JP2009170384A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2009170384A
JP2009170384A JP2008010313A JP2008010313A JP2009170384A JP 2009170384 A JP2009170384 A JP 2009170384A JP 2008010313 A JP2008010313 A JP 2008010313A JP 2008010313 A JP2008010313 A JP 2008010313A JP 2009170384 A JP2009170384 A JP 2009170384A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
active material
polyimide
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008010313A
Other languages
Japanese (ja)
Other versions
JP5207282B2 (en
Inventor
Hideaki Sasaki
英明 佐々木
Yutaka Sakauchi
裕 坂内
Koji Utsuki
功二 宇津木
Tatsuji Numata
達治 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008010313A priority Critical patent/JP5207282B2/en
Publication of JP2009170384A publication Critical patent/JP2009170384A/en
Application granted granted Critical
Publication of JP5207282B2 publication Critical patent/JP5207282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To enhance charge and discharge capacity and cycle characteristics of a lithium battery using polyimide as a binder of a negative electrode. <P>SOLUTION: The lithium secondary battery has the negative electrode wherein negative electrode active material particles for occluding lithium from a positive electrode active material are bound at the time of initial charging, and a lithium source for supplying lithium to the negative electrode before the initial charging is arranged on the negative electrode or a negative electrode collector by electrically keeping in contact with each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、充放電容量及びサイクル特性を改善させたリチウム二次電池に関する。   The present invention relates to a lithium secondary battery having improved charge / discharge capacity and cycle characteristics.

リチウム二次電池などの非水電解液二次電池は、近年、携帯電話、ノート型パソコンなどの電源として広く用いられている。これらの非水電解液二次電池は、従来のアルカリ蓄電池などの二次電池に比べて、体積、あるいは重量容量密度が大きく、しかも高電圧を取り出すことが可能であるので、小型機器用の電源として広く採用され、今日のモバイル機器の発展に大きく寄与している。   In recent years, non-aqueous electrolyte secondary batteries such as lithium secondary batteries have been widely used as power sources for mobile phones, notebook computers, and the like. These non-aqueous electrolyte secondary batteries are larger in volume or weight capacity density than secondary batteries such as conventional alkaline storage batteries and can take out a high voltage. Has been widely adopted as a major contribution to the development of today's mobile devices.

リチウム二次電池では、負極活物質としてリチウムイオンの吸蔵、放出が可能な黒鉛や非晶質炭素などの炭素材料が広く利用されている。炭素材料を用いて負極を作製する場合には、炭素材料と結着剤とを溶剤中で混合したスラリーを銅箔などの負極集電体上に塗布、乾燥して、負極活物質層を形成していた。   In lithium secondary batteries, carbon materials such as graphite and amorphous carbon capable of occluding and releasing lithium ions are widely used as negative electrode active materials. When producing a negative electrode using a carbon material, a slurry obtained by mixing a carbon material and a binder in a solvent is applied onto a negative electrode current collector such as a copper foil and dried to form a negative electrode active material layer. Was.

従来、結着剤としては、ポリフッ化ビニリデン(PVdF)が広く用いられている。しかしながら、ポリフッ化ビニリデンは活物質粒子間の結着性は優れているものの、活物質粒子と集電体との密着性が低く、充放電サイクルが繰り返すと集電体からの負極活物質層の剥離や脱落などを引き起こし、サイクル容量維持率の低下を招いていた。   Conventionally, polyvinylidene fluoride (PVdF) has been widely used as a binder. However, although polyvinylidene fluoride has excellent binding properties between the active material particles, the adhesion between the active material particles and the current collector is low, and when the charge / discharge cycle is repeated, the negative electrode active material layer from the current collector Detachment and dropout were caused, leading to a decrease in cycle capacity retention rate.

そこで、こうした問題点を解決するために、負極活物質として炭素粉末を用いた電池において結着剤としてポリイミドを用いた負極が提案されている(例えば、特許文献1、2)。これらの先行技術にも記載のように、ポリイミドを結着剤として用いた場合には、炭素粉末と集電体の金属面との密着性が良好で、充放電サイクルを繰り返し行っても電池容量が低下しにくく、サイクル寿命でも優れた効果を奏するという特徴を有している。   In order to solve these problems, a negative electrode using a polyimide as a binder in a battery using carbon powder as a negative electrode active material has been proposed (for example, Patent Documents 1 and 2). As described in these prior arts, when polyimide is used as a binder, the adhesion between the carbon powder and the metal surface of the current collector is good, and the battery capacity can be maintained even after repeated charge / discharge cycles. Is less likely to decrease, and has an excellent effect even in the cycle life.

リチウムイオン電池等のリチウム二次電池においては、負極活物質には、リチウムを含んでいない炭素材料等を用いており、初回充電時に正極活物質中に含まれたリチウムが負極に吸蔵されて電池としての機能を発現している。
ところが、ポリイミドを結着剤としたリチウム二次電池の充放電では初期充放電効率が低く、電池容量が大きく低下することがあった。
この現象について鋭意検討したところ、初回充電時に負極に吸蔵されたリチウムの一部が放電時に放出されずに残留することによって電池容量が大きく低下することを見出した。負極活物質に使用する炭素材料においても多少のリチウムが残留して放電時に完全には取り出せず、不可逆容量が存在することが知られているが、ポリイミドを結着剤とした場合にはポリイミド中に取り込まれて放電に利用されないリチウムが増加して不可逆容量が大きくなるものと考えられる。
In a lithium secondary battery such as a lithium ion battery, a carbon material that does not contain lithium is used as the negative electrode active material, and the lithium contained in the positive electrode active material during the initial charge is occluded in the negative electrode. As a function.
However, the charge / discharge of a lithium secondary battery using polyimide as a binder has a low initial charge / discharge efficiency, and the battery capacity may be greatly reduced.
As a result of intensive studies on this phenomenon, it has been found that a part of lithium occluded in the negative electrode during the first charge remains without being released during the discharge, thereby greatly reducing the battery capacity. It is known that some lithium remains in the carbon material used for the negative electrode active material and cannot be completely taken out at the time of discharge, and there is an irreversible capacity. However, when polyimide is used as a binder, It is considered that the irreversible capacity increases due to an increase in lithium that is taken in and not used for discharge.

特許第3311402号公報Japanese Patent No. 3311402 特開2004−247233号公報JP 2004-247233 A

本発明は、リチウム二次電池の負極にポリイミドを含有する結着剤を用いた場合に、正極から充電時に負極に吸蔵されたリチウムのうち放電時に負極から取り出せない不可逆容量が大きくなる点に着目し、充放電容量が大きく、サイクル特性が良好なリチウム二次電池を提供することを課題とするものである。   The present invention focuses on the fact that when a binder containing polyimide is used for the negative electrode of a lithium secondary battery, the irreversible capacity that cannot be taken out from the negative electrode during discharge out of lithium stored in the negative electrode during charging from the positive electrode increases. However, it is an object of the present invention to provide a lithium secondary battery having a large charge / discharge capacity and good cycle characteristics.

本発明は、初回充電時に正極活物質からリチウムを吸蔵する負極活物質粒子をポリイミドで結着した負極電極を有し、負極電極または負極集電体には、初期充電前に負極電極に対してリチウムを供給するリチウム源が電気的に接触されているリチウム二次電池である。
負極活物質が黒鉛である前記のリチウム二次電池である。
また、前記リチウム源の量は、前記負極電極に対して初期充電される電気量の0.6〜1.0倍に相当するである前記のリチウム二次電池である。
前記リチウム源は、リチウム金属からなる前記のリチウム二次電池である。
The present invention has a negative electrode in which negative electrode active material particles that occlude lithium from the positive electrode active material at the time of initial charge are bound with polyimide, and the negative electrode or the negative electrode current collector is attached to the negative electrode before the initial charge. A lithium secondary battery in which a lithium source for supplying lithium is in electrical contact.
In the lithium secondary battery, the negative electrode active material is graphite.
In the lithium secondary battery, the amount of the lithium source corresponds to 0.6 to 1.0 times the amount of electricity initially charged with respect to the negative electrode.
The lithium source is the lithium secondary battery made of lithium metal.

本発明によれば、ポリイミドからなる結着剤を負極の結着剤とするとともに、負極活物質には、正極活物質から初回充電時に吸蔵するリチウムに加えて、初回充電前に負極活物質中にリチウムを吸蔵させることによって、サイクル特性と充放電容量を向上させたリチウム二次電池を提供することができる。   According to the present invention, the binder made of polyimide is used as the binder for the negative electrode, and the negative electrode active material contains lithium in the negative electrode active material before the first charge in addition to lithium that is occluded during the first charge from the positive electrode active material. By occluding lithium, a lithium secondary battery with improved cycle characteristics and charge / discharge capacity can be provided.

本発明は、負極電極の結着剤としてポリイミドを用いたリチウム二次電池においては、結着剤としたポリイミドがあたかも負極活物質かのように振る舞い、充電時に吸蔵されたリチウムが初期放電時に放出されなくなり、結果として不可逆容量が大きな電池となる現象を、負極あるいは負極集電体と電気的に接して放電時にリチウムを放出する金属リチウム等のリチウム源を配置したことによって、ポリイミドを結着剤とした場合に生じる不可逆容量の増加を防止して、充放電容量が大きく、サイクル特性が良好なリチウム二次電池を提供することを見出したものである。   In the lithium secondary battery using polyimide as a binder for the negative electrode, the present invention behaves as if the polyimide used as the binder is a negative electrode active material, and the lithium occluded during charging is released during initial discharge. The result is a battery with a large irreversible capacity, resulting in a polyimide binder by arranging a lithium source such as metallic lithium that is in electrical contact with the negative electrode or the negative electrode current collector and releases lithium during discharge. It has been found that an increase in irreversible capacity that occurs in the above case is prevented, a lithium secondary battery having a large charge / discharge capacity and good cycle characteristics is provided.

本発明におけるリチウム二次電池として、リチウムイオン電池を例に挙げて説明する。正極電極は、リチウムイオンを吸蔵、放出し得る正極活物質を含有する正極活物質層と正極集電体から構成され、また、負極電極は、リチウムイオンを吸蔵、放出する負極活物質がポリイミドを結着剤として結合された負極活物質層と負極集電体から構成されている。これらの正極電極および負極電極は、セパレータを介して対向して配置して積層体からなる電池要素とするか、あるいは、セパレータ/正極/セパレータ/負極の順に積層した後に巻回して電池要素を作製した後に、金属リチウムを負極あるいは負極集電体と電気的に接続して配置した後に、電池要素を外装容器に収納し、非水電解液を含浸して封口することによって製造する。   A lithium ion battery will be described as an example of the lithium secondary battery in the present invention. The positive electrode is composed of a positive electrode active material layer containing a positive electrode active material capable of occluding and releasing lithium ions and a positive electrode current collector, and the negative electrode is composed of polyimide as a negative electrode active material for occluding and releasing lithium ions. It is composed of a negative electrode active material layer and a negative electrode current collector bonded as a binder. These positive electrode and negative electrode are arranged to face each other via a separator to form a battery element made of a laminate, or are wound after being laminated in the order of separator / positive electrode / separator / negative electrode to produce a battery element. Thereafter, after the metallic lithium is disposed in electrical connection with the negative electrode or the negative electrode current collector, the battery element is housed in an outer container and impregnated with a non-aqueous electrolyte and sealed.

正極集電体としてはアルミニウム、チタンまたはこれらの合金などを用いることができ、負極集電体としては銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができる。
また、セパレータとしては、ポリプロピレン、ポリエチレンなどのポリオレフィン、フッ素樹脂などの多孔性フィルムが用いられる。
Aluminum, titanium, or an alloy thereof can be used as the positive electrode current collector, and copper, stainless steel, nickel, titanium, or an alloy thereof can be used as the negative electrode current collector.
Moreover, as a separator, porous films, such as polyolefin, such as a polypropylene and polyethylene, a fluororesin, are used.

正極電極は、正極集電体上に正極活物質を塗布することによって製造され、正極活物質としては、リチウム含有複合酸化物が用いられ、具体的にはLiMO2 で表される層状構造の物質、LiMn24で表されるスピネル構造の化合物を挙げることができる。ここで、MはCo、Ni、Mn、Fe、より選ばれる少なくとも1種であり、一部をMg、Al、Tiなどその他カチオンで置換しても良い。
正極活物質を、カーボンブラックなどの導電性付与剤、ポリフッ化ビニリデン等の結着剤とともにN−メチル−2−ピロリドン(NMP)などの溶剤中に分散混練し、これをアルミニウム箔などの正極集電体上に塗布後、溶媒を乾燥させるなどの方法により正極活物質層を得ることができる。正極活物質層を形成した正極電極は、プレスなどの方法により適当な密度に調整することができる。
The positive electrode is manufactured by applying a positive electrode active material on a positive electrode current collector, and a lithium-containing composite oxide is used as the positive electrode active material, specifically, a layered structure material represented by LiMO 2 And a compound having a spinel structure represented by LiMn 2 O 4 . Here, M is at least one selected from Co, Ni, Mn, and Fe, and a part thereof may be substituted with other cations such as Mg, Al, and Ti.
A positive electrode active material is dispersed and kneaded in a solvent such as N-methyl-2-pyrrolidone (NMP) together with a conductivity-imparting agent such as carbon black and a binder such as polyvinylidene fluoride. The positive electrode active material layer can be obtained by a method such as drying the solvent after coating on the electric body. The positive electrode on which the positive electrode active material layer is formed can be adjusted to an appropriate density by a method such as pressing.

負極電極は、負極集電体上に負極活物質を塗布することによって製造され、黒鉛、非晶質炭素、カーボンブラック、アセチレンブラック等の導電性付与剤、ポリイミドまたはその前駆体を含有する結着剤をN−メチル−2−ピロリドンなどの分散媒とを混合したスラリーを、ドクターブレードなどを用いて銅箔からなる集電体上に塗布後、加熱乾燥させることによって負極活物質層を形成することができる。得られた負極電極は、ロールプレスなどによって所定の密度に調整することができる。
ポリイミドに代えて、ポリイミドの前駆体を用いた場合には200℃〜400℃で加熱処理することによりポリイミド化を行うことができる。
The negative electrode is manufactured by applying a negative electrode active material on a negative electrode current collector, and contains a conductivity-imparting agent such as graphite, amorphous carbon, carbon black, acetylene black, polyimide, or a precursor thereof. A slurry obtained by mixing an agent with a dispersion medium such as N-methyl-2-pyrrolidone is applied onto a current collector made of copper foil using a doctor blade, and then dried by heating to form a negative electrode active material layer. be able to. The obtained negative electrode can be adjusted to a predetermined density by a roll press or the like.
When a polyimide precursor is used instead of polyimide, it can be converted to polyimide by heat treatment at 200 ° C. to 400 ° C.

ポリイミドとしては、直鎖中にイミド結合を含む芳香族ポリイミドを挙げることができる。N−メチル−2−ピロリドン等の溶媒に可溶な熱硬化型ポリイミド、熱可塑型ポリイミドのいずれを用いることができる。また、ポリイミドに代えて、ポリアミック酸などの加熱処理によってポリイミド化するポリイミド前駆体を用いてもよい。一例を挙げれば、、宇部興産製U−ワニス(ポリアミック酸型)、日立化成工業製HCIシリーズ(ポリアミック酸型)、同OPIシリーズ(ポリアミドイミド樹脂)、東洋紡績製バイロマックス(ポリアミドイミド樹脂)、アイ.エス.テイ製のPyre−ML(ポリアミック酸溶液)およびSKYBOND(ポリイミドワニス)などが挙げられる。   An example of the polyimide is an aromatic polyimide containing an imide bond in the straight chain. Either a thermosetting polyimide soluble in a solvent such as N-methyl-2-pyrrolidone or a thermoplastic polyimide can be used. Moreover, it may replace with a polyimide and may use the polyimide precursor which polyimidizes by heat processing, such as a polyamic acid. For example, Ube Industries U-Varnish (polyamic acid type), Hitachi Chemical HCI series (polyamic acid type), OPI series (polyamideimide resin), Toyobo Viromax (polyamideimide resin), Eye. S. Examples include Pyre-ML (polyamic acid solution) and SKYBOND (polyimide varnish) manufactured by Tei.

負極活物質層中のポリイミドは、負極電極の質量に対して2質量%〜20質量%の範囲であることが好ましい。2質量%よりも少ない場合には、活物質同士あるいは活物質と集電体との密着性が低下してサイクル特性の劣化が起こり、20質量%よりも多い場合には負極合剤中の活物質比率の低下によって負極容量の低下により、電極の抵抗が増大するなどの問題が生じる。   It is preferable that the polyimide in a negative electrode active material layer is the range of 2 mass%-20 mass% with respect to the mass of a negative electrode. When the amount is less than 2% by mass, the adhesion between the active materials or between the active material and the current collector is reduced, resulting in deterioration of cycle characteristics. When the amount is more than 20% by mass, the active material in the negative electrode mixture is reduced. A decrease in the material ratio causes a problem such as an increase in electrode resistance due to a decrease in negative electrode capacity.

結着剤としてポリイミドを用いることによって、ポリフッ化ビニリデンを用いる場合よりも負極活物質と集電体との密着性が向上し、充放電を繰り返しても集電体と負極活物質層との電気的な接触が良好に保たれるため、良好なサイクル特性を得ることができる。
ポリイミドを用いた電池はポリフッ化ビニリデンを用いたものより初期放電容量の低下が起きる場合がある。この初期放電容量の低下は、ポリイミド自身がリチウムを取り込み、不可逆容量を有する活物質と同様に現れるものと考えられる。
充電時にポリイミド中のベンゼン環や窒素原子、酸素原子をはじめとする官能基にリチウムが捉えらて放電時には引き離すことができなくなったり、あるいはリチウムがこれらの原子等と反応することによって、リチウムが消費されるいるものと推察される。
このように、不可逆容量と同様の現象が現れるために、負極活物質として優れた特性を有する黒鉛の性能を充分には利用できなくなるものと考えられる。
By using polyimide as the binder, the adhesion between the negative electrode active material and the current collector is improved as compared with the case where polyvinylidene fluoride is used, and the electricity between the current collector and the negative electrode active material layer is maintained even after repeated charge and discharge. Therefore, good cycle characteristics can be obtained.
Batteries using polyimide may have a lower initial discharge capacity than those using polyvinylidene fluoride. This decrease in the initial discharge capacity is considered to appear in the same manner as an active material having an irreversible capacity because the polyimide itself takes in lithium.
Lithium is captured by functional groups such as the benzene ring, nitrogen atom, and oxygen atom in the polyimide during charging and cannot be separated during discharging, or lithium reacts with these atoms, resulting in consumption of lithium. It is presumed that
As described above, since a phenomenon similar to the irreversible capacity appears, it is considered that the performance of graphite having excellent characteristics as a negative electrode active material cannot be sufficiently utilized.

本発明のリチウム二次電池においては、正極電極および負極電極からなる電池要素とともに、正極電極とは異なるリチウム源を電池内に備えており、初期充電時に正極電極から負極電極中に取り込まれて放電時に取り出されることがない不可逆容量となったリチウムを補填するリチウム源を備えている。その結果、充放電効率が向上して電池の容量損失を抑えることができる。   In the lithium secondary battery of the present invention, the battery element including the positive electrode and the negative electrode is provided with a lithium source different from the positive electrode in the battery, and discharged from the positive electrode into the negative electrode during initial charging. It is equipped with a lithium source that compensates for the irreversible capacity of lithium that is sometimes not extracted. As a result, the charge / discharge efficiency can be improved and the capacity loss of the battery can be suppressed.

電池内にリチウムの補填の目的で配置するリチウム源の量は、負極全体の不可逆容量に対して0.6〜1.0倍であることが好ましく、より好ましくは0.8ないし1.0倍である。
リチウム源の量が負極電極の不可逆容量よりも大きい場合、すなわち1倍以上の場合には、負極電極中に吸蔵されずにリチウム源が電池内に残存することとなる。残存したリチウム源は無駄であるばかりではなく、リチウムデンドライトが成長することもあり、電池の落下や衝撃を受けた際に短絡し易くなるなど安全性の面で問題が生じる場合がある。また、正極電極から負極電極への充電の際に負極電極に吸蔵されない過剰のリチウムが負極電極表面に析出してサイクル特性の劣化を招くおそれがある。
The amount of the lithium source disposed in the battery for the purpose of lithium supplementation is preferably 0.6 to 1.0 times, more preferably 0.8 to 1.0 times the irreversible capacity of the whole negative electrode. It is.
When the amount of the lithium source is larger than the irreversible capacity of the negative electrode, that is, 1 or more times, the lithium source remains in the battery without being occluded in the negative electrode. The remaining lithium source is not only useless, but lithium dendrite may grow, and there may be a problem in terms of safety, such as a short circuit when the battery is dropped or shocked. In addition, when charging from the positive electrode to the negative electrode, excess lithium that is not occluded by the negative electrode may be deposited on the surface of the negative electrode, leading to deterioration of cycle characteristics.

一方、リチウム源の量が不可逆容量の0.6倍よりも少ない場合には、不可逆容量の補填する効果が不充分なものとなる。
不可逆容量は、作製したリチウム二次電池の初期充電の電気量に対して、初回の放電することができる電気量との差から求められた不可逆容量に対応したリチウム源を配置することができる。
On the other hand, when the amount of the lithium source is less than 0.6 times the irreversible capacity, the effect of supplementing the irreversible capacity is insufficient.
For the irreversible capacity, a lithium source corresponding to the irreversible capacity determined from the difference between the initial charge amount of the produced lithium secondary battery and the charge amount that can be discharged for the first time can be arranged.

不可逆容量の補填のために配置するリチウム源は金属リチウムとすることが好ましい。リチウム金属はその電気容量が3860mAh/gと非常に大きく、密度が0.534g/cm3 と小さいために好ましい。金属リチウムとしては、厚みが薄いリチウム箔を使用することが好ましい。
また、不可逆容量は、以下の様に、
W:負極合剤中のポリイミドの比率(%)
α:負極合剤中におけるポリイミドの不可逆容量(mAh/g)
β:黒鉛の不可逆容量(mAh/g)
D:負極単位面積当たりの負極合剤重量(g/cm2
S:リチウム二次電池内の負極の総面積(cm2
不可逆容量(mAh)={ W・α /100+ (1−W / 100)・β }・D・S
The lithium source arranged for irreversible capacity compensation is preferably metallic lithium. Lithium metal is preferable because its electric capacity is as large as 3860 mAh / g and its density is as small as 0.534 g / cm 3 . As metallic lithium, it is preferable to use a thin lithium foil.
The irreversible capacity is as follows:
W: Ratio of polyimide in negative electrode mixture (%)
α: Irreversible capacity of the polyimide in the negative electrode mixture (mAh / g)
β: Irreversible capacity of graphite (mAh / g)
D: Negative electrode mixture weight per unit area of negative electrode (g / cm 2 )
S: Total area of the negative electrode in the lithium secondary battery (cm 2 )
Irreversible capacity (mAh) = {W · α / 100 + (1−W / 100) · β} · D · S

金属リチウムは、正極電極とは電気的に隔離された、電解液に接触する場所で、負極活物質層あるいは集電体の少なくともいずれか一方と、電気的に接触するように配置して放置するすることによって、電池を充電する前に電気化学的にリチウムを負極電極中に導入することが可能である。また、リチウムの負極電極中への導入は、温度が高くなるとより早く進行するので、電池の温度を高めた状態に保持して行うことが好ましい。   Lithium metal is electrically isolated from the positive electrode and placed in contact with the electrolyte solution, and is left in electrical contact with at least one of the negative electrode active material layer and the current collector. By doing so, it is possible to electrochemically introduce lithium into the negative electrode before charging the battery. Moreover, since the introduction of lithium into the negative electrode proceeds faster as the temperature increases, it is preferably carried out while keeping the temperature of the battery elevated.

本発明のリチウム二次電池においては、非水溶媒中にリチウム塩を支持電解質として含有する非水電解液を用いることができる。
リチウム塩としては、リチウムイミド塩、LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6などがあげられる。この中でも特にLiPF6、LiBF4が好ましい。リチウムイミド塩としてはLiN(Ck2k+1SO2)(Cm2m+1SO2)(k、mはそれぞれ独立して1または2である)が挙げられる。これらは単独で、または複数種を組み合わせて用いることができる。
In the lithium secondary battery of the present invention, a nonaqueous electrolytic solution containing a lithium salt as a supporting electrolyte in a nonaqueous solvent can be used.
The lithium salt, lithium imide salt, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6 , and the like. Of these, LiPF 6 and LiBF 4 are particularly preferable. LiN The lithium imide salt (C k F 2k + 1SO 2 ) (C m F 2m + 1SO 2) (k, m are each independently 1 or 2). These can be used alone or in combination of two or more.

また非水溶媒としては、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エーテル類およびそれらのフッ化誘導体の有機溶媒から選ばれた少なくとも1種類の有機溶媒を用いる。より具体的には、環状カーボネート類:プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、およびこれらの誘導体鎖状カーボネート類:ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)、およびこれらの誘導体、脂肪族カルボン酸エステル類:ギ酸メチル、酢酸メチル、プロピオン酸エチル、およびこれらの誘導体、γ−ラクトン類:γ−ブチロラクトン、およびこれらの誘導体、環状エーテル類:テトラヒドロフラン、2−メチルテトラヒドロフラン鎖状エーテル類:1,2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)、ジエチルエーテル、およびこれらの誘導体、その他:ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンスルトン、アニソール、N−メチルピロリドン、フッ素化カルボン酸エステルこれらを1種または2種以上を混合して使用することができる。また、これらに加えて、ビニレンカーボネート(VC)を添加しても良い。   The non-aqueous solvent is at least selected from organic solvents such as cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, γ-lactones, cyclic ethers, chain ethers and their fluorinated derivatives. One kind of organic solvent is used. More specifically, cyclic carbonates: propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and their derivative chain carbonates: dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl Methyl carbonate (EMC), dipropyl carbonate (DPC), and derivatives thereof, aliphatic carboxylic acid esters: methyl formate, methyl acetate, ethyl propionate, and derivatives thereof, γ-lactones: γ-butyrolactone, and These derivatives, cyclic ethers: tetrahydrofuran, 2-methyltetrahydrofuran chain ethers: 1,2-ethoxyethane (DEE), ethoxymethoxyethane (EME), diethyl ether, and derivatives thereof, Others: dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1, 3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, fluorinated carboxylic acid ester A seed or a mixture of two or more can be used. In addition to these, vinylene carbonate (VC) may be added.

本発明のリチウム二次電池は、円筒型、角型、コイン型等の形状とすることができ、金属缶、あるいは合成樹脂フィルムと金属箔とを積層したフィルム状外装材によって封口したもの等を電池の使用目的等に応じて適宜使用することができる。   The lithium secondary battery of the present invention can have a cylindrical shape, a square shape, a coin shape, or the like, which is sealed with a metal can or a film-like exterior material in which a synthetic resin film and a metal foil are laminated. It can be used appropriately according to the purpose of use of the battery.

以下に本発明の実施例,比較例を示して本発明を説明する。
実施例1
(ポリイミド含有負極電極の作製)
負極活物質として平均粒径20μmの天然黒鉛粉末を、結着剤としてポリイミド前駆体であるポリアミック酸からなるポリイミドワニス(宇部興産製U−ワニス−A)とを質量比95:5でN−メチル−2−ピロリドン(NMP)中に均一に分散させてスラリーを作製した。このスラリーを負極集電体となる厚み15μmの銅箔上に塗布後、125℃にて10分間N−メチル−2−ピロリドン(NMP)を蒸発させることにより負極活物質層を形成した。プレス後、窒素雰囲気下、350℃にて1時間の加熱処理を行い負極電極を作製し、乾燥後の単位面積当たりの負極合剤量は0.008g/cm2とした。
(正極電極の作製)
正極活物質として平均粒径10μmのLiMn24粉末と、結着剤としてポリフッ化ビニリデン、導電性付与剤としてカーボンブラックとを質量比を92:4:4でN−メチル−2−ピロリドン(NMP)中に均一に分散させてスラリーを作製した。そのスラリーを正極集電体となる厚み20μmのアルミ箔上に塗布後、125℃にて10分間NMPを蒸発させることにより正極活物質層を形成した後プレスすることによって正極電極を作製した。乾燥後の単位面積当たりの正極合剤量は0.02g/cm2とした。
また、電解液は、溶媒としてエチレンカーボネート(EC):ジエチルカーボネート(DEC)=30:70(体積%)に、電解質として1mol/LのLiPF6を溶解したものを用いた。
The present invention will be described below with reference to examples and comparative examples of the present invention.
Example 1
(Preparation of polyimide-containing negative electrode)
Natural graphite powder having an average particle diameter of 20 μm as a negative electrode active material and polyimide varnish (U-Vanice-A manufactured by Ube Industries) made of polyamic acid as a polyimide precursor as a binder at a mass ratio of 95: 5 A slurry was prepared by uniformly dispersing in -2-pyrrolidone (NMP). After applying this slurry on a 15 μm thick copper foil serving as a negative electrode current collector, N-methyl-2-pyrrolidone (NMP) was evaporated at 125 ° C. for 10 minutes to form a negative electrode active material layer. After pressing, heat treatment was performed at 350 ° C. for 1 hour in a nitrogen atmosphere to prepare a negative electrode, and the amount of the negative electrode mixture per unit area after drying was 0.008 g / cm 2 .
(Preparation of positive electrode)
Li-Mn 2 O 4 powder having an average particle size of 10 μm as a positive electrode active material, polyvinylidene fluoride as a binder, and carbon black as a conductivity-imparting agent at a mass ratio of 92: 4: 4 and N-methyl-2-pyrrolidone ( NMP) was uniformly dispersed to prepare a slurry. The slurry was applied on an aluminum foil having a thickness of 20 μm serving as a positive electrode current collector, and then a positive electrode active material layer was formed by evaporating NMP at 125 ° C. for 10 minutes, followed by pressing to produce a positive electrode. The amount of positive electrode mixture per unit area after drying was 0.02 g / cm 2 .
The electrolyte used was a solution of 1 mol / L LiPF 6 as an electrolyte in ethylene carbonate (EC): diethyl carbonate (DEC) = 30: 70 (volume%) as a solvent.

(コイン型電池の作製)
先に作製した負極電極を直径12mmの円形に打ち抜き、ステンレス製のコイン型のケースの一方に入れ、ポリエチレンとポリプロピレンを積層したセパレータを負極活物質層上に載置し、電解液を含浸させた後、金属リチウムをセパレータ上に積層し、ガスケットを介して他方のコイン型ケースをかぶせて、かしめ、コイン型電池を作製した。
コイン型電池を定電流充放電試験法により負極の充電放電容量の測定を行った。この際、充電時の終止電圧は0V、放電時の終止電圧は1.0V、電流値は負極合剤量に対して40mA/gとした。
また、同様に、ポリフッ化ビニリデンを結着剤として作製した負極電極についても同様に充放電容量の測定を行い、両者の差から、ポリイミドの不可逆容量は1100mAh/gであった。
(Production of coin-type battery)
The previously produced negative electrode was punched into a circle with a diameter of 12 mm, placed in one of a stainless steel coin-shaped case, a separator laminated with polyethylene and polypropylene was placed on the negative electrode active material layer, and impregnated with an electrolytic solution. Thereafter, metallic lithium was laminated on the separator, and the other coin-type case was covered via a gasket and caulked to produce a coin-type battery.
The charge / discharge capacity of the negative electrode of the coin-type battery was measured by a constant current charge / discharge test method. At this time, the final voltage during charging was 0 V, the final voltage during discharging was 1.0 V, and the current value was 40 mA / g with respect to the negative electrode mixture amount.
Similarly, the charge / discharge capacity of the negative electrode prepared using polyvinylidene fluoride as a binder was measured in the same manner. From the difference between the two, the irreversible capacity of polyimide was 1100 mAh / g.

(積層型電池の作製)
先に作製した正極電極と負極電極を各々5cm×5cmに切り出して電極とし、幅5mm、長さ3cm、厚み0.1mmのアルミ製のタブを正極集電体、同サイズのニッケル製のタブを負極集電体に、それぞれ超音波溶接した。6cm×6cmのポリエチレンとポリプロピレンを積層したセパレータの両側にタブを接続した負極電極と正極電極をその活物質層側を対向するように積層させた。
ポリエチレンフィルム/アルミニウム箔/ポリエチレンフィルムの順に積層した2枚の8cm×8cmのフィルム状外装材の三辺を熱融着により接合し、一辺の開口部から負極電極、セパレータ、および正極電極からなる電池要素の積層体を挿入した。
(Production of stacked battery)
The positive electrode and the negative electrode prepared previously were cut into 5 cm × 5 cm, respectively, and used as electrodes. An aluminum tab having a width of 5 mm, a length of 3 cm, and a thickness of 0.1 mm was used as a positive electrode current collector, and a nickel tab of the same size was used. Each of the negative electrode current collectors was ultrasonically welded. A negative electrode having a tab connected to both sides of a separator in which polyethylene and polypropylene of 6 cm × 6 cm were laminated and a positive electrode were laminated so that the active material layer faces each other.
A battery composed of two 8 cm × 8 cm film-like packaging materials laminated in the order of polyethylene film / aluminum foil / polyethylene film by heat-sealing, and comprising a negative electrode, a separator, and a positive electrode through an opening on one side A stack of elements was inserted.

負極活物質層中のポリイミドの比率5%、負極物質層中のポリイミドの不可逆容量1100mAh/g、黒鉛の不可逆容量35mAh/g、負極電極面積当たりの負極活物質質量量0.008g/cm2、負極活物質層の総面積25cm2 として負極電極全体の不可逆容量を計算すると
{5・1100 /100+ (1−5 / 100)・35 }×0.008×25= 17.7mAh
となり、これを金属リチウム質量に換算して0.00456gの値を得た。
したがって、の負極電極の不可逆容量に対する比率が1の場合のリチウム金属量は0.00456gである。
The proportion of polyimide in the negative electrode active material layer is 5%, the irreversible capacity of polyimide in the negative electrode material layer is 1100 mAh / g, the irreversible capacity of graphite is 35 mAh / g, the negative electrode active material mass per negative electrode area is 0.008 g / cm 2 , When the irreversible capacity of the whole negative electrode is calculated with the total area of the negative electrode active material layer being 25 cm 2 , {5 · 1100/100 + (1-5 / 100) · 35} × 0.008 × 25 = 17.7 mAh
This was converted to the mass of metallic lithium, and a value of 0.00456 g was obtained.
Therefore, when the ratio of the negative electrode to the irreversible capacity is 1, the amount of lithium metal is 0.00456 g.

また、リチウム源として、厚さ0.1mm、質量0.00456gのリチウム金属箔を負極集電体と外装体の間に差しいれて、非水電解液を含浸させた後、真空下にて開口部を熱融着により封止することで、フィルム状外装材で被覆した積層電池を作製した。真空下での封止によりフィルム状外装材の内部は大気圧に近い面圧にて常時押された状態にあるため、装着したリチウム金属箔と負極集電体との電気的接触は保たれ、また非水電解液とも接している。
作製した上記のフィルム状外装材で被覆した積層電池を25℃で3日間エージングすることにより金属リチウムから負極電極へのリチウムのドープを行った。
Further, as a lithium source, a lithium metal foil having a thickness of 0.1 mm and a mass of 0.00456 g is inserted between the negative electrode current collector and the outer package, impregnated with a non-aqueous electrolyte, and then opened under vacuum. Was sealed by thermal fusion to produce a laminated battery covered with a film-like exterior material. Since the inside of the film-like packaging material is always pressed at a surface pressure close to atmospheric pressure by sealing under vacuum, the electrical contact between the attached lithium metal foil and the negative electrode current collector is maintained, It is also in contact with a non-aqueous electrolyte.
The laminated battery covered with the above-described film-shaped packaging material was aged at 25 ° C. for 3 days to dope lithium from the metal lithium to the negative electrode.

(電池の充放電試験)
作製した積層電池は定電流充放電試験法により、電流値を6.0mAとして20℃における初期充放電容量を測定した後、電流値を50mAとして45℃における500サイクル後の放電容量及び容量維持率を測定した。なお、充電時の終止電圧は4.2V、放電時の終止電圧は3.0Vとし、表1に示す。
(Battery charge / discharge test)
The manufactured laminated battery was measured for the initial charge / discharge capacity at 20 ° C. at a current value of 6.0 mA by a constant current charge / discharge test method, and then the discharge capacity and capacity retention rate after 500 cycles at 45 ° C. at a current value of 50 mA. Was measured. In addition, the final voltage at the time of charge is 4.2V, the final voltage at the time of discharge is 3.0V, and is shown in Table 1.

表1において、初期放電容量(mAh/g)、充放電効率(%)、500サイクル後の容量維持率及び電池容量(mAh/g)を示した。また、金属リチウム量の負極電極の不可逆容量に対する比率は補填倍率と表記した。容量維持率(%)はサイクル後の放電容量を初回放電容量で除したものに100を掛けて算出しものである。
更に、図1には、結着剤としてポリイミドとポリフッ化ビニリデンを用いた場合のそれぞれの補填率に対する、初期放電容量の変化を表した。
また、図2には、結着剤としてポリイミドとポリフッ化ビニリデンを用いた場合の補填率に対する500サイクル後の容量の変化を表した。
In Table 1, initial discharge capacity (mAh / g), charge / discharge efficiency (%), capacity retention after 500 cycles, and battery capacity (mAh / g) are shown. Further, the ratio of the amount of metallic lithium to the irreversible capacity of the negative electrode was expressed as a compensation magnification. The capacity retention ratio (%) is calculated by multiplying the discharge capacity after the cycle by the initial discharge capacity and multiplying by 100.
Further, FIG. 1 shows changes in the initial discharge capacity with respect to the respective filling rates when polyimide and polyvinylidene fluoride are used as the binder.
FIG. 2 shows the change in capacity after 500 cycles with respect to the filling rate when polyimide and polyvinylidene fluoride are used as the binder.

実施例2−4
実施例1における電池内部に装着した金属リチウムの容量の不可逆容量に対する比率および質量に代えて、比率および質量をそれぞれ、実施例2:比率0.9/質量0.00410g、実施例3:比率0.8/質量0.00365g、および実施例4:比率0.6/質量0.00274gとした点以外は実施例1と同様の方法に試験電池を作製し、実施例1と同様にして評価をし、その結果表1に示す。
Example 2-4
Instead of the ratio and mass of the capacity of metallic lithium mounted inside the battery in Example 1 to the irreversible capacity, the ratio and mass were Example 2: Ratio 0.9 / mass 0.00410 g, Example 3: Ratio 0, respectively. .8 / mass 0.00365 g, and Example 4: A test battery was produced in the same manner as in Example 1 except that the ratio was 0.6 / mass 0.00274 g, and evaluation was conducted in the same manner as in Example 1. The results are shown in Table 1.

比較例1−4
実施例1における電池内部に装着した金属リチウムの容量の不可逆容量に対する比率および質量に代えて、比率および質量をそれぞれ、比較例1:比率0.4/質量0.00182g、比較例2:比率0.2/質量0.00091g、比較例3:内部に金属リチウムを装着しないもの、および比較例4:比率1.1/質量0.00502gのものを作製した以外の点は実施例1と同様に比較試験電池を作製し、実施例1と同様にして評価をし、その結果表1に示す。
Comparative Example 1-4
Instead of the ratio and mass of the capacity of metallic lithium attached to the inside of the battery in Example 1 to the irreversible capacity, the ratio and mass were respectively Comparative Example 1: Ratio 0.4 / mass 0.00182 g, Comparative Example 2: Ratio 0 .2 / mass 0.00091 g, Comparative Example 3: Same as Example 1 except that no metallic lithium was mounted inside, and Comparative Example 4: a ratio 1.1 / mass 0.00502 g was produced. Comparative test batteries were prepared and evaluated in the same manner as in Example 1, and the results are shown in Table 1.

比較例5−9
負極電極の結着剤としてポリフッ化ビニリデンを用いて、負極電極のプレス後の熱処理を行わず作製した負極電極の不可逆容量を、黒鉛の不可逆容量35mAh/gによるものとして、1グラム当たりの不可逆容量を以下の式によって求めた。
35×0.008×25= 0.000448mAh
次いで、電池内部に装着する金属リチウム量の負極電極の不可逆容量に対する比率、および質量を比較例5:比率1.0/質量0.00160g、比較例6:比率0.8/質量0.00128g、比較例7:比率0.6/質量0.00096g、比較例8:比率0.4/質量0.00064g、および比較例9:金属リチウムを装着しないものとした点を除き実施例1と同様の方法にてフィルム外装材で封口した電池を作製して特性評価を行い、その結果を表1に示す。
Comparative Example 5-9
The irreversible capacity of the negative electrode produced by using polyvinylidene fluoride as a binder for the negative electrode without performing the heat treatment after pressing the negative electrode is based on the irreversible capacity of 35 mAh / g of graphite. Was determined by the following equation.
35 x 0.008 x 25 = 0.000448 mAh
Next, the ratio of the amount of metallic lithium attached to the inside of the battery to the irreversible capacity of the negative electrode, and the mass were Comparative Example 5: Ratio 1.0 / mass 0.00160 g, Comparative Example 6: Ratio 0.8 / mass 0.00128 g, Comparative Example 7: Ratio 0.6 / mass 0.00096 g, Comparative Example 8: Ratio 0.4 / mass 0.00064 g, and Comparative Example 9: Same as Example 1 except that metal lithium was not attached. A battery sealed with a film sheathing material was produced by the method, and the characteristics were evaluated. The results are shown in Table 1.

Figure 2009170384
Figure 2009170384

本発明のリチウム二次電池は、結着剤としてポリイミドを用いた電池において、負極電極の不可逆容量を、リチウム金属などのリチウム源を配置することによって補填することに、初期容量及びサイクル後容量いずれも優れている電池を提供することができる。   In the lithium secondary battery of the present invention, in a battery using polyimide as a binder, the irreversible capacity of the negative electrode is compensated by arranging a lithium source such as lithium metal, and both initial capacity and post-cycle capacity It is possible to provide an excellent battery.

図1は、結着剤としてポリイミドとポリフッ化ビニリデンを用いた場合のそれぞれの補填率に対する、初期放電容量の変化を説明する図である。FIG. 1 is a diagram for explaining changes in the initial discharge capacity with respect to the respective filling rates when polyimide and polyvinylidene fluoride are used as binders. 図2は、結着剤としてポリイミドとポリフッ化ビニリデンを用いた場合の補填率に対する500サイクル後の容量の変化を説明する図である。FIG. 2 is a diagram for explaining the change in capacity after 500 cycles with respect to the filling rate when polyimide and polyvinylidene fluoride are used as binders.

Claims (4)

初回充電時に正極活物質からリチウムを吸蔵する負極活物質粒子をポリイミドで結着した負極電極を有し、負極電極または負極集電体には、初期充電前に負極電極に対してリチウムを供給するリチウム源が電気的に接触して配置されていることを特徴とするリチウム二次電池。   It has a negative electrode in which negative electrode active material particles that occlude lithium from the positive electrode active material during the first charge are bound with polyimide, and lithium is supplied to the negative electrode or the negative electrode current collector before the initial charge. A lithium secondary battery, wherein a lithium source is disposed in electrical contact. 負極活物質が黒鉛であることを特徴とする請求項1記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the negative electrode active material is graphite. 前記リチウム源の量は、前記負極電極に対して初期充電される電気量の0.6〜1.0倍に相当するであることを特徴とする請求項1または2記載のリチウム二次電池。   3. The lithium secondary battery according to claim 1, wherein the amount of the lithium source corresponds to 0.6 to 1.0 times the amount of electricity initially charged to the negative electrode. 前記リチウム源は、リチウム金属からなることを特徴とする請求項1から3のいずれか1項記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the lithium source is made of lithium metal.
JP2008010313A 2008-01-21 2008-01-21 Lithium secondary battery Active JP5207282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010313A JP5207282B2 (en) 2008-01-21 2008-01-21 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010313A JP5207282B2 (en) 2008-01-21 2008-01-21 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2009170384A true JP2009170384A (en) 2009-07-30
JP5207282B2 JP5207282B2 (en) 2013-06-12

Family

ID=40971311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010313A Active JP5207282B2 (en) 2008-01-21 2008-01-21 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5207282B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061825A1 (en) * 2009-11-18 2011-05-26 トヨタ自動車株式会社 Lithium secondary battery and process for producing same
JP2013089337A (en) * 2011-10-14 2013-05-13 Toyota Industries Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2013191552A (en) * 2012-02-17 2013-09-26 Semiconductor Energy Lab Co Ltd Method for forming negative electrode and method for manufacturing lithium secondary battery
JP2015179565A (en) * 2013-03-26 2015-10-08 株式会社東芝 Electrode for nonaqueous electrolyte batteries, nonaqueous electrolyte secondary battery and battery pack
KR20180090787A (en) 2015-12-09 2018-08-13 도레이 카부시키가이샤 Resin, slurry, laminate using them, and manufacturing method thereof
CN114373883A (en) * 2020-10-15 2022-04-19 通用汽车环球科技运作有限责任公司 Self-lithiated battery cell and prelithiation method thereof

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144473A (en) * 1991-11-25 1993-06-11 Matsushita Electric Ind Co Ltd Secondary battery with nonaqueous electrolyte
JPH05144472A (en) * 1991-11-25 1993-06-11 Matsushita Electric Ind Co Ltd Secondary battery with nonaqueous electrolyte
JPH08102333A (en) * 1994-09-30 1996-04-16 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolytic secondary battery
JPH0945328A (en) * 1995-07-31 1997-02-14 Sanyo Electric Co Ltd Lithium secondary battery
JPH10188992A (en) * 1996-12-24 1998-07-21 Sony Corp Non-aqueous electrolyte battery
JPH10208782A (en) * 1997-01-29 1998-08-07 Sanyo Electric Co Ltd Light storage battery
JPH10270090A (en) * 1997-03-26 1998-10-09 Toyota Central Res & Dev Lab Inc Manufacture of secondary lithium battery
JPH11509959A (en) * 1995-07-31 1999-08-31 ヴアルタ バツテリー アクチエンゲゼルシヤフト Lithium ion battery
JP2000100475A (en) * 1998-09-21 2000-04-07 Wilson Greatbatch Ltd Lithium ion secondary electrochemical battery
JP2000164210A (en) * 1998-11-24 2000-06-16 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2001338679A (en) * 2000-05-26 2001-12-07 Asahi Glass Co Ltd Secondary electric power source
JP2001338680A (en) * 2000-05-26 2001-12-07 Asahi Glass Co Ltd Secondary electric power source
JP2001345103A (en) * 2000-03-29 2001-12-14 Toyo Tanso Kk Negative electrode material for secondary battery, lithium ion secondary battery using it, and manufacturing method of negative electrode material for secondary battery
JP3311402B2 (en) * 1992-11-19 2002-08-05 三洋電機株式会社 Rechargeable battery
JP2004247233A (en) * 2003-02-17 2004-09-02 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005209591A (en) * 2004-01-26 2005-08-04 Sanyo Electric Co Ltd Negative electrode and non-aqueous type electrolyte secondary battery
JP2005294028A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Lithium secondary battery
JP2006324258A (en) * 1996-06-14 2006-11-30 Hitachi Maxell Ltd Lithium secondary battery and its manufacturing method

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144472A (en) * 1991-11-25 1993-06-11 Matsushita Electric Ind Co Ltd Secondary battery with nonaqueous electrolyte
JPH05144473A (en) * 1991-11-25 1993-06-11 Matsushita Electric Ind Co Ltd Secondary battery with nonaqueous electrolyte
JP3311402B2 (en) * 1992-11-19 2002-08-05 三洋電機株式会社 Rechargeable battery
JPH08102333A (en) * 1994-09-30 1996-04-16 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolytic secondary battery
JPH0945328A (en) * 1995-07-31 1997-02-14 Sanyo Electric Co Ltd Lithium secondary battery
JPH11509959A (en) * 1995-07-31 1999-08-31 ヴアルタ バツテリー アクチエンゲゼルシヤフト Lithium ion battery
JP2006324258A (en) * 1996-06-14 2006-11-30 Hitachi Maxell Ltd Lithium secondary battery and its manufacturing method
JPH10188992A (en) * 1996-12-24 1998-07-21 Sony Corp Non-aqueous electrolyte battery
JPH10208782A (en) * 1997-01-29 1998-08-07 Sanyo Electric Co Ltd Light storage battery
JPH10270090A (en) * 1997-03-26 1998-10-09 Toyota Central Res & Dev Lab Inc Manufacture of secondary lithium battery
JP2000100475A (en) * 1998-09-21 2000-04-07 Wilson Greatbatch Ltd Lithium ion secondary electrochemical battery
JP2000164210A (en) * 1998-11-24 2000-06-16 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2001345103A (en) * 2000-03-29 2001-12-14 Toyo Tanso Kk Negative electrode material for secondary battery, lithium ion secondary battery using it, and manufacturing method of negative electrode material for secondary battery
JP2001338680A (en) * 2000-05-26 2001-12-07 Asahi Glass Co Ltd Secondary electric power source
JP2001338679A (en) * 2000-05-26 2001-12-07 Asahi Glass Co Ltd Secondary electric power source
JP2004247233A (en) * 2003-02-17 2004-09-02 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005209591A (en) * 2004-01-26 2005-08-04 Sanyo Electric Co Ltd Negative electrode and non-aqueous type electrolyte secondary battery
JP2005294028A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Lithium secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061825A1 (en) * 2009-11-18 2011-05-26 トヨタ自動車株式会社 Lithium secondary battery and process for producing same
CN102612774A (en) * 2009-11-18 2012-07-25 丰田自动车株式会社 Lithium secondary battery and process for producing same
US8722244B2 (en) 2009-11-18 2014-05-13 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and method of manufacturing same
US9276256B2 (en) 2009-11-18 2016-03-01 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and method of manufacturing same
JP2013089337A (en) * 2011-10-14 2013-05-13 Toyota Industries Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2013191552A (en) * 2012-02-17 2013-09-26 Semiconductor Energy Lab Co Ltd Method for forming negative electrode and method for manufacturing lithium secondary battery
US9680272B2 (en) 2012-02-17 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Method for forming negative electrode and method for manufacturing lithium secondary battery
JP2015179565A (en) * 2013-03-26 2015-10-08 株式会社東芝 Electrode for nonaqueous electrolyte batteries, nonaqueous electrolyte secondary battery and battery pack
US9876220B2 (en) 2013-03-26 2018-01-23 Kabushiki Kaisha Toshiba Electrode for non-aqueous electrolytic battery, non-aqueous electrolytic secondary battery, and battery pack
KR20180090787A (en) 2015-12-09 2018-08-13 도레이 카부시키가이샤 Resin, slurry, laminate using them, and manufacturing method thereof
CN114373883A (en) * 2020-10-15 2022-04-19 通用汽车环球科技运作有限责任公司 Self-lithiated battery cell and prelithiation method thereof

Also Published As

Publication number Publication date
JP5207282B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5574404B2 (en) Lithium ion secondary battery
JP6288186B2 (en) Lithium ion secondary battery
JP5150966B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JP5899442B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5582587B2 (en) Lithium ion secondary battery
JP7028164B2 (en) Lithium ion secondary battery
JP6137088B2 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
KR101333376B1 (en) Lithium ion secondary battery
WO2012015033A1 (en) Lithium ion secondary battery and process for production thereof
JP2010165471A (en) Lithium secondary battery
JP2010135111A (en) Lithium-ion secondary battery
JP2007317534A (en) Non-aqueous electrolyte secondary battery
JP6995738B2 (en) Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP5813336B2 (en) Nonaqueous electrolyte secondary battery
JP6607188B2 (en) Positive electrode and secondary battery using the same
CN108370026B (en) Non-aqueous electrolyte secondary battery
JP5207282B2 (en) Lithium secondary battery
JP6414058B2 (en) Electrode binder composition and electrode
JP2010097751A (en) Nonaqueous secondary battery
JP7358363B2 (en) Method for manufacturing coated positive electrode active material and lithium ion secondary battery
JP5213011B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP7432608B2 (en) Positive electrode piece, electrochemical device and electronic device including the positive electrode piece
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP5564872B2 (en) Nonaqueous electrolyte secondary battery
JP5326923B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250