WO2015079546A1 - Positive electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Positive electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
WO2015079546A1
WO2015079546A1 PCT/JP2013/082119 JP2013082119W WO2015079546A1 WO 2015079546 A1 WO2015079546 A1 WO 2015079546A1 JP 2013082119 W JP2013082119 W JP 2013082119W WO 2015079546 A1 WO2015079546 A1 WO 2015079546A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium ion
ion secondary
Prior art date
Application number
PCT/JP2013/082119
Other languages
French (fr)
Japanese (ja)
Inventor
小西 宏明
小林 満
豊隆 湯浅
所 久人
秀一 高野
崇 中林
章 軍司
達哉 遠山
孝亮 馮
翔 古月
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/082119 priority Critical patent/WO2015079546A1/en
Publication of WO2015079546A1 publication Critical patent/WO2015079546A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery including the same.
  • the problem with electric vehicles is that the energy density of the driving battery is low and the travel distance for one charge is short. Therefore, there is a demand for an inexpensive secondary battery with high energy density.
  • Lithium ion secondary batteries have a higher energy density per weight than secondary batteries such as nickel hydrogen batteries and lead batteries. Therefore, the application to an electric vehicle and a power storage system is expected. However, in order to meet the demand for electric vehicles, it is necessary to further increase the energy density. In order to realize high energy density, it is necessary to increase the energy density of the positive electrode and the negative electrode.
  • the molar ratio Li / Me (a / (x + y + z)) of Li to the total transition metal element Me is 1.25 to 1.40, and the molar ratio Co / Me (x / (x + y + z)) is 0.020 to 0
  • a positive electrode active material is described which is characterized by having a molar ratio of Mn / Me (z / (x + y + z)) of 0.625 to 0.719.
  • Patent Document 2 describes a composition formula Li a Mn b M c O z (M is more than Ni, Co, Al and F) in order to provide a battery having high capacity, high temperature storage performance, and excellent cycle performance.
  • Lithium manganese-containing oxide represented by one or more elements selected from the group consisting of 0 ⁇ a ⁇ 2.5, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, 2 ⁇ z ⁇ 3), and an olivine structure
  • a positive electrode containing an Fe-containing phosphorus compound is a composition formula Li a Mn b M c O z (M is more than Ni, Co, Al and F) in order to provide a battery having high capacity, high temperature storage performance, and excellent cycle performance.
  • Lithium manganese-containing oxide represented by one or more elements selected from the group consisting of 0 ⁇ a ⁇ 2.5, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, 2 ⁇ z ⁇ 3
  • JP 2012-151084 A JP, 2012-033507, A
  • the positive electrode active material of the composition shown by patent document 1 can obtain high energy density, since resistance is high, the subject that a high output is not obtained occurs. In particular, at low SOC (State of Charge) where the potential is low and the resistance increases, further improvement of the output is desired.
  • An object of the present invention is to provide a lithium ion secondary battery having a high energy density and a high output.
  • the positive electrode for a lithium ion secondary battery according to the present invention is a positive electrode including a positive electrode mixture layer containing a positive electrode material and a current collector having a positive electrode mixture layer formed on the surface, and the positive electrode material is Li And a lithium transition metal oxide containing a metal element, containing at least Ni and Mn as the metal element, and the atomic ratio of Li to the metal element is 1.15 ⁇ Li / metal element ⁇ 1.5
  • a first positive electrode active material having an atomic ratio of Ni to Mn of 0.334 ⁇ Ni / Mn ⁇ 1.0, and a composition formula LiFe 1-y M ′ y PO 4 (0 ⁇ y ⁇ 0.2, M 'Includes a second positive electrode active material represented by at least one element of Mn, Co, Ni, V, Mg, Mo, W, Al, Nb, Ti, and Cu), and is in contact with the current collector In the region of the positive electrode mixture layer, the ratio of the second positive electrode active material is higher than that of the first
  • ⁇ Positive material> When using a lithium ion secondary battery for an electric vehicle, it is expected that the traveling distance per charge is long. In order to increase the travel distance per charge, the battery is required to have a high energy density and to be able to use the battery in a wider range of SOC.
  • a layered solid solution represented by Li 2 MO 3 -LiM′O 2 is expected as a high energy density positive electrode active material.
  • the layered solid solution can be expected to increase the energy density of the positive electrode because a high capacity can be obtained.
  • the layered solid solution can also be represented by the composition formula Li 1 + x M 1-x O 2 .
  • the layered solid solution is a lithium transition metal oxide having a rock salt type layered structure, and is a material containing an excess of Li relative to the transition metal and having a composition ratio of 50% or more of Mn in the transition metal. Indicates
  • a lithium ion secondary battery using a layered solid solution as a positive electrode active material can be expected to have a high energy density but has high resistance at the end of discharge. There is a problem that a sufficient output can not be obtained because the potential is also low at the end of discharge.
  • Figure 1 shows the relationship between SOC and output of layered solid solution. In FIG. 1, the vertical axis is the power density, and the horizontal axis is the SOC. It can be seen that the output is low in the low SOC region. In a car-mounted lithium ion secondary battery requiring high output, a low output region can not be used, so the range of usable SOC is narrowed, and as a result, the battery capacity is reduced. Therefore, in order to improve the output, it is necessary to reduce the resistance at the end of discharge and to improve the potential.
  • reaction in which a transition metal participates in redox occurs in the early stage of charging, and a redox reaction in which oxygen participates in the late stage of charging.
  • a reaction involving the transition metal occurs at the beginning of the discharge, and at the end of the discharge, a redox reaction involving the oxygen occurs.
  • Reactions involving transition metals are at high potential while reactions involving oxygen are at low potential and high resistance.
  • FIG. 2 shows discharge curves of LiNi 0.35 Mn 0.45 O 2 + ⁇ and Li 1.2 Ni 0.2 Mn 0.6 O 2 + ⁇ .
  • the discharge curve of LiNi 0.35 Mn 0.45 O 2 + ⁇ is indicated by a solid line
  • the discharge curve of Li 1.2 Ni 0.2 Mn 0.6 O 2 + ⁇ is indicated by a dotted line.
  • both capacities are equal, but Li 1 Ni 0.35 Mn 0.45 O 2 + ⁇ has a higher potential than Li 1.2 Ni 0.2 Mn 0.6 O 2 + ⁇
  • the capacity becomes high at a high potential.
  • the resistance can be reduced by mixing an active material that reacts at 2.5 to 3.5 V, which is the potential at the end of discharge of LiNi 0.35 Mn 0.45 O 2 + ⁇ .
  • the Fe-containing phosphorus compound having an olivine structure represented by LiFePO 4 has a reaction potential of about 3.5 V, and has good electron conductivity by coating carbon. Therefore, the resistance at the end of the discharge can be reduced by mixing the layered solid solution having a small atomic ratio of Li to the transition metal element and the Fe-containing phosphorus compound having an olivine structure. As a result, the output can be improved and the range of usable SOC can be expanded.
  • the positive electrode material for a lithium ion secondary battery according to the present invention includes a first positive electrode active material and a second positive electrode active material.
  • the first positive electrode active material is made of a lithium transition metal oxide containing Li and a metal element, the metal element contains at least Ni and Mn, and the atomic ratio of Li, Ni, and Mn is It is characterized in that 1.15 ⁇ Li / metal element ⁇ 1.5 and 0.334 ⁇ Ni / Mn ⁇ 1 are satisfied.
  • the second positive electrode active material has a composition formula LiFe 1-y M ′ y PO 4 (0 ⁇ y ⁇ 0.2, where M ′ is Mn, Co, Ni, V, Mg, Mo, W, Al, Nb, And at least one element of Ti and Cu).
  • the first positive electrode active material when Li / (Ni + Mn) is less than 1.15, the amount of Li contributing to the reaction is reduced, and a high capacity can not be obtained. On the other hand, when it is larger than 1.5, the crystal lattice becomes unstable and the discharge capacity is reduced. When Ni / Mn is lower than 0.334, the discharge potential decreases, and a large difference occurs between the reaction end potential and the reaction potential of the second positive electrode active material, and the second positive electrode active material improves the resistance at the discharge end Can not. When Ni / Mn is larger than 1, almost no charge / discharge reaction involving oxygen occurs, and the capacity decreases.
  • the metal element may further contain an additive element M.
  • the atomic ratio of Ni and Mn to the metal element is preferably 0.975 ⁇ (Ni + Mn) / metal element ⁇ 1.0.
  • the additive element M is an additive or an impurity added within a range not affecting the present invention, and at least one element selected from Co, V, Mo, W, Zr, Nb, Ti, Cu, Al, Fe It is.
  • y represents the content ratio (the mass ratio of substance) of M ′.
  • M ′ is an element to be added appropriately, and the addition amount thereof needs to be suppressed to the range of 0 ⁇ y ⁇ 0.2 so that the effect of the present invention is not suppressed.
  • the second positive electrode active material is preferably coated with a carbon material.
  • the content of the second positive electrode active material in the positive electrode material is preferably 2% by mass or more and 15% by mass or less. If the content of the second positive electrode active material exceeds 15% by mass, the proportion of the first positive electrode active material having a high energy density is reduced, and a high energy density can not be obtained.
  • the content of the second positive electrode active material is preferably 10% by mass or less.
  • the positive electrode material according to the present invention can be produced by a method generally used in the technical field to which the present invention belongs.
  • the first positive electrode active material can be produced, for example, by mixing and firing compounds containing Li, Ni, and Mn in appropriate proportions.
  • the composition of the positive electrode material can be appropriately adjusted by changing the ratio of the compounds to be mixed.
  • the compound containing Li include lithium acetate, lithium nitrate, lithium carbonate, lithium hydroxide, lithium oxide and the like.
  • the compound containing Ni include nickel acetate, nickel nitrate, nickel carbonate, nickel sulfate, nickel hydroxide and the like.
  • Mn manganese acetate, manganese nitrate, manganese carbonate, manganese sulfate, manganese oxide etc. can be mentioned, for example.
  • the second positive electrode active material is prepared by mixing compounds containing Li, Fe, and P in appropriate proportions, and then mixing with a carbon source such as polyvinyl alcohol to ensure conductivity, and firing. can do.
  • Examples of the compound containing Li include lithium acetate, lithium nitrate, lithium carbonate, lithium hydroxide, lithium oxide and the like.
  • Examples of the compound containing Fe include iron oxalate, iron nitrate, iron sulfide and iron chloride.
  • Examples of the compound containing P include ammonium dihydrogen phosphate, phosphoric acid and the like.
  • composition of the positive electrode material can be determined, for example, by elemental analysis using inductively coupled plasma (ICP) or the like.
  • ICP inductively coupled plasma
  • the positive electrode for a lithium ion secondary battery according to the present invention comprises a positive electrode mixture layer containing the above-described positive electrode material and a current collector, and a positive electrode mixture layer is formed on the surface of the current collector.
  • the ratio of the second positive electrode active material in the positive electrode mixture layer in the region in contact with the current collector is higher than that of the first positive electrode active material, and the surface of the positive electrode mixture layer opposite to the surface in contact with the current collector is And a ratio of the first positive electrode active material is higher than that of the second positive electrode active material.
  • the output can react for about a few seconds. Therefore, it is preferable to dispose a second positive electrode active material having high electron conductivity in the vicinity of the current collector.
  • the second positive electrode active material By arranging the second positive electrode active material closer to the current collector than the first positive electrode active material, the second positive electrode active material can be brought into contact with the current collector, and the second positive electrode active material has high electron conductivity. Can contribute to the flow of electrons.
  • the first positive electrode active material is disposed closer to the current collector than the second positive electrode active material, the second positive electrode active material can not be in direct contact with the current collector, and the first positive electrode has high resistance. Since the contact is made via the active material, the performance of the second positive electrode active material can not be sufficiently exhibited.
  • FIG. 3 is a view schematically showing the arrangement of the current collector, the first positive electrode active material, and the second positive electrode active material in the positive electrode.
  • 1 is a current collector
  • 2 is a mixture layer containing a second positive electrode active material
  • 3 is a mixture layer containing a first positive electrode active material.
  • the second positive electrode active material is collected by applying a slurry containing the second positive electrode active material to the current collector and applying a slurry containing the first positive electrode active material thereon. A large amount of the first positive electrode active material can be distributed on the side opposite to the current collector.
  • the proportion of the second positive electrode active material is higher in the vicinity of the current collector than the first positive electrode active material, The proportion of the first positive electrode active material may be higher on the side than the second positive electrode active material.
  • a lithium ion secondary battery according to the present invention includes the above-described positive electrode. By using the above positive electrode, it is possible to provide a lithium ion secondary battery having a high energy density and a high output. Furthermore, since the resistance at the end of discharge can be reduced, the range of usable SOC is expanded. Therefore, the lithium ion secondary battery according to the present invention can be preferably used for an electric vehicle.
  • the positive electrode active material occludes and releases lithium ions by charge and discharge. Since not all lithium ions released from the positive electrode active material return to the positive electrode, the composition of the positive electrode active material after charge and discharge is expected to be different from that before charge and discharge.
  • the positive electrode active material of a layered oxide represented by Li 0.8 M 0.8 O 1.6 has a composition ratio of Li in a full discharge state (2.5 V) when used in a potential range of 2.5 to 4.3 V Is known to be about 0.75.
  • the amount of Li after charge and discharge of the layered solid solution is also estimated to be reduced by about 15 to 30% in the fully discharged state as compared to that before the charge and discharge.
  • the lithium ion secondary battery is composed of a positive electrode containing a positive electrode material, a negative electrode containing a negative electrode material, a separator, an electrolytic solution, an electrolyte and the like.
  • the negative electrode material is not particularly limited as long as it is a substance capable of inserting and extracting lithium ions.
  • Materials generally used in lithium ion secondary batteries can be used as the negative electrode material.
  • graphite, lithium alloy and the like can be exemplified.
  • a separator those generally used in lithium ion secondary batteries can be used.
  • a microporous film or non-woven fabric made of polyolefin such as polypropylene, polyethylene, and a copolymer of propylene and ethylene can be exemplified.
  • the electrolytic solution and the electrolyte those generally used in lithium ion secondary batteries can be used.
  • the electrolytic solution diethyl carbonate, dimethyl carbonate, ethylene carbonate, propylene carbonate, vinylene carbonate, methyl acetate, ethyl methyl carbonate, methyl propyl carbonate, dimethoxyethane and the like can be exemplified.
  • the electrolyte LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) can be exemplified 3 or the like.
  • the lithium ion secondary battery 4 includes an electrode group including a positive electrode 5 having a positive electrode material coated on both sides of a current collector, a negative electrode 6 having a negative electrode material coated on both sides of the current collector, and a separator 7.
  • the positive electrode 5 and the negative electrode 6 are wound via the separator 7 to form a wound electrode group.
  • the wound body is inserted into the battery can 8.
  • the negative electrode 6 is electrically connected to the battery can 8 via the negative electrode lead piece 10.
  • a sealing lid 11 is attached to the battery can 8 via a packing 12.
  • the positive electrode 5 is electrically connected to the sealing lid 11 through the positive electrode lead piece 9.
  • the wound body is insulated by the insulating plate 13.
  • the electrode group may not be a wound body shown in FIG. 4, and may be a laminate in which the positive electrode 5 and the negative electrode 6 are stacked via the separator 7.
  • the first positive electrode active material was produced by the following method. Lithium carbonate, nickel carbonate and manganese carbonate were mixed in a ball mill to obtain a precursor. The obtained precursor was calcined at 500 ° C. for 12 hours in the air to obtain a lithium transition metal oxide. The obtained lithium transition metal oxide was pelletized and then fired at 850 to 1050 ° C. for 12 hours in the air. The fired pellet was ground in an agate mortar and classified with a 45 ⁇ m sieve to obtain a first positive electrode active material represented by the composition formula Li x Ni a Mn b O 2 + ⁇ .
  • the second positive electrode active material was produced by the following method. Lithium carbonate, iron oxalate, and ammonium dihydrogen phosphate were mixed in a ball mill to obtain a precursor. The obtained precursor was calcined at 300 ° C. for 8 hours in argon. Then, after mixing the material after temporary baking with a polyvinyl alcohol by a ball mill, the main baking was performed at 700 ° C. for 8 hours in argon. By this firing, a material in which the positive electrode active material represented by the composition formula LiFePO 4 was covered with the carbon material was obtained. This was used as a second positive electrode active material.
  • Example 1 to 10 and Comparative Examples 2 to 4 and 6 first, the second positive electrode active material, the conductive agent, and the binder were uniformly mixed to prepare a slurry containing the second positive electrode active material.
  • the slurry containing the second positive electrode active material was applied onto a 20 ⁇ m thick aluminum current collector foil and dried at 120 ° C.
  • the first positive electrode active material, the conductive agent, and the binder were uniformly mixed to prepare a slurry containing the first positive electrode active material.
  • the slurry containing the first positive electrode active material was applied over the second positive electrode active material and dried at 120 ° C. After drying, compression molding was performed with a press so that the electrode density was 2.2 g / cm 3 , to obtain an electrode plate. Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm to produce a positive electrode.
  • the first positive electrode active material, the conductive agent, and the binder were uniformly mixed to prepare a positive electrode slurry containing the first positive electrode active material.
  • the positive electrode slurry was applied onto a 20 ⁇ m thick aluminum current collector foil and dried at 120 ° C. After drying, compression molding was performed with a press so that the electrode density was 2.2 g / cm 3 , to obtain an electrode plate. Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm to produce a positive electrode.
  • the first positive electrode active material, the conductive agent, and the binder were uniformly mixed to prepare a slurry containing the first positive electrode active material.
  • the slurry containing the first positive electrode active material was applied onto a 20 ⁇ m thick aluminum current collector foil and dried at 120 ° C.
  • the second positive electrode active material, the conductive agent, and the binder were uniformly mixed to prepare a slurry containing the second positive electrode active material.
  • the slurry containing the second positive electrode active material was applied over the first positive electrode active material and dried at 120 ° C. After drying, compression molding was performed with a press so that the electrode density was 2.2 g / cm 3 , to obtain an electrode plate. Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm to produce a positive electrode.
  • composition of the first positive electrode active material and the content of the second positive electrode active material used in the positive electrode of each of Examples 1 to 10 and Comparative Examples 1 to 7 are shown in Table 1.
  • the negative electrode was produced using metallic lithium.
  • a non-aqueous electrolytic solution one in which LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 2 was used.
  • FIG. 5 shows discharge curves of Example 5 and Comparative Example 1 at 4.6 to 3.3V.
  • the discharge curve of Example 5 is indicated by a solid line
  • the discharge curve of Comparative Example 1 is indicated by a dotted line.
  • Example 5 has a higher capacity than Comparative Example 1.
  • Example 5 has a higher potential than the Comparative Example 1 when the discharge capacity is the same.
  • Examples 1 to 4 and 6 to 10 the same discharge curves as in Example 5 were obtained. Accordingly, it was found that in Examples 1 to 10, high discharge capacity was obtained in the region where the potential was high.
  • Comparative Example 1 has a smaller discharge capacity and higher DC resistance than the example.
  • the composition of the first positive electrode active material does not satisfy the relationship of 1.15 ⁇ Li / (Ni + Mn) ⁇ 1.5 and 0.334 ⁇ Ni / Mn ⁇ 1, 3.3 V
  • the above discharge capacity is small, and the DC resistance is high because the second positive electrode active material is not included.
  • Comparative Examples 2 to 6 it was not possible to simultaneously achieve high capacity and low resistance.
  • the positive electrode containing the first positive electrode active material and the Fe-containing phosphorus compound having an olivine structure is mixed.
  • the first positive electrode active material already has a high resistance at the end of discharge.
  • the reaction of the Fe-containing phosphorus compound having an olivine structure, which is the second positive electrode active material is completed. Therefore, since the first positive electrode active material having high resistance reacts at the end of discharge, the resistance at the end of discharge can not be improved. Therefore, in Comparative Example 2, the resistance of the second positive electrode active material was not completed before reaching the SOC of 20% in the discharge process, so that the resistance could not be reduced.
  • the first positive electrode in which the atomic weight ratio of Li, Ni, and Mn satisfies the relationships 1.15 ⁇ Li / (Ni + Mn) ⁇ 1.5 and 0.334 ⁇ Ni / Mn ⁇ 1 is satisfied.
  • M ′ is at least any of Mn, Co, Ni, V, Mg, Mo, W, Al, Nb, Ti, and Cu
  • Higher discharge capacity because the second positive electrode active material is contained in the vicinity of the current collector and the second positive electrode active material is disposed in a larger amount than the first positive electrode active material. The resistance at the end of discharge is small. As a result, a lithium ion secondary battery with high energy density and high output can be provided.
  • the discharge capacity is particularly high. This is because the composition of the first positive electrode active material satisfies 0.334 ⁇ Ni / Mn ⁇ 0.8 and the content of the second positive electrode active material is 10% by mass or less.

Abstract

The present invention pertains to a positive electrode for a lithium ion secondary battery and to a lithium ion secondary battery containing the same, the present invention addressing the problem of providing a lithium ion secondary battery having high energy density and high output. The above-mentioned problem can be resolved in a positive electrode for a lithium ion secondary battery provided with a positive electrode binder layer containing a positive electrode material and a current collector having the positive electrode binder layer formed on the surface thereof by adopting a configuration in which the positive electrode material contains a first positive electrode active material made of a specific laminar solid solution and a specific second positive electrode active material that reacts at the potential at the end period of electric discharging of the layer solid solution, the positive electrode binder layer in a region in contact with the current collector having a greater proportion of the second positive electrode active material than the first positive electrode active material, and the surface of the positive electrode binder layer opposite to the surface in contact with the current collector having a greater proportion of the first positive electrode active material than the second positive electrode active material.

Description

リチウムイオン二次電池用正極およびリチウムイオン二次電池Positive electrode for lithium ion secondary battery and lithium ion secondary battery
 本発明は、リチウムイオン二次電池用の正極、及びそれを含むリチウムイオン二次電池に関する。 The present invention relates to a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery including the same.
 電気自動車の課題は、駆動用電池のエネルギー密度が低く、一充電での走行距離が短いことである。そこで、安価で高エネルギー密度をもつ二次電池が求められている。 The problem with electric vehicles is that the energy density of the driving battery is low and the travel distance for one charge is short. Therefore, there is a demand for an inexpensive secondary battery with high energy density.
 リチウムイオン二次電池は、ニッケル水素電池や鉛電池等の二次電池に比べて重量当たりのエネルギー密度が高い。そのため、電気自動車や電力貯蔵システムへの応用が期待されている。しかし、電気自動車の要請に応えるためには、さらなる高エネルギー密度化が必要である。高エネルギー密度化を実現するためには、正極及び負極のエネルギー密度を高める必要がある。 Lithium ion secondary batteries have a higher energy density per weight than secondary batteries such as nickel hydrogen batteries and lead batteries. Therefore, the application to an electric vehicle and a power storage system is expected. However, in order to meet the demand for electric vehicles, it is necessary to further increase the energy density. In order to realize high energy density, it is necessary to increase the energy density of the positive electrode and the negative electrode.
 特許文献1には、放電容量が大きく、初期充放電効率が優れた非水電解質二次電池を得るために、一般式LiaCoxNiyMnz2(a+x+y+z=2)で構成され、その全遷移金属元素Meに対するLiのモル比Li/Me(a/(x+y+z))が1.25~1.40であり、モル比Co/Me(x/(x+y+z))が0.020~0.230であり、モル比Mn/Me(z/(x+y+z))が0.625~0.719であることを特徴とする正極活物質が記載されている。 Patent Document 1, the discharge capacity is large, in order to obtain the initial charge-discharge efficiency nonaqueous electrolyte secondary battery excellent, is constituted by a general formula Li a Co x Ni y Mn z O 2 (a + x + y + z = 2), The molar ratio Li / Me (a / (x + y + z)) of Li to the total transition metal element Me is 1.25 to 1.40, and the molar ratio Co / Me (x / (x + y + z)) is 0.020 to 0 A positive electrode active material is described which is characterized by having a molar ratio of Mn / Me (z / (x + y + z)) of 0.625 to 0.719.
 特許文献2には、高容量で、かつ高温での貯蔵性能、サイクル性能に優れた電池を提供するために、組成式LiaMnbcz(MはNi、Co、Al及びFよりなる群から選択される一種以上の元素、0≦a≦2.5、0<b≦1、0≦c≦1、2≦z≦3)で表されるリチウムマンガン含有酸化物と、オリビン構造を持つFe含有リン化合物とを含む正極を用いている。 Patent Document 2 describes a composition formula Li a Mn b M c O z (M is more than Ni, Co, Al and F) in order to provide a battery having high capacity, high temperature storage performance, and excellent cycle performance. Lithium manganese-containing oxide represented by one or more elements selected from the group consisting of 0 ≦ a ≦ 2.5, 0 <b ≦ 1, 0 ≦ c ≦ 1, 2 ≦ z ≦ 3), and an olivine structure And a positive electrode containing an Fe-containing phosphorus compound.
特開2012-151084号公報JP 2012-151084 A 特開2012-033507号公報JP, 2012-033507, A
 特許文献1に示されている組成の正極活物質は、高いエネルギー密度が得られるが、抵抗が高いため高い出力が得られないという課題がある。特に、電位が低く、抵抗が増大する低SOC(State of Charge)において、さらなる出力の向上が望まれる。 Although the positive electrode active material of the composition shown by patent document 1 can obtain high energy density, since resistance is high, the subject that a high output is not obtained occurs. In particular, at low SOC (State of Charge) where the potential is low and the resistance increases, further improvement of the output is desired.
 特許文献2に示されている正極材料についても、さらなる出力の向上のため放電末期の抵抗を改善することが望まれる。 Also for the positive electrode material shown in Patent Document 2, it is desirable to improve the resistance at the end of discharge for further improvement of the output.
 そこで、本発明は、エネルギー密度が高く、かつ出力の高いリチウムイオン二次電池を提供することを目的とする。 An object of the present invention is to provide a lithium ion secondary battery having a high energy density and a high output.
 本発明に係るリチウムイオン二次電池用正極は、正極材料を含む正極合剤層と、正極合剤層が表面に形成された集電体とを備える正極であって、正極材料は、Liと、金属元素と、を含むリチウム遷移金属酸化物よりなり、金属元素として少なくともNiと、Mnと、を含み、金属元素に対するLiの原子比が1.15<Li/金属元素<1.5であり、Mnに対するNiの原子比が0.334<Ni/Mn≦1.0である第一の正極活物質と、組成式LiFe1-yM´yPO4(0≦y≦0.2、M´はMn、Co、Ni、V、Mg、Mo、W、Al、Nb、Ti、Cuの少なくともいずれかの元素)で表される第二の正極活物質と、を含み、集電体と接する領域の正極合剤層は、第一の正極活物質よりも第二の正極活物質の割合が高く、集電体と接する面と反対側の正極合剤層の表面は、第二の正極活物質よりも第一の正極活物質の割合が高いことを特徴とする。 The positive electrode for a lithium ion secondary battery according to the present invention is a positive electrode including a positive electrode mixture layer containing a positive electrode material and a current collector having a positive electrode mixture layer formed on the surface, and the positive electrode material is Li And a lithium transition metal oxide containing a metal element, containing at least Ni and Mn as the metal element, and the atomic ratio of Li to the metal element is 1.15 <Li / metal element <1.5 A first positive electrode active material having an atomic ratio of Ni to Mn of 0.334 <Ni / Mn ≦ 1.0, and a composition formula LiFe 1-y M ′ y PO 4 (0 ≦ y ≦ 0.2, M 'Includes a second positive electrode active material represented by at least one element of Mn, Co, Ni, V, Mg, Mo, W, Al, Nb, Ti, and Cu), and is in contact with the current collector In the region of the positive electrode mixture layer, the ratio of the second positive electrode active material is higher than that of the first positive electrode active material. Surface of the surface in contact with the body opposite the positive electrode mixture layer is characterized by than the second cathode active material is the ratio of the first positive electrode active material higher.
 本発明によれば、エネルギー密度が高く、かつ出力の高いリチウムイオン二次電池を提供することができる。 According to the present invention, it is possible to provide a lithium ion secondary battery having a high energy density and a high output.
層状固溶体のSOCと出力の関係を示す図である。It is a figure which shows SOC of layered solid solution, and the relation of output. 層状固溶体の放電曲線を示すグラフである。It is a graph which shows the discharge curve of layered solid solution. 正極における集電体と第一の正極活物質及び第二の正極活物質の配置を模式的に示す図である。It is a figure which shows typically arrangement | positioning of the collector in a positive electrode, a 1st positive electrode active material, and a 2nd positive electrode active material. リチウムイオン二次電池の構造を模式的に示す断面図である。It is sectional drawing which shows the structure of a lithium ion secondary battery typically. 実施例5及び比較例1の充放電曲線を示すグラフである。It is a graph which shows the charging / discharging curve of Example 5 and Comparative Example 1.
 <正極材料>
 リチウムイオン二次電池を電気自動車に採用する場合、一充電当たりの走行距離が長いことが期待される。一充電当たりの走行距離を長くするために、電池には、エネルギー密度が高いこと、より広範囲のSOCで電池が使用できることが要求される。
<Positive material>
When using a lithium ion secondary battery for an electric vehicle, it is expected that the traveling distance per charge is long. In order to increase the travel distance per charge, the battery is required to have a high energy density and to be able to use the battery in a wider range of SOC.
 高エネルギー密度の正極活物質として、Li2MO3-LiM′O2で表される層状固溶体が期待されている。層状固溶体は、高容量が得られるため、正極の高エネルギー密度化が期待できる。層状固溶体は、組成式Li1+x1-x2で表すこともできる。なお、ここで、層状固溶体とは、岩塩型層状構造を有するリチウム遷移金属酸化物であって、遷移金属に対しLiを過剰に含み、遷移金属におけるMnの組成比が50%以上の材料のことを示す。 A layered solid solution represented by Li 2 MO 3 -LiM′O 2 is expected as a high energy density positive electrode active material. The layered solid solution can be expected to increase the energy density of the positive electrode because a high capacity can be obtained. The layered solid solution can also be represented by the composition formula Li 1 + x M 1-x O 2 . Here, the layered solid solution is a lithium transition metal oxide having a rock salt type layered structure, and is a material containing an excess of Li relative to the transition metal and having a composition ratio of 50% or more of Mn in the transition metal. Indicates
 正極活物質として層状固溶体を用いたリチウムイオン二次電池は、高いエネルギー密度が期待できるが、放電末期の抵抗が高い。放電末期は電位も低いため、十分な出力が得られないという課題がある。図1に層状固溶体のSOCと出力の関係を示す。図1において、縦軸は出力密度、横軸はSOCである。SOCの低い領域では、出力が低いことが分かる。高出力が要求される車載向けのリチウムイオン二次電池では、出力の低い領域は使用できないため、使用可能なSOCの範囲が狭くなり、その結果、電池容量が低減する。したがって、出力を向上させるためには、放電末期の抵抗を低減するとともに電位を向上する必要がある。 A lithium ion secondary battery using a layered solid solution as a positive electrode active material can be expected to have a high energy density but has high resistance at the end of discharge. There is a problem that a sufficient output can not be obtained because the potential is also low at the end of discharge. Figure 1 shows the relationship between SOC and output of layered solid solution. In FIG. 1, the vertical axis is the power density, and the horizontal axis is the SOC. It can be seen that the output is low in the low SOC region. In a car-mounted lithium ion secondary battery requiring high output, a low output region can not be used, so the range of usable SOC is narrowed, and as a result, the battery capacity is reduced. Therefore, in order to improve the output, it is necessary to reduce the resistance at the end of discharge and to improve the potential.
 発明者らが鋭意検討した結果、層状固溶体と、層状固溶体の放電末期の電位で反応する活物質とを含む正極材料を用いることにより、高容量を維持するとともに、放電末期の抵抗を低減できることを見出した。その結果、エネルギー密度が高く、かつ出力の高いリチウムイオン二次電池を提供できる。 As a result of intensive investigations by the inventors, it is possible to maintain high capacity and reduce resistance at the discharge end by using a positive electrode material containing a layered solid solution and an active material that reacts at the discharge end potential of the layer solid solution. I found it. As a result, a lithium ion secondary battery with high energy density and high output can be provided.
 層状固溶体は、充電初期に遷移金属がレドックスに関与した反応が起こり、充電末期では、酸素が関与したレドックス反応が起こる。一方、放電初期では、遷移金属がレドックスに関与した反応が起こり、放電末期では、酸素が関与したレドックス反応が起こる。遷移金属が関与する反応は高電位であるが、酸素が関与した反応は低電位であり抵抗が高い。層状固溶体中の遷移金属元素に対するLiの原子比を小さくすることで、遷移金属の反応領域を増やすことができ、電位が高い領域において、容量が増大する。 In the layered solid solution, a reaction in which a transition metal participates in redox occurs in the early stage of charging, and a redox reaction in which oxygen participates in the late stage of charging. On the other hand, at the beginning of the discharge, a reaction involving the transition metal occurs, and at the end of the discharge, a redox reaction involving the oxygen occurs. Reactions involving transition metals are at high potential while reactions involving oxygen are at low potential and high resistance. By reducing the atomic ratio of Li to the transition metal element in the layered solid solution, the reaction region of the transition metal can be increased, and the capacity is increased in the region where the potential is high.
 図2にLiNi0.35Mn0.452+δとLi1.2Ni0.2Mn0.62+δの放電曲線を示す。図2において、LiNi0.35Mn0.452+δの放電曲線は実線で、Li1.2Ni0.2Mn0.62+δの放電曲線は点線で表記した。3.3V以上の電位が高い領域では、両者の容量は同等であるが、Li1Ni0.35Mn0.452+δの方が、Li1.2Ni0.2Mn0.62+δよりも高電位であるため、高いエネルギー密度が得られることが分かる。したがって、層状固溶体中の金属元素におけるLiの原子比を小さくすることにより、高電位において、高容量となる。 FIG. 2 shows discharge curves of LiNi 0.35 Mn 0.45 O 2 + δ and Li 1.2 Ni 0.2 Mn 0.6 O 2 + δ . In FIG. 2, the discharge curve of LiNi 0.35 Mn 0.45 O 2 + δ is indicated by a solid line, and the discharge curve of Li 1.2 Ni 0.2 Mn 0.6 O 2 + δ is indicated by a dotted line. In the region where the potential of 3.3 V or more is high, both capacities are equal, but Li 1 Ni 0.35 Mn 0.45 O 2 + δ has a higher potential than Li 1.2 Ni 0.2 Mn 0.6 O 2 + δ Thus, it can be seen that a high energy density can be obtained. Therefore, by reducing the atomic ratio of Li in the metal element in the layered solid solution, the capacity becomes high at a high potential.
 また、LiNi0.35Mn0.452+δの放電末期の電位である2.5~3.5Vで反応する活物質を混合することによって、抵抗を低減できる。LiFePO4に代表されるオリビン構造を有するFe含有リン化合物は、反応電位が約3.5Vであり、炭素を被覆することで電子伝導性が良い。したがって、遷移金属元素に対するLiの原子比が小さい層状固溶体とオリビン構造を有するFe含有リン化合物を混合することによって、放電末期の抵抗を低減できる。その結果、出力を向上でき、かつ使用可能なSOCの範囲を拡大できる。 In addition, the resistance can be reduced by mixing an active material that reacts at 2.5 to 3.5 V, which is the potential at the end of discharge of LiNi 0.35 Mn 0.45 O 2 + δ . The Fe-containing phosphorus compound having an olivine structure represented by LiFePO 4 has a reaction potential of about 3.5 V, and has good electron conductivity by coating carbon. Therefore, the resistance at the end of the discharge can be reduced by mixing the layered solid solution having a small atomic ratio of Li to the transition metal element and the Fe-containing phosphorus compound having an olivine structure. As a result, the output can be improved and the range of usable SOC can be expanded.
 なお、組成式Li1.2Ni0.2Mn0.62+δで表されるような、放電末期の電位が低い層状固溶体と、オリビン構造を有するFe含有リン化合物とを混合しても、放電末期の抵抗は低減しない。これは、層状固溶体の放電末期の抵抗の高い領域における電位が、オリビン構造を有するFe含有リン化合物の反応電位よりも低いためである。 In addition, even if it mixes the layered solid solution with low electric potential at the end of discharge as represented by the composition formula Li 1.2 Ni 0.2 Mn 0.6 O 2 + δ with the Fe-containing phosphorus compound having an olivine structure, the resistance at the discharge end Is not reduced. This is because the potential in the high resistance region at the end of discharge of the layered solid solution is lower than the reaction potential of the Fe-containing phosphorus compound having an olivine structure.
 以上の検討の結果、本発明に係るリチウムイオン二次電池用正極材料は、第一の正極活物質と第二の正極活物質とを含む。第一の正極活物質は、組成式LixNiaMnbc2+δ(0.95≦x<1.2、0.2<a≦0.4、0.4≦b<0.6、0≦c≦0.02、a+b+c=0.8、-1≦δ≦1)で表されることを特徴とする。上記組成式において、酸素の組成比を特定することは困難である。したがって、第一の正極活物質は、Liと、金属元素と、を含むリチウム遷移金属酸化物よりなり、金属元素が少なくともNiと、Mnと、を含み、Li、Ni、Mnの原子比が、1.15<Li/金属元素<1.5、0.334<Ni/Mn≦1を満たすことを特徴とする。 As a result of the above examination, the positive electrode material for a lithium ion secondary battery according to the present invention includes a first positive electrode active material and a second positive electrode active material. The first positive electrode active material has a composition formula Li x Ni a Mn b M c O 2 + δ (0.95 ≦ x <1.2, 0.2 <a ≦ 0.4, 0.4 ≦ b <0 .6, 0 ≦ c ≦ 0.02, a + b + c = 0.8, −1 ≦ δ ≦ 1). In the above composition formula, it is difficult to specify the composition ratio of oxygen. Therefore, the first positive electrode active material is made of a lithium transition metal oxide containing Li and a metal element, the metal element contains at least Ni and Mn, and the atomic ratio of Li, Ni, and Mn is It is characterized in that 1.15 <Li / metal element <1.5 and 0.334 <Ni / Mn ≦ 1 are satisfied.
 前記第二の正極活物質は、組成式LiFe1-yM´yPO4(0≦y≦0.2、M´はMn、Co、Ni、V、Mg、Mo、W、Al、Nb、Ti、Cuの少なくともいずれかの元素)で表されることを特徴とする。 The second positive electrode active material has a composition formula LiFe 1-y M ′ y PO 4 (0 ≦ y ≦ 0.2, where M ′ is Mn, Co, Ni, V, Mg, Mo, W, Al, Nb, And at least one element of Ti and Cu).
 第一の正極活物質において、Li/(Ni+Mn)が1.15未満であると、反応に寄与するLiの量が減り高容量が得られない。一方、1.5より大きいと、結晶格子が不安定になり放電容量が低下する。Ni/Mnが0.334より低いと放電電位が低下し、放電末期の電位と第二の正極活物質の反応電位に大きな差が生じ、第二の正極活物質により,放電末期の抵抗を改善できない。Ni/Mnが1より大きいと、酸素が関与した充放電反応がほとんど起こらず、容量が低下する。 In the first positive electrode active material, when Li / (Ni + Mn) is less than 1.15, the amount of Li contributing to the reaction is reduced, and a high capacity can not be obtained. On the other hand, when it is larger than 1.5, the crystal lattice becomes unstable and the discharge capacity is reduced. When Ni / Mn is lower than 0.334, the discharge potential decreases, and a large difference occurs between the reaction end potential and the reaction potential of the second positive electrode active material, and the second positive electrode active material improves the resistance at the discharge end Can not. When Ni / Mn is larger than 1, almost no charge / discharge reaction involving oxygen occurs, and the capacity decreases.
 また、金属元素は、さらに、添加元素Mを含んでもよい。ただし、金属元素に対するNi及びMnの原子比は、0.975≦(Ni+Mn)/金属元素≦1.0であることが好ましい。添加元素Mは、本発明に影響のない範囲で加えられる添加物や不純物であり、Co、V、Mo、W、Zr、Nb、Ti、Cu、Al、Feから選択される少なくともいずれかの元素である。 In addition, the metal element may further contain an additive element M. However, the atomic ratio of Ni and Mn to the metal element is preferably 0.975 ≦ (Ni + Mn) / metal element ≦ 1.0. The additive element M is an additive or an impurity added within a range not affecting the present invention, and at least one element selected from Co, V, Mo, W, Zr, Nb, Ti, Cu, Al, Fe It is.
 さらに高エネルギー密度を維持し、かつ放電末期の抵抗を低減するためには、第一の正極活物質が、組成式LixNiaMnbc2+δ(0.95≦x≦1.1、0.3<a<0.4、0.4<b<0.5、0≦c≦0.02、a+b+c=0.8、-1≦δ≦1)であることが好ましい。つまり、1.15<Li/金属元素<1.4、0.334<Ni/Mn<0.8を満たすことが好ましい。 In order to maintain the high energy density and reduce the resistance at the end of discharge, the first positive electrode active material is prepared by the composition formula Li x Ni a Mn b M c O 2 + δ (0.95 ≦ x ≦ 1 It is preferable that the following conditions be satisfied: .1, 0.3 <a <0.4, 0.4 <b <0.5, 0 ≦ c ≦ 0.02, a + b + c = 0.8, −1 ≦ δ ≦ 1). That is, it is preferable to satisfy 1.15 <Li / metal element <1.4 and 0.334 <Ni / Mn <0.8.
 第二の正極活物質において、yは、M´の含有比率(物質量比率)を示す。M´は、適宜加えられる元素であり、添加量は本発明の効果が抑制されないように、0≦y≦0.2の範囲までに抑える必要がある。導電性の観点から第二の正極活物質は、炭素材料に被覆されていることが好ましい。 In the second positive electrode active material, y represents the content ratio (the mass ratio of substance) of M ′. M ′ is an element to be added appropriately, and the addition amount thereof needs to be suppressed to the range of 0 ≦ y ≦ 0.2 so that the effect of the present invention is not suppressed. From the viewpoint of conductivity, the second positive electrode active material is preferably coated with a carbon material.
 正極材料における、第二の正極活物質の含有量は2質量%以上15質量%以下であることが好ましい。第二の正極活物質の含有量が15質量%を超えると、エネルギー密度の高い第一の正極活物質の割合が減るため、高エネルギー密度が得られない。 The content of the second positive electrode active material in the positive electrode material is preferably 2% by mass or more and 15% by mass or less. If the content of the second positive electrode active material exceeds 15% by mass, the proportion of the first positive electrode active material having a high energy density is reduced, and a high energy density can not be obtained.
 さらに高エネルギー密度を維持し、かつ放電末期の抵抗を低減するためには、上記第二の正極活物質の含有量が10質量%以下であることが好ましい。 Furthermore, in order to maintain high energy density and reduce resistance at the end of discharge, the content of the second positive electrode active material is preferably 10% by mass or less.
 本発明に係る正極材料は、本発明の属する技術分野において一般的に使用されている方法で作製することができる。 The positive electrode material according to the present invention can be produced by a method generally used in the technical field to which the present invention belongs.
 第一の正極活物質は、例えば、Li、Ni、及びMnをそれぞれ含む化合物を適当な比率で混合し、焼成することにより作製することができる。混合する化合物の比率を変化させることにより、正極材料の組成を適宜調節することができる。Liを含有する化合物としては、例えば、酢酸リチウム、硝酸リチウム、炭酸リチウム、水酸化リチウム、酸化リチウム等を挙げることができる。Niを含有する化合物としては、例えば、酢酸ニッケル、硝酸ニッケル、炭酸ニッケル、硫酸ニッケル、水酸化ニッケル等を挙げることができる。Mnを含有する化合物としては、例えば、酢酸マンガン、硝酸マンガン、炭酸マンガン、硫酸マンガン、酸化マンガン等を挙げることができる。 The first positive electrode active material can be produced, for example, by mixing and firing compounds containing Li, Ni, and Mn in appropriate proportions. The composition of the positive electrode material can be appropriately adjusted by changing the ratio of the compounds to be mixed. Examples of the compound containing Li include lithium acetate, lithium nitrate, lithium carbonate, lithium hydroxide, lithium oxide and the like. Examples of the compound containing Ni include nickel acetate, nickel nitrate, nickel carbonate, nickel sulfate, nickel hydroxide and the like. As a compound containing Mn, manganese acetate, manganese nitrate, manganese carbonate, manganese sulfate, manganese oxide etc. can be mentioned, for example.
 第二の正極活物質は、Li、Fe、及びPをそれぞれ含む化合物を適当な比率で混合した後、導電性を確保するために、ポリビニルアルコールなどの炭素源と混合し、焼成することにより作製することができる。 The second positive electrode active material is prepared by mixing compounds containing Li, Fe, and P in appropriate proportions, and then mixing with a carbon source such as polyvinyl alcohol to ensure conductivity, and firing. can do.
 Liを含有する化合物としては、例えば、酢酸リチウム、硝酸リチウム、炭酸リチウム、水酸化リチウム、酸化リチウム等を挙げることができる。Feを含有する化合物としては、例えば、シュウ酸鉄、硝酸鉄、硫化鉄、塩化鉄を挙げることができる。Pを含有する化合物としては、例えば、リン酸二水素アンモニウム、リン酸等を挙げることができる。 Examples of the compound containing Li include lithium acetate, lithium nitrate, lithium carbonate, lithium hydroxide, lithium oxide and the like. Examples of the compound containing Fe include iron oxalate, iron nitrate, iron sulfide and iron chloride. Examples of the compound containing P include ammonium dihydrogen phosphate, phosphoric acid and the like.
 正極材料の組成は、例えば誘導結合プラズマ法(ICP)等による元素分析により決定することができる。 The composition of the positive electrode material can be determined, for example, by elemental analysis using inductively coupled plasma (ICP) or the like.
 <正極>
 本発明に係るリチウムイオン二次電池用正極は、上記の正極材料を含む正極合剤層と、集電体とを備え、集電体の表面に正極合剤層が形成されている。集電体と接する領域の正極合剤層は、第一の正極活物質よりも前記第二の正極活物質の割合が高く、集電体と接する面の反対側の正極合剤層の表面は、第二の正極活物質よりも第一の正極活物質の割合が高いことを特徴とする。出力は数秒程度の反応できまる。そのため、集電体近傍に、電子伝導性の高い第二の正極活物質を配置することが好ましい。第二の正極活物質を第一の正極活物質よりも集電体側に配置することによって、第二の正極活物質と集電体とが接触でき、電子伝導性の高い第二の正極活物質が電子の流れに寄与できる。一方、第一の正極活物質を第二の正極活物質よりも集電体側に配置した場合、第二の正極活物質と集電体の直接的に接触できず、抵抗の高い第一の正極活物質を介して接触するため、第二の正極活物質の性能を十分に発揮できない。
<Positive electrode>
The positive electrode for a lithium ion secondary battery according to the present invention comprises a positive electrode mixture layer containing the above-described positive electrode material and a current collector, and a positive electrode mixture layer is formed on the surface of the current collector. The ratio of the second positive electrode active material in the positive electrode mixture layer in the region in contact with the current collector is higher than that of the first positive electrode active material, and the surface of the positive electrode mixture layer opposite to the surface in contact with the current collector is And a ratio of the first positive electrode active material is higher than that of the second positive electrode active material. The output can react for about a few seconds. Therefore, it is preferable to dispose a second positive electrode active material having high electron conductivity in the vicinity of the current collector. By arranging the second positive electrode active material closer to the current collector than the first positive electrode active material, the second positive electrode active material can be brought into contact with the current collector, and the second positive electrode active material has high electron conductivity. Can contribute to the flow of electrons. On the other hand, when the first positive electrode active material is disposed closer to the current collector than the second positive electrode active material, the second positive electrode active material can not be in direct contact with the current collector, and the first positive electrode has high resistance. Since the contact is made via the active material, the performance of the second positive electrode active material can not be sufficiently exhibited.
 図3は、正極における集電体、第一の正極活物質、第二の正極活物質の配置を模式的に示した図である。図3において、1は集電体、2は第二の正極活物質を含む合剤層、3は第一の正極活物質を含む合剤層である。正極を作製する際、集電体に第二の正極活物質を含むスラリーを塗布し、その上に、第一の正極活物質を含むスラリーを塗布することによって、第二の正極活物質を集電体近傍に多く分布させ、第一の正極活物質を集電体と反対側に多く分布させることができる。なお、正極の作製方法に限定はなく、正極合剤層において、集電体近傍で第一の正極活物質よりも第二の正極活物質の割合が高く、集電体と接する面とは反対側で第二の正極活物質よりも第一の正極活物質の割合が高ければよい。 FIG. 3 is a view schematically showing the arrangement of the current collector, the first positive electrode active material, and the second positive electrode active material in the positive electrode. In FIG. 3, 1 is a current collector, 2 is a mixture layer containing a second positive electrode active material, 3 is a mixture layer containing a first positive electrode active material. When manufacturing the positive electrode, the second positive electrode active material is collected by applying a slurry containing the second positive electrode active material to the current collector and applying a slurry containing the first positive electrode active material thereon. A large amount of the first positive electrode active material can be distributed on the side opposite to the current collector. Note that there is no limitation on the method of manufacturing the positive electrode, and in the positive electrode mixture layer, the proportion of the second positive electrode active material is higher in the vicinity of the current collector than the first positive electrode active material, The proportion of the first positive electrode active material may be higher on the side than the second positive electrode active material.
 <リチウムイオン二次電池>
 本発明に係るリチウムイオン二次電池は、上記の正極を含むことを特徴とする。上記の正極を用いることにより、エネルギー密度が高く、かつ出力の高いリチウムイオン二次電池を提供できる。さらに、放電末期の抵抗を低減できるため、使用可能なSOCの範囲が拡大する。したがって、本発明に係るリチウムイオン二次電池は、電気自動車に対して好ましく使用することができる。
<Lithium ion secondary battery>
A lithium ion secondary battery according to the present invention includes the above-described positive electrode. By using the above positive electrode, it is possible to provide a lithium ion secondary battery having a high energy density and a high output. Furthermore, since the resistance at the end of discharge can be reduced, the range of usable SOC is expanded. Therefore, the lithium ion secondary battery according to the present invention can be preferably used for an electric vehicle.
 正極活物質は、充放電により、リチウムイオンを吸蔵放出する。正極活物質から放出されたリチウムイオンはすべて正極に戻るわけではないため、充放電後における正極活物質の組成は、充放電前とは異なることが予想される。例えば、Li0.80.81.6で表される層状酸化物の正極活物質は、2.5~4.3Vの電位範囲で使用したときに、満放電状態(2.5V)でLiの組成比が0.75程度となることが分かっている。層状酸化物と同様に考えると、層状固溶体の充放電後のLi量も、充放電前と比較して満放電状態で15~30%程度減少していると推測される。したがって、本発明に係る正極活物質を用いてリチウム二次電池を作製し、4.6から2.5Vで充放電した場合、満放電状態では、第一の正極活物質である層状固溶体の組成は、LixNiaMnbc2+δ(0.75≦x≦1.2、0.2≦a≦0.4、0.4≦b≦0.8、0<c≦0.02、a+b+c=0.8、-1≦δ≦1)となると想定できる。つまり、充放電後の第一の正極活物質の金属元素に対するLiの原子比は、0.90<Li/金属元素<1.5となる。 The positive electrode active material occludes and releases lithium ions by charge and discharge. Since not all lithium ions released from the positive electrode active material return to the positive electrode, the composition of the positive electrode active material after charge and discharge is expected to be different from that before charge and discharge. For example, the positive electrode active material of a layered oxide represented by Li 0.8 M 0.8 O 1.6 has a composition ratio of Li in a full discharge state (2.5 V) when used in a potential range of 2.5 to 4.3 V Is known to be about 0.75. In the same way as in the case of the layered oxide, the amount of Li after charge and discharge of the layered solid solution is also estimated to be reduced by about 15 to 30% in the fully discharged state as compared to that before the charge and discharge. Therefore, when a lithium secondary battery is manufactured using the positive electrode active material according to the present invention and charged and discharged at 4.6 to 2.5 V, the composition of the layered solid solution which is the first positive electrode active material in the full discharge state Is Li x Ni a Mn b M c O 2+ δ (0.75 ≦ x ≦ 1.2, 0.2 ≦ a ≦ 0.4, 0.4 ≦ b ≦ 0.8, 0 <c ≦ 0 It can be assumed that .02, a + b + c = 0.8, -1 ≦ δ ≦ 1). That is, the atomic ratio of Li to the metal element of the first positive electrode active material after charge and discharge is 0.90 <Li / metal element <1.5.
 リチウムイオン二次電池は、正極材料を含む正極、負極材料を含む負極、セパレータ、電解液、電解質等から構成される。 The lithium ion secondary battery is composed of a positive electrode containing a positive electrode material, a negative electrode containing a negative electrode material, a separator, an electrolytic solution, an electrolyte and the like.
 負極材料は、リチウムイオンを吸蔵放出することができる物質であれば特に限定されない。リチウムイオン二次電池において一般的に使用されている物質を負極材料として使用することができる。例えば、黒鉛、リチウム合金等を例示することができる。 The negative electrode material is not particularly limited as long as it is a substance capable of inserting and extracting lithium ions. Materials generally used in lithium ion secondary batteries can be used as the negative electrode material. For example, graphite, lithium alloy and the like can be exemplified.
 セパレータとしては、リチウムイオン二次電池において一般的に使用されているものを使用することができる。例えば、ポリプロピレン、ポリエチレン、プロピレンとエチレンとの共重合体等のポリオレフィン製の微孔性フィルムや不織布等を例示することができる。 As a separator, those generally used in lithium ion secondary batteries can be used. For example, a microporous film or non-woven fabric made of polyolefin such as polypropylene, polyethylene, and a copolymer of propylene and ethylene can be exemplified.
 電解液及び電解質としては、リチウムイオン二次電池において一般的に使用されているものを使用することができる。例えば、電解液として、ジエチルカーボネート、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、メチルアセテート、エチルメチルカーボネート、メチルプロピルカーボネート、ジメトキシエタン等を例示することができる。また、電解質として、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiC49SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23等を例示することができる。 As the electrolytic solution and the electrolyte, those generally used in lithium ion secondary batteries can be used. For example, as the electrolytic solution, diethyl carbonate, dimethyl carbonate, ethylene carbonate, propylene carbonate, vinylene carbonate, methyl acetate, ethyl methyl carbonate, methyl propyl carbonate, dimethoxyethane and the like can be exemplified. Further, as the electrolyte, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) can be exemplified 3 or the like.
 本発明に係るリチウムイオン二次電池の構造の一実施形態を、図4を用いて説明する。リチウムイオン二次電池4は、集電体の両面に正極材料を塗布した正極5と、集電体の両面に負極材料を塗布した負極6と、セパレータ7とを有する電極群を備える。正極5及び負極6は、セパレータ7を介して捲回され、捲回体の電極群を形成している。この捲回体は電池缶8に挿入される。 One embodiment of the structure of a lithium ion secondary battery according to the present invention will be described with reference to FIG. The lithium ion secondary battery 4 includes an electrode group including a positive electrode 5 having a positive electrode material coated on both sides of a current collector, a negative electrode 6 having a negative electrode material coated on both sides of the current collector, and a separator 7. The positive electrode 5 and the negative electrode 6 are wound via the separator 7 to form a wound electrode group. The wound body is inserted into the battery can 8.
 負極6は、負極リード片10を介して、電池缶8に電気的に接続される。電池缶8には、パッキン12を介して、密閉蓋11が取り付けられる。正極5は、正極リード片9を介して、密閉蓋11に電気的に接続される。捲回体は、絶縁板13によって絶縁される。 The negative electrode 6 is electrically connected to the battery can 8 via the negative electrode lead piece 10. A sealing lid 11 is attached to the battery can 8 via a packing 12. The positive electrode 5 is electrically connected to the sealing lid 11 through the positive electrode lead piece 9. The wound body is insulated by the insulating plate 13.
 なお、電極群は、図4に示す捲回体でなくてもよく、セパレータ7を介して正極5と負極6とを積層した積層体でもよい。 The electrode group may not be a wound body shown in FIG. 4, and may be a laminate in which the positive electrode 5 and the negative electrode 6 are stacked via the separator 7.
 以下、実施例及び比較例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail using Examples and Comparative Examples, but the technical scope of the present invention is not limited thereto.
 <正極材料の作製>
 第一の正極活物質を以下の方法で作製した。炭酸リチウム、炭酸ニッケル、及び炭酸マンガンをボールミルで混合し、前駆体を得た。得られた前駆体を大気中において500℃で12時間焼成し、リチウム遷移金属酸化物を得た。得られたリチウム遷移金属酸化物をペレット化した後、大気中において850~1050℃で12時間焼成した。焼成したペレットをメノウ乳鉢で粉砕し、45μmのふるいで分級し、組成式LixNiaMnb2+δで表される第一の正極活物質を得た。
<Production of positive electrode material>
The first positive electrode active material was produced by the following method. Lithium carbonate, nickel carbonate and manganese carbonate were mixed in a ball mill to obtain a precursor. The obtained precursor was calcined at 500 ° C. for 12 hours in the air to obtain a lithium transition metal oxide. The obtained lithium transition metal oxide was pelletized and then fired at 850 to 1050 ° C. for 12 hours in the air. The fired pellet was ground in an agate mortar and classified with a 45 μm sieve to obtain a first positive electrode active material represented by the composition formula Li x Ni a Mn b O 2 + δ .
 第二の正極活物質を以下の方法で作製した。炭酸リチウム、シュウ酸鉄、及びリン酸二水素アンモニウムをボールミルで混合し、前駆体を得た。得られた前駆体をアルゴン中、300℃で8時間仮焼成した。その後、仮焼成後の材料をポリビニルアルコールとともにボールミルで混合した後、アルゴン中、700℃で8時間本焼成した。本焼成により、組成式LiFePO4で表される正極活物質が炭素材料により被覆された物質を得た。これを第二の正極活物質とした。 The second positive electrode active material was produced by the following method. Lithium carbonate, iron oxalate, and ammonium dihydrogen phosphate were mixed in a ball mill to obtain a precursor. The obtained precursor was calcined at 300 ° C. for 8 hours in argon. Then, after mixing the material after temporary baking with a polyvinyl alcohol by a ball mill, the main baking was performed at 700 ° C. for 8 hours in argon. By this firing, a material in which the positive electrode active material represented by the composition formula LiFePO 4 was covered with the carbon material was obtained. This was used as a second positive electrode active material.
 <正極の作製>
 上述のように作製した正極活物質を用いて実施例1~10及び比較例1~7の正極を作製した。
<Fabrication of positive electrode>
The positive electrodes of Examples 1 to 10 and Comparative Examples 1 to 7 were produced using the positive electrode active material produced as described above.
 実施例1~10、比較例2~4、6では、初めに第二の正極活物質と導電剤とバインダとを均一に混合して第二の正極活物質を含むスラリーを作製した。第二の正極活物質を含むスラリーを厚み20μmのアルミ集電体箔上に塗布し、120℃で乾燥した。その後、第一の正極活物質と導電剤とバインダとを均一に混合して第一の正極活物質を含むスラリーを作製した。第一の正極活物質を含むスラリーを第二の正極活物質の上から塗布し、120℃で乾燥した。乾燥後、プレスにて電極密度が2.2g/cm3になるように圧縮成形して電極板を得た。その後、電極板を直径15mmの円盤状に打ち抜き、正極を作製した。 In Examples 1 to 10 and Comparative Examples 2 to 4 and 6, first, the second positive electrode active material, the conductive agent, and the binder were uniformly mixed to prepare a slurry containing the second positive electrode active material. The slurry containing the second positive electrode active material was applied onto a 20 μm thick aluminum current collector foil and dried at 120 ° C. Thereafter, the first positive electrode active material, the conductive agent, and the binder were uniformly mixed to prepare a slurry containing the first positive electrode active material. The slurry containing the first positive electrode active material was applied over the second positive electrode active material and dried at 120 ° C. After drying, compression molding was performed with a press so that the electrode density was 2.2 g / cm 3 , to obtain an electrode plate. Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm to produce a positive electrode.
 比較例1、5では、第一の正極活物質と導電剤とバインダとを均一に混合して第一の正極活物質を含む正極スラリーを作製した。正極スラリーを厚み20μmのアルミ集電体箔上に塗布し、120℃で乾燥した。乾燥後、プレスにて電極密度が2.2g/cm3になるように圧縮成形して電極板を得た。その後、電極板を直径15mmの円盤状に打ち抜き、正極を作製した。 In Comparative Examples 1 and 5, the first positive electrode active material, the conductive agent, and the binder were uniformly mixed to prepare a positive electrode slurry containing the first positive electrode active material. The positive electrode slurry was applied onto a 20 μm thick aluminum current collector foil and dried at 120 ° C. After drying, compression molding was performed with a press so that the electrode density was 2.2 g / cm 3 , to obtain an electrode plate. Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm to produce a positive electrode.
 比較例7では、初めに第一の正極活物質と導電剤とバインダとを均一に混合して第一の正極活物質を含むスラリーを作製した。第一の正極活物質を含むスラリーを厚み20μmのアルミ集電体箔上に塗布し、120℃で乾燥した。その後、第二の正極活物質と導電剤とバインダとを均一に混合して第二の正極活物質を含むスラリーを作製した。第二の正極活物質を含むスラリーを第一の正極活物質の上から塗布し、120℃で乾燥した。乾燥後、プレスにて電極密度が2.2g/cm3になるように圧縮成形して電極板を得た。その後、電極板を直径15mmの円盤状に打ち抜き、正極を作製した。 In Comparative Example 7, first, the first positive electrode active material, the conductive agent, and the binder were uniformly mixed to prepare a slurry containing the first positive electrode active material. The slurry containing the first positive electrode active material was applied onto a 20 μm thick aluminum current collector foil and dried at 120 ° C. Thereafter, the second positive electrode active material, the conductive agent, and the binder were uniformly mixed to prepare a slurry containing the second positive electrode active material. The slurry containing the second positive electrode active material was applied over the first positive electrode active material and dried at 120 ° C. After drying, compression molding was performed with a press so that the electrode density was 2.2 g / cm 3 , to obtain an electrode plate. Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm to produce a positive electrode.
 実施例1~10及び比較例1~7の正極で用いた第一の正極活物質の組成及び第二の正極活物質の含有量を表1に示す。 The composition of the first positive electrode active material and the content of the second positive electrode active material used in the positive electrode of each of Examples 1 to 10 and Comparative Examples 1 to 7 are shown in Table 1.
 <試作電池の作成>
 実施例1~10及び比較例1~7の正極を用いて試作電池を作製した。
<Creating a trial battery>
Prototype batteries were produced using the positive electrodes of Examples 1 to 10 and Comparative Examples 1 to 7.
 負極は金属リチウムを用いて作製した。非水電解液としては、体積比1:2のエチレンカーボネートとジメチルカーボネートとの混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解させたものを用いた。 The negative electrode was produced using metallic lithium. As a non-aqueous electrolytic solution, one in which LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 2 was used.
 <充放電試験>
 各実施例及び比較例の正極を用い、上述のように作製した17種類の試作電池に対して、充放電試験を行った。試作電池に対し、充電は0.05C相当の電流で上限電圧を4.6V、放電は0.5C相当の電流で下限電圧を2.5Vとした充放電試験を行い、2サイクル目の放電容量を定格容量とした。各実施例及び比較例において、高出力が得られる4.6~3.3Vの領域における放電容量を表1に示す。
<Charge / discharge test>
The charge / discharge test was performed on the 17 types of trial-produced batteries manufactured as described above, using the positive electrode of each example and comparative example. For the prototype battery, charge and discharge tests were performed with a current equivalent to 0.05C and an upper limit voltage of 4.6V at a current equivalent to 0.05C and a current equivalent to 0.5C and a lower limit voltage of 2.5V, and the discharge capacity at the second cycle As the rated capacity. Table 1 shows discharge capacities in the range of 4.6 to 3.3 V at which high output can be obtained in each of the examples and the comparative examples.
 <直流抵抗の測定>
 各実施例及び比較例の正極を用い、上述のように作製した17種類の試作電池に対して、SOC20%における直流抵抗を求めた。
<Measurement of DC resistance>
Using the positive electrode of each of the examples and the comparative examples, the direct current resistance at an SOC of 20% was determined for the 17 types of trial batteries produced as described above.
 試作電池に対し、充電は0.05C相当の電流で上限電圧を4.6V、放電は0.05C相当の電流で下限電圧を2.5Vとした充放電試験を行い、2サイクル目の放電容量を定格容量とした。2サイクル後の試作電池を4.6Vまで充電し、その後、定格容量の80%の容量まで放電した。その後、1.2mAの電流を10秒間印加し、直流抵抗を測定した。電流印加前と電流を10秒間印加した後の電位差を、印加した電流値(1.2mA)で割った値を直流抵抗値と定義した。直流抵抗の値を表1に示す。 For the prototype battery, charge and discharge tests were performed with a current of 0.05C equivalent and an upper limit voltage of 4.6V, and a discharge of 0.05C equivalent current and a lower limit voltage of 2.5V, and the discharge capacity at the second cycle As the rated capacity. The prototype battery after 2 cycles was charged to 4.6 V and then discharged to a capacity of 80% of the rated capacity. Thereafter, a current of 1.2 mA was applied for 10 seconds to measure the direct current resistance. The value obtained by dividing the potential difference before and after applying the current for 10 seconds by the applied current value (1.2 mA) was defined as the DC resistance value. The values of DC resistance are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図5は、4.6~3.3Vにおける実施例5と比較例1の放電曲線である。図5において、実施例5の放電曲線は実線で、比較例1の放電曲線は点線で表記した。4.6~3.3Vの領域において、実施例5は比較例1よりも容量が高い。また、実施例5は比較例1よりも、放電容量が同一であるときの電位が高い。なお、実施例1~4、6~10においても実施例5と同様な放電曲線が得られた。したがって、実施例1~10は、電位が高い領域において、高い放電容量が得られることが分かった。 FIG. 5 shows discharge curves of Example 5 and Comparative Example 1 at 4.6 to 3.3V. In FIG. 5, the discharge curve of Example 5 is indicated by a solid line, and the discharge curve of Comparative Example 1 is indicated by a dotted line. In the region of 4.6 to 3.3 V, Example 5 has a higher capacity than Comparative Example 1. Further, Example 5 has a higher potential than the Comparative Example 1 when the discharge capacity is the same. Also in Examples 1 to 4 and 6 to 10, the same discharge curves as in Example 5 were obtained. Accordingly, it was found that in Examples 1 to 10, high discharge capacity was obtained in the region where the potential was high.
 表2に示すように、実施例1~10では、4.6~3.3Vの領域における放電容量が140Ah/kg以上と高く、直流抵抗が40Ω以下と低い。一方、比較例1は、実施例に比べ放電容量が小さく、直流抵抗が高い。比較例1の正極材料は、第一の正極活物質の組成が1.15<Li/(Ni+Mn)<1.5、0.334<Ni/Mn≦1の関係を満たしていないため3.3V以上の放電容量が小さく、第二の正極活物質を含まないために、直流抵抗が高い。 As shown in Table 2, in Examples 1 to 10, the discharge capacity in the region of 4.6 to 3.3 V is as high as 140 Ah / kg or more, and the direct current resistance is as low as 40 Ω or less. On the other hand, Comparative Example 1 has a smaller discharge capacity and higher DC resistance than the example. In the positive electrode material of Comparative Example 1, the composition of the first positive electrode active material does not satisfy the relationship of 1.15 <Li / (Ni + Mn) <1.5 and 0.334 <Ni / Mn ≦ 1, 3.3 V The above discharge capacity is small, and the DC resistance is high because the second positive electrode active material is not included.
 また、比較例2~6では、高容量と低抵抗を両立することはできなかった。比較例2では、第一の正極活物質とかつオリビン構造を持つFe含有リン化合物とを含む正極を混合している。しかし、第一の正極活物質の組成がLi/(Ni+Mn)=1.50、Ni/Mn=0.33であるため、第一の正極活物質において抵抗の高い放電末期の領域では、既に、第二の正極活物質であるオリビン構造を持つFe含有リン化合物の反応が終了している。そのため、放電末期においては、抵抗の高い第一の正極活物質が反応するため、放電末期の抵抗を改善することはできない。したがって、比較例2では、放電過程においてSOC20%に達する前に、第二の正極活物質が反応し終わってしまうため、抵抗を低減することができなかった。 Further, in Comparative Examples 2 to 6, it was not possible to simultaneously achieve high capacity and low resistance. In Comparative Example 2, the positive electrode containing the first positive electrode active material and the Fe-containing phosphorus compound having an olivine structure is mixed. However, since the composition of the first positive electrode active material is Li / (Ni + Mn) = 1.50 and Ni / Mn = 0.33, the first positive electrode active material already has a high resistance at the end of discharge. The reaction of the Fe-containing phosphorus compound having an olivine structure, which is the second positive electrode active material, is completed. Therefore, since the first positive electrode active material having high resistance reacts at the end of discharge, the resistance at the end of discharge can not be improved. Therefore, in Comparative Example 2, the resistance of the second positive electrode active material was not completed before reaching the SOC of 20% in the discharge process, so that the resistance could not be reduced.
 比較例3では、第一の正極活物質のNi/Mnが0.33と低いため、3.3V以上の領域で高容量が得られなかった。 In Comparative Example 3, since the Ni / Mn of the first positive electrode active material was as low as 0.33, a high capacity was not obtained in the region of 3.3 V or more.
 比較例4では、Li/(Ni+Mn)が1.50と大きかったために、高容量が得られなかった。 In Comparative Example 4, a high capacity was not obtained because Li / (Ni + Mn) was as large as 1.50.
 比較例5では、第二の正極活物質を含んでいないため、抵抗が高い。 In Comparative Example 5, since the second positive electrode active material is not contained, the resistance is high.
 比較例6では、第二の正極活物質の含有量が多く、高容量が得られる第二の正極活物質の含有量が少なかったために、高容量が得られなかった。 In Comparative Example 6, the content of the second positive electrode active material was large, and the content of the second positive electrode active material capable of obtaining a high capacity was small, so a high capacity was not obtained.
 比較例7では、第二の正極活物質が集電体から遠い側に配置されているため、抵抗を十分に低減することができなかった。 In Comparative Example 7, since the second positive electrode active material was disposed on the side far from the current collector, the resistance could not be sufficiently reduced.
 以上から、実施例1~10は、Li、Ni、Mnの原子量比が 1.15<Li/(Ni+Mn)<1.5および0.334<Ni/Mn≦1の関係を満たす第一の正極活物質と組成式LiFe1-yM´yPO4(0≦y≦0.2、M´はMn、Co、Ni、V、Mg、Mo、W、Al、Nb、Ti、Cuの少なくともいずれかの元素)で表される第二の正極活物質を含み、集電体近傍に第一の正極活物質よりも第二の正極活物質を多く配置しているために、放電容量が高く、放電末期の抵抗が小さい。その結果、エネルギー密度が高く、出力の高いリチウムイオン二次電池を提供できる。 From the above, in Examples 1 to 10, the first positive electrode in which the atomic weight ratio of Li, Ni, and Mn satisfies the relationships 1.15 <Li / (Ni + Mn) <1.5 and 0.334 <Ni / Mn ≦ 1 is satisfied. Active material and composition formula LiFe 1-y M ′ y PO 4 (0 ≦ y ≦ 0.2, M ′ is at least any of Mn, Co, Ni, V, Mg, Mo, W, Al, Nb, Ti, and Cu Higher discharge capacity because the second positive electrode active material is contained in the vicinity of the current collector and the second positive electrode active material is disposed in a larger amount than the first positive electrode active material. The resistance at the end of discharge is small. As a result, a lithium ion secondary battery with high energy density and high output can be provided.
 また、実施例1~5、7~9では特に放電容量が高い。これは、第一の正極活物質の組成が、0.334<Ni/Mn<0.8を満たし、第二の正極活物質の含有量が10質量%以下であるためである。 In addition, in Examples 1 to 5 and 7 to 9, the discharge capacity is particularly high. This is because the composition of the first positive electrode active material satisfies 0.334 <Ni / Mn <0.8 and the content of the second positive electrode active material is 10% by mass or less.
 1 集電体
 2 第二の正極活物質層
 3 第一の正極活物質層
 4 リチウムイオン二次電池
 5 正極
 6 負極
 7 セパレータ
 8 電池缶
 9 正極リード片
 10 負極リード片
 11 密閉蓋
 12 パッキン
 13 絶縁板
DESCRIPTION OF SYMBOLS 1 current collector 2 second positive electrode active material layer 3 first positive electrode active material layer 4 lithium ion secondary battery 5 positive electrode 6 negative electrode 7 separator 8 battery can 9 positive electrode lead piece 10 negative electrode lead piece 11 sealing lid 12 packing 13 insulation Board

Claims (16)

  1.  正極材料を含む正極合剤層と、前記正極合剤層が表面に形成された集電体とを備えるリチウムイオン電池用正極であって、
     前記正極材料は、第一の正極活物質と第二の正極活物質とを含み、
     前記第一の正極活物質は、Liと、金属元素と、を含むリチウム遷移金属酸化物よりなり、前記金属元素として少なくともNiと、Mnと、を含み、前記金属元素に対する前記Liの原子比は、1.15<Li/金属元素<1.5であり、前記Mnに対する前記Niの原子比は、0.334<Ni/Mn≦1.0であり、
     前記第二の正極活物質は、組成式LiFe1-yM´yPO4(0≦y≦0.2、M´はMn、Co、Ni、V、Mg、Mo、W、Al、Nb、Ti、Cuの少なくともいずれかの元素)で表され、
     前記集電体と接する領域の前記正極合剤層は、前記第一の正極活物質よりも前記第二の正極活物質の割合が高く、
     前記集電体と接する面と反対側の前記正極合剤層の表面は、前記第二の正極活物質よりも前記第一の正極活物質の割合が高いことを特徴とするリチウムイオン二次電池用正極。
    A positive electrode for a lithium ion battery, comprising: a positive electrode mixture layer containing a positive electrode material; and a current collector having the positive electrode mixture layer formed on the surface,
    The positive electrode material includes a first positive electrode active material and a second positive electrode active material,
    The first positive electrode active material is made of a lithium transition metal oxide containing Li and a metal element, contains at least Ni and Mn as the metal element, and the atomic ratio of Li to the metal element is And 1.15 <Li / metal element <1.5, and the atomic ratio of the Ni to the Mn is 0.334 <Ni / Mn ≦ 1.0,
    The second positive electrode active material has a composition formula LiFe 1-y M ′ y PO 4 (0 ≦ y ≦ 0.2, where M ′ is Mn, Co, Ni, V, Mg, Mo, W, Al, Nb, And at least one element of Ti and Cu),
    The ratio of the second positive electrode active material in the positive electrode mixture layer in the region in contact with the current collector is higher than that of the first positive electrode active material,
    The surface of the positive electrode mixture layer opposite to the surface in contact with the current collector has a ratio of the first positive electrode active material higher than that of the second positive electrode active material. For positive electrode.
  2.  請求項1に記載のリチウムイオン二次電池用正極であって、
     前記第一の正極活物質は、前記金属元素として、添加元素Mを含み、前記Mは、Co、Al、V、Mo、W、Zr、Nb、Ti、Feから選択される少なくともいずれかの元素であり、前記金属元素に対する前記Ni及び前記Mnの原子比は、0.975≦(Ni+Mn)/金属元素≦1.0であることを特徴とするリチウムイオン二次電池用正極。
    It is a positive electrode for lithium ion secondary batteries of Claim 1, Comprising:
    The first positive electrode active material contains an additive element M as the metal element, and the M is at least one element selected from Co, Al, V, Mo, W, Zr, Nb, Ti, and Fe. And the atomic ratio of the Ni and the Mn to the metal element is 0.975 ≦ (Ni + Mn) / metal element ≦ 1.0.
  3.  請求項1に記載のリチウムイオン二次電池用正極であって、
     前記正極材料に対する前記第二の正極活物質の含有量は、2質量%以上15質量%以下であることを特徴とするリチウムイオン二次電池用正極。
    It is a positive electrode for lithium ion secondary batteries of Claim 1, Comprising:
    Content of the said 2nd positive electrode active material with respect to the said positive electrode material is 2 mass% or more and 15 mass% or less, The positive electrode for lithium ion secondary batteries characterized by the above-mentioned.
  4.  請求項3に記載のリチウムイオン二次電池用正極であって
     前記正極材料に対する前記第二の正極活物質2の含有量は、2質量%以上10質量%以下であることを特徴とするリチウムイオン二次電池用正極。
    It is a positive electrode for lithium ion secondary batteries of Claim 3, Comprising: Content of said 2nd positive electrode active material 2 with respect to the said positive electrode material is 2 mass% or more and 10 mass% or less, The lithium ion characterized by the above-mentioned Positive electrode for secondary battery.
  5.  請求項1に記載のリチウムイオン二次電池用正極であって、
     前記第一の正極活物質の前記Mnに対する前記Niの原子比は、0.334<Ni/Mn<0.8であることを特徴とするリチウムイオン二次電池用正極。
    It is a positive electrode for lithium ion secondary batteries of Claim 1, Comprising:
    An atomic ratio of the Ni to the Mn of the first positive electrode active material is 0.334 <Ni / Mn <0.8. A positive electrode for a lithium ion secondary battery.
  6.  請求項1に記載のリチウムイオン二次電池用正極であって、
     前記第一の正極活物質は、組成式LixNiaMnbc2+δ(0.95≦x<1.2、0.2<a≦0.4、0.4≦b<0.6、0≦c≦0.02、a+b+c=0.8、-1≦δ≦1)で表されることを特徴とするリチウムイオン二次電池用正極。
    It is a positive electrode for lithium ion secondary batteries of Claim 1, Comprising:
    The first positive electrode active material has a composition formula Li x Ni a Mn b M c O 2 + δ (0.95 ≦ x <1.2, 0.2 <a ≦ 0.4, 0.4 ≦ b < A positive electrode for a lithium ion secondary battery characterized by being represented by 0.6, 0 ≦ c ≦ 0.02, a + b + c = 0.8, −1 ≦ δ ≦ 1).
  7.  請求項6に記載のリチウムイオン二次電池用正極であって、
     前記第一の正極活物質は、組成式LixNiaMnbc2+δ(0.95≦x≦1.1、0.3<a<0.4、0.4<b<0.5、0≦c≦0.02、a+b+c=0.8、-1≦δ≦1)で表されることを特徴とするリチウムイオン二次電池用正極。
    It is a positive electrode for lithium ion secondary batteries of Claim 6, Comprising:
    The first positive electrode active material has a composition formula Li x Ni a Mn b M c O 2 + δ (0.95 ≦ x ≦ 1.1, 0.3 <a <0.4, 0.4 <b < 0.5, 0 ≦ c ≦ 0.02, a + b + c = 0.8, −1 ≦ δ ≦ 1) A positive electrode for a lithium ion secondary battery.
  8.  請求項1ないし7のいずれかに記載のリチウムイオン二次電池用正極の製造方法であって、
     前記集電体に前記第二の正極活物質を含むスラリーを塗布する工程と、
     前記第二の正極活物質を含むスラリー上に、前記第一の正極活物質を含むスラリーを塗布する工程と、を含むリチウムイオン二次電池用正極の製造方法。
    It is a manufacturing method of the positive electrode for lithium ion secondary batteries in any one of Claims 1 thru | or 7, Comprising:
    Applying a slurry containing the second positive electrode active material to the current collector;
    Applying the slurry containing the first positive electrode active material onto the slurry containing the second positive electrode active material; and a method of manufacturing a positive electrode for a lithium ion secondary battery.
  9.  正極材料を含む正極合剤層と、前記正極合剤層を表面に備える正極集電体とを備える正極と、負極材料と含む負極と、を備えるリチウムイオン二次電池であって、
     前記正極材料は、第一の正極活物質と第二の正極活物質とを含み、
     前記第一の正極活物質は、Liと、金属元素と、を含むリチウム遷移金属酸化物よりなり、前記金属元素として少なくともNiと、Mnと、を含み、前記金属元素に対する前記Liの原子比は0.90<Li/金属元素<1.5であり、前記Mnに対する前記Niの原子比は、0.334<Ni/Mn≦1.0であり、
     前記第二の正極活物質は、組成式LiFe1-yM´yPO4(0≦y≦0.2、M´はMn、Co、Ni、V、Mg、Mo、W、Al、Nb、Ti、Cuの少なくともいずれかの元素)で表され、
     前記集電体と接する領域の前記正極合剤層は、前記第一の正極活物質よりも前記第二の正極活物質の割合が高く、
     前記集電体と接する面と反対側の前記正極合剤層の表面は、前記第二の正極活物質よりも前記第一の正極活物質の割合が高いことを特徴とするリチウムイオン二次電池。
    A lithium ion secondary battery comprising a positive electrode comprising a positive electrode mixture layer containing a positive electrode material, a positive electrode current collector having the positive electrode mixture layer on the surface, and a negative electrode comprising a negative electrode material,
    The positive electrode material includes a first positive electrode active material and a second positive electrode active material,
    The first positive electrode active material is made of a lithium transition metal oxide containing Li and a metal element, contains at least Ni and Mn as the metal element, and the atomic ratio of Li to the metal element is 0.90 <Li / metal element <1.5, and the atomic ratio of the Ni to the Mn is 0.334 <Ni / Mn ≦ 1.0,
    The second positive electrode active material has a composition formula LiFe 1-y M ′ y PO 4 (0 ≦ y ≦ 0.2, where M ′ is Mn, Co, Ni, V, Mg, Mo, W, Al, Nb, And at least one element of Ti and Cu),
    The ratio of the second positive electrode active material in the positive electrode mixture layer in the region in contact with the current collector is higher than that of the first positive electrode active material,
    The surface of the positive electrode mixture layer opposite to the surface in contact with the current collector has a ratio of the first positive electrode active material higher than that of the second positive electrode active material. .
  10.  請求項9に記載のリチウムイオン二次電池用正極活物質であって、
     前記第一の正極活物質は、前記金属元素として、添加元素Mを含み、前記Mは、Co、Al、V、Mo、W、Zr、Nb、Ti、Feから選択される少なくともいずれかの元素であり、前記金属元素に対する前記Ni及び前記Mnの原子比は、0975≦(Ni+Mn)/金属元素≦1.0であることを特徴とするリチウムイオン二次電池。
    It is a positive electrode active material for a lithium ion secondary battery according to claim 9,
    The first positive electrode active material contains an additive element M as the metal element, and the M is at least one element selected from Co, Al, V, Mo, W, Zr, Nb, Ti, and Fe. The atomic ratio of the Ni and the Mn to the metal element is 0975 ≦ (Ni + Mn) / metal element ≦ 1.0.
  11.  請求項9に記載のリチウムイオン二次電池であって、
     前記第二の正極活物質の含有量は、前記正極材料に対し2質量%以上15質量%以下であることを特徴とするリチウムイオン二次電池。
    It is a lithium ion secondary battery according to claim 9,
    Content of said 2nd positive electrode active material is 2 mass% or more and 15 mass% or less with respect to said positive electrode material, The lithium ion secondary battery characterized by the above-mentioned.
  12.  請求項11に記載のリチウムイオン二次電池であって、
     前記第二の正極活物質の含有量は、前記正極材料に対し2質量%以上10質量%以下であることを特徴とするリチウムイオン二次電池。
    12. The lithium ion secondary battery according to claim 11, wherein
    Content of said 2nd positive electrode active material is 2 mass% or more and 10 mass% or less with respect to said positive electrode material, The lithium ion secondary battery characterized by the above-mentioned.
  13.  請求項9に記載のリチウムイオン二次電池であって、
     前記第一の正極活物質のMnに対するNiの原子比は、0.334<Ni/Mn<0.8であることを特徴とするリチウムイオン二次電池。
    It is a lithium ion secondary battery according to claim 9,
    The atomic ratio of Ni to Mn of the first positive electrode active material is 0.334 <Ni / Mn <0.8.
  14.  請求項9に記載のリチウムイオン二次電池であって、
     前記第一の正極活物質は、組成式LixNiaMnbc2+δ(0.75≦x<1.2、0.2<a≦0.4、0.4≦b<0.6、0≦c≦0.02、a+b+c=0.8、-1≦δ≦1)で表されることを特徴とするリチウムイオン二次電池。
    It is a lithium ion secondary battery according to claim 9,
    The first positive electrode active material has a composition formula Li x Ni a Mn b M c O 2+ δ (0.75 ≦ x <1.2, 0.2 <a ≦ 0.4, 0.4 ≦ b < A lithium ion secondary battery characterized by being represented by 0.6, 0 ≦ c ≦ 0.02, a + b + c = 0.8, −1 ≦ δ ≦ 1).
  15.  請求項14に記載のリチウムイオン二次電池であって、
     前記第一の正極活物質は、組成式LixNiaMnbc2+δ(0.75≦x≦1.1、0.3<a<0.4、0.4<b<0.5、0≦c≦0.02、a+b+c=0.8、-1≦δ≦1)で表されることを特徴とするリチウムイオン二次電池。
    It is a lithium ion secondary battery according to claim 14,
    The first positive electrode active material has a composition formula Li x Ni a Mn b M c O 2+ δ (0.75 ≦ x ≦ 1.1, 0.3 <a <0.4, 0.4 <b < A lithium ion secondary battery characterized by being represented by 0.5, 0 ≦ c ≦ 0.02, a + b + c = 0.8, −1 ≦ δ ≦ 1).
  16.  請求項9ないし15のいずれかに記載のリチウムイオン二次電池であって、
     使用する際の下限電位が3.0V以上であることを特徴とするリチウムイオン二次電池。
    A lithium ion secondary battery according to any one of claims 9 to 15, wherein
    The lower limit electric potential at the time of using it is 3.0 V or more, The lithium ion secondary battery characterized by the above-mentioned.
PCT/JP2013/082119 2013-11-29 2013-11-29 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery WO2015079546A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082119 WO2015079546A1 (en) 2013-11-29 2013-11-29 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082119 WO2015079546A1 (en) 2013-11-29 2013-11-29 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2015079546A1 true WO2015079546A1 (en) 2015-06-04

Family

ID=53198535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082119 WO2015079546A1 (en) 2013-11-29 2013-11-29 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
WO (1) WO2015079546A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115020635A (en) * 2022-06-14 2022-09-06 蔚来汽车科技(安徽)有限公司 Positive plate, lithium ion battery and vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250499A (en) * 2006-03-20 2007-09-27 Nec Tokin Corp Lithium ion secondary battery
WO2008081839A1 (en) * 2006-12-27 2008-07-10 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method for production thereof
JP2009525568A (en) * 2006-02-01 2009-07-09 イドロ−ケベック Multilayer material, method for making it, and use as electrode
JP2009252498A (en) * 2008-04-04 2009-10-29 Nissan Motor Co Ltd Electrode for battery
JP2009252497A (en) * 2008-04-04 2009-10-29 Nissan Motor Co Ltd Electrode for battery and battery
JP2012151084A (en) * 2010-12-27 2012-08-09 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525568A (en) * 2006-02-01 2009-07-09 イドロ−ケベック Multilayer material, method for making it, and use as electrode
JP2007250499A (en) * 2006-03-20 2007-09-27 Nec Tokin Corp Lithium ion secondary battery
WO2008081839A1 (en) * 2006-12-27 2008-07-10 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method for production thereof
JP2009252498A (en) * 2008-04-04 2009-10-29 Nissan Motor Co Ltd Electrode for battery
JP2009252497A (en) * 2008-04-04 2009-10-29 Nissan Motor Co Ltd Electrode for battery and battery
JP2012151084A (en) * 2010-12-27 2012-08-09 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115020635A (en) * 2022-06-14 2022-09-06 蔚来汽车科技(安徽)有限公司 Positive plate, lithium ion battery and vehicle

Similar Documents

Publication Publication Date Title
US9324994B2 (en) Positive electrode active material with high capacity and lithium secondary battery including the same
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2009123464A (en) Positive electrode active material for lithium-ion secondary battery, positive electrode, method of manufacturing the same, and lithium-ion secondary battery
JP2007123251A (en) Nonaqueous electrolyte secondary battery
JP6077345B2 (en) Non-aqueous secondary battery positive electrode material, non-aqueous secondary battery positive electrode and non-aqueous secondary battery
WO2011045848A1 (en) Nonaqueous electrolyte lithium ion secondary battery
JP2015088266A (en) Lithium battery
JPWO2018150843A1 (en) Non-aqueous electrolyte secondary battery
JP2010086657A (en) Nonaqueous electrolyte secondary battery
JP5586116B2 (en) Positive electrode mixture for lithium secondary battery and use thereof
US11508954B2 (en) Non-aqueous electrolyte secondary battery and positive electrode active material
JPWO2018056107A1 (en) Negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of manufacturing negative electrode for non-aqueous electrolyte secondary battery
WO2013129376A1 (en) Active material for non-aqueous electrolyte secondary cell, electrode for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and method for producing active material for non-aqueous electrolyte secondary cell
JP2015002091A (en) Positive electrode active material for lithium ion secondary batteries, lithium ion secondary battery positive electrode arranged by use thereof, lithium ion secondary battery, lithium ion secondary battery module, and method for manufacturing positive electrode active material for lithium ion secondary batteries
WO2018123603A1 (en) Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
US11777083B2 (en) Non-aqueous electrolyte secondary battery and positive electrode active material
JP5189466B2 (en) Lithium secondary battery
WO2015079546A1 (en) Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2015132844A1 (en) Positive electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013125465A1 (en) Positive electrode active material
US10804527B2 (en) Positive electrode active material for rechargeable lithium battery, method for manufacturing same, and rechargeable lithium battery including same
WO2018096889A1 (en) Non-aqueous electrolyte solution and lithium ion secondary battery
WO2015059779A1 (en) Positive electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP5598684B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode and battery
WO2015019709A1 (en) Positive electrode material for lithium ion secondary batteries, and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP