JP2009105017A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2009105017A
JP2009105017A JP2007278194A JP2007278194A JP2009105017A JP 2009105017 A JP2009105017 A JP 2009105017A JP 2007278194 A JP2007278194 A JP 2007278194A JP 2007278194 A JP2007278194 A JP 2007278194A JP 2009105017 A JP2009105017 A JP 2009105017A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode mixture
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007278194A
Other languages
Japanese (ja)
Inventor
Yohei Hirota
洋平 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007278194A priority Critical patent/JP2009105017A/en
Publication of JP2009105017A publication Critical patent/JP2009105017A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery using a positive electrode plate capable of improving continuous charging characteristics and high-temperature preservation characteristics, even with charging at a charging voltage of 4.40 V or more on a lithium criterion. <P>SOLUTION: In the nonaqueous electrolyte secondary battery having the positive electrode plate 11 wherein a positive electrode mixture agent is coated on a positive electrode collector, a negative electrode plate wherein a negative electrode mixture agent is coated on a negative electrode collector, and a nonaqueous electrolyte wherein electrolyte salt is dissolved in a separator and a nonaqueous solvent, a first-layered positive electrode mixture agent layer 11B formed on both sides or one side of the positive electrode collector 11A and a second-layered positive electrode mixture agent 11C with a composition different from the first layer formed on the surface of the first-layered positive electrode mixture agent layer 11B are formed on the positive electrode plate 11. A positive electrode active material in the second-layered positive electrode mixture agent layer 11C is a material wherein a dissolved amount of metal elements except lithium is less than a positive electrode active material of the first-layered positive electrode mixture agent layer 11B at the time of immersing into acid aqueous solution. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムを含む正極活物質を含有する正極合剤が正極集電体に塗布された正極極板と、負極活物質を含有する負極合剤が負極集電体に塗布された負極極板と、セパレータ及び非水溶媒に電解質塩を溶解させた非水電解液を備えた非水電解質二次電池に関する。更に詳しくは、本発明は連続充電容量復帰率及び高温保存容量復帰率に優れたリチウム基準で4.40V以上の高電圧で充電することも可能な非水電解質二次電池に関する。   The present invention relates to a positive electrode plate in which a positive electrode mixture containing a positive electrode active material containing lithium is applied to a positive electrode current collector, and a negative electrode electrode in which a negative electrode mixture containing a negative electrode active material is applied to a negative electrode current collector The present invention relates to a nonaqueous electrolyte secondary battery including a plate, a separator, and a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery that can be charged at a high voltage of 4.40 V or higher on the basis of lithium, which is excellent in continuous charge capacity return rate and high temperature storage capacity return rate.

今日の携帯電話機、携帯型パーソナルコンピュータ、携帯型音楽プレイヤー等の携帯型電子機器の駆動電源として、高エネルギー密度を有し、高容量であるリチウムイオン二次電池に代表される非水電解質二次電池が広く利用されている。中でも、負極活物質として黒鉛粒子を用いた非水電解質二次電池は、安全性が高く、かつ、高容量であるために広く用いられている。   Non-aqueous electrolyte secondary typified by lithium-ion secondary battery with high energy density and high capacity as a driving power source for portable electronic devices such as mobile phones, portable personal computers, portable music players, etc. Batteries are widely used. Among these, nonaqueous electrolyte secondary batteries using graphite particles as the negative electrode active material are widely used because of their high safety and high capacity.

ところで、この種の非水電解質二次電池が使用される機器においては、電池を収容するスペースが角形(偏平な箱形)であることが多いことから、発電要素を角形外装缶に収容して形成した角形の非水電解質二次電池が多く使用されている。このような角形の非水電解質二次電池は一般的には以下のようにして作製される。   By the way, in a device in which this type of non-aqueous electrolyte secondary battery is used, the space for accommodating the battery is often a square (flat box shape), so the power generation element is accommodated in a rectangular outer can. The formed rectangular nonaqueous electrolyte secondary battery is often used. Such a rectangular non-aqueous electrolyte secondary battery is generally manufactured as follows.

