており、民生用の携帯電話などよりも更なる長寿命化が必要とされている。電池の寿命特性を向上させる方法として、非水電解液に特定の化合物を混合することが有効であり、例えばビニレンカーボネートや1,3−プロパンスルトンなどの添加が提案されている。   Recently, demand for non-aqueous electrolyte secondary batteries as a power source for mobile bodies such as electric vehicles has been increasing, and a longer life is required than for mobile phones for consumer use. As a method for improving the life characteristics of the battery, it is effective to mix a specific compound with the nonaqueous electrolytic solution. For example, addition of vinylene carbonate or 1,3-propane sultone has been proposed.

さらに、電解液への添加剤としては、特許文献1で開示されているビス(ビニルスルホニル)メタンや、特許文献2や特許文献3で開示されているリチウムビス(オキサレート)ジフルオロホスフェートなどが検討されている。
特開2007−173147号公報 特開2005−032714号公報 特開2007−335143号公報
Further, as an additive to the electrolytic solution, bis (vinylsulfonyl) methane disclosed in Patent Document 1, lithium bis (oxalate) difluorophosphate disclosed in Patent Document 2 and Patent Document 3, and the like have been studied. ing.
JP 2007-173147 A JP 2005-032714 A JP 2007-335143 A

しかしながら、電解液にこれらの化合物を単独で添加剤した場合、電池の内部抵抗が増大し、充放電サイクルによる容量低下が生じ、十分な特性が得られず、更なる特性改善が見込める添加剤が要望されていた。   However, when these compounds are added alone to the electrolytic solution, the internal resistance of the battery increases, the capacity decreases due to the charge / discharge cycle, sufficient characteristics cannot be obtained, and there is an additive that can be expected to further improve the characteristics. It was requested.

そこで、本発明の目的は、従来から用いられてきた電解液への添加剤を組み合わせることにより、電池の内部抵抗が低く、充放電サイクル特性に優れた非水電解液二次電池を提供することにある。   Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery with low internal resistance of the battery and excellent charge / discharge cycle characteristics by combining an additive to the electrolyte solution that has been used conventionally. It is in.

請求項1の発明は、正極と負極と非水電解液とを備えた非水電解液二次電池において、前記非水電解液中にビス(ビニルスルホニル)メタンを2.0重量%以下およびリチウムビス(オキサレート)ジフルオロホスフェートを1.5重量%以下含むことを特徴とする。   The invention according to claim 1 is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein 2.0% by weight or less of bis (vinylsulfonyl) methane and lithium are included in the non-aqueous electrolyte. It contains bis (oxalate) difluorophosphate in an amount of 1.5% by weight or less.

請求項1の発明によれば、電解液中にビス(ビニルスルホニル)メタンとリチウムビス(オキサレート)ジフルオロホスフェートとを、一定量以下を同時に含むことにより、正極および負極の表面上に、これら2種類の化合物の分解生成物からなる被膜が形成され、その後の電解液溶媒の分解が抑制されるため、電池の内部抵抗が増大せず、充放電サイクルによる容量低下の少ない非水電解液二次電池を得ることができる。   According to the first aspect of the present invention, the electrolyte solution contains bis (vinylsulfonyl) methane and lithium bis (oxalate) difluorophosphate at the same time in a certain amount or less. A non-aqueous electrolyte secondary battery that does not increase the internal resistance of the battery and has a small capacity drop due to the charge / discharge cycle. Can be obtained.

本発明は、正極と負極と非水電解液とを備えた非水電解液二次電池において、前記非水電解液中にビス(ビニルスルホニル)メタンを2.0重量%以下およびリチウムビス(オキサレート)ジフルオロホスフェートを1.5重量%以下含むことを特徴とするものである。   The present invention relates to a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein 2.0% by weight or less of bis (vinylsulfonyl) methane and lithium bis (oxalate) are contained in the non-aqueous electrolyte. ) It contains 1.5% by weight or less of difluorophosphate.

本発明で用いるビス(ビニルスルホニル)メタンは次の化学式(1)で表される化合物である。なお、以下ではビス(ビニルスルホニル)メタンを「BSM」と略す。   Bis (vinylsulfonyl) methane used in the present invention is a compound represented by the following chemical formula (1). Hereinafter, bis (vinylsulfonyl) methane is abbreviated as “BSM”.

Figure 0005326923
また、本発明で用いるリチウムビス(オキサレート)ジフルオロホスフェートは次の化学式(2)で表される化合物である。なお、以下ではリチウムビス(オキサレート)ジフルオロホスフェートを[LiFOP]と略す。
Figure 0005326923
The lithium bis (oxalate) difluorophosphate used in the present invention is a compound represented by the following chemical formula (2). Hereinafter, lithium bis (oxalate) difluorophosphate is abbreviated as [LiFOP].

Figure 0005326923
本発明において、非水電解液中のBSMおよびLiFOPの含有量は、BSMとLiFOPとを除く電解液全体に対する重量%で表すものとする。
Figure 0005326923
In the present invention, the contents of BSM and LiFOP in the nonaqueous electrolytic solution are expressed by weight% with respect to the entire electrolytic solution excluding BSM and LiFOP.

本発明においては、電解質中にBSMとLiFOPとを同時に含ませることにより、正極および負極の表面上に、これら2種類の化合物の分解生成物からなる被膜が形成され、その後の電解液溶媒の分解が抑制されるものである。   In the present invention, by simultaneously containing BSM and LiFOP in the electrolyte, a coating composed of the decomposition products of these two types of compounds is formed on the surfaces of the positive electrode and the negative electrode, and the subsequent decomposition of the electrolyte solvent Is suppressed.

本発明において、正極および負極の表面上に形成される被膜は、電解液にBSMまたはLiFOPを単独で添加した場合に形成される被膜とは異なるもので、BSMまたはLiFOPを単独で添加した場合には得られなかった特殊な被膜が形成されるため、内部抵抗が小さく、充放電サイクルによる容量低下が小さい、優れた特性の非水電解液二次電池が得られるものである。   In the present invention, the film formed on the surfaces of the positive electrode and the negative electrode is different from the film formed when BSM or LiFOP is added alone to the electrolyte, and when BSM or LiFOP is added alone. Since a special film that cannot be obtained is formed, a non-aqueous electrolyte secondary battery with excellent characteristics is obtained in which the internal resistance is small and the capacity drop due to the charge / discharge cycle is small.

すなわち、電解液にBSMを単独で添加した場合、特許文献1に記載されているように、寿命試験に伴う内部抵抗の増大を抑制する効果があるが、初期充電時に正・負極上に重合被膜が形成されるため、初期の内部抵抗が大きくなる。初期の内部抵抗の増加量はBSMの添加量に比例するが、寿命試験に伴う内部抵抗の増大を抑制する効果に関しては、BSMを除く電解液全体に対して2.0重量%以上添加しても、大幅にその効果が高くなることは認められない。   That is, when BSM alone is added to the electrolytic solution, as described in Patent Document 1, there is an effect of suppressing an increase in internal resistance associated with the life test, but a polymer film is formed on the positive and negative electrodes during initial charging. Therefore, the initial internal resistance is increased. The initial increase in internal resistance is proportional to the amount of BSM added, but for the effect of suppressing the increase in internal resistance associated with the life test, 2.0% by weight or more is added to the entire electrolyte solution excluding BSM. However, the effect is not significantly increased.

このことから、BSMを2.0重量%以上添加すると、初期の内部抵抗が増大する悪影響が大きいため、電池特性が低下してしまう。また、BSMの添加量が、BSMを除く電解液全体に対して0.1重量%以下の場合は、初期内部抵抗の増加は小さいが、寿命試験に伴う内部抵抗の増加が著しく、容量保持率(初期放電容量に対する一定回数の充放電後の容量の比率)の低下も大きく、充分な保護効果が得られない。   Therefore, when BSM is added in an amount of 2.0% by weight or more, the initial internal resistance is greatly adversely affected, so that the battery characteristics are deteriorated. In addition, when the amount of BSM added is 0.1% by weight or less with respect to the entire electrolyte solution excluding BSM, the increase in the initial internal resistance is small, but the increase in the internal resistance accompanying the life test is significant, and the capacity retention rate The decrease in (ratio of the capacity after a certain number of charges / discharges with respect to the initial discharge capacity) is also large, and a sufficient protective effect cannot be obtained.

また、電解液にLiFOPを単独で添加した場合、正・負極上に被膜が形成されるため、特許文献2に記載されているように、寿命試験に伴う容量保持率の低下および内部抵抗の増大を抑制する効果はあるが、その効果は単独では充分ではない。また、LiFOPの添加量を多くすると、初期充電時にガスが多量に発生し、電池膨れが発現し、ガス溜りによる有効電極面積の低下により、電池特性は低下してしまう。   In addition, when LiFOP is added alone to the electrolytic solution, a film is formed on the positive and negative electrodes. As described in Patent Document 2, a decrease in capacity retention and an increase in internal resistance are accompanied by a life test. Is effective, but the effect alone is not sufficient. Further, when the amount of LiFOP added is increased, a large amount of gas is generated during initial charging, battery swelling occurs, and the battery characteristics deteriorate due to a decrease in effective electrode area due to gas accumulation.

一方、電解液にBSMとLiFOPを同時に添加した場合には、正・負極上にそれぞれ単独で添加した場合には得られなかった特殊な混合被膜が形成されるため、BSMを単独で添加することに起因する初期内部抵抗の増加が小さくなるだけではなく、その後の内部抵抗の増大も、それぞれ単独で添加した場合よりも抑制される。さらに、それぞれ単独で添加した場合に比べ、高い容量保持率を得ることができる。   On the other hand, when BSM and LiFOP are added to the electrolyte simultaneously, a special mixed film that cannot be obtained when added individually on the positive and negative electrodes is formed. Not only does the increase in the initial internal resistance due to this decrease, but also the subsequent increase in the internal resistance is suppressed as compared with the case where each is added alone. Furthermore, a high capacity retention can be obtained as compared with the case where each is added alone.

ここで、LiFOPの添加量が1.5重量%を超えると、LiFOPによって形成される被膜が優勢となり、LiFOPとBSMを組み合わせることによる顕著な効果が消失し、LiFOPを単独で添加した場合と類似した特性となる。また、BSMの添加量が2.0重量%を超えると、BSMの被膜が優勢となり、BSMを単独で添加した場合と類似した特性となる。   Here, when the amount of LiFOP added exceeds 1.5% by weight, the film formed by LiFOP becomes dominant, and the remarkable effect of combining LiFOP and BSM disappears, similar to the case where LiFOP is added alone. Characteristics. On the other hand, when the amount of BSM added exceeds 2.0% by weight, the BSM film becomes dominant, and characteristics similar to those obtained when BSM is added alone are obtained.

さらに、BSMの添加量が2.0重量%を超え、同時にLiFOPの添加量が1.5重量%を超えた場合には、これらを添加することによる悪影響が発現し、組み合わせによる効果が消失する。しかしながら、電解液中に、BSMを2.0重量%以下およびLiFOPを1.5重量%以下添加した場合には、それぞれ単独で添加した場合には得ることができない内部抵抗増大を抑制する効果と容量保持率向上という効果の両方の効果を得ることができる。   Furthermore, when the amount of BSM added exceeds 2.0% by weight and at the same time the amount of LiFOP exceeds 1.5% by weight, the adverse effects of adding these appear and the effect of the combination disappears. . However, when BSM is added in an amount of 2.0% by weight or less and LiFOP is added in an amount of 1.5% by weight or less in the electrolytic solution, an effect of suppressing an increase in internal resistance that cannot be obtained when each is added alone is Both effects of improving the capacity retention rate can be obtained.

BSMとLiFOPは、過剰に添加すると添加剤のコストがかかるばかりでなく、その効果が小さく、電池膨れが大きくなる傾向にある。したがって、BSMの添加量は、BSMとLiFOPとを除く電解液全体に対して2.0重量%以下とする必要があり、0.1重量%以上とすることがより好ましい。また、LiFOPの添加量は、BSMとLiFOPとを除く電解液全体に対して1.5重量%以下とする必要があり、0.1重量%以上とすることがより好ましい。   If BSM and LiFOP are added excessively, not only does the cost of the additive increase, but the effect is small and the battery bulge tends to increase. Therefore, the addition amount of BSM needs to be 2.0 wt% or less with respect to the whole electrolyte solution excluding BSM and LiFOP, and more preferably 0.1 wt% or more. The amount of LiFOP added needs to be 1.5% by weight or less, more preferably 0.1% by weight or more, based on the entire electrolyte solution excluding BSM and LiFOP.

なお、BSMとLiFOPは、電池を作製して充放電させると電極上で分解して消費されるため、電池の充放電を繰り返した場合、電池内に残存する量は電池作製時に非水電解液に添加した量よりも減少する。   Since BSM and LiFOP are decomposed and consumed on the electrode when the battery is prepared and charged / discharged, the amount remaining in the battery when the battery is repeatedly charged / discharged is the non-aqueous electrolyte at the time of battery preparation. Less than the amount added.

本発明の非水電解液二次電池に用いる電極は、シート状集電体の表面に合剤層を備えたもので、合剤層は活物質と結着剤を含んでいる。また、活物質の導電性が低い場合には、導電性の高い物質からなる導電助剤を含ませる。場合によっては、活物質、結着剤、導電助剤以外の物質を含ませてもよい。   The electrode used for the non-aqueous electrolyte secondary battery of the present invention has a mixture layer on the surface of a sheet-like current collector, and the mixture layer contains an active material and a binder. In addition, when the conductivity of the active material is low, a conductive assistant made of a highly conductive material is included. Depending on the case, you may include substances other than an active material, a binder, and a conductive support agent.

合剤層における活物質・結着剤・導電助剤の混合比率は、用いる材料の物性によって最適値を選べばよいが、活物質約90wt%、結着剤と導電助剤はそれぞれ数wt%とするのが適している。活物質・結着剤・導電助剤の形状は、通常は粒子または粉末であるので、これらを混合して合剤ペーストとする場合、N−メチル−2−ピロリドン(NMP)などの有機溶媒を混合してペースト状とする。   The mixing ratio of the active material / binder / conducting aid in the mixture layer may be selected according to the physical properties of the material used. The active material is about 90 wt%, and the binder and the conductive aid are several wt% each. Is suitable. Since the shape of the active material / binder / conducting aid is usually particles or powder, when mixing them into a mixture paste, an organic solvent such as N-methyl-2-pyrrolidone (NMP) is used. Mix to make a paste.

本発明の非水電解質二次電池に用いる電極は、活物質を含む合剤ペーストをシート状集電体表面に塗布し、乾燥し、その後、ロールプレスなどで合剤層の密度と厚みを調整することによって製造される。   The electrode used for the non-aqueous electrolyte secondary battery of the present invention is a mixture paste containing an active material is applied to the surface of a sheet current collector, dried, and then the density and thickness of the mixture layer are adjusted by a roll press or the like. Manufactured by doing.

本発明の非水電解液二次電池の電極では、正極活物質としては、リチウムを吸蔵・放出可能なマンガン酸リチウム(LiMn)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)などのリチウムを吸蔵放出可能なリチウム複合酸化物、これらの複合酸化物の遷移金属部分を他の遷移金属や軽金属で置換されたリチウム複合酸化物等を用いることができる。 In the electrode of the non-aqueous electrolyte secondary battery of the present invention, as the positive electrode active material, lithium manganate (LiMn 2 O 4 ), lithium cobaltate (LiCoO 2 ), and lithium nickelate (LiNiO) capable of inserting and extracting lithium are used. Lithium composite oxides that can occlude and release lithium, such as 2 ), lithium composite oxides in which transition metal portions of these composite oxides are substituted with other transition metals or light metals, and the like can be used.

また、負極活物質としては、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、気相成長炭素繊維などの炭素材料を用いることができる。   Further, as the negative electrode active material, carbon materials such as non-graphitizable carbon, graphitizable carbon, graphite, and vapor grown carbon fiber can be used.

さらに、電極の合剤層に用いる結着剤としては、ポリフッ化ビニリデン(NMP)、ポリアクリロニトリル(AN)、スチレン−ブタジエンゴム(SBR)等を用いることができ、導電助剤としては、アセチレンブラック等の炭素材料からなる粉末を用いることができる。   Furthermore, as the binder used in the electrode mixture layer, polyvinylidene fluoride (NMP), polyacrylonitrile (AN), styrene-butadiene rubber (SBR), etc. can be used, and acetylene black is used as the conductive auxiliary. The powder which consists of carbon materials, such as, can be used.

合剤ペーストに混合する有機溶媒としては、N−メチル−2−ピロリドン(NMP)、テトラヒドロフラン(THF)等を用いることができる。   As an organic solvent mixed with the mixture paste, N-methyl-2-pyrrolidone (NMP), tetrahydrofuran (THF), or the like can be used.

シート状集電体の材質としては、正極用にはアルミニウムやアルミニウム合金、負極用には銅や銅合金を用いることができる。   As a material of the sheet-like current collector, aluminum or an aluminum alloy can be used for the positive electrode, and copper or a copper alloy can be used for the negative electrode.

本発明の非水電解液二次電池に用いられるセパレータとしては、ポリエチレン等のポリオレフィン樹脂からなる微多孔膜が用いられ、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものであってもよい。   As the separator used in the non-aqueous electrolyte secondary battery of the present invention, a microporous membrane made of a polyolefin resin such as polyethylene is used, and a plurality of microporous membranes having different materials, weight average molecular weights and porosity are laminated. Or those containing a suitable amount of various plasticizers, antioxidants, flame retardants and the like in these microporous membranes.

本発明の非水電解液二次電池に用いる有機電解液の溶媒には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの低粘度の鎖状炭酸エステルと、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの高誘電率の環状炭酸エステル、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1−3ジオキソラン、メチルアセテート、メチルプロピオネート、ビニレンカーボネート、ジメチルホルムアミド、スルホランおよびこれらの混合溶媒等を挙げることができる。   The solvent of the organic electrolyte used in the non-aqueous electrolyte secondary battery of the present invention includes low-viscosity chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, and ethylene carbonate, propylene carbonate, butylene carbonate, and the like. High dielectric constant cyclic carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1-3 dioxolane, methyl acetate, methyl propionate, vinylene carbonate, dimethylformamide, sulfolane and mixtures thereof A solvent etc. can be mentioned.

また、リチウム塩としては、LiClO、LiBF、LiAsF、LiPF、LiCFSO、LiN(CFSO、LiN(CSO、LiI、LiAlCl等およびそれらの混合物が挙げられる。好ましくは、LiBF、LiPFのうちの1種または2種以上を混合したリチウム塩がよい。 Further, as the lithium salt, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiI, LiAlCl 4 and the like A mixture thereof may be mentioned. Preferably, a lithium salt obtained by mixing one or more of LiBF 4 and LiPF 6 is preferable.

本発明の非水電解液二次電池においては、これらの有機溶媒とリチウム塩とを組み合わせて、電解質として使用する。これらの電解質の中では、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネートを混合した有機電解液を使用すると、リチウムイオンの伝導度が極大となるために好ましい。   In the non-aqueous electrolyte secondary battery of the present invention, these organic solvents and lithium salts are combined and used as an electrolyte. Among these electrolytes, it is preferable to use an organic electrolyte mixed with ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate because the lithium ion conductivity is maximized.

また、発電要素の形状としては巻回型の長円形状、円形状を用いることができる。また、発電要素の形状は巻回型に限らず、平板状極板を積層した形状でもよい。その他の電池の構成要素として、集電体、端子、絶縁板、電池ケース等があるが、これらの部品についても従来用いられてきたものをそのまま用いることができる。   Further, as the shape of the power generation element, a wound oval shape or a circular shape can be used. Further, the shape of the power generation element is not limited to the winding type, and may be a shape in which flat plate plates are laminated. Other battery components include a current collector, a terminal, an insulating plate, a battery case, and the like. Conventionally, these components can be used as they are.

[正極板]
正極板は、正極活物質としてのLiMnの粉体90重量%と導電助剤であるアセチレンブラック4重量%と結着剤であるポリフッ化ビニリデン(以下「PVdF」とする)6重量%とからなる混合物100gに、N−メチル−2−ピロリドン(以下「NMP」とする)を150ml加えてペースト状とした正極合剤ペーストを、厚さ20μmのシート状アルミニウム製集電体の両面に塗布、乾燥し、その後、ロールプレスで加圧することによって、厚さが150μmの正極板を作製した。乾燥条件は0.01torr以下の減圧下、150℃で12時間とした。得られた正極板は、長さ650mm、幅34mmとし、幅方向の一方の端部に4mmの合剤層未塗布部を設けた。
[Positive electrode plate]
The positive electrode plate consists of 90% by weight of LiMn 2 O 4 powder as a positive electrode active material, 4% by weight of acetylene black as a conductive auxiliary agent, and 6% by weight of polyvinylidene fluoride (hereinafter referred to as “PVdF”) as a binder. A positive electrode mixture paste made into a paste form by adding 150 ml of N-methyl-2-pyrrolidone (hereinafter referred to as “NMP”) to 100 g of the mixture on both sides of a sheet-like aluminum current collector with a thickness of 20 μm. The positive electrode plate having a thickness of 150 μm was prepared by coating, drying, and then pressing with a roll press. The drying conditions were 12 hours at 150 ° C. under reduced pressure of 0.01 torr or less. The obtained positive electrode plate had a length of 650 mm and a width of 34 mm, and a 4 mm mixture layer uncoated portion was provided at one end in the width direction.

[負極板]
負極板は、負極活物質としてのグラファイト(Gr)92重量%と結着剤であるPVdF8重量%とからなる混合物100gに、NMPを180ml加えてペースト状とした負極合剤ペーストを、厚さ15μmのシート状銅製集電体の両面に塗布、乾燥し、その後、ロールプレスで加圧することによって、厚さ85μmの負極板を作製した。乾燥条件は0.01torr以下の減圧下、150℃で12時間とした。得られた負極板は、長さ600mm、幅35mmとし、幅方向の一方の端部に4mmの合剤層未塗布部を設けた。
[Negative electrode plate]
The negative electrode plate was prepared by adding 180 ml of NMP to 100 g of a mixture composed of 92% by weight of graphite (Gr) as a negative electrode active material and 8% by weight of PVdF as a binder, and having a thickness of 15 μm. A negative electrode plate having a thickness of 85 μm was prepared by applying and drying both sides of the sheet-like copper current collector, followed by pressing with a roll press. The drying conditions were 12 hours at 150 ° C. under reduced pressure of 0.01 torr or less. The obtained negative electrode plate had a length of 600 mm and a width of 35 mm, and a 4 mm mixture layer uncoated portion was provided at one end in the width direction.

[非水電解質二次電池]
本発明の非水電解質二次電池に用いた発電要素の外観を図1に、非水電解質二次電池の外観を図2に示す。図1および図2において、11は非水電解質二次電池、12は発電要素、13は正極板、14は負極板、15はセパレータ、16は電池ケース、17は電池ケースの発電要素収納部、18は電池ケースの蓋部、19は正極端子、20は負極端子、21は安全弁、22は電解液注液口である。
[Nonaqueous electrolyte secondary battery]
FIG. 1 shows the appearance of the power generation element used in the nonaqueous electrolyte secondary battery of the present invention, and FIG. 2 shows the appearance of the nonaqueous electrolyte secondary battery. 1 and 2, 11 is a nonaqueous electrolyte secondary battery, 12 is a power generation element, 13 is a positive electrode plate, 14 is a negative electrode plate, 15 is a separator, 16 is a battery case, 17 is a power generation element storage part of the battery case, Reference numeral 18 denotes a battery case lid, 19 a positive terminal, 20 a negative terminal, 21 a safety valve, and 22 an electrolyte injection port.

本発明の非水電解質二次電池は、正極板13と負極板14とがセパレータ15を介して長円形状に巻回した発電要素12を電池ケースの発電要素収納部17に収納し、電池ケースの発電要素収納部17と電池ケースの蓋部18とをレーザー溶接で封口し、非水電解液(図示せず)を電解液注液口22から注液し、その後、電解液注液口22を封口して構成されている。なお、正極板および負極板の作製から電池組立に至る全ての工程は、露点−50℃以下のドライルーム中でおこなった。作製した電池の設計容量は450mAhとした。   In the nonaqueous electrolyte secondary battery of the present invention, a power generation element 12 in which a positive electrode plate 13 and a negative electrode plate 14 are wound in an oval shape via a separator 15 is stored in a power generation element storage portion 17 of the battery case. The power generation element storage portion 17 and the battery case lid portion 18 are sealed by laser welding, and a non-aqueous electrolyte (not shown) is injected from the electrolyte injection port 22, and then the electrolyte injection port 22. It is configured to be sealed. In addition, all processes from production of the positive electrode plate and the negative electrode plate to battery assembly were performed in a dry room having a dew point of −50 ° C. or less. The design capacity of the manufactured battery was 450 mAh.

基本非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(MEC)との体積比30:40:30の混合溶媒に、LiPFを1mol/L溶解したものを用いた。 As a basic non-aqueous electrolyte, a solution obtained by dissolving 1 mol / L of LiPF 6 in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC) in a volume ratio of 30:40:30. Using.

[実施例1〜12および比較例1〜7]
[実施例1]
上記の正極板および負極板を用い、基本電解液の重量に対し、ビス(ビニルスルホニル)メタン(BSM)を0.1重量%とリチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)を0.1重量%とを同時に添加した電解液を用い、巻回型電極群を備えた、実施例1の非水電解液二次電池Aを作製した。
[Examples 1-12 and Comparative Examples 1-7]
[Example 1]
Using the above positive electrode plate and negative electrode plate, 0.1% by weight of bis (vinylsulfonyl) methane (BSM) and 0.1% by weight of lithium bis (oxalate) difluorophosphate (LiFOP) based on the weight of the basic electrolyte A non-aqueous electrolyte secondary battery A of Example 1 having a wound electrode group was produced using the electrolyte solution simultaneously added with.

[実施例2]
基本電解液の重量に対するLiFOPの添加量を0.5重量%としたこと以外は実施例1と同様にして、実施例2の非水電解液二次電池Bを作製した。
[Example 2]
A nonaqueous electrolyte secondary battery B of Example 2 was produced in the same manner as in Example 1 except that the amount of LiFOP added relative to the weight of the basic electrolyte was 0.5% by weight.

[実施例3]
基本電解液の重量に対するLiFOPの添加量を1.5重量%としたこと以外は実施例1と同様にして、実施例3の非水電解液二次電池Cを作製した。
[Example 3]
A nonaqueous electrolyte secondary battery C of Example 3 was produced in the same manner as in Example 1 except that the amount of LiFOP added relative to the weight of the basic electrolyte was 1.5% by weight.

[実施例4]
基本電解液の重量に対するBSMの添加量を0.5重量%としたこと以外は実施例1と同様にして、実施例4の非水電解液二次電池Dを作製した。
[Example 4]
A nonaqueous electrolyte secondary battery D of Example 4 was produced in the same manner as in Example 1 except that the amount of BSM added relative to the weight of the basic electrolyte was 0.5% by weight.

[実施例5]
基本電解液の重量に対するLiFOPの添加量を0.5重量%としたこと以外は実施例4と同様にして、実施例5の非水電解液二次電池Eを作製した。
[Example 5]
A nonaqueous electrolyte secondary battery E of Example 5 was produced in the same manner as in Example 4 except that the amount of LiFOP added relative to the weight of the basic electrolyte was 0.5% by weight.

[実施例6]
基本電解液の重量に対するLiFOPの添加量を1.5重量%としたこと以外は実施例4と同様にして、実施例6の非水電解液二次電池Fを作製した。
[Example 6]
A nonaqueous electrolyte secondary battery F of Example 6 was produced in the same manner as in Example 4 except that the amount of LiFOP added relative to the weight of the basic electrolyte was 1.5% by weight.

[実施例7]
基本電解液の重量に対するBSMの添加量を1.0重量%としたこと以外は実施例1と同様にして、実施例7の非水電解液二次電池Gを作製した。
[Example 7]
A nonaqueous electrolyte secondary battery G of Example 7 was produced in the same manner as in Example 1 except that the amount of BSM added relative to the weight of the basic electrolyte was 1.0% by weight.

[実施例8]
基本電解液の重量に対するLiFOPの添加量を0.5重量%としたこと以外は実施例7と同様にして、実施例8の非水電解液二次電池Hを作製した。
[Example 8]
A nonaqueous electrolyte secondary battery H of Example 8 was produced in the same manner as in Example 7, except that the amount of LiFOP added relative to the weight of the basic electrolyte was 0.5% by weight.

[実施例9]
基本電解液の重量に対するLiFOPの添加量を1.5重量%としたこと以外は実施例7と同様にして、実施例9の非水電解液二次電池Iを作製した。
[Example 9]
A nonaqueous electrolyte secondary battery I of Example 9 was produced in the same manner as in Example 7, except that the amount of LiFOP added relative to the weight of the basic electrolyte was 1.5% by weight.

[実施例10]
基本電解液の重量に対するBSMの添加量を2.0重量%としたこと以外は実施例1と同様にして、実施例10の非水電解液二次電池Jを作製した。
[Example 10]
A nonaqueous electrolyte secondary battery J of Example 10 was produced in the same manner as in Example 1 except that the amount of BSM added relative to the weight of the basic electrolyte was 2.0% by weight.

[実施例11]
基本電解液の重量に対するLiFOPの添加量を0.5重量%としたこと以外は実施例10と同様にして、実施例11の非水電解液二次電池Kを作製した。
[Example 11]
A nonaqueous electrolyte secondary battery K of Example 11 was produced in the same manner as in Example 10 except that the amount of LiFOP added relative to the weight of the basic electrolyte was 0.5% by weight.

[実施例12]
基本電解液の重量に対するLiFOPの添加量を1.5重量%としたこと以外は実施例10と同様にして、実施例12の非水電解液二次電池Lを作製した。
[Example 12]
A nonaqueous electrolyte secondary battery L of Example 12 was produced in the same manner as in Example 10 except that the amount of LiFOP added relative to the weight of the basic electrolyte was 1.5% by weight.

[比較例1]
電解液として、BSMおよびLiFOPを含まない基本電解液のみを用いたこと以外は実施例1と同様にして、比較例1の非水電解液二次電池Mを作製した
[比較例2]
基本電解液の重量に対しLiFOPのみを0.5重量%添加し、BSMを含まない電解液を用いたこと以外は実施例1と同様にして、比較例2の非水電解液二次電池Nを作製した。
[Comparative Example 1]
A non-aqueous electrolyte secondary battery M of Comparative Example 1 was fabricated in the same manner as in Example 1 except that only a basic electrolytic solution not containing BSM and LiFOP was used as the electrolytic solution [Comparative Example 2]
Nonaqueous electrolyte secondary battery N of Comparative Example 2 except that 0.5% by weight of LiFOP was added to the weight of the basic electrolyte and an electrolyte containing no BSM was used. Was made.

[比較例3]
基本電解液の重量に対しBSMのみを0.1重量%添加し、LiFOPを含まない電解液を用いたこと以外は実施例1と同様にして、比較例3の非水電解液二次電池O作製した。
[Comparative Example 3]
The nonaqueous electrolyte secondary battery O of Comparative Example 3 is the same as Example 1 except that 0.1% by weight of BSM is added with respect to the weight of the basic electrolyte and an electrolyte containing no LiFOP is used. Produced.

[比較例4]
基本電解液の重量に対するLiFOPの添加量を2.0重量%としたこと以外は実施例1と同様にして、比較例4の非水電解液二次電池Pを作製した。
[Comparative Example 4]
A nonaqueous electrolyte secondary battery P of Comparative Example 4 was produced in the same manner as in Example 1 except that the amount of LiFOP added relative to the weight of the basic electrolyte was 2.0% by weight.

[比較例5]
基本電解液の重量に対しBSMのみを2.0重量%添加し、LiFOPを含まない電解液を用いたこと以外は実施例1と同様にして、比較例5の非水電解液二次電池Q作製した。
[Comparative Example 5]
Non-aqueous electrolyte secondary battery Q of Comparative Example 5 was the same as Example 1 except that 2.0% by weight of BSM was added to the weight of the basic electrolyte and an electrolyte containing no LiFOP was used. Produced.

[比較例6]
基本電解液の重量に対するLiFOPの添加量を2.0重量%としたこと以外は実施例10と同様にして、比較例6の非水電解液二次電池Rを作製した。
[Comparative Example 6]
A nonaqueous electrolyte secondary battery R of Comparative Example 6 was produced in the same manner as in Example 10 except that the amount of LiFOP added relative to the weight of the basic electrolyte was 2.0% by weight.

[比較例7]
基本電解液の重量に対するBSMの添加量を2.5重量%としたこと以外は実施例2と同様にして、比較例7の非水電解液二次電池Sを作製した。
[Comparative Example 7]
A nonaqueous electrolyte secondary battery S of Comparative Example 7 was produced in the same manner as in Example 2 except that the amount of BSM added relative to the weight of the basic electrolyte was 2.5% by weight.

ここで作製した実施例1〜12および比較例1〜7の電池A〜Sの、基本電解液に対するBSMおよびLiFOPの添加量を表1にまとめた。   Table 1 summarizes the amounts of BSM and LiFOP added to the basic electrolyte of the batteries A to S of Examples 1 to 12 and Comparative Examples 1 to 7 prepared here.

Figure 0005326923
[特性測定]
実施例1〜12および比較例1〜7の非水電解液二次電池A〜Sについて、次の条件で初期放電容量測定、充放電サイクル試験および内部抵抗の測定をおこなった。
(1)初期放電容量測定
試験電池を25℃環境下で、450mA定電流で4.1Vまで充電した後、さらに4.1V定電圧で、充電時間の合計が3時間となるように定電圧充電をおこなった。その後、450mA定電流で2.5Vまで放電した。この充放電を3回繰り返し、3回目の放電容量を初期放電容量と定めた。
(2)充放電サイクル試験
試験電池を、温度を45℃としたこと以外は、初期放電容量測定と同じ条件で300回充放電した。その後、初期放電容量測定と同じ条件で充放電して、300サイクル目の放電容量を求めた。そして、初期放電容量に対する300サイクル目の放電容量の比を「容量保持率(%)」とした。
(3)内部抵抗測定
電池の内部抵抗は、試験電池を20℃環境下で、450mA定電流で3.9Vまで充電した後、さらに3.9V定電圧で、充電時間の合計が3時間となるように定電圧充電をおこなった。そして、内部抵抗は鶴賀電機製DIGITAL DC METERを用いて測定した。そして、充放電サイクル試験前の内部抵抗Rと、300サイクル充放電後の内部抵抗R300とを求め、(R300/R)を内部抵抗増加率(%)とした。
Figure 0005326923
[Characteristic measurement]
For the nonaqueous electrolyte secondary batteries A to S of Examples 1 to 12 and Comparative Examples 1 to 7, initial discharge capacity measurement, charge / discharge cycle test, and internal resistance measurement were performed under the following conditions.
(1) Initial discharge capacity measurement After charging the test battery to 4.1 V at a constant current of 450 mA in an environment of 25 ° C., constant voltage charging is performed so that the total charging time is 3 hours at a further 4.1 V constant voltage. I did it. Thereafter, the battery was discharged to 2.5 V at a constant current of 450 mA. This charge / discharge was repeated three times, and the third discharge capacity was determined as the initial discharge capacity.
(2) Charging / discharging cycle test The test battery was charged and discharged 300 times under the same conditions as the initial discharge capacity measurement except that the temperature was 45 ° C. Thereafter, charging and discharging were performed under the same conditions as in the initial discharge capacity measurement, and the discharge capacity at the 300th cycle was determined. The ratio of the discharge capacity at the 300th cycle to the initial discharge capacity was defined as “capacity retention (%)”.
(3) Internal resistance measurement The internal resistance of the battery is that the test battery is charged to 3.9 V at a constant current of 450 mA in a 20 ° C. environment, and then the total charging time is 3 hours at a constant voltage of 3.9 V. A constant voltage charge was performed as shown. The internal resistance was measured using a DIGITAL DC METER manufactured by Tsuruga Electric. Then, the internal resistance R 0 before the charge / discharge cycle test and the internal resistance R 300 after 300 cycles of charge / discharge were determined, and (R 300 / R 0 ) was defined as the internal resistance increase rate (%).

実施例1〜12および比較例1〜7の非水電解液二次電池A〜Sについての特性測定結果を表2にまとめた。   Table 2 summarizes the characteristic measurement results for the nonaqueous electrolyte secondary batteries A to S of Examples 1 to 12 and Comparative Examples 1 to 7.

Figure 0005326923
表2から、非水電解液中に、基本電解液の重量に対し、BSMを2.0重量%以下を含み、同時にLiFOPを1.5重量%以下を含む実施例1〜12の電池A〜Lでは、容量保持率が80%以上で、内部抵抗増加率も40%以下の優れた充放電サイクル特性を示したのに対し、非水電解液中にBSMとLiFOPを全く含まない比較例1の電池M、BSMとLiFOPの一方のみを含む比較例2の電池N、比較例3の電池O、比較例5の電池Q、BSMとLiFOPの両方を含むが、LiFOPの含有量が2.0重量%の比較例4の電池P、比較例6の電池Q、LiFOPを2.5重量%含む比較例7の電池Sでは、容量保持率は65%以下で、内部抵抗増加率は50%を越え、ともに悪くなることがわかった。
Figure 0005326923
From Table 2, the batteries A of Examples 1 to 12 containing BSM of 2.0% by weight or less and simultaneously containing LiFOP of 1.5% by weight or less based on the weight of the basic electrolyte in the nonaqueous electrolyte L showed excellent charge / discharge cycle characteristics with a capacity retention rate of 80% or more and an internal resistance increase rate of 40% or less, whereas the nonaqueous electrolyte did not contain BSM and LiFOP at all. Battery M, Comparative Example 2 Battery N containing only one of BSM and LiFOP, Comparative Example 3 Battery O, Comparative Example Battery Q, including both BSM and LiFOP, with a LiFOP content of 2.0. In the battery P of Comparative Example 4 having a weight% of Comparative Example 4, the battery Q of Comparative Example 6 and the battery S of Comparative Example 7 containing 2.5% by weight of LiFOP, the capacity retention is 65% or less and the internal resistance increase rate is 50%. I found that both of them got worse.

本発明の非水電解質二次電池に用いた発電要素の外観。The external appearance of the electric power generation element used for the nonaqueous electrolyte secondary battery of this invention. 本発明の非水電解質二次電池の外観。Appearance of the nonaqueous electrolyte secondary battery of the present invention.

11:非水電解質二次電池
12:電極群
13:正極板
14:負極板
15:セパレータ
11: Nonaqueous electrolyte secondary battery 12: Electrode group 13: Positive electrode plate 14: Negative electrode plate 15: Separator

Claims (1)

正極と負極と非水電解液とを備えた非水電解液二次電池において、前記非水電解液中にビス(ビニルスルホニル)メタンを2.0重量%以下およびリチウムビス(オキサレート)ジフルオロホスフェートを1.5重量%以下含むことを特徴とする非水電解液二次電池。   In a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, bis (vinylsulfonyl) methane is contained in the non-aqueous electrolyte in an amount of 2.0% by weight or less and lithium bis (oxalate) difluorophosphate. A non-aqueous electrolyte secondary battery comprising 1.5% by weight or less.
JP2009188905A 2009-08-18 2009-08-18 Non-aqueous electrolyte secondary battery Expired - Fee Related JP5326923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009188905A JP5326923B2 (en) 2009-08-18 2009-08-18 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009188905A JP5326923B2 (en) 2009-08-18 2009-08-18 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2011040333A JP2011040333A (en) 2011-02-24
JP5326923B2 true JP5326923B2 (en) 2013-10-30

Family

ID=43767885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009188905A Expired - Fee Related JP5326923B2 (en) 2009-08-18 2009-08-18 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5326923B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283075B (en) * 2010-12-28 2016-01-13 积水化学工业株式会社 Lithium rechargeable battery
US20140193682A1 (en) * 2011-08-30 2014-07-10 Shinji Suzuki Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2016015349A (en) * 2015-10-29 2016-01-28 株式会社Gsユアサ Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN108258314A (en) * 2018-02-01 2018-07-06 广州赛益迪新能源科技有限公司 A kind of electrolyte for being adapted to high pressure nickel-cobalt-manganternary ternary anode material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579588B2 (en) * 2003-06-16 2010-11-10 株式会社豊田中央研究所 Lithium ion secondary battery
JP2005285492A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
JP5098171B2 (en) * 2005-12-26 2012-12-12 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP4893038B2 (en) * 2006-03-17 2012-03-07 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2007335143A (en) * 2006-06-13 2007-12-27 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2011040333A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
EP2840640B1 (en) Lithium secondary battery
US9935337B2 (en) Lithium secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
CN110720156B (en) Lithium ion secondary battery
US20120189920A1 (en) Non-Aqueous Electrolytic Solutions And Electrochemical Cells Comprising The Same
JP6275694B2 (en) Nonaqueous electrolyte secondary battery
WO2014156011A1 (en) Non-aqueous electrolyte secondary battery
JP2012094459A (en) Lithium ion secondary battery
KR20160081395A (en) An Electrolyte for a lithium ion secondary battery and a lithium ion secondary battery comprising the same
JP2019079710A (en) Method for manufacturing positive electrode
WO2015079893A1 (en) Lithium secondary battery
KR20080110160A (en) Additive for non-aqueous electrolyte and secondary battery using the same
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP6036697B2 (en) Non-aqueous secondary battery
WO2016021596A1 (en) Lithium secondary battery and production method for same
JP2009134970A (en) Nonaqueous electrolytic battery
JP5326923B2 (en) Non-aqueous electrolyte secondary battery
US20210230002A1 (en) Reduced graphene-based material
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP6992362B2 (en) Lithium ion secondary battery
JP2007250499A (en) Lithium ion secondary battery
JP2021044171A (en) Lithium ion secondary battery and method for manufacturing the same
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
CN104704669A (en) Non-aqueous electrolyte secondary battery
JP5426809B2 (en) Secondary battery, electronic equipment using secondary battery and transportation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5326923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees