WO2015079893A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2015079893A1
WO2015079893A1 PCT/JP2014/079673 JP2014079673W WO2015079893A1 WO 2015079893 A1 WO2015079893 A1 WO 2015079893A1 JP 2014079673 W JP2014079673 W JP 2014079673W WO 2015079893 A1 WO2015079893 A1 WO 2015079893A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
negative electrode
secondary battery
compound
aqueous electrolyte
Prior art date
Application number
PCT/JP2014/079673
Other languages
French (fr)
Japanese (ja)
Inventor
貴子 西田
祐介 中村
龍太 韓
春樹 上剃
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Publication of WO2015079893A1 publication Critical patent/WO2015079893A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery excellent in charge / discharge cycle characteristics and storage characteristics in a discharged state.
  • lithium secondary batteries are required to improve various battery characteristics in accordance with the spread of applicable devices.
  • Patent Document 1 discloses that a non-aqueous electrolyte using a dinitrile compound as an organic solvent and a specific type of lithium salt can suppress a decrease in charge / discharge amount due to repeated charge / discharge of the battery. Are listed.
  • a nitrile compound such as a dinitrile compound is not used in a large amount as an organic solvent for a non-aqueous electrolyte in a lithium secondary battery, but is used in a small amount as an additive thereof, for example, during storage of a lithium secondary battery. It is known that it has an effect of suppressing the swelling (bulging when stored under high temperature in a charged state) and the effect of improving the safety of the lithium secondary battery.
  • lithium secondary batteries are also required to have good charge / discharge cycle characteristics so that a large capacity can be maintained even if charge / discharge is repeated many times, but contain a nitrile compound as an additive. In a lithium secondary battery using a non-aqueous electrolyte, the charge / discharge cycle characteristics at room temperature are likely to deteriorate.
  • the lithium secondary battery may be left in a discharged state for a long period of time. As a result, the voltage of the battery drops to an overdischarged state, and the power cannot be turned on even if the device is used again.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a lithium secondary battery excellent in charge / discharge cycle characteristics and storage characteristics in a discharged state.
  • the lithium secondary battery of the present invention that has achieved the above object is a lithium secondary battery using a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the non-aqueous electrolyte has a nitrile group in the molecule.
  • nitrile compound lithium bisoxalate borate
  • LiBOB lithium bisoxalate borate
  • the content of the compound having a nitrile group in the molecule in the non-aqueous electrolyte is 0.05 to 1.5% by mass, and the content of LiBOB in the non-aqueous electrolyte is 0.05 to 5% by mass.
  • the content of the compound in which the reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential in the nonaqueous electrolyte is 10% by mass or less.
  • a lithium secondary battery excellent in charge / discharge cycle characteristics and storage characteristics in a discharged state can be provided.
  • FIG. 2 is a perspective view of FIG. 1.
  • the nitrile compound is used as an additive for the non-aqueous electrolyte, so that the storage characteristics of the non-aqueous secondary battery (storage characteristics in a high temperature environment of the lithium secondary battery in a charged state) and safety can be improved. While contributing to the improvement, the charge / discharge cycle characteristics at room temperature are deteriorated.
  • a nonaqueous electrolyte containing, as an additive, a specific amount of LiBOB and a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential is used together with the specific amount of nitrile compound. It was decided.
  • Both LiBOB and the compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential have the effect of forming a film on the negative electrode surface when the battery is charged and discharged. Since the coating formed on the negative electrode surface by these compounds suppresses the decomposition reaction of non-aqueous electrolyte components including the nitrile compound on the negative electrode surface when the charge and discharge of the lithium secondary battery is repeated, It is possible to suppress a decrease in capacity that can be caused by such a decomposition reaction.
  • the non-aqueous solution contains a compound with a reduction potential at LiBOB and the negative electrode of 1.3 V or less with respect to the metal Li potential.
  • LiBOB preferentially forms a film on the negative electrode surface by charging and discharging. Since the LiBOB-derived film formed on the negative electrode surface is strong and has lithium ion conductivity, the decomposition reaction of the nonaqueous electrolyte component on the negative electrode surface is satisfactorily suppressed, while the battery reaction is Does not hinder.
  • the LiBOB-derived film that is preferentially formed on the negative electrode surface suppresses the film-forming reaction of a compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential. Therefore, a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential remains in the nonaqueous electrolyte as it is for a relatively long period after the use of the nonaqueous secondary battery is started. And, when a defect occurs in the LiBOB-derived film formed on the negative electrode surface by repeating many charging and discharging of the non-aqueous secondary battery, the reduction potential at the negative electrode is lower than the metal Li potential at this defective portion. A compound having a voltage of 1.3 V or less reacts with the negative electrode to form a film, whereby the decomposition reaction of the nonaqueous electrolyte component on the negative electrode surface is continuously suppressed.
  • LiBOB and a compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential form a film on the negative electrode surface step by step. Even if it repeats, since the decomposition reaction of the nonaqueous electrolyte component in the negative electrode can be suppressed over a long period of time, excellent charge / discharge cycle characteristics can be ensured.
  • a non-aqueous secondary battery using a non-aqueous electrolyte containing a compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential for example, use of a portable device using the non-aqueous electrolyte as a power source If the battery is left in a car in a discharged state, such as when left in a car with advanced, the potential of the negative electrode is high, so the reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential. The reduction reaction by the compound proceeds, and the battery voltage is likely to decrease (that is, the overdischarge state is likely to occur). In a portable device having a battery in such a state, the power cannot be turned on.
  • a compound having a reduction potential at LiBOB and a negative electrode of 1.3 V or less with respect to the metallic Li potential generates gas and causes swelling in a discharged battery, but a specific amount of nitrile compound and a specific amount
  • a nonaqueous electrolyte containing LiBOB and a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential is used, the occurrence of such blistering can also be suppressed.
  • the specific additive added to the non-aqueous electrolyte acts in a complex manner, so that the charge / discharge cycle characteristics are enhanced and the storage characteristics in the discharged state are also excellent. Can be.
  • non-aqueous electrolyte As the non-aqueous electrolyte according to the lithium secondary battery of the present invention, a solution (non-aqueous electrolyte) in which an electrolyte salt is dissolved in an organic solvent is usually used.
  • the non-aqueous electrolyte contains, as additives, a compound having a nitrile group in the molecule, lithium bisoxalate borate (LiBOB), and a compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential. is doing.
  • nitrile compound examples include acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, acrylonitrile and other mononitriles; malononitrile, the following general formula (1) NC- (CH 2 ) n -CN (1)
  • n is an integer of 2 to 4] 1,4-dicyanoheptane, 1,5-dicyanopentane, 1,6-dicyanohexane, 1,7-dicyanoheptane, 2,6-dicyanoheptane, 1,8-dicyanooctane, 2, Dinitriles such as 7-dicyanooctane, 1,9-dicyanononane, 2,8-dicyanononane, 1,10-dicyanodecane, 1,6-dicyanodecane and 2,4-dimethylglutaronitrile; cyclic nitriles such as benzonitrile
  • dinitriles are preferable, compounds represented by the general formula (1) (succinonitrile, glutaronitrile, adiponitrile) are more preferable, and charging / discharging of the battery by using in combination with other additives
  • Examples of the compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential include, for example, 2-propynyl diethylphosphonoacetate (PDEA), 4-fluoro-1,3-dioxolan-2-one (FEC) , Vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and the like, and only one of them may be used, or two or more may be used in combination.
  • PDEA 2-propynyl diethylphosphonoacetate
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • VC Vinylene carbonate
  • VEC vinyl ethylene carbonate
  • the content of the nitrile compound in the non-aqueous electrolyte used for the lithium secondary battery is 0.05% by mass or more, and preferably 0.2% by mass or more, from the viewpoint of ensuring a good effect due to the use. .
  • the amount of the nitrile compound in the non-aqueous electrolyte is too large, for example, the amount of LiBOB required to suppress the deterioration of the charge / discharge cycle characteristics of the battery due to the nitrile compound becomes too large, and the discharge state of the battery The storage characteristics at the end will deteriorate. Therefore, the content of the nitrile compound in the non-aqueous electrolyte used for the lithium secondary battery is 1.5% by mass or less, and preferably 1% by mass or less.
  • the content of LiBOB in the non-aqueous electrolyte used for the lithium secondary battery is 0.05% by mass or more, and preferably 0.25% by mass or more, from the viewpoint of ensuring a good effect due to its use.
  • the content of LiBOB in the non-aqueous electrolyte used for the lithium secondary battery is 5% by mass or less.
  • a compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential is an additive that contributes to the improvement of the charge / discharge cycle characteristics of the battery as described above, but in the non-aqueous electrolyte used in the battery If the amount is too large, the charge / discharge cycle characteristics of the battery may be impaired, and the battery may swell during storage in a discharged state. Therefore, the content of a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential in the non-aqueous electrolyte used for the lithium secondary battery (the non-aqueous electrolyte has a reduction potential at the negative electrode that is a metal Li potential).
  • the content in the non-aqueous electrolyte used in the lithium secondary battery is 1 mass. % Or more, more preferably 1.5% by mass or more.
  • the electrolyte salt related to the non-aqueous electrolyte is not particularly limited as long as it dissociates in a solvent to form Li + ions and hardly causes a side reaction such as decomposition in a voltage range used as a battery.
  • inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ⁇ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group]; it can.
  • the concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / l, more preferably 0.9 to 1.25 mol / l.
  • the organic solvent used for the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause a side reaction such as decomposition in a voltage range used as a battery.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate (DEC), and methyl ethyl carbonate; chain esters such as methyl propionate; ⁇ -butyrolactone, etc.
  • Cyclic esters such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as 1,4-dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; acetonitrile, propionitrile, Nitriles such as methoxypropionitrile; sulfites such as ethylene glycol sulfite; and the like. And it can also be. In order to obtain a battery with better characteristics, it is desirable to use a combination that can obtain high conductivity, such as a mixed solvent of ethylene carbonate and chain carbonate.
  • chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme
  • cyclic ethers such as 1,4-dioxane, tetrahydr
  • the nonaqueous electrolyte used for the lithium secondary battery preferably contains 1,3-dioxane. Thereby, the charge / discharge cycle characteristics of the lithium secondary battery can be further enhanced.
  • the content of 1,3-dioxane in the non-aqueous electrolyte used for the lithium secondary battery is preferably 0.1% by mass or more from the viewpoint of better ensuring the effect of the use, and 0.5% by mass. % Or more is more preferable.
  • the content of 1,3-dioxane in the non-aqueous electrolyte used for the lithium secondary battery is preferably 5% by mass or less, and more preferably 2% by mass or less.
  • Non-aqueous electrolytes used in lithium secondary batteries include acid anhydrides, sulfonic acid esters, 1 for the purpose of further improving charge / discharge cycle characteristics and improving safety such as high-temperature storage and prevention of overcharge.
  • acid anhydrides sulfonic acid esters 1 for the purpose of further improving charge / discharge cycle characteristics and improving safety such as high-temperature storage and prevention of overcharge.
  • 3-propane sultone, diphenyl disulfide, cyclohexylbenzene, biphenyl, fluorobenzene, t-butylbenzene, and other additives (including derivatives thereof) can be added as appropriate.
  • a gel obtained by adding a known gelling agent such as a polymer to the non-aqueous electrolyte (non-aqueous electrolyte) is used. You can also.
  • the lithium secondary battery of the present invention has a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, and the non-aqueous electrolyte may be used as the non-aqueous electrolyte, and other configurations and structures are particularly limited. Rather, various configurations and structures employed in conventionally known lithium secondary batteries can be applied.
  • the positive electrode for the lithium secondary battery for example, one having a structure having a positive electrode mixture layer containing a positive electrode active material, a binder, a conductive auxiliary agent and the like on one side or both sides of a current collector can be used.
  • lithium cobalt composite oxide such as LiCoO 2 ; lithium manganese composite oxide such as LiMnO 2 and Li 2 MnO 3 ; lithium nickel composite oxide such as LiNiO 2 ; layered such as LiCo 1-x NiO 2 Lithium-containing composite oxide having a structure; lithium-containing composite oxide having a spinel structure such as LiMn 2 O 4 , Li 4/3 Ti 5/3 O 4 ; lithium-containing composite oxide having an olivine structure such as LiFePO 4 ; One or two or more of lithium-containing composite oxides such as oxides having a basic composition and substituted with various elements can be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the conductive auxiliary agent related to the positive electrode mixture layer for example, graphite (graphite carbon material) such as natural graphite (flaky graphite), artificial graphite; acetylene black, ketjen black, channel black, furnace black, Examples thereof include carbon blacks such as carbon blacks such as lamp black and thermal black; carbon fibers.
  • the positive electrode for example, a paste-like or slurry-like positive electrode mixture-containing composition in which a positive electrode active material, a binder, a conductive auxiliary agent, and the like are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) is prepared (
  • NMP N-methyl-2-pyrrolidone
  • the binder may be dissolved in a solvent), and this is applied to one or both sides of the current collector, dried, and then subjected to a calendering process as necessary.
  • the positive electrode is not limited to those manufactured by the above manufacturing method, and may be manufactured by other methods.
  • a lead body for electrical connection with other members in the lithium secondary battery may be formed on the positive electrode according to a conventional method, if necessary.
  • the thickness of the positive electrode mixture layer is preferably, for example, 10 to 100 ⁇ m per one side of the current collector.
  • the amount of the positive electrode active material is preferably 60 to 95% by mass
  • the amount of the binder is preferably 1 to 15% by mass
  • the amount of the conductive auxiliary agent Is preferably 3 to 20% by mass.
  • the positive electrode current collector may be the same as that used for the positive electrode of a conventionally known lithium secondary battery, and for example, an aluminum foil having a thickness of 10 to 30 ⁇ m is preferable.
  • the negative electrode related to the lithium secondary battery has, for example, a negative electrode active material, a binder, and, if necessary, a negative electrode mixture layer including a negative electrode mixture containing a conductive auxiliary agent on one side or both sides of the current collector.
  • a structure can be used.
  • Examples of the negative electrode active material include graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers, activated carbon, and metals that can be alloyed with lithium (Si , Sn, etc.) or alloys thereof, oxides, etc., and one or more of these can be used.
  • the same negative electrode binder and conductive additive as those exemplified above as those that can be used for the positive electrode can be used.
  • a negative electrode active material, a binder, and a conductive auxiliary agent used as necessary are prepared in a paste-like or slurry-like negative electrode mixture-containing composition in which a solvent such as NMP or water is dispersed.
  • a solvent such as NMP or water
  • the binder may be dissolved in a solvent, which is applied to one or both sides of the current collector, dried, and then subjected to a calendering process as necessary.
  • the negative electrode is not limited to those manufactured by the above manufacturing method, and may be manufactured by other methods.
  • a lead body for electrical connection with other members in the lithium secondary battery may be formed on the negative electrode according to a conventional method, if necessary.
  • the thickness of the negative electrode mixture layer is preferably, for example, 10 to 100 ⁇ m per one side of the current collector.
  • the composition of the negative electrode mixture layer is preferably 80.0 to 99.8 mass% for the negative electrode active material and 0.1 to 10 mass% for the binder, for example. Further, when the negative electrode mixture layer contains a conductive additive, the amount of the conductive auxiliary in the negative electrode mixture layer is preferably 0.1 to 10% by mass.
  • the negative electrode current collector a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used, but a copper foil is usually used.
  • the upper limit of the thickness is preferably 30 ⁇ m, and the lower limit is 5 ⁇ m in order to ensure mechanical strength. Is desirable.
  • the separator according to the lithium secondary battery has a property that the pores are closed at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower) (that is, a shutdown function).
  • a separator used in a normal lithium secondary battery for example, a microporous membrane made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used.
  • the microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be.
  • the thickness of the separator is preferably 10 to 30 ⁇ m, for example.
  • the positive electrode, the negative electrode, and the separator are formed in the form of a laminated electrode body in which a separator is interposed between the positive electrode and the negative electrode, or a wound electrode body in which the separator is wound in a spiral shape. It can be used for the lithium secondary battery of the invention.
  • Examples of the form of the lithium secondary battery of the present invention include a cylindrical shape (such as a square cylindrical shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
  • Lithium secondary batteries may use thin outer casings such as rectangular tube outer casings and laminate film outer casings as described above depending on their applications. If the volume occupied by the electrode bodies (positive electrode and negative electrode) in the battery is increased in order to increase the capacity, the content of the non-aqueous electrolyte decreases. The nonaqueous electrolyte is decomposed and reduced in accordance with the charge / discharge of the lithium secondary battery, so in a battery with a low content of the nonaqueous electrolyte, the nonaqueous electrolyte has a relatively small number of charge / discharge cycles. There is a risk that the amount becomes insufficient and sufficient capacity cannot be extracted (that is, charge / discharge cycle deterioration occurs).
  • the action of each additive in the non-aqueous electrolyte can suppress decomposition and weight loss of the non-aqueous electrolyte due to charge and discharge. Even when the capacity is increased while being used and the content of the non-aqueous electrolyte cannot be increased, good charge / discharge cycle characteristics can be secured.
  • the amount of nonaqueous electrolyte per discharge capacity (hereinafter simply referred to as “the amount of nonaqueous electrolyte per discharge capacity”) is as small as 2.1 g / Ah or less. Even so, good charge / discharge cycle characteristics can be secured.
  • the quantity of the nonaqueous electrolyte per discharge capacity in the lithium secondary battery of this invention is 1.8 g / Ah or more.
  • the discharge capacity used for the calculation of the amount of the nonaqueous electrolyte per discharge capacity is a constant current charge to 4.4 V at a current value of 0.5 C in an environment of 23 ° C., and subsequently a current at 4.4 V.
  • the discharge capacity is obtained by performing constant voltage charging until the value reaches 0.05 C, and then discharging at 2.75 V with a constant current of 0.2 C.
  • the amount of the nonaqueous electrolyte used for calculating the amount of the nonaqueous electrolyte per discharge capacity is a value obtained by the following procedures (1) to (6).
  • (1) The mass of the lithium secondary battery is measured.
  • (3) Take out the positive electrode and the negative electrode from the lithium secondary battery, and immerse them in dimethyl carbonate for 24 hours in order to extract the nonaqueous electrolyte soaked in the inside.
  • Example 1 Preparation of positive electrode> 100 parts by mass of a positive electrode active material obtained by mixing LiCoO 2 and Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2 at a ratio (mass ratio) of 8: 2, and 10 parts by mass of PVDF as a binder. 20 parts by weight of NMP solution contained at a concentration of 1%, 1 part by weight of artificial graphite and 1 part by weight of ketjen black, which are conductive assistants, are kneaded using a biaxial kneader, and NMP is added to adjust the viscosity. Thus, a positive electrode mixture-containing paste was prepared.
  • ⁇ Production of negative electrode> A composite in which the surface of SiO having an average particle diameter D50% of 8 ⁇ m, which is a negative electrode active material, is coated with a carbon material (the amount of the carbon material in the composite is 10% by mass), and graphite having an average particle diameter D50% of 16 ⁇ m
  • LiPF 6 is dissolved at a concentration of 1.1 mol / L in a mixed solvent of EC and DEC at a volume ratio of 3: 7, so that adiponitrile is 0.5 mass% and LiBOB is 0.25 mass%.
  • the amount of PDEA is 2.0% by mass
  • the amount of FEC is 1.5% by mass
  • the amount of VC is 3.0% by mass
  • the amount of 1,3-dioxane is 1.5% by mass.
  • a non-aqueous electrolyte (non-aqueous electrolyte solution) was prepared by adding each in an amount of%.
  • the belt-like positive electrode is stacked on the belt-like negative electrode through a microporous polyethylene separator (porosity: 41%) having a thickness of 16 ⁇ m, wound in a spiral shape, and then pressed so as to be flat.
  • a wound electrode body having a flat wound structure was formed, and this electrode wound body was fixed with an insulating tape made of polypropylene.
  • the wound electrode body is inserted into a prismatic battery case made of aluminum alloy having an outer dimension of 4.0 mm in thickness, 34 mm in width, and 50 mm in height, and the lead body is welded, and the lid made of aluminum alloy
  • the plate was welded to the open end of the battery case. Thereafter, the non-aqueous electrolyte is injected from the inlet provided in the cover plate, and left for 1 hour, and then the inlet is sealed.
  • the lithium secondary battery having the structure shown in FIG. Obtained.
  • FIG. 1 is a partial sectional view of the battery, and the positive electrode 1 and the negative electrode 2 are spirally wound via a separator 3 and then flattened.
  • the flat wound electrode body 6 is pressurized and accommodated in a rectangular (rectangular tube) battery case 4 together with a nonaqueous electrolyte.
  • a metal foil, a non-aqueous electrolyte, and the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 are not illustrated.
  • the battery case 4 is made of an aluminum alloy and constitutes a battery outer body.
  • the battery case 4 also serves as a positive electrode terminal.
  • the insulator 5 which consists of PE sheets is arrange
  • the positive electrode lead body 7 and the negative electrode lead body 8 thus drawn are drawn out.
  • a stainless steel terminal 11 is attached to a sealing lid plate 9 made of aluminum alloy for sealing the opening of the battery case 4 via a polypropylene insulating packing 10, and an insulator 12 is attached to the terminal 11.
  • a stainless steel lead plate 13 is attached.
  • the cover plate 9 is inserted into the opening of the battery case 4, and the joint of the two is welded, whereby the opening of the battery case 4 is sealed and the inside of the battery is sealed.
  • a non-aqueous electrolyte inlet 14 is provided in the lid plate 9, and the non-aqueous electrolyte inlet 14 is welded by, for example, laser welding with a sealing member inserted.
  • the battery is sealed to ensure the battery hermeticity.
  • the lid plate 9 is provided with a cleavage vent 15 as a mechanism for discharging the internal gas to the outside when the temperature of the battery rises.
  • the outer can 5 and the cover plate 9 function as a positive electrode terminal by directly welding the positive electrode lead body 7 to the lid plate 9, and the negative electrode lead body 8 is welded to the lead plate 13,
  • the terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the lead plate 13, but depending on the material of the battery case 4, the sign may be reversed. There is also.
  • FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1.
  • FIG. 2 is shown for the purpose of showing that the battery is a square battery.
  • FIG. 1 schematically shows a battery, and only specific members of the battery are shown. Also in FIG. 1, the inner peripheral portion of the electrode body is not cross-sectional.
  • Examples 2-7 A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that the addition amount of adiponitrile, LiBOB, PDEA, FEC and VC was changed to the amounts shown in Tables 1 and 2, except that these non-aqueous electrolytes were used.
  • a lithium secondary battery was produced in the same manner as in Example 1.
  • Example 8 A non-aqueous electrolyte was prepared in the same manner as in Example 2 except that succinonitrile was used instead of adiponitrile, and a lithium secondary battery was produced in the same manner as in Example 1 except that this non-aqueous electrolyte was used.
  • Example 9 A nonaqueous electrolyte was prepared in the same manner as in Example 2 except that VEC was added in an amount of 4.5% by mass without adding FEC and VC, and Example 1 except that this nonaqueous electrolyte was used. Similarly, a lithium secondary battery was produced.
  • Example 10 A nonaqueous electrolyte was prepared in the same manner as in Example 2 except that 1,3-dioxane was not added, and a lithium secondary battery was produced in the same manner as in Example 1 except that this nonaqueous electrolyte was used.
  • Example 11 A nonaqueous electrolyte was prepared in the same manner as in Example 2 except that PDEA was not added, and a lithium secondary battery was produced in the same manner as in Example 1 except that these nonaqueous electrolytes were used.
  • Example 12 A nonaqueous electrolyte was prepared in the same manner as in Example 2 except that FEC and VC were not added, and a lithium secondary battery was produced in the same manner as in Example 1 except that these nonaqueous electrolytes were used.
  • Comparative Example 1 A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that adiponitrile and LiBOB were not added, and a lithium secondary battery was produced in the same manner as in Example 1 except that this nonaqueous electrolyte was used.
  • Comparative Example 2 A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that LiBOB was not added, and a lithium secondary battery was produced in the same manner as in Example 1 except that this nonaqueous electrolyte was used.
  • Comparative Example 3 A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that adiponitrile was not added, and a lithium secondary battery was produced in the same manner as in Example 1 except that this nonaqueous electrolyte was used.
  • Comparative Example 4 A non-aqueous electrolyte was prepared in the same manner as in Example 2 except that PDEA, FEC and VC were not added, and a lithium secondary battery was prepared in the same manner as in Example 1 except that this non-aqueous electrolyte was used.
  • Comparative Examples 5-9 A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that the addition amount of adiponitrile, LiBOB, PDEA, FEC and VC was changed to the amounts shown in Table 3 and Table 4, and except that these nonaqueous electrolytes were used.
  • a lithium secondary battery was produced in the same manner as in Example 1.
  • the initial discharge capacity and the capacity maintenance ratio at the 500th cycle were obtained in the same manner as described above except that the environmental temperature was changed to 45 ° C.
  • the change amount ((DELTA) V) of OCV was computed by subtracting the value after storage from the value before storage.
  • the change rate (%) of thickness was computed using the following formula
  • equation. Change in thickness (%) 100 ⁇ thickness after storage ⁇ thickness before storage
  • Tables 1 to 4 show the contents of the nonaqueous electrolyte additives related to the lithium secondary batteries of Examples and Comparative Examples, and Tables 5 and 6 show the evaluation results.
  • a nonaqueous electrolyte containing an appropriate amount of a nitrile compound, an appropriate amount of LiBOB, and an appropriate amount of a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential The lithium secondary batteries of Examples 1 to 11 using the above had a high capacity retention rate at the time of evaluation of charge / discharge cycle characteristics at both 23 ° C. and 45 ° C., and had good charge / discharge cycle characteristics.
  • the lithium secondary batteries of Examples 1 and 2 have low OCV reduction and change in thickness (occurrence of blistering) after high temperature storage in a discharged state, and high temperature storage characteristics in a discharged state are good. Met.
  • the battery of Comparative Example 1 using the nonaqueous electrolyte containing no nitrile compound and LiBOB has inferior charge / discharge cycle characteristics at 23 ° C. and 45 ° C., and after high temperature storage in a discharged state.
  • the amount of decrease in OCV was larger than that of the battery of the example.
  • the battery of Comparative Example 2 using a non-aqueous electrolyte that does not contain LiBOB and the battery of Comparative Example 7 using a non-aqueous electrolyte with a low LiBOB content are those of OCV after high-temperature storage in a discharged state. The amount of decrease was larger than that of the battery of the example.
  • the battery of Comparative Example 3 using a non-aqueous electrolyte containing no nitrile compound and the battery of Comparative Example 5 using a non-aqueous electrolyte with a low content of nitrile compound are obtained after high-temperature storage in a discharged state.
  • the rate of change of thickness was larger than that of the battery of the example.
  • the battery of Comparative Example 4 using a nonaqueous electrolyte that does not contain a compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential, and a nonaqueous electrolyte with a high content of the compound are used.
  • the battery of Comparative Example 9 was inferior in charge / discharge cycle characteristics at 23 ° C. and 45 ° C., and the rate of change in thickness after high-temperature storage in a discharged state was larger than that of the battery of the example.
  • the battery of Comparative Example 6 using a non-aqueous electrolyte with a high adiponitrile content is inferior in charge / discharge cycle characteristics at 23 ° C.
  • the decrease in OCV after high-temperature storage in a discharged state is low. It was larger than the battery of the example.
  • the battery of Comparative Example 8 using a nonaqueous electrolyte with a high LIBOB content had a greater rate of change in thickness after high-temperature storage in the discharged state than the battery of the example.
  • the lithium secondary battery of the present invention is excellent in charge / discharge cycle characteristics and storage characteristics in a discharged state, and can maintain good charge / discharge cycle characteristics even in a thin form in which the nonaqueous electrolytic mass is limited. Therefore, the lithium secondary battery of the present invention is required to have a thin shape and is often left in a discharged state, such as a digital camera, a portable game machine, a mobile phone, a smart phone, etc. that are frequently charged and discharged. It can be preferably used for the same application as various applications to which a conventionally known lithium secondary battery is applied, including a power supply application for portable devices.

Abstract

Provided is a lithium secondary battery which has excellent charge/discharge cycle characteristics and excellent storage characteristics in a discharged state. The above-mentioned problem is solved by a lithium secondary battery which uses a positive electrode, a negative electrode, a separator and a nonaqueous electrolyte, and which is characterized in that: the nonaqueous electrolyte contains a compound having a nitrile group in each molecule, lithium bisoxalate borate, a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the Li metal potential, and an electrolyte salt; the content of the compound having a nitrile group in each molecule in the nonaqueous electrolyte is 0.05-1.5% by mass; the content of the lithium bisoxalate borate in the nonaqueous electrolyte is 0.05-5% by mass; and the content of the compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the Li metal potential is 10% by mass or less.

Description

リチウム二次電池Lithium secondary battery
 本発明は、充放電サイクル特性および放電状態での貯蔵特性に優れたリチウム二次電池に関するものである。 The present invention relates to a lithium secondary battery excellent in charge / discharge cycle characteristics and storage characteristics in a discharged state.
 近年、携帯電話、ノート型パソコンなどの携帯型電子機器の発達や、電気自動車の実用化などに伴って、小型軽量でかつ高容量のリチウム二次電池が必要とされるようになってきた。 In recent years, along with the development of portable electronic devices such as mobile phones and notebook computers, and the practical application of electric vehicles, small and light lithium secondary batteries with high capacity have been required.
 そして、リチウム二次電池には、その適用機器の広がりなどに伴って、各種の電池特性を向上させることが求められている。 In addition, lithium secondary batteries are required to improve various battery characteristics in accordance with the spread of applicable devices.
 リチウム二次電池の電池特性の向上を図る手段の一つとして、非水電解質の改良がある。例えば、特許文献1には、ジニトリル化合物を有機溶媒に用い、かつ特定種のリチウム塩を使用した非水電解液によって、電池の充放電を繰り返すことによる充放電量の低下を抑制し得ることが記載されている。 As one of means for improving the battery characteristics of the lithium secondary battery, there is improvement of a non-aqueous electrolyte. For example, Patent Document 1 discloses that a non-aqueous electrolyte using a dinitrile compound as an organic solvent and a specific type of lithium salt can suppress a decrease in charge / discharge amount due to repeated charge / discharge of the battery. Are listed.
特開2011-222473号公報JP 2011-222473 A
 ところで、ジニトリル化合物などのニトリル化合物は、リチウム二次電池において、非水電解質の有機溶媒として多量に使用するのではなく、その添加剤として少量使用することで、例えば、リチウム二次電池の貯蔵時の膨れ(充電状態で高温下に貯蔵したときの膨れ)を抑制する作用や、リチウム二次電池の安全性を高める作用を有していることが知られている。その一方で、リチウム二次電池には、充放電を多数繰り返しても大きな容量が維持できるように、良好な充放電サイクル特性を有していることも求められるが、ニトリル化合物を添加剤として含む非水電解質を用いたリチウム二次電池では、特に常温下での充放電サイクル特性が低下しやすい。 By the way, a nitrile compound such as a dinitrile compound is not used in a large amount as an organic solvent for a non-aqueous electrolyte in a lithium secondary battery, but is used in a small amount as an additive thereof, for example, during storage of a lithium secondary battery. It is known that it has an effect of suppressing the swelling (bulging when stored under high temperature in a charged state) and the effect of improving the safety of the lithium secondary battery. On the other hand, lithium secondary batteries are also required to have good charge / discharge cycle characteristics so that a large capacity can be maintained even if charge / discharge is repeated many times, but contain a nitrile compound as an additive. In a lithium secondary battery using a non-aqueous electrolyte, the charge / discharge cycle characteristics at room temperature are likely to deteriorate.
 こうしたことから、ニトリル化合物を添加剤として含有する非水電解質を用いたリチウム二次電池においては、充放電サイクル特性も高める技術の開発が求められる。 For these reasons, in lithium secondary batteries using a non-aqueous electrolyte containing a nitrile compound as an additive, development of a technology that enhances charge / discharge cycle characteristics is also required.
 また、例えば、リチウム二次電池を電源とする携帯ゲーム機などの携帯機器においては、使用されてリチウム二次電池が放電した状態で長期間放置されることもあるが、この間にリチウム二次電池の電圧が低下して過放電状態となり、再度機器を使用しようとしても電源が入らない、といった現象が生じ得る。 Also, for example, in portable devices such as portable game machines that use a lithium secondary battery as a power source, the lithium secondary battery may be left in a discharged state for a long period of time. As a result, the voltage of the battery drops to an overdischarged state, and the power cannot be turned on even if the device is used again.
 よって、リチウム二次電池においては、前記の現象の発生を抑制し得るように、放電状態での貯蔵特性を高める技術の開発要請もある。 Therefore, there is a demand for development of a technology for improving the storage characteristics in a discharged state so that the occurrence of the above-described phenomenon can be suppressed in the lithium secondary battery.
 本発明は、前記事情に鑑みてなされたものであり、その目的は、充放電サイクル特性および放電状態での貯蔵特性に優れたリチウム二次電池を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a lithium secondary battery excellent in charge / discharge cycle characteristics and storage characteristics in a discharged state.
 前記目的を達成し得た本発明のリチウム二次電池は、正極、負極、セパレータおよび非水電解質を用いたリチウム二次電池であって、前記非水電解質は、分子内にニトリル基を有する化合物(以下、「ニトリル化合物」という)、リチウムビスオキサレートボレート(以下、「LiBOB」という)、負極での還元電位がLi電位に対して1.3V以下の化合物、および電解質塩を含有しており、前記分子内にニトリル基を有する化合物の前記非水電解質中の含有量が0.05~1.5質量%であり、前記LiBOBの前記非水電解質中の含有量が0.05~5質量%であり、前記負極での還元電位が金属Li電位に対して1.3V以下の化合物の前記非水電解質中の含有量が10質量%以下であることを特徴とするものである。 The lithium secondary battery of the present invention that has achieved the above object is a lithium secondary battery using a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the non-aqueous electrolyte has a nitrile group in the molecule. (Hereinafter referred to as “nitrile compound”), lithium bisoxalate borate (hereinafter referred to as “LiBOB”), a compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the Li potential, and an electrolyte salt. The content of the compound having a nitrile group in the molecule in the non-aqueous electrolyte is 0.05 to 1.5% by mass, and the content of LiBOB in the non-aqueous electrolyte is 0.05 to 5% by mass. The content of the compound in which the reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential in the nonaqueous electrolyte is 10% by mass or less.
 本発明によれば、充放電サイクル特性および放電状態での貯蔵特性に優れたリチウム二次電池を提供することができる。 According to the present invention, a lithium secondary battery excellent in charge / discharge cycle characteristics and storage characteristics in a discharged state can be provided.
本発明のリチウム二次電池の一例を模式的に表す部分縦断面図である。It is a fragmentary longitudinal cross-sectional view which represents typically an example of the lithium secondary battery of this invention. 図1の斜視図である。FIG. 2 is a perspective view of FIG. 1.
 前記の通り、ニトリル化合物は、非水電解質の添加剤として用いられることで、非水二次電池の貯蔵特性(充電状態としたリチウム二次電池の高温環境下での貯蔵特性)や安全性の向上に寄与する一方で、常温下での充放電サイクル特性を低下させてしまう。 As described above, the nitrile compound is used as an additive for the non-aqueous electrolyte, so that the storage characteristics of the non-aqueous secondary battery (storage characteristics in a high temperature environment of the lithium secondary battery in a charged state) and safety can be improved. While contributing to the improvement, the charge / discharge cycle characteristics at room temperature are deteriorated.
 そこで、本発明では、特定量のニトリル化合物と共に、特定量のLiBOBと、負極での還元電位が金属Li電位に対して1.3V以下の化合物とを添加剤として含有する非水電解質を使用することとした。 Therefore, in the present invention, a nonaqueous electrolyte containing, as an additive, a specific amount of LiBOB and a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential is used together with the specific amount of nitrile compound. It was decided.
 LiBOBと、負極での還元電位が金属Li電位に対して1.3V以下の化合物とは、いずれも電池が充放電されることで、負極表面に皮膜を形成する作用を有している。これらの化合物によって負極表面に形成される皮膜によって、リチウム二次電池の充放電を繰り返したときの、負極表面でのニトリル化合物をはじめとする非水電解質成分の分解反応が抑制されることから、かかる分解反応によって生じ得る容量低下を抑えることができる。 Both LiBOB and the compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential have the effect of forming a film on the negative electrode surface when the battery is charged and discharged. Since the coating formed on the negative electrode surface by these compounds suppresses the decomposition reaction of non-aqueous electrolyte components including the nitrile compound on the negative electrode surface when the charge and discharge of the lithium secondary battery is repeated, It is possible to suppress a decrease in capacity that can be caused by such a decomposition reaction.
 しかも、LiBOBは負極での還元電位が金属Li電位に対して1.5V程度であることから、LiBOBおよび負極での還元電位が金属Li電位に対して1.3V以下の化合物を含有する非水電解質を用いた電池では、充放電によって、まず、LiBOBが優先的に負極表面に皮膜を形成する。負極表面に形成されるLiBOB由来の皮膜は強固であり、かつリチウムイオン伝導性を有していることから、負極表面での非水電解質成分の分解反応を良好に抑制する一方で、電池反応は阻害しない。 Moreover, since LiBOB has a reduction potential at the negative electrode of about 1.5 V with respect to the metal Li potential, the non-aqueous solution contains a compound with a reduction potential at LiBOB and the negative electrode of 1.3 V or less with respect to the metal Li potential. In a battery using an electrolyte, LiBOB preferentially forms a film on the negative electrode surface by charging and discharging. Since the LiBOB-derived film formed on the negative electrode surface is strong and has lithium ion conductivity, the decomposition reaction of the nonaqueous electrolyte component on the negative electrode surface is satisfactorily suppressed, while the battery reaction is Does not hinder.
 また、優先的に負極表面に形成されるLiBOB由来の皮膜は、負極での還元電位が金属Li電位に対して1.3V以下の化合物の皮膜形成反応を抑制する。そのため、非水二次電池の使用を開始してから比較的長期にわたって、負極での還元電位が金属Li電位に対して1.3V以下の化合物が、そのまま非水電解質に残存する。そして、非水二次電池の充放電を多数繰り返すことで、負極表面に形成されたLiBOB由来の皮膜に欠陥が生じた場合に、この欠陥部分で、負極での還元電位が金属Li電位に対して1.3V以下の化合物が負極と反応して皮膜を形成し、これにより、継続して負極表面での非水電解質成分の分解反応が抑制される。 In addition, the LiBOB-derived film that is preferentially formed on the negative electrode surface suppresses the film-forming reaction of a compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential. Therefore, a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential remains in the nonaqueous electrolyte as it is for a relatively long period after the use of the nonaqueous secondary battery is started. And, when a defect occurs in the LiBOB-derived film formed on the negative electrode surface by repeating many charging and discharging of the non-aqueous secondary battery, the reduction potential at the negative electrode is lower than the metal Li potential at this defective portion. A compound having a voltage of 1.3 V or less reacts with the negative electrode to form a film, whereby the decomposition reaction of the nonaqueous electrolyte component on the negative electrode surface is continuously suppressed.
 このように、本発明のリチウム二次電池では、LiBOBと負極での還元電位が金属Li電位に対して1.3V以下の化合物とが段階的に負極表面で皮膜を形成するため、充放電を繰り返しても長期にわたって負極での非水電解質成分の分解反応を抑制し得ることから、優れた充放電サイクル特性を確保することができる。 Thus, in the lithium secondary battery of the present invention, LiBOB and a compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential form a film on the negative electrode surface step by step. Even if it repeats, since the decomposition reaction of the nonaqueous electrolyte component in the negative electrode can be suppressed over a long period of time, excellent charge / discharge cycle characteristics can be ensured.
 なお、例えば、負極での還元電位が金属Li電位に対して1.3V以下の化合物を含有する非水電解質を用いた非水二次電池では、例えば、それを電源とする携帯機器などの使用が進んだ状態で車内に放置するなどした場合のように、放電状態で高温下に貯蔵すると、負極の電位が高いために、負極での還元電位が金属Li電位に対して1.3V以下の化合物による還元反応が進んで、電池電圧が低下しやすい(すなわち、過放電状態となりやすい)。このような状態となった電池を有する携帯機器では電源が入らなくなるため、こうした現象を抑制することも求められる。また、本発明者らの検討によって、負極での還元電位が金属Li電位に対して1.3V以下の化合物と共に、ニトリル化合物を添加剤として含有する非水電解質を用いた電池では、前記の過放電状態となる現象が、より発生しやすいことが判明した。 In addition, for example, in a non-aqueous secondary battery using a non-aqueous electrolyte containing a compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential, for example, use of a portable device using the non-aqueous electrolyte as a power source If the battery is left in a car in a discharged state, such as when left in a car with advanced, the potential of the negative electrode is high, so the reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential. The reduction reaction by the compound proceeds, and the battery voltage is likely to decrease (that is, the overdischarge state is likely to occur). In a portable device having a battery in such a state, the power cannot be turned on. Further, as a result of studies by the present inventors, a battery using a nonaqueous electrolyte containing a nitrile compound as an additive together with a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential has been described above. It has been found that the phenomenon of a discharge state is more likely to occur.
 しかしながら、負極での還元電位が1.3V以下の化合物および特定量のニトリル化合物と共に、特定量のLiBOBを含有する非水電解質を用いた場合には、前記のような過放電状態となる現象の発生を抑えることができる。なお、LiBOBおよび負極での還元電位が金属Li電位に対して1.3V以下の化合物は、放電状態の電池内において、ガスを発生させて膨れを引き起こすが、特定量のニトリル化合物と、特定量のLiBOBと、負極での還元電位が金属Li電位に対して1.3V以下の化合物とを含有する非水電解質を用いた場合には、かかる膨れの発生も抑制できる。 However, when a nonaqueous electrolyte containing a specific amount of LiBOB is used together with a compound having a reduction potential of 1.3 V or less at the negative electrode and a specific amount of nitrile compound, the phenomenon of the overdischarge state as described above occurs. Occurrence can be suppressed. A compound having a reduction potential at LiBOB and a negative electrode of 1.3 V or less with respect to the metallic Li potential generates gas and causes swelling in a discharged battery, but a specific amount of nitrile compound and a specific amount When a nonaqueous electrolyte containing LiBOB and a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential is used, the occurrence of such blistering can also be suppressed.
 このように、本発明の非水二次電池では、非水電解質に添加する特定の添加剤が複合的に作用することで、充放電サイクル特性を高めつつ、放電状態での貯蔵特性も優れたものとすることができる。 Thus, in the non-aqueous secondary battery of the present invention, the specific additive added to the non-aqueous electrolyte acts in a complex manner, so that the charge / discharge cycle characteristics are enhanced and the storage characteristics in the discharged state are also excellent. Can be.
 本発明のリチウム二次電池に係る非水電解質は、通常、電解質塩を有機溶媒に溶解した溶液(非水電解液)が使用される。そして、非水電解質は、添加剤として、分子内にニトリル基を有する化合物、リチウムビスオキサレートボレート(LiBOB)、および負極での還元電位が金属Li電位に対して1.3V以下の化合物を含有している。 As the non-aqueous electrolyte according to the lithium secondary battery of the present invention, a solution (non-aqueous electrolyte) in which an electrolyte salt is dissolved in an organic solvent is usually used. The non-aqueous electrolyte contains, as additives, a compound having a nitrile group in the molecule, lithium bisoxalate borate (LiBOB), and a compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential. is doing.
 ニトリル化合物の具体例としては、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、アクリロニトリルなどのモノニトリル;マロノニトリル、下記一般式(1)
  NC-(CH-CN  (1)
〔前記一般式(1)中、nは2~4の整数である〕
で表される化合物、1,4-ジシアノヘプタン、1,5-ジシアノペンタン、1,6-ジシアノヘキサン、1,7-ジシアノヘプタン、2,6-ジシアノヘプタン、1,8-ジシアノオクタン、2,7-ジシアノオクタン、1,9-ジシアノノナン、2,8-ジシアノノナン、1,10-ジシアノデカン、1,6-ジシアノデカン、2,4-ジメチルグルタロニトリルなどのジニトリル;ベンゾニトリルなどの環状ニトリル;メトキシアセトニトリルなどのアルコキシ置換ニトリル;などが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。
Specific examples of the nitrile compound include acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, acrylonitrile and other mononitriles; malononitrile, the following general formula (1)
NC- (CH 2 ) n -CN (1)
[In the general formula (1), n is an integer of 2 to 4]
1,4-dicyanoheptane, 1,5-dicyanopentane, 1,6-dicyanohexane, 1,7-dicyanoheptane, 2,6-dicyanoheptane, 1,8-dicyanooctane, 2, Dinitriles such as 7-dicyanooctane, 1,9-dicyanononane, 2,8-dicyanononane, 1,10-dicyanodecane, 1,6-dicyanodecane and 2,4-dimethylglutaronitrile; cyclic nitriles such as benzonitrile; Alkoxy substituted nitriles such as methoxyacetonitrile; and the like, and only one of these may be used, or two or more may be used in combination.
 前記例示のニトリル化合物の中でも、ジニトリルが好ましく、前記一般式(1)で表される化合物(スクシノニトリル、グルタロニトリル、アジポニトリル)がより好ましく、他の添加剤との併用による電池の充放電サイクル特性の向上効果がより良好となることから、前記一般式(1)で表され、かつ前記一般式(1)におけるnが3または4である化合物(グルタロニトリル、アジポニトリル)が更に好ましい。 Among the exemplified nitrile compounds, dinitriles are preferable, compounds represented by the general formula (1) (succinonitrile, glutaronitrile, adiponitrile) are more preferable, and charging / discharging of the battery by using in combination with other additives A compound (glutaronitrile, adiponitrile) represented by the general formula (1) and n in the general formula (1) is 3 or 4 is more preferable because the effect of improving the cycle characteristics becomes better.
 負極での還元電位が金属Li電位に対して1.3V以下の化合物としては、例えば、2-プロピニルジエチルホスホノアセテート(PDEA)、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)などが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。 Examples of the compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential include, for example, 2-propynyl diethylphosphonoacetate (PDEA), 4-fluoro-1,3-dioxolan-2-one (FEC) , Vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and the like, and only one of them may be used, or two or more may be used in combination.
 リチウム二次電池に使用する非水電解質におけるニトリル化合物の含有量は、その使用による効果を良好に確保する観点から、0.05質量%以上であり、0.2質量%以上であることが好ましい。ただし、非水電解質中のニトリル化合物の量が多すぎると、例えば、ニトリル化合物による電池の充放電サイクル特性の低下を抑制するために必要となるLiBOBの量が多くなりすぎて、電池の放電状態での貯蔵特性が低下してしまう。よって、リチウム二次電池に使用する非水電解質におけるニトリル化合物の含有量は、1.5質量%以下であり、1質量%以下であることが好ましい。 The content of the nitrile compound in the non-aqueous electrolyte used for the lithium secondary battery is 0.05% by mass or more, and preferably 0.2% by mass or more, from the viewpoint of ensuring a good effect due to the use. . However, if the amount of the nitrile compound in the non-aqueous electrolyte is too large, for example, the amount of LiBOB required to suppress the deterioration of the charge / discharge cycle characteristics of the battery due to the nitrile compound becomes too large, and the discharge state of the battery The storage characteristics at the end will deteriorate. Therefore, the content of the nitrile compound in the non-aqueous electrolyte used for the lithium secondary battery is 1.5% by mass or less, and preferably 1% by mass or less.
 リチウム二次電池に使用する非水電解質におけるLiBOBの含有量は、その使用による効果を良好に確保する観点から、0.05質量%以上であり、0.25質量%以上であることが好ましい。ただし、非水電解質中のLiBOBの量が多すぎると、電池の放電状態での貯蔵特性が低下してしまう。よって、リチウム二次電池に使用する非水電解質におけるLiBOBの含有量は、5質量%以下である。 The content of LiBOB in the non-aqueous electrolyte used for the lithium secondary battery is 0.05% by mass or more, and preferably 0.25% by mass or more, from the viewpoint of ensuring a good effect due to its use. However, if the amount of LiBOB in the non-aqueous electrolyte is too large, the storage characteristics of the battery in the discharged state will deteriorate. Therefore, the content of LiBOB in the non-aqueous electrolyte used for the lithium secondary battery is 5% by mass or less.
 負極での還元電位が金属Li電位に対して1.3V以下の化合物は、前記の通り、電池の充放電サイクル特性の向上に寄与する添加剤であるが、電池に使用する非水電解質中の量が多すぎると、却って電池の充放電サイクル特性を損なう虞があり、また、放電状態での貯蔵時において電池の膨れを生じさせる虞もある。よって、負極での還元電位が金属Li電位に対して1.3V以下の化合物の、リチウム二次電池に使用する非水電解質における含有量(非水電解質が、負極での還元電位が金属Li電位に対して1.3V以下の化合物を複数含有する場合には、それらの合計量。以下同じ。)は、10質量%以下であり、9質量%以下であることが好ましい。また、負極での還元電位が金属Li電位に対して1.3V以下の化合物の使用による効果を良好に確保する観点からは、リチウム二次電池に使用する非水電解質における含有量が、1質量%以上であることが好ましく、1.5質量%以上であることがより好ましい。 A compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential is an additive that contributes to the improvement of the charge / discharge cycle characteristics of the battery as described above, but in the non-aqueous electrolyte used in the battery If the amount is too large, the charge / discharge cycle characteristics of the battery may be impaired, and the battery may swell during storage in a discharged state. Therefore, the content of a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential in the non-aqueous electrolyte used for the lithium secondary battery (the non-aqueous electrolyte has a reduction potential at the negative electrode that is a metal Li potential). In the case where a plurality of compounds of 1.3 V or less are contained, their total amount (the same applies hereinafter) is 10% by mass or less, and preferably 9% by mass or less. In addition, from the viewpoint of favorably ensuring the effect of using a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential, the content in the non-aqueous electrolyte used in the lithium secondary battery is 1 mass. % Or more, more preferably 1.5% by mass or more.
 非水電解質に係る電解質塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限はない。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩;LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などの有機リチウム塩;などを用いることができる。 The electrolyte salt related to the non-aqueous electrolyte is not particularly limited as long as it dissociates in a solvent to form Li + ions and hardly causes a side reaction such as decomposition in a voltage range used as a battery. For example, inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group]; it can.
 このリチウム塩の非水電解質中の濃度としては、0.5~1.5mol/lであることが好ましく、0.9~1.25mol/lであることがより好ましい。 The concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / l, more preferably 0.9 to 1.25 mol / l.
 非水電解質に用いる有機溶媒としては、前記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート(DEC)、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ-ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;1,4-ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。なお、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。 The organic solvent used for the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause a side reaction such as decomposition in a voltage range used as a battery. For example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate (DEC), and methyl ethyl carbonate; chain esters such as methyl propionate; γ-butyrolactone, etc. Cyclic esters; chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as 1,4-dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; acetonitrile, propionitrile, Nitriles such as methoxypropionitrile; sulfites such as ethylene glycol sulfite; and the like. And it can also be. In order to obtain a battery with better characteristics, it is desirable to use a combination that can obtain high conductivity, such as a mixed solvent of ethylene carbonate and chain carbonate.
 また、リチウム二次電池に使用する非水電解質は、1,3-ジオキサンを含有していることが好ましい。これにより、リチウム二次電池の充放電サイクル特性を更に高めることができる。 The nonaqueous electrolyte used for the lithium secondary battery preferably contains 1,3-dioxane. Thereby, the charge / discharge cycle characteristics of the lithium secondary battery can be further enhanced.
 リチウム二次電池に使用する非水電解質における1,3-ジオキサンの含有量は、その使用による効果をより良好に確保する観点から、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。ただし、非水電解質中の1,3-ジオキサンの量が多すぎると、電池の負荷特性が低下したり、充放電サイクル特性の向上効果が小さくなったりする虞がある。よって、リチウム二次電池に使用する非水電解質における1,3-ジオキサンの含有量は、5質量%以下であることが好ましく、2質量%以下であることがより好ましい。 The content of 1,3-dioxane in the non-aqueous electrolyte used for the lithium secondary battery is preferably 0.1% by mass or more from the viewpoint of better ensuring the effect of the use, and 0.5% by mass. % Or more is more preferable. However, if the amount of 1,3-dioxane in the non-aqueous electrolyte is too large, the load characteristics of the battery may be reduced, and the effect of improving the charge / discharge cycle characteristics may be reduced. Therefore, the content of 1,3-dioxane in the non-aqueous electrolyte used for the lithium secondary battery is preferably 5% by mass or less, and more preferably 2% by mass or less.
 また、リチウム二次電池に使用する非水電解質には、充放電サイクル特性の更なる改善や、高温貯蔵性や過充電防止などの安全性を向上させる目的で、無水酸、スルホン酸エステル、1,3-プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t-ブチルベンゼンなどの添加剤(これらの誘導体も含む)を適宜加えることもできる。 Non-aqueous electrolytes used in lithium secondary batteries include acid anhydrides, sulfonic acid esters, 1 for the purpose of further improving charge / discharge cycle characteristics and improving safety such as high-temperature storage and prevention of overcharge. , 3-propane sultone, diphenyl disulfide, cyclohexylbenzene, biphenyl, fluorobenzene, t-butylbenzene, and other additives (including derivatives thereof) can be added as appropriate.
 更に、リチウム二次電池の非水電解質には、前記の非水電解質(非水電解液)に、ポリマーなどの公知のゲル化剤を添加してゲル化したもの(ゲル状電解質)を用いることもできる。 Further, as the non-aqueous electrolyte of the lithium secondary battery, a gel (gel electrolyte) obtained by adding a known gelling agent such as a polymer to the non-aqueous electrolyte (non-aqueous electrolyte) is used. You can also.
 本発明のリチウム二次電池は、正極、負極、非水電解質およびセパレータを有しており、非水電解質に前記の非水電解質を使用していればよく、その他の構成および構造については特に制限はなく、従来から知られているリチウム二次電池で採用されている各種構成および構造を適用することができる。 The lithium secondary battery of the present invention has a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, and the non-aqueous electrolyte may be used as the non-aqueous electrolyte, and other configurations and structures are particularly limited. Rather, various configurations and structures employed in conventionally known lithium secondary batteries can be applied.
 リチウム二次電池に係る正極には、例えば、集電体の片面または両面に、正極活物質、バインダおよび導電助剤などを含有する正極合剤層を有する構造のものを使用することができる。 As the positive electrode for the lithium secondary battery, for example, one having a structure having a positive electrode mixture layer containing a positive electrode active material, a binder, a conductive auxiliary agent and the like on one side or both sides of a current collector can be used.
 正極活物質には、LiCoOなどのリチウムコバルト複合酸化物;LiMnO、LiMnOなどのリチウムマンガン複合酸化物;LiNiOなどのリチウムニッケル複合酸化物;LiCo1-xNiOなどの層状構造のリチウム含有複合酸化物;LiMn、Li4/3Ti5/3などのスピネル構造のリチウム含有複合酸化物;LiFePOなどのオリビン構造のリチウム含有複合酸化物;前記の酸化物を基本組成とし各種元素で置換した酸化物;などのリチウム含有複合酸化物のうちの1種または2種以上を使用することができる。 For the positive electrode active material, lithium cobalt composite oxide such as LiCoO 2 ; lithium manganese composite oxide such as LiMnO 2 and Li 2 MnO 3 ; lithium nickel composite oxide such as LiNiO 2 ; layered such as LiCo 1-x NiO 2 Lithium-containing composite oxide having a structure; lithium-containing composite oxide having a spinel structure such as LiMn 2 O 4 , Li 4/3 Ti 5/3 O 4 ; lithium-containing composite oxide having an olivine structure such as LiFePO 4 ; One or two or more of lithium-containing composite oxides such as oxides having a basic composition and substituted with various elements can be used.
 正極合剤層に係るバインダには、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などが好適に用いられる。また、正極合剤層に係る導電助剤としては、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などの黒鉛(黒鉛質炭素材料);アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ-ボンブラック;炭素繊維;などの炭素材料などが挙げられる。 For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), or the like is preferably used for the binder related to the positive electrode mixture layer. In addition, as the conductive auxiliary agent related to the positive electrode mixture layer, for example, graphite (graphite carbon material) such as natural graphite (flaky graphite), artificial graphite; acetylene black, ketjen black, channel black, furnace black, Examples thereof include carbon blacks such as carbon blacks such as lamp black and thermal black; carbon fibers.
 正極は、例えば、正極活物質、バインダおよび導電助剤などを、N-メチル-2-ピロリドン(NMP)などの溶剤に分散させたペースト状やスラリー状の正極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理を施す工程を経て製造される。ただし、正極は、前記の製造方法で製造されたものに限定される訳ではなく、他の方法で製造されたものであってもよい。 For the positive electrode, for example, a paste-like or slurry-like positive electrode mixture-containing composition in which a positive electrode active material, a binder, a conductive auxiliary agent, and the like are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) is prepared ( However, the binder may be dissolved in a solvent), and this is applied to one or both sides of the current collector, dried, and then subjected to a calendering process as necessary. However, the positive electrode is not limited to those manufactured by the above manufacturing method, and may be manufactured by other methods.
 また、正極には、必要に応じて、リチウム二次電池内の他の部材と電気的に接続するためのリード体を、常法に従って形成してもよい。 Further, a lead body for electrical connection with other members in the lithium secondary battery may be formed on the positive electrode according to a conventional method, if necessary.
 正極合剤層の厚みは、例えば、集電体の片面あたり10~100μmであることが好ましい。また、正極合剤層の組成としては、例えば、正極活物質の量が60~95質量%であることが好ましく、バインダの量が1~15質量%であることが好ましく、導電助剤の量が3~20質量%であることが好ましい。 The thickness of the positive electrode mixture layer is preferably, for example, 10 to 100 μm per one side of the current collector. As the composition of the positive electrode mixture layer, for example, the amount of the positive electrode active material is preferably 60 to 95% by mass, the amount of the binder is preferably 1 to 15% by mass, and the amount of the conductive auxiliary agent Is preferably 3 to 20% by mass.
 正極の集電体は、従来から知られているリチウム二次電池の正極に使用されているものと同様のものが使用でき、例えば、厚みが10~30μmのアルミニウム箔が好ましい。 The positive electrode current collector may be the same as that used for the positive electrode of a conventionally known lithium secondary battery, and for example, an aluminum foil having a thickness of 10 to 30 μm is preferable.
 リチウム二次電池に係る負極には、例えば、負極活物質およびバインダ、更には必要に応じて導電助剤を含有する負極合剤からなる負極合剤層を、集電体の片面または両面に有する構造のものが使用できる。 The negative electrode related to the lithium secondary battery has, for example, a negative electrode active material, a binder, and, if necessary, a negative electrode mixture layer including a negative electrode mixture containing a conductive auxiliary agent on one side or both sides of the current collector. A structure can be used.
 負極活物質としては、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、リチウムと合金化可能な金属(Si、Snなど)またはその合金、酸化物などが挙げられ、これらのうちの1種または2種以上を用いることができる。 Examples of the negative electrode active material include graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers, activated carbon, and metals that can be alloyed with lithium (Si , Sn, etc.) or alloys thereof, oxides, etc., and one or more of these can be used.
 また、負極のバインダおよび導電助剤には、正極に使用し得るものとして先に例示したものと同じものが使用できる。 Further, the same negative electrode binder and conductive additive as those exemplified above as those that can be used for the positive electrode can be used.
 負極は、例えば、負極活物質およびバインダ、更には必要に応じて使用される導電助剤を、NMPや水などの溶剤に分散させたペースト状やスラリー状の負極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理を施す工程を経て製造される。ただし、負極は、前記の製造方法で製造されたものに限定される訳ではなく、他の方法で製造されたものであってもよい。 For the negative electrode, for example, a negative electrode active material, a binder, and a conductive auxiliary agent used as necessary are prepared in a paste-like or slurry-like negative electrode mixture-containing composition in which a solvent such as NMP or water is dispersed. (However, the binder may be dissolved in a solvent), which is applied to one or both sides of the current collector, dried, and then subjected to a calendering process as necessary. However, the negative electrode is not limited to those manufactured by the above manufacturing method, and may be manufactured by other methods.
 また、負極には、必要に応じて、リチウム二次電池内の他の部材と電気的に接続するためのリード体を、常法に従って形成してもよい。 Further, a lead body for electrical connection with other members in the lithium secondary battery may be formed on the negative electrode according to a conventional method, if necessary.
 負極合剤層の厚みは、例えば、集電体の片面あたり10~100μmであることが好ましい。また、負極合剤層の組成としては、例えば、負極活物質を80.0~99.8質量%とし、バインダを0.1~10質量%とすることが好ましい。更に、負極合剤層に導電助剤を含有させる場合には、負極合剤層における導電助剤の量を0.1~10質量%とすることが好ましい。 The thickness of the negative electrode mixture layer is preferably, for example, 10 to 100 μm per one side of the current collector. The composition of the negative electrode mixture layer is preferably 80.0 to 99.8 mass% for the negative electrode active material and 0.1 to 10 mass% for the binder, for example. Further, when the negative electrode mixture layer contains a conductive additive, the amount of the conductive auxiliary in the negative electrode mixture layer is preferably 0.1 to 10% by mass.
 負極の集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するために下限は5μmであることが望ましい。 As the negative electrode current collector, a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is 5 μm in order to ensure mechanical strength. Is desirable.
 リチウム二次電池に係るセパレータには、80℃以上(より好ましくは100℃以上)170℃以下(より好ましくは150℃以下)において、その孔が閉塞する性質(すなわちシャットダウン機能)を有していることが好ましく、通常のリチウム二次電池などで使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。 The separator according to the lithium secondary battery has a property that the pores are closed at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower) (that is, a shutdown function). It is preferable that a separator used in a normal lithium secondary battery, for example, a microporous membrane made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used. The microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be.
 セパレータの厚みは、例えば、10~30μmであることが好ましい。 The thickness of the separator is preferably 10 to 30 μm, for example.
 前記の正極と前記の負極と前記のセパレータとは、正極と負極との間にセパレータを介在させて重ねた積層電極体や、更にこれを渦巻状に巻回した巻回電極体の形態で本発明のリチウム二次電池に使用することができる。 The positive electrode, the negative electrode, and the separator are formed in the form of a laminated electrode body in which a separator is interposed between the positive electrode and the negative electrode, or a wound electrode body in which the separator is wound in a spiral shape. It can be used for the lithium secondary battery of the invention.
 本発明のリチウム二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。 Examples of the form of the lithium secondary battery of the present invention include a cylindrical shape (such as a square cylindrical shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
 リチウム二次電池は、その用途に応じて、前記のような角筒形の外装缶やラミネートフィルム外装体といった薄型の外装体を使用することがあるが、こうした形態とした場合、内容積が非常に小さく、高容量化を図るために電池内における電極体(正極および負極)の占有体積を大きくすると、非水電解質の含有量が少なくなってしまう。非水電解質は、リチウム二次電池の充放電に伴って分解などして減量するため、非水電解質の含有量が少ない電池では、充放電の繰り返し回数が比較的少ない段階で、非水電解質の量が足りなくなって十分な容量が引き出し得なくなる(すなわち、充放電サイクル劣化が生じてしまう)虞がある。 Lithium secondary batteries may use thin outer casings such as rectangular tube outer casings and laminate film outer casings as described above depending on their applications. If the volume occupied by the electrode bodies (positive electrode and negative electrode) in the battery is increased in order to increase the capacity, the content of the non-aqueous electrolyte decreases. The nonaqueous electrolyte is decomposed and reduced in accordance with the charge / discharge of the lithium secondary battery, so in a battery with a low content of the nonaqueous electrolyte, the nonaqueous electrolyte has a relatively small number of charge / discharge cycles. There is a risk that the amount becomes insufficient and sufficient capacity cannot be extracted (that is, charge / discharge cycle deterioration occurs).
 しかしながら、本発明のリチウム二次電池では、非水電解質における前記の各添加剤の作用によって、充放電に伴う非水電解質の分解、減量を抑制し得るため、前記のような薄型の外装体を用いつつ高容量化を図り、非水電解質の含有量を高め得ない態様としても、良好な充放電サイクル特性を確保できる。 However, in the lithium secondary battery of the present invention, the action of each additive in the non-aqueous electrolyte can suppress decomposition and weight loss of the non-aqueous electrolyte due to charge and discharge. Even when the capacity is increased while being used and the content of the non-aqueous electrolyte cannot be increased, good charge / discharge cycle characteristics can be secured.
 具体的には、本発明のリチウム二次電池は、放電容量当たりの非水電解質の量(以下、単に「放電容量当たりの非水電解質の量」という)を、2.1g/Ah以下と少なくしても、良好な充放電サイクル特性を確保できる。なお、本発明のリチウム二次電池における放電容量当たりの非水電解質の量は、1.8g/Ah以上であることが好ましい。 Specifically, in the lithium secondary battery of the present invention, the amount of nonaqueous electrolyte per discharge capacity (hereinafter simply referred to as “the amount of nonaqueous electrolyte per discharge capacity”) is as small as 2.1 g / Ah or less. Even so, good charge / discharge cycle characteristics can be secured. In addition, it is preferable that the quantity of the nonaqueous electrolyte per discharge capacity in the lithium secondary battery of this invention is 1.8 g / Ah or more.
 前記の放電容量当たりの非水電解質の量の算出に用いられる放電容量は、23℃の環境下で、0.5Cの電流値で4.4Vまで定電流充電し、引き続いて4.4Vで電流値が0.05Cとなるまで定電圧充電を行い、その後に0.2Cの定電流で2.75Vで放電して求められる放電容量である。 The discharge capacity used for the calculation of the amount of the nonaqueous electrolyte per discharge capacity is a constant current charge to 4.4 V at a current value of 0.5 C in an environment of 23 ° C., and subsequently a current at 4.4 V. The discharge capacity is obtained by performing constant voltage charging until the value reaches 0.05 C, and then discharging at 2.75 V with a constant current of 0.2 C.
 また、前記の放電容量当たりの非水電解質の量の算出に用いられる非水電解質の量は、下記(1)~(6)の手順によって求められる値である。
(1)リチウム二次電池の質量を測定する。
(2)質量測定後のリチウム二次電池に穴を開け(外装缶を用いた形態の場合は、外装缶の缶底部に穴を開ける)、遠心分離機を用いて電池内の非水電解質を抽出する。
(3)リチウム二次電池から正極および負極を取り出し、それらを、内部にしみ込んだ非水電解質を抽出するためにジメチルカーボネートに24時間浸漬する。
(4)前記浸漬後の正極および負極、並びに他の部材(外装体、セパレータ、封口部材など)を乾燥させる。
(5)リチウム二次電池の正極および負極、並びに他の部材(外装体、セパレータ、封口部材など)の質量を測定する。
(6)(1)で求めた質量から(5)で求めた質量を引いて、非水電解質の量を算出する。
Further, the amount of the nonaqueous electrolyte used for calculating the amount of the nonaqueous electrolyte per discharge capacity is a value obtained by the following procedures (1) to (6).
(1) The mass of the lithium secondary battery is measured.
(2) A hole is made in the lithium secondary battery after mass measurement (in the case of using an outer can, a hole is made in the bottom of the outer can), and the nonaqueous electrolyte in the battery is removed using a centrifuge. Extract.
(3) Take out the positive electrode and the negative electrode from the lithium secondary battery, and immerse them in dimethyl carbonate for 24 hours in order to extract the nonaqueous electrolyte soaked in the inside.
(4) The positive electrode and negative electrode after immersion and other members (exterior body, separator, sealing member, etc.) are dried.
(5) The masses of the positive electrode and negative electrode of the lithium secondary battery and other members (exterior body, separator, sealing member, etc.) are measured.
(6) Subtract the mass determined in (5) from the mass determined in (1) to calculate the amount of non-aqueous electrolyte.
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.
実施例1
<正極の作製>
 LiCoOとLi1.0Ni0.5Co0.2Mn0.3とを8:2の割合(質量比)で混合した正極活物質100質量部と、バインダであるPVDFを10質量%の濃度で含むNMP溶液20質量部と、導電助剤である人造黒鉛1質量部およびケッチェンブラック1質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
Example 1
<Preparation of positive electrode>
100 parts by mass of a positive electrode active material obtained by mixing LiCoO 2 and Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2 at a ratio (mass ratio) of 8: 2, and 10 parts by mass of PVDF as a binder. 20 parts by weight of NMP solution contained at a concentration of 1%, 1 part by weight of artificial graphite and 1 part by weight of ketjen black, which are conductive assistants, are kneaded using a biaxial kneader, and NMP is added to adjust the viscosity. Thus, a positive electrode mixture-containing paste was prepared.
 前記正極合剤含有ペーストを、厚みが15μmのアルミニウム箔(正極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。その後、プレス処理を行って、正極合剤層の厚さおよび密度を調節し、アルミニウム箔の露出部にニッケル製のリード体を溶接して、長さ375mm、幅43mmの帯状の正極を作製した。得られた正極における正極合剤層は、片面あたりの厚みが55μmであった。 After coating the positive electrode mixture-containing paste on both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 15 μm, vacuum drying is performed at 120 ° C. for 12 hours to form a positive electrode mixture layer on both surfaces of the aluminum foil. did. Thereafter, press treatment was performed to adjust the thickness and density of the positive electrode mixture layer, and a nickel lead body was welded to the exposed portion of the aluminum foil to produce a strip-like positive electrode having a length of 375 mm and a width of 43 mm. . The positive electrode mixture layer in the obtained positive electrode had a thickness of 55 μm per one side.
<負極の作製> 
 負極活物質である平均粒子径D50%が8μmであるSiO表面を炭素材料で被覆した複合体(複合体における炭素材料の量が10質量%)と、平均粒子径D50%が16μmである黒鉛とを、SiO表面を炭素材料で被覆した複合体の量が3.75質量%となる量で混合した混合物:97.5質量部と、バインダであるSBR:1.5質量部と、増粘剤であるCMC:1質量部とに、水を加えて混合し、負極合剤含有ペーストを調製した。
<Production of negative electrode>
A composite in which the surface of SiO having an average particle diameter D50% of 8 μm, which is a negative electrode active material, is coated with a carbon material (the amount of the carbon material in the composite is 10% by mass), and graphite having an average particle diameter D50% of 16 μm A mixture in which the amount of the composite having the SiO surface coated with a carbon material is 3.75% by mass: 97.5 parts by mass, SBR as a binder: 1.5 parts by mass, and a thickener CMC: 1 part by mass of water was added and mixed to prepare a negative electrode mixture-containing paste.
 前記負極合剤含有ペーストを、厚みが8μmの銅箔(負極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、銅箔の両面に負極合剤層を形成した。その後、プレス処理を行って、負極合剤層の厚さおよび密度を調節し、銅箔の露出部にニッケル製のリード体を溶接して、長さ380mm、幅44mmの帯状の負極を作製した。得られた負極における負極合剤層は、片面あたりの厚みが65μmであった。 After applying the negative electrode mixture-containing paste to both sides of a copper foil (negative electrode current collector) having a thickness of 8 μm, vacuum drying is performed at 120 ° C. for 12 hours to form a negative electrode mixture layer on both sides of the copper foil. did. Thereafter, press treatment was performed to adjust the thickness and density of the negative electrode mixture layer, and a nickel lead body was welded to the exposed portion of the copper foil to produce a strip-shaped negative electrode having a length of 380 mm and a width of 44 mm. . The negative electrode mixture layer in the obtained negative electrode had a thickness of 65 μm per one surface.
<非水電解質の調製> 
 ECとDECとの体積比3:7の混合溶媒に、LiPFを1.1mol/Lの濃度で溶解させ、アジポニトリルを0.5質量%となる量で、LiBOBを0.25質量%となる量で、PDEAを2.0質量%となる量で、FECを1.5質量%となる量で、VCを3.0質量%となる量で、および1,3-ジオキサンを1.5質量%となる量で、それぞれ添加して非水電解質(非水電解液)を調製した。
<Preparation of non-aqueous electrolyte>
LiPF 6 is dissolved at a concentration of 1.1 mol / L in a mixed solvent of EC and DEC at a volume ratio of 3: 7, so that adiponitrile is 0.5 mass% and LiBOB is 0.25 mass%. The amount of PDEA is 2.0% by mass, the amount of FEC is 1.5% by mass, the amount of VC is 3.0% by mass, and the amount of 1,3-dioxane is 1.5% by mass. A non-aqueous electrolyte (non-aqueous electrolyte solution) was prepared by adding each in an amount of%.
<電池の組み立て>
 前記帯状の正極を、厚みが16μmの微孔性ポリエチレンセパレータ(空孔率:41%)を介して前記帯状の負極に重ね、渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の巻回電極体とし、この電極巻回体をポリプロピレン製の絶縁テープで固定した。次に、外寸が厚さ4.0mm、幅34mm、高さ50mmのアルミニウム合金製の角形の電池ケースに前記巻回電極体を挿入し、リード体の溶接を行うとともに、アルミニウム合金製の蓋板を電池ケースの開口端部に溶接した。その後、蓋板に設けた注入口から前記非水電解質を注入し、1時間静置した後注入口を封止して、図1に示す構造で、図2に示す外観のリチウム二次電池を得た。
<Battery assembly>
The belt-like positive electrode is stacked on the belt-like negative electrode through a microporous polyethylene separator (porosity: 41%) having a thickness of 16 μm, wound in a spiral shape, and then pressed so as to be flat. A wound electrode body having a flat wound structure was formed, and this electrode wound body was fixed with an insulating tape made of polypropylene. Next, the wound electrode body is inserted into a prismatic battery case made of aluminum alloy having an outer dimension of 4.0 mm in thickness, 34 mm in width, and 50 mm in height, and the lead body is welded, and the lid made of aluminum alloy The plate was welded to the open end of the battery case. Thereafter, the non-aqueous electrolyte is injected from the inlet provided in the cover plate, and left for 1 hour, and then the inlet is sealed. The lithium secondary battery having the structure shown in FIG. Obtained.
 ここで図1および図2に示す電池について説明すると、図1はその部分断面図であって、正極1と負極2はセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状の巻回電極体6として、角形(角筒形)の電池ケース4に非水電解質と共に収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や非水電解質などは図示していない。 Here, the battery shown in FIGS. 1 and 2 will be described. FIG. 1 is a partial sectional view of the battery, and the positive electrode 1 and the negative electrode 2 are spirally wound via a separator 3 and then flattened. The flat wound electrode body 6 is pressurized and accommodated in a rectangular (rectangular tube) battery case 4 together with a nonaqueous electrolyte. However, in FIG. 1, in order to avoid complication, a metal foil, a non-aqueous electrolyte, and the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 are not illustrated.
 電池ケース4はアルミニウム合金製で電池の外装体を構成するものであり、この電池ケース4は正極端子を兼ねている。そして、電池ケース4の底部にはPEシートからなる絶縁体5が配置され、正極1、負極2およびセパレータ3からなる扁平状巻回電極体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム合金製の封口用蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。 The battery case 4 is made of an aluminum alloy and constitutes a battery outer body. The battery case 4 also serves as a positive electrode terminal. And the insulator 5 which consists of PE sheets is arrange | positioned at the bottom part of the battery case 4, and it connects to each one end of the positive electrode 1 and the negative electrode 2 from the flat wound electrode body 6 which consists of the positive electrode 1, the negative electrode 2, and the separator 3. The positive electrode lead body 7 and the negative electrode lead body 8 thus drawn are drawn out. A stainless steel terminal 11 is attached to a sealing lid plate 9 made of aluminum alloy for sealing the opening of the battery case 4 via a polypropylene insulating packing 10, and an insulator 12 is attached to the terminal 11. A stainless steel lead plate 13 is attached.
 そして、この蓋板9は電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。また、図1の電池では、蓋板9に非水電解質注入口14が設けられており、この非水電解質注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている。更に、蓋板9には、電池の温度が上昇した際に内部のガスを外部に排出する機構として、開裂ベント15が設けられている。 The cover plate 9 is inserted into the opening of the battery case 4, and the joint of the two is welded, whereby the opening of the battery case 4 is sealed and the inside of the battery is sealed. Further, in the battery of FIG. 1, a non-aqueous electrolyte inlet 14 is provided in the lid plate 9, and the non-aqueous electrolyte inlet 14 is welded by, for example, laser welding with a sealing member inserted. The battery is sealed to ensure the battery hermeticity. Further, the lid plate 9 is provided with a cleavage vent 15 as a mechanism for discharging the internal gas to the outside when the temperature of the battery rises.
 この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって外装缶5と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。 In the battery of this Example 1, the outer can 5 and the cover plate 9 function as a positive electrode terminal by directly welding the positive electrode lead body 7 to the lid plate 9, and the negative electrode lead body 8 is welded to the lead plate 13, The terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the lead plate 13, but depending on the material of the battery case 4, the sign may be reversed. There is also.
 図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図1では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極体の内周側の部分は断面にしていない。 FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1. FIG. 2 is shown for the purpose of showing that the battery is a square battery. FIG. 1 schematically shows a battery, and only specific members of the battery are shown. Also in FIG. 1, the inner peripheral portion of the electrode body is not cross-sectional.
実施例2~7
 アジポニトリル、LiBOB、PDEA、FECおよびVCの添加量を表1および表2に示す量に変更した以外は実施例1と同様にして非水電解質を調製し、これらの非水電解質を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
Examples 2-7
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that the addition amount of adiponitrile, LiBOB, PDEA, FEC and VC was changed to the amounts shown in Tables 1 and 2, except that these non-aqueous electrolytes were used. A lithium secondary battery was produced in the same manner as in Example 1.
実施例8
 アジポニトリルに代えてスクシノニトリルを使用した以外は実施例2と同様にして非水電解質を調製し、この非水電解質を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
Example 8
A non-aqueous electrolyte was prepared in the same manner as in Example 2 except that succinonitrile was used instead of adiponitrile, and a lithium secondary battery was produced in the same manner as in Example 1 except that this non-aqueous electrolyte was used.
実施例9
 FECおよびVCを添加せずにVECを4.5質量%となる量で添加した以外は実施例2と同様にして非水電解質を調製し、この非水電解質を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
Example 9
A nonaqueous electrolyte was prepared in the same manner as in Example 2 except that VEC was added in an amount of 4.5% by mass without adding FEC and VC, and Example 1 except that this nonaqueous electrolyte was used. Similarly, a lithium secondary battery was produced.
実施例10
 1,3-ジオキサンを添加しなかった以外は実施例2と同様にして非水電解質を調製し、この非水電解質を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
Example 10
A nonaqueous electrolyte was prepared in the same manner as in Example 2 except that 1,3-dioxane was not added, and a lithium secondary battery was produced in the same manner as in Example 1 except that this nonaqueous electrolyte was used.
実施例11
 PDEAを添加しなかった以外は実施例2と同様にして非水電解質を調製し、これらの非水電解質を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
Example 11
A nonaqueous electrolyte was prepared in the same manner as in Example 2 except that PDEA was not added, and a lithium secondary battery was produced in the same manner as in Example 1 except that these nonaqueous electrolytes were used.
実施例12
 FECおよびVCを添加しなかった以外は実施例2と同様にして非水電解質を調製し、これらの非水電解質を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
Example 12
A nonaqueous electrolyte was prepared in the same manner as in Example 2 except that FEC and VC were not added, and a lithium secondary battery was produced in the same manner as in Example 1 except that these nonaqueous electrolytes were used.
比較例1
 アジポニトリルおよびLiBOBを添加しなかった以外は実施例1と同様にして非水電解質を調製し、この非水電解質を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
Comparative Example 1
A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that adiponitrile and LiBOB were not added, and a lithium secondary battery was produced in the same manner as in Example 1 except that this nonaqueous electrolyte was used.
比較例2
 LiBOBを添加しなかった以外は実施例1と同様にして非水電解質を調製し、この非水電解質を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
Comparative Example 2
A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that LiBOB was not added, and a lithium secondary battery was produced in the same manner as in Example 1 except that this nonaqueous electrolyte was used.
比較例3
 アジポニトリルを添加しなかった以外は実施例1と同様にして非水電解質を調製し、この非水電解質を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
Comparative Example 3
A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that adiponitrile was not added, and a lithium secondary battery was produced in the same manner as in Example 1 except that this nonaqueous electrolyte was used.
比較例4
 PDEA、FECおよびVCを添加しなかった以外は実施例2と同様にして非水電解質を調製し、この非水電解質を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
Comparative Example 4
A non-aqueous electrolyte was prepared in the same manner as in Example 2 except that PDEA, FEC and VC were not added, and a lithium secondary battery was prepared in the same manner as in Example 1 except that this non-aqueous electrolyte was used.
比較例5~9
 アジポニトリル、LiBOB、PDEA、FECおよびVCの添加量を表3および表4に示す量に変更した以外は実施例1と同様にして非水電解質を調製し、これらの非水電解質を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
Comparative Examples 5-9
A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that the addition amount of adiponitrile, LiBOB, PDEA, FEC and VC was changed to the amounts shown in Table 3 and Table 4, and except that these nonaqueous electrolytes were used. A lithium secondary battery was produced in the same manner as in Example 1.
 実施例および比較例のリチウム二次電池について、以下の各評価を行った。 The following evaluations were performed on the lithium secondary batteries of Examples and Comparative Examples.
<充放電サイクル特性評価>
 実施例および比較例のリチウム二次電池について、まず、23℃の環境下で、0.5Cの電流値で4.4Vまで定電流充電し、引き続いて4.4Vの定電圧で電流値が0.05Cとなるまで充電し、その後に0.2Cの定電流で2.75Vまで放電を行って、初回放電容量を求めた。また、各電池について、23℃で、1Cの電流値で4.4Vまで定電流充電し、引き続いて4.4Vの定電圧で電流値が0.05Cになるまで充電した後に、1Cの電流値で2.75Vまで放電する一連の操作を1サイクルとして、これを多数繰り返した。そして、450サイクル目の放電容量を初回放電容量で除した値を百分率で表して、容量維持率を算出した。
<Charge / discharge cycle characteristics evaluation>
Regarding the lithium secondary batteries of Examples and Comparative Examples, first, in a 23 ° C. environment, constant current charging was performed up to 4.4 V at a current value of 0.5 C, and subsequently, the current value was 0 at a constant voltage of 4.4 V. The battery was charged to 0.05 C, and then discharged to 2.75 V at a constant current of 0.2 C to determine the initial discharge capacity. Further, each battery was charged at a constant current of up to 4.4 V at a current value of 1 C at 23 ° C., and subsequently charged to a current value of 0.05 C at a constant voltage of 4.4 V, and then a current value of 1 C. A series of operations for discharging to 2.75 V in 1 cycle was made one cycle, and this was repeated many times. Then, the capacity retention rate was calculated by expressing the value obtained by dividing the discharge capacity at the 450th cycle by the initial discharge capacity as a percentage.
 また、実施例および比較例の各リチウム二次電池について、環境温度を45℃に変更した以外は前記と同様にして、初回放電容量および500サイクル目の容量維持率を求めた。 Further, for each of the lithium secondary batteries of Examples and Comparative Examples, the initial discharge capacity and the capacity maintenance ratio at the 500th cycle were obtained in the same manner as described above except that the environmental temperature was changed to 45 ° C.
<放電状態での高温貯蔵特性評価>
 実施例および比較例の各リチウム二次電池について、0.1Cの定電流で3.0Vになるまで放電を行い、その後に開路電圧(OCV)測定および厚み測定を行った。その後、各電池を60℃に保った恒温槽内に入れ、30日間貯蔵した。その後各電池を恒温槽から取り出し、2時間経過後にOCV測定および厚み測定を行った。
<High temperature storage characteristics evaluation in the discharge state>
About each lithium secondary battery of an Example and a comparative example, it discharged until it became 3.0V with the constant current of 0.1C, and the open circuit voltage (OCV) measurement and the thickness measurement were performed after that. Then, each battery was put in a thermostat kept at 60 ° C. and stored for 30 days. Then, each battery was taken out from the thermostat, and OCV measurement and thickness measurement were performed after 2 hours.
 そして、OCVについては、貯蔵前の値から貯蔵後の値を引いて、OCVの変化量(ΔV)を算出した。 And about OCV, the change amount ((DELTA) V) of OCV was computed by subtracting the value after storage from the value before storage.
 また、電池の厚みについては、以下の式を用いて厚みの変化率(%)を算出した。
  厚みの変化量(%) 
    = 100 × 貯蔵後の厚み ÷ 貯蔵前の厚み
Moreover, about the thickness of the battery, the change rate (%) of thickness was computed using the following formula | equation.
Change in thickness (%)
= 100 × thickness after storage ÷ thickness before storage
 実施例および比較例のリチウム二次電池に係る非水電解質の添加剤の含有量を表1~表4に示し、前記の各評価結果を表5および表6に示す。 Tables 1 to 4 show the contents of the nonaqueous electrolyte additives related to the lithium secondary batteries of Examples and Comparative Examples, and Tables 5 and 6 show the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1~表6に示す通り、適正量のニトリル化合物と、適正量のLiBOBと、適正量の負極での還元電位が金属Li電位に対して1.3V以下の化合物とを含有する非水電解質を用いた実施例1~11のリチウム二次電池は、充放電サイクル特性評価時の容量維持率が、23℃、45℃のいずれにおいても高く、良好な充放電サイクル特性を有していた。また、実施例1、2のリチウム二次電池は、放電状態での高温貯蔵後において、OCVの低下および厚みの変化(膨れの発生)が抑制されており、放電状態での高温貯蔵特性が良好であった。 As shown in Tables 1 to 6, a nonaqueous electrolyte containing an appropriate amount of a nitrile compound, an appropriate amount of LiBOB, and an appropriate amount of a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential The lithium secondary batteries of Examples 1 to 11 using the above had a high capacity retention rate at the time of evaluation of charge / discharge cycle characteristics at both 23 ° C. and 45 ° C., and had good charge / discharge cycle characteristics. In addition, the lithium secondary batteries of Examples 1 and 2 have low OCV reduction and change in thickness (occurrence of blistering) after high temperature storage in a discharged state, and high temperature storage characteristics in a discharged state are good. Met.
 これに対し、ニトリル化合物およびLiBOBを含有していない非水電解質を用いた比較例1の電池は、23℃および45℃での充放電サイクル特性が劣っており、放電状態での高温貯蔵後におけるOCVの低下量が実施例の電池よりも大きかった。また、LiBOBを含有していない非水電解質を用いた比較例2の電池、およびLiBOBの含有量が少ない非水電解質を用いた比較例7の電池は、放電状態での高温貯蔵後におけるOCVの低下量が実施例の電池よりも大きかった。更に、ニトリル化合物を含有していない非水電解質を用いた比較例3の電池、およびニトリル化合物の含有量が少ない非水電解質を用いた比較例5の電池は、放電状態での高温貯蔵後における厚みの変化率が実施例の電池よりも大きかった。 On the other hand, the battery of Comparative Example 1 using the nonaqueous electrolyte containing no nitrile compound and LiBOB has inferior charge / discharge cycle characteristics at 23 ° C. and 45 ° C., and after high temperature storage in a discharged state. The amount of decrease in OCV was larger than that of the battery of the example. In addition, the battery of Comparative Example 2 using a non-aqueous electrolyte that does not contain LiBOB and the battery of Comparative Example 7 using a non-aqueous electrolyte with a low LiBOB content are those of OCV after high-temperature storage in a discharged state. The amount of decrease was larger than that of the battery of the example. Furthermore, the battery of Comparative Example 3 using a non-aqueous electrolyte containing no nitrile compound and the battery of Comparative Example 5 using a non-aqueous electrolyte with a low content of nitrile compound are obtained after high-temperature storage in a discharged state. The rate of change of thickness was larger than that of the battery of the example.
 また、負極での還元電位が金属Li電位に対して1.3V以下の化合物を含有していない非水電解質を用いた比較例4の電池、および当該化合物の含有量が多い非水電解質を用いた比較例9の電池は、23℃および45℃での充放電サイクル特性が劣っており、放電状態での高温貯蔵後における厚みの変化率が実施例の電池よりも大きかった。更に、アジポニトリルの含有量が多い非水電解質を用いた比較例6の電池は、23℃および45℃での充放電サイクル特性が劣っており、放電状態での高温貯蔵後におけるOCVの低下量が実施例の電池よりも大きかった。また、LIBOBの含有量が多い非水電解質を用いた比較例8の電池は、放電状態での高温貯蔵後における厚みの変化率が実施例の電池よりも大きかった。 Further, the battery of Comparative Example 4 using a nonaqueous electrolyte that does not contain a compound whose reduction potential at the negative electrode is 1.3 V or less with respect to the metal Li potential, and a nonaqueous electrolyte with a high content of the compound are used. The battery of Comparative Example 9 was inferior in charge / discharge cycle characteristics at 23 ° C. and 45 ° C., and the rate of change in thickness after high-temperature storage in a discharged state was larger than that of the battery of the example. Furthermore, the battery of Comparative Example 6 using a non-aqueous electrolyte with a high adiponitrile content is inferior in charge / discharge cycle characteristics at 23 ° C. and 45 ° C., and the decrease in OCV after high-temperature storage in a discharged state is low. It was larger than the battery of the example. In addition, the battery of Comparative Example 8 using a nonaqueous electrolyte with a high LIBOB content had a greater rate of change in thickness after high-temperature storage in the discharged state than the battery of the example.
 本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。 The present invention can be implemented in other forms as long as it does not depart from the spirit of the present invention. The embodiments disclosed in the present application are examples, and the present invention is not limited to these embodiments. The scope of the present invention is construed in preference to the description of the appended claims rather than the description of the above specification, and all modifications within the scope equivalent to the claims are construed in the scope of the claims. included.
 本発明のリチウム二次電池は、充放電サイクル特性および放電状態での貯蔵特性に優れ、また、非水電解質量が制限される薄型の形態としても良好な充放電サイクル特性を維持できる。よって、本発明のリチウム二次電池は、薄型の形態が求められ、かつ放電状態で放置される場合が多いデジタルカメラ、携帯ゲーム機などや、頻繁に充放電が繰り返される携帯電話、スマートフォンなどの携帯機器の電源用途をはじめとして、従来から知られているリチウム二次電池が適用されている各種用途と同じ用途に好ましく用いることができる。 The lithium secondary battery of the present invention is excellent in charge / discharge cycle characteristics and storage characteristics in a discharged state, and can maintain good charge / discharge cycle characteristics even in a thin form in which the nonaqueous electrolytic mass is limited. Therefore, the lithium secondary battery of the present invention is required to have a thin shape and is often left in a discharged state, such as a digital camera, a portable game machine, a mobile phone, a smart phone, etc. that are frequently charged and discharged. It can be preferably used for the same application as various applications to which a conventionally known lithium secondary battery is applied, including a power supply application for portable devices.
 1  正極
 2  負極
 3  セパレータ
1 Positive electrode 2 Negative electrode 3 Separator

Claims (9)

  1.  正極、負極、セパレータおよび非水電解質を用いたリチウム二次電池であって、
     前記非水電解質は、分子内にニトリル基を有する化合物、リチウムビスオキサレートボレート、負極での還元電位が金属Li電位に対して1.3V以下の化合物、および電解質塩を含有しており、
     前記分子内にニトリル基を有する化合物の前記非水電解質中の含有量が0.05~1.5質量%であり、
     前記リチウムビスオキサレートボレートの前記非水電解質中の含有量が0.05~5質量%であり、
     前記負極での還元電位が金属Li電位に対して1.3V以下の化合物の前記非水電解質中の含有量が10質量%以下であることを特徴とするリチウム二次電池。
    A lithium secondary battery using a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte,
    The non-aqueous electrolyte contains a compound having a nitrile group in the molecule, lithium bisoxalate borate, a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential, and an electrolyte salt.
    The content of the compound having a nitrile group in the molecule in the non-aqueous electrolyte is 0.05 to 1.5% by mass,
    The content of the lithium bisoxalate borate in the non-aqueous electrolyte is 0.05 to 5% by mass,
    The lithium secondary battery, wherein a content of the compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential in the nonaqueous electrolyte is 10% by mass or less.
  2.  前記非水電解質は、前記分子内にニトリル基を有する化合物として、下記一般式(1)
      NC-(CH-CN  (1)
    〔前記一般式(1)中、nは2~4の整数である〕
    で表される化合物を含有している請求項1に記載のリチウム二次電池。
    The non-aqueous electrolyte is represented by the following general formula (1) as a compound having a nitrile group in the molecule.
    NC- (CH 2 ) n -CN (1)
    [In the general formula (1), n is an integer of 2 to 4]
    The lithium secondary battery of Claim 1 containing the compound represented by these.
  3.  前記非水電解質は、前記分子内にニトリル基を有する化合物として、前記一般式(1)で表され、かつ前記一般式(1)におけるnが3または4である化合物を含有している請求項2に記載のリチウム二次電池。 The nonaqueous electrolyte contains a compound represented by the general formula (1) as a compound having a nitrile group in the molecule and n in the general formula (1) being 3 or 4. 2. The lithium secondary battery according to 2.
  4.  前記非水電解質は、前記負極での還元電位が金属Li電位に対して1.3V以下の化合物として、2-プロピニルジエチルホスホノアセテート、4-フルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネートおよびビニルエチレンカーボネートよりなる群から選択される少なくとも1種の化合物を含有している請求項1~3のいずれかに記載のリチウム二次電池。 The non-aqueous electrolyte is a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to the metal Li potential, such as 2-propynyldiethylphosphonoacetate, 4-fluoro-1,3-dioxolan-2-one, vinylene The lithium secondary battery according to any one of claims 1 to 3, comprising at least one compound selected from the group consisting of carbonate and vinyl ethylene carbonate.
  5.  前記非水電解質は、前記負極での還元電位が金属Li電位に対して1.3V以下の化合物として、2-プロピニルジエチルホスホノアセテートを含有している請求項4に記載のリチウム二次電池。 The lithium secondary battery according to claim 4, wherein the non-aqueous electrolyte contains 2-propynyl diethylphosphonoacetate as a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to a metal Li potential.
  6.  前記非水電解質は、前記負極での還元電位が金属Li電位に対して1.3V以下の化合物として、4-フルオロ-1,3-ジオキソラン-2-オンを含有している請求項4または5に記載のリチウム二次電池。 6. The nonaqueous electrolyte contains 4-fluoro-1,3-dioxolan-2-one as a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to a metal Li potential. The lithium secondary battery as described in.
  7.  前記非水電解質は、前記負極での還元電位が金属Li電位に対して1.3V以下の化合物として、ビニレンカーボネートを含有している請求項4~6のいずれかに記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 4 to 6, wherein the non-aqueous electrolyte contains vinylene carbonate as a compound having a reduction potential at the negative electrode of 1.3 V or less with respect to a metal Li potential.
  8.  前記非水電解質は、1,3-ジオキサンを更に含有している請求項1~7のいずれかに記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 7, wherein the non-aqueous electrolyte further contains 1,3-dioxane.
  9.  前記非水電解質は、前記電解質塩として、LiPFを含有している請求項1~8のいずれかに記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 8, wherein the nonaqueous electrolyte contains LiPF 6 as the electrolyte salt.
PCT/JP2014/079673 2013-11-26 2014-11-10 Lithium secondary battery WO2015079893A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-243482 2013-11-26
JP2013243482A JP6208560B2 (en) 2013-11-26 2013-11-26 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2015079893A1 true WO2015079893A1 (en) 2015-06-04

Family

ID=53198841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079673 WO2015079893A1 (en) 2013-11-26 2014-11-10 Lithium secondary battery

Country Status (2)

Country Link
JP (1) JP6208560B2 (en)
WO (1) WO2015079893A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998957A (en) * 2017-08-24 2020-04-10 三井化学株式会社 Nonaqueous electrolyte for battery and lithium secondary battery
WO2023122966A1 (en) * 2021-12-28 2023-07-06 宁德新能源科技有限公司 Electrochemical device and electronic device comprising same
CN116805730A (en) * 2022-07-19 2023-09-26 宁德时代新能源科技股份有限公司 Battery monomer, battery and power consumption device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7155898B2 (en) * 2018-11-08 2022-10-19 株式会社豊田自動織機 Electrolyte and secondary battery
JPWO2022070874A1 (en) * 2020-09-29 2022-04-07
JP7232801B2 (en) * 2020-10-15 2023-03-03 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method of lithium ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192632A (en) * 2010-03-16 2011-09-29 Samsung Sdi Co Ltd Electrolytic solution for lithium secondary battery, and lithium secondary battery
WO2013097474A1 (en) * 2011-12-26 2013-07-04 华为技术有限公司 Non-aqueous organic electrolyte, lithium ion secondary battery having same, lithium ion secondary battery preparation method and terminal communication device
JP2013232326A (en) * 2012-04-27 2013-11-14 Asahi Kasei Corp Nonaqueous secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192632A (en) * 2010-03-16 2011-09-29 Samsung Sdi Co Ltd Electrolytic solution for lithium secondary battery, and lithium secondary battery
WO2013097474A1 (en) * 2011-12-26 2013-07-04 华为技术有限公司 Non-aqueous organic electrolyte, lithium ion secondary battery having same, lithium ion secondary battery preparation method and terminal communication device
JP2013232326A (en) * 2012-04-27 2013-11-14 Asahi Kasei Corp Nonaqueous secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998957A (en) * 2017-08-24 2020-04-10 三井化学株式会社 Nonaqueous electrolyte for battery and lithium secondary battery
CN110998957B (en) * 2017-08-24 2023-03-24 三井化学株式会社 Nonaqueous electrolyte for battery and lithium secondary battery
WO2023122966A1 (en) * 2021-12-28 2023-07-06 宁德新能源科技有限公司 Electrochemical device and electronic device comprising same
CN116805730A (en) * 2022-07-19 2023-09-26 宁德时代新能源科技股份有限公司 Battery monomer, battery and power consumption device

Also Published As

Publication number Publication date
JP6208560B2 (en) 2017-10-04
JP2015103408A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP6396153B2 (en) Lithium secondary battery
JP4012174B2 (en) Lithium battery with efficient performance
US8962754B2 (en) Nonaqueous electrolyte solution and lithium ion battery
JP6865555B2 (en) Non-aqueous secondary battery
JP6054517B2 (en) Nonaqueous electrolyte secondary battery
JP6208560B2 (en) Lithium secondary battery
JP5357517B2 (en) Lithium ion secondary battery
JP6275694B2 (en) Nonaqueous electrolyte secondary battery
JP2016048624A (en) Lithium secondary battery
JP2004319317A (en) Lithium secondary battery
JP6036697B2 (en) Non-aqueous secondary battery
JP2010140737A (en) Nonaqueous electrolyte secondary battery
JP5326923B2 (en) Non-aqueous electrolyte secondary battery
KR20160024910A (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP2015050168A (en) Lithium secondary battery
JP2006318839A (en) Nonaqueous secondary battery
JP4687942B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2016072119A (en) Lithium secondary battery
JP2015050035A (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP2020077575A (en) Lithium ion secondary battery
JP7209196B2 (en) Cylindrical secondary battery
JPWO2018173452A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866618

Country of ref document: EP

Kind code of ref document: A1