すなわち、細長いシート状の銅箔等からなる負極集電体の両面に負極活物質を含有する負極合剤を塗布した負極極板と、細長いシート状のアルミニウム箔等からなる正極集電体の両面に正極活物質を含有する正極合剤を塗布した正極極板との間に、微多孔性ポリエチレンフィルム等からなるセパレータを配置し、負極極板及び正極極板をセパレータにより互いに絶縁した状態で円柱状の巻き芯に渦巻状に巻回して、円筒形の巻回電極体を作製する。この円筒形の電極体をプレス機で押し潰し、角形の電池外装缶に挿入できるような形に成型した後、これを角形外装缶に収容し、電解液を注液して角形の非水電解質二次電池としている。   That is, a negative electrode plate in which a negative electrode mixture containing a negative electrode active material is applied to both sides of a negative electrode current collector made of a long and thin sheet-like copper foil, and a positive electrode current collector made of a long and thin sheet-like aluminum foil and the like A separator made of a microporous polyethylene film or the like is placed between a positive electrode plate coated with a positive electrode mixture containing a positive electrode active material, and the negative electrode plate and the positive electrode plate are insulated from each other by the separator. A cylindrical wound electrode body is produced by spirally winding it around a columnar winding core. This cylindrical electrode body is crushed by a press machine and molded into a shape that can be inserted into a rectangular battery outer can. Then, the cylindrical electrode body is accommodated in a rectangular outer can, and an electrolyte is injected to form a rectangular nonaqueous electrolyte. Secondary battery is used.

このような従来の角形の非水電解質二次電池の構成を図面を用いて説明する。図1は従来の角形の非水電解質二次電池を縦方向に切断して示す斜視図である。この非水電解質二次電池10は、正極極板11と負極極板12とがセパレータ13を介して巻回された偏平状の巻回電極体14を、角形の電池外装缶15の内部に収容し、封口板16によって電池外装缶15を密閉したものである。   The configuration of such a conventional rectangular nonaqueous electrolyte secondary battery will be described with reference to the drawings. FIG. 1 is a perspective view showing a conventional rectangular nonaqueous electrolyte secondary battery cut in the longitudinal direction. In this nonaqueous electrolyte secondary battery 10, a flat wound electrode body 14 in which a positive electrode plate 11 and a negative electrode plate 12 are wound via a separator 13 is accommodated in a rectangular battery outer can 15. The battery outer can 15 is sealed with a sealing plate 16.

巻回電極体14は、正極極板11が最外周に位置して露出するように巻回されており、露出した最外周の正極極板11は、正極端子を兼ねる電池外装缶15の内面に直接接触し、電気的に接続されている。また、負極極板12は、封口板16の中央に形成され、絶縁体17を介して取り付けられた負極端子18に対して負極タブ19を介して電気的に接続されている。   The wound electrode body 14 is wound so that the positive electrode plate 11 is exposed at the outermost periphery, and the exposed outermost positive electrode plate 11 is formed on the inner surface of the battery outer can 15 that also serves as a positive electrode terminal. Direct contact and electrical connection. The negative electrode plate 12 is formed at the center of the sealing plate 16 and is electrically connected to a negative electrode terminal 18 attached via an insulator 17 via a negative electrode tab 19.

そして、電池外装缶15は、正極極板11と電気的に接続されているので、負極極板12と電池外装缶15との短絡を防止するために、巻回電極体14の上端と封口板16との間に絶縁スペーサ20を挿入することにより、負極極板12と電池外装缶15とを電気的に絶縁状態にしている。   Since the battery outer can 15 is electrically connected to the positive electrode plate 11, in order to prevent a short circuit between the negative electrode plate 12 and the battery outer can 15, the upper end of the wound electrode body 14 and the sealing plate The insulating spacer 20 is inserted between the negative electrode plate 12 and the battery outer can 15 so as to be electrically insulated.

この角形の非水電解質二次電池10は、巻回電極体14を電池外装缶15内に挿入した後、封口板16を電池外装缶15の開口部にレーザ溶接し、その後電解液注液孔21から非水電解液を注液して、この電解液注液孔21を密閉することにより作製される。このような角形の非水電解質二次電池10は、使用時のスペースの無駄が少なく、しかも電池性能や電池の信頼性が高いという優れた効果を奏するものである。   In this rectangular nonaqueous electrolyte secondary battery 10, after the wound electrode body 14 is inserted into the battery outer can 15, the sealing plate 16 is laser welded to the opening of the battery outer can 15, and then the electrolyte injection hole The non-aqueous electrolyte is injected from 21 and the electrolyte injection hole 21 is sealed. Such a rectangular non-aqueous electrolyte secondary battery 10 has an excellent effect that there is little wasted space during use, and the battery performance and battery reliability are high.

この非水電解質二次電池に使用される負極活物質としては、黒鉛、非晶質炭素などの炭素質材料がリチウム金属やリチウム合金に匹敵する放電電位を有しながらも、デンドライトが成長することがないために安全性が高く、更に初期効率に優れ、電位平坦性も良好であり、また、密度も高いという優れた性質を有していることから広く用いられている。   As the negative electrode active material used in this non-aqueous electrolyte secondary battery, carbonaceous materials such as graphite and amorphous carbon have a discharge potential comparable to that of lithium metal or lithium alloy, but dendrite grows. Therefore, it is widely used because it has excellent properties such as high safety, excellent initial efficiency, good potential flatness, and high density.

また、非水電解質の非水溶媒としては、カーボネート類、ラクトン類、エーテル類、エステル類などが単独であるいは2種類以上が混合されて使用されているが、これらの中では特に誘電率が大きく、非水電解質のイオン伝導度が大きいカーボネート類が多く使用されている   In addition, as the nonaqueous solvent for the nonaqueous electrolyte, carbonates, lactones, ethers, esters and the like are used alone or in admixture of two or more, but among these, the dielectric constant is particularly large. Many carbonates with high non-aqueous electrolyte ionic conductivity are used

そして、この非水電解質二次電池における正極活物質としてしては、リチウムイオンを可逆的に吸蔵・放出することが可能なLiMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち、LiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiMn、LiCoMnNi(x+y+z=1)又はLiFePOなどが一種単独もしくは複数種を混合して用いられている。 As a positive electrode active material in this nonaqueous electrolyte secondary battery, Li x MO 2 capable of reversibly inserting and extracting lithium ions (where M is at least one of Co, Ni, and Mn) A lithium transition metal composite oxide represented by: LiCoO 2 , LiNiO 2 , LiNi y Co 1-y O 2 (y = 0.01 to 0.99), LiMnO 2 , LiMn 2 O 4 , LiCo x Mn y Ni z O 2 (x + y + z = 1), LiFePO 4 or the like is used singly or in combination.

しかしながら、上述のような携帯型電子機器の高性能化、高機能化に伴い、非水電解質二次電池に対する高容量化の要求も高まる一方である。このような要望に応えるための手法としては、電極材料の高密度化、集電体及びセパレータ等の薄膜化、及び電池電圧の高充電電圧化が一般的に知られている。このうち、電極材料の高密度化、集電体及びセパレータの薄膜化を行うと、非水電解質二次電池の生産性が低下する。これに対し、電池電圧の高充電電圧化は、非水電解質二次電池の生産性におよぼす影響を最小限にして高容量化をはかることができるため、今後の高容量電池の開発には必須の技術である。   However, with the improvement in performance and functionality of portable electronic devices as described above, there is an increasing demand for higher capacity for nonaqueous electrolyte secondary batteries. As methods for meeting such demands, increasing the density of electrode materials, reducing the thickness of current collectors, separators, and the like, and increasing the battery voltage are generally known. Among these, when the electrode material is densified and the current collector and the separator are thinned, the productivity of the nonaqueous electrolyte secondary battery is lowered. On the other hand, increasing the charging voltage of the battery voltage is essential for the development of high-capacity batteries in the future, because it can minimize the impact on the productivity of non-aqueous electrolyte secondary batteries and increase the capacity. Technology.

現在、例えばコバルト酸リチウムLiCoOなどのリチウム含有遷移金属酸化物を正極活物質として用い、黒鉛等の炭素材料を負極活物質として用いた非水電解質二次電池においては、一般に充電電圧は4.1〜4.2V(正極電位はリチウム基準で4.2〜4.3V)となっている。このような充電条件では、正極は理論容量に対して50〜60%しか利用されていないことになる。したがって、充電電圧をより高くすることができれば、正極の容量を理論容量に対して70%以上で利用することが可能となり、電池の高容量化及び高エネルギー密度化が可能となる。
特開2005−317499号公報 特開2006−134770号公報 特開2006−156234号公報 特開2006−228651号公報
Currently, in a non-aqueous electrolyte secondary battery using a lithium-containing transition metal oxide such as lithium cobaltate LiCoO 2 as a positive electrode active material and a carbon material such as graphite as a negative electrode active material, the charging voltage is generally 4. 1 to 4.2 V (the positive electrode potential is 4.2 to 4.3 V with respect to lithium). Under such charging conditions, the positive electrode is used only 50 to 60% of the theoretical capacity. Therefore, if the charging voltage can be further increased, the capacity of the positive electrode can be utilized at 70% or more of the theoretical capacity, and the capacity and energy density of the battery can be increased.
JP 2005-317499 A JP 2006-134770 A JP 2006-156234 A JP 2006-228651 A

しかしながら、従来の非水電解質二次電池では、特に充電時の正極電位を高くすると、長時間の連続充電や高温での長時間保存時に正極活物質が早く劣化するという問題点があった。すなわち、従来の高充電電圧で充電できる非水電解質二次電池の正極活物質は、2種類以上の正極活物質材料を混合して用いることが行われている。例えば、上記特許文献1に開示されている非水電解質二次電池では、正極活物質としてリチウムコバルト複合酸化物に少なくともZr、Mgの異種元素を添加することで高電圧(〜4.5V)での構造安定性を向上させ、更に高電圧で熱安定性の高い層状マンガンニッケル酸リチウムを混合することで安全性を確保するようにしたものが用いられている。このような複数の正極活物質を混合して用いた正極極板は、耐電圧性の劣る材料から優先的に金属成分が溶出してしまうこと等の理由により、連続充電特性や高温保存特性が低下してしまう。   However, the conventional non-aqueous electrolyte secondary battery has a problem that the positive electrode active material deteriorates quickly during continuous charging for a long time or storage for a long time at a high temperature, particularly when the positive electrode potential during charging is increased. That is, a conventional positive electrode active material of a non-aqueous electrolyte secondary battery that can be charged at a high charge voltage is used by mixing two or more types of positive electrode active material. For example, in the non-aqueous electrolyte secondary battery disclosed in Patent Document 1, a high voltage (up to 4.5 V) is obtained by adding at least Zr and Mg different elements to a lithium cobalt composite oxide as a positive electrode active material. In order to improve the structural stability, a layered lithium manganese nickelate having a high voltage and high thermal stability is mixed to ensure safety. The positive electrode plate used by mixing a plurality of such positive electrode active materials has continuous charge characteristics and high-temperature storage characteristics due to the preferential elution of metal components from materials with poor voltage resistance. It will decline.

一方、上記特許文献2には、非水電解質二次電池における長時間の連続充電や高温での長時間保存時の特性を改善する目的で、正極集電体に塗布する正極合剤層を二層構造とし、集電体に近い側の第1層目の塗布層に対し、第2層目に熱重量測定による400℃での重量減少率がより小さい正極活物質を含む正極合剤を塗布した正極極板を用いた非水電解質二次電池が開示されている。この上記特許文献2に開示されている非水電解質二次電池では、正極活物質として具体的には第1層目にLiNiOが、第2層目にLiFePOが使用され、また、負極活物質として人造黒鉛、CoSn合金ないしCoSnC含有材料が使用されている。そして、特許文献2には、ここに記載の非水電解質二次電池は、正極活物質としてLiNiOを含む層のみを形成した非水電解質二次電池よりも長時間の連続充電や高温での長時間保存時の特性が改善できるようになることが示されている。 On the other hand, Patent Document 2 discloses a positive electrode mixture layer applied to a positive electrode current collector for the purpose of improving long-time continuous charging and long-time storage characteristics of a nonaqueous electrolyte secondary battery. Apply a positive electrode mixture containing a positive electrode active material having a layer structure and a smaller weight loss rate at 400 ° C. by thermogravimetry to the second layer on the first layer near the current collector A non-aqueous electrolyte secondary battery using the positive electrode plate is disclosed. In the nonaqueous electrolyte secondary battery disclosed in Patent Document 2, specifically, as the positive electrode active material, LiNiO 2 is used for the first layer, LiFePO 4 is used for the second layer, and the negative electrode active material is used. Artificial graphite, CoSn alloy or CoSnC-containing material is used as the substance. And in patent document 2, the nonaqueous electrolyte secondary battery described here is a long time continuous charge or higher temperature than a nonaqueous electrolyte secondary battery in which only a layer containing LiNiO 2 is formed as a positive electrode active material. It has been shown that the characteristics when stored for a long time can be improved.

しかしながら、上記特許文献2に開示されている非水電解質二次電池の連続充電特性及び高温保存特性は、充電上限電圧を4.20Vとして行われたものである(段落[0067]〜[0068]参照)が、4.30V以上のより高い充電電圧における高温保存特性、連続充電特性、あるいは充放電サイクル寿命に対しては効果が十分ではなかった。   However, the continuous charge characteristics and the high-temperature storage characteristics of the nonaqueous electrolyte secondary battery disclosed in Patent Document 2 are those obtained with a charge upper limit voltage of 4.20 V (paragraphs [0067] to [0068]). However, the effect was not sufficient for high-temperature storage characteristics, continuous charge characteristics, or charge / discharge cycle life at higher charge voltages of 4.30 V or higher.

本発明者は、上述のような第1層目と第2層目の正極活物質について種々組み合わせを検討する中で、充電中の正極極板内部の厚み方向の電位分布について詳細に調査した結果、極板の厚み方向の電位分布は一様ではなく、集電体側よりもセパレータに面した側で電位が高くなっている可能性が示唆された。このことから、充電時により電位が高くなる部分、すなわち正極極板の正極合剤塗布面の表層部分(第2層目)に耐酸化性に優れた材料を配することにより、放電容量や放電性能を損なうことなく、正極極板全体の耐酸化性を向上でき、連続充電特性及び高温保存特性に優れた非水電解質二次電池が得られることを見出し、本発明を完成するに至ったのである。なお、ここでいう耐酸化性とは、高電位にさらされたときの材料の劣化の度合いのことである。   As a result of investigating various combinations of the positive electrode active materials of the first layer and the second layer as described above, the inventor conducted a detailed investigation on the potential distribution in the thickness direction inside the positive electrode plate during charging. The potential distribution in the thickness direction of the electrode plate was not uniform, suggesting that the potential may be higher on the side facing the separator than on the current collector side. For this reason, by disposing a material with excellent oxidation resistance on the portion where the potential becomes higher during charging, that is, on the surface layer portion (second layer) of the positive electrode mixture coating surface of the positive electrode plate, the discharge capacity and discharge Since it was found that a non-aqueous electrolyte secondary battery excellent in continuous charge characteristics and high-temperature storage characteristics can be obtained without impairing performance, the oxidation resistance of the entire positive electrode plate can be improved, and the present invention has been completed. is there. The oxidation resistance referred to here is the degree of deterioration of the material when exposed to a high potential.

すなわち、本発明の目的は、電池電圧4.30V以上、リチウム基準で4.40V以上の充電電位で充電しても、連続充電特性及び高温保存特性を向上させることができる正極極板を用いた非水電解質二次電池を提供することにある。   That is, the object of the present invention is to use a positive electrode plate that can improve continuous charge characteristics and high-temperature storage characteristics even when charged at a battery voltage of 4.30 V or higher and a charging potential of 4.40 V or higher with respect to lithium. The object is to provide a non-aqueous electrolyte secondary battery.

上記目的を達成するため、本発明の非水電解質二次電池は、リチウムを含む正極活物質を含有する正極合剤が正極集電体に塗布された正極極板と、負極活物質を含有する負極合剤が負極集電体に塗布された負極極板と、セパレータ及び非水溶媒に電解質塩を溶解させた非水電解液を備えた非水電解質二次電池において、前記正極極板は、正極集電体の両面又は片面に形成された第1層目の正極合剤層と、前記第1層目の正極合剤層の表面に形成された前記第1層目とは異なる組成の第2層目の正極合剤層が形成されており、前記第2層目の正極合剤層中の正極活物質は、前記第1層目の正極合剤層中の正極活物質よりも酸性水溶液に浸漬させた際のリチウムを除く金属元素の溶出量が少ないものであることを特徴とする。   In order to achieve the above object, the nonaqueous electrolyte secondary battery of the present invention includes a positive electrode plate in which a positive electrode mixture containing a positive electrode active material containing lithium is applied to a positive electrode current collector, and a negative electrode active material. In a nonaqueous electrolyte secondary battery comprising a negative electrode plate in which a negative electrode mixture is applied to a negative electrode current collector, and a nonaqueous electrolyte solution in which an electrolyte salt is dissolved in a separator and a nonaqueous solvent, the positive electrode plate includes: The first positive electrode mixture layer formed on both sides or one side of the positive electrode current collector and the first layer formed on the surface of the first positive electrode mixture layer have a composition different from that of the first layer. A second positive electrode mixture layer is formed, and the positive electrode active material in the second positive electrode mixture layer is more acidic aqueous solution than the positive electrode active material in the first positive electrode mixture layer The amount of elution of metal elements excluding lithium when immersed in is small.

充電後の非水電解質二次電池の高温保存試験などで正極が高い温度で高い電位にさらされた場合、耐酸化性の低い正極活物質ほど、金属成分が酸化されて正極活物質粒子の表面からの金属成分の溶出量が多くなり、正極活物質粒子の表面における充放電反応の活性が低下する。これに対し、耐酸化性の高い正極活物質では、高温や高電圧にさらされた場合も、正極活物質粒子の表面からの金属成分の溶出が起こり難いため、正極活物質粒子表面における充放電反応の活性低下は小さい。本発明では、正極活物質材料の耐酸化性を簡易に評価する方法として、例えば25℃の0.1mol/Lの塩酸水溶液中に一定質量の正極活物質を浸漬して1時間程度保存した際の、塩酸水溶液中へのLiを除く金属成分の正極活物質当たりの溶出量(mol/L:1リットル当たりのモル数)を測定する方法を用いることができる。すなわち、正極活物質材料からの塩酸水溶液中へ金属成分の溶出量(Liを除く)が少ないほど、耐酸化性が高い材料であると判断することができる。酸性水溶液の濃度、温度が高すぎたり、浸漬時間が長すぎたりすると、正極活物質の大半が溶出してしまい、差が見えにくくなってしまうことがあるので、酸の種類によって適切な温度、濃度、浸漬時間等を選択することが望ましい。例えば塩酸を使用する場合は、濃度は0.05〜1.0mol/L、温度は20〜60℃、時間は10分〜6時間程度であることが望ましい。   When the positive electrode is exposed to a high potential at a high temperature in a high-temperature storage test of a non-aqueous electrolyte secondary battery after charging, the lower the oxidation resistance of the positive electrode active material, the more the metal component is oxidized and the surface of the positive electrode active material particles As a result, the amount of the elution of the metal component from the catalyst increases, and the charge / discharge reaction activity on the surface of the positive electrode active material particles decreases. On the other hand, in the positive electrode active material having high oxidation resistance, the elution of metal components from the surface of the positive electrode active material particles hardly occurs even when exposed to high temperature or high voltage. The decrease in reaction activity is small. In the present invention, as a method for easily evaluating the oxidation resistance of the positive electrode active material, for example, when a constant mass of the positive electrode active material is immersed in a 0.1 mol / L hydrochloric acid aqueous solution at 25 ° C. and stored for about 1 hour. The method of measuring the elution amount (mol / L: number of moles per liter) of the metal component excluding Li in the hydrochloric acid aqueous solution per positive electrode active material can be used. That is, it can be determined that the smaller the elution amount of metal components (excluding Li) from the positive electrode active material into the aqueous hydrochloric acid solution, the higher the oxidation resistance. If the concentration and temperature of the acidic aqueous solution are too high, or if the immersion time is too long, most of the positive electrode active material will be eluted, making it difficult to see the difference. It is desirable to select the concentration, immersion time, and the like. For example, when hydrochloric acid is used, it is desirable that the concentration is 0.05 to 1.0 mol / L, the temperature is 20 to 60 ° C., and the time is about 10 minutes to 6 hours.

本発明の非水電解質二次電池における正極極板は、正極集電体の表面に二層構造の正極合剤層が形成されており、第2層目(表層)の正極合剤層中の正極活物質は、第1層目(下層)の正極合剤層中の正極活物質よりも酸性水溶液に浸漬させた際のリチウムを除く金属元素の溶出量が少ないものが用いられている。そのため、第1層目の正極活物質が第2層目の正極活物質よりも溶媒に溶解しやすい材料であっても、第1層目の正極合剤層は第2層目の正極合剤層によって被覆されているため、得られた本発明の非水電解質二次電池は、連続充電を行っても高温の場所に保存しても、Li以外の金属の溶出量が減少する。そのため、本発明の非水電解質二次電池によれば、連続充電時や高温保存時の容量劣化や充放電サイクル寿命の劣化を抑制することができるようになる。   In the positive electrode plate in the nonaqueous electrolyte secondary battery of the present invention, a positive electrode mixture layer having a two-layer structure is formed on the surface of the positive electrode current collector, and the positive electrode mixture layer in the second layer (surface layer) As the positive electrode active material, a material in which the elution amount of metal elements excluding lithium when immersed in an acidic aqueous solution is smaller than that of the positive electrode active material in the positive electrode mixture layer of the first layer (lower layer) is used. Therefore, even if the first positive electrode active material is more easily dissolved in the solvent than the second positive electrode active material, the first positive electrode mixture layer is the second positive electrode mixture. Since the nonaqueous electrolyte secondary battery of the present invention obtained is covered with a layer, the amount of elution of metals other than Li is reduced even when continuously charged or stored in a high temperature place. Therefore, according to the nonaqueous electrolyte secondary battery of the present invention, it is possible to suppress the capacity deterioration and the charge / discharge cycle life deterioration during continuous charging and high-temperature storage.

なお、上記引用文献2に開示されている「熱重量測定による400℃での重量減少率」は、ここでいう熱安定性とは温度上昇に伴う結晶構造の変化に対する耐性を示していると考えられ、これは結晶の熱的な安定度に依拠するものである。一方、本発明における「酸性水溶液に浸漬させた際のリチウムを除く金属元素の溶出量」は、詳細なメカニズムは不明な部分もあるが、例えば、それぞれの正極活物質が含有している金属のイオン化傾向や、正極活物質表面近傍の構造の影響を受けて変化するものであると認められる。そのため、上記引用文献2に開示されている「熱重量測定による400℃での重量減少率」と本発明の「酸性水溶液に浸漬させた際のリチウムを除く金属元素の溶出量」との間には相関関係はない。   The “weight reduction rate at 400 ° C. by thermogravimetry” disclosed in the above cited reference 2 is considered to indicate the resistance to the change in crystal structure as the temperature rises. This depends on the thermal stability of the crystal. On the other hand, the “elution amount of metal elements excluding lithium when immersed in an acidic aqueous solution” in the present invention has a part of which the detailed mechanism is unknown, for example, the metal contained in each positive electrode active material It is recognized that it changes under the influence of ionization tendency and the structure near the surface of the positive electrode active material. Therefore, between the “weight reduction rate at 400 ° C. by thermogravimetry” disclosed in the above cited reference 2 and the “elution amount of metal elements excluding lithium when immersed in an acidic aqueous solution” of the present invention. There is no correlation.

本発明の非水電解質二次電池においては、第1層目及び第2層目の正極合剤層中の正極活物質は、第2層目の正極活物質が第1層目の正極活物質よりも酸性水溶液に浸漬させた際のリチウムを除く金属元素の溶出量が少なければ所定の効果を奏するため、例えば、LiMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち、LiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiMn、LiCoMnNi(x+y+z=1)又はLiFePO等から適宜に組み合わせて採用することができる。これらの正極化合物のうち、容量の面ではLiCoO、LiNiO、LiMn(スピネル型マンガン酸リチウム)、LiNi1−xCo(0<x<1)、LiNi1−x−yCoMn)(0<x、0<y、x+y<1)等が望ましい。これらの複合酸化物は、例えばアルミニウム、マグネシウム、ジルコニウム、チタン等、微量の他の元素を含んでいてもよい。また、LiFePOやこれにその他の元素が含まれている正極活物質でもよい。 In the nonaqueous electrolyte secondary battery of the present invention, the positive electrode active material in the first and second positive electrode mixture layers is the second layer positive electrode active material is the first layer positive electrode active material. For example, Li x MO 2 (wherein M is at least one of Co, Ni, and Mn) is sufficient to achieve a predetermined effect if the amount of elution of metal elements excluding lithium when immersed in an acidic aqueous solution is small. ), That is, LiCoO 2 , LiNiO 2 , LiNi y Co 1-y O 2 (y = 0.01 to 0.99), LiMnO 2 , LiMn 2 O 4 , LiCo x Mn y Ni z O 2 (x + y + z = 1) or LiFePO 4 can be used in appropriate combination. Among these positive electrode compounds, in terms of capacity, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 (spinel type lithium manganate), LiNi 1-x Co x O 2 (0 <x <1), LiNi 1-x— y Co x Mn y O 2 ) (0 <x, 0 <y, x + y <1) is desirable. These composite oxides may contain a trace amount of other elements such as aluminum, magnesium, zirconium, titanium, and the like. Further, LiFePO 4 or a positive electrode active material containing other elements may be used.

また、本発明の非水電解質二次電池で使用する負極極板としては、負極活物質として周知の人造黒鉛、天然黒鉛、非晶質炭素等の炭素質材料からなるものを使用することができる。   In addition, as the negative electrode plate used in the nonaqueous electrolyte secondary battery of the present invention, a material made of a carbonaceous material such as artificial graphite, natural graphite, or amorphous carbon known as a negative electrode active material can be used. .

また、本発明の非水電解質二次電池においては、非水溶媒系電解質を構成する非水溶媒(有機溶媒)としては、カーボネート類、ラクトン類、エーテル類、エステル類などを使用することができ、これら溶媒の2種類以上を混合して用いることもできる。これらの中ではカーボネート類、ラクトン類、エーテル類、ケトン類、エステル類などが好ましく、カーボネート類が更に好適に用いられる。   In the nonaqueous electrolyte secondary battery of the present invention, carbonates, lactones, ethers, esters, etc. can be used as the nonaqueous solvent (organic solvent) constituting the nonaqueous solvent electrolyte. Two or more of these solvents can be mixed and used. Among these, carbonates, lactones, ethers, ketones, esters and the like are preferable, and carbonates are more preferably used.

具体例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3オキサゾリジン−2−オン、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル、1,4−ジオキサンなどを挙げることができる。   Specific examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl. -1,3-oxazolidine-2-one, dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl propyl carbonate, methyl butyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, dipropyl carbonate, γ -Butyrolactone, γ-valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, 1,4-dio Xanthan can be mentioned.

なお、本発明における非水電解質の溶質としては、非水電解質二次電池において一般に溶質として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF(ヘキサフルオロリン酸リチウム)が好ましく用いられる。前記非水溶媒に対する溶質の溶解量は、0.5〜2.0mol/Lとするのが好ましい。 In addition, as a solute of the nonaqueous electrolyte in the present invention, a lithium salt generally used as a solute in a nonaqueous electrolyte secondary battery can be used. Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , and mixtures thereof Illustrated. Among these, LiPF 6 (lithium hexafluorophosphate) is preferably used. The amount of solute dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.

また、本発明の非水電解質二次電池においては、前記第1層目の正極合剤層中の正極活物質は、少なくともコバルトとリチウムを含む組成式LiCoOで表される複合酸化物からなり、前記第2層目の正極合剤層中の正極活物質は少なくともコバルト及びニッケルを含む組成式LiNi1−xCo(0<x<1)で表される複合酸化物からなるものとすることができる。 In the nonaqueous electrolyte secondary battery of the present invention, the positive electrode active material in the first positive electrode mixture layer is composed of a composite oxide represented by a composition formula LiCoO 2 containing at least cobalt and lithium. The positive electrode active material in the positive electrode mixture layer of the second layer is composed of a composite oxide represented by the composition formula LiNi 1-x Co x O 2 (0 <x <1) containing at least cobalt and nickel. It can be.

LiCoOは、各種電池特性が他のものに対して優れていることから非水電解質二次電池の正極活物質として広く用いられているが、酸性水溶液に浸漬するとコバルトイオンの溶出量が多い。それに対し、少なくともコバルト及びニッケルを含む組成式LiNi1−xCo(0<x<1)で表される複合酸化物は、酸性水溶液に浸漬してもLiCoOの場合よりもニッケルイオン及びコバルトイオンの溶出量が少ない。そのため、係る態様の非水電解質二次電池によれば、特に連続充電時や高温保存時の容量劣化や充放電サイクル寿命の劣化を抑制することができるようになる。なお、係る態様の非水電解質二次電池においては、第1層目の正極活物質であるLiCoO中には、上記特許文献3及び4にも示されているように、LiCoOに対して高い電位においても電解液の分解反応や結晶破壊を起こさないようにするため、微量のジルコニウム、マグネシウム、アルミニウム等の異種金属元素が含まれていてもよい。 LiCoO 2 is widely used as a positive electrode active material for non-aqueous electrolyte secondary batteries because it has various battery characteristics superior to others. However, when it is immersed in an acidic aqueous solution, a large amount of cobalt ions are eluted. On the other hand, the composite oxide represented by the composition formula LiNi 1-x Co x O 2 (0 <x <1) containing at least cobalt and nickel is more nickel ion than the case of LiCoO 2 even when immersed in an acidic aqueous solution. And the elution amount of cobalt ions is small. Therefore, according to the nonaqueous electrolyte secondary battery of this aspect, it becomes possible to suppress deterioration in capacity and charge / discharge cycle life particularly during continuous charging and storage at high temperatures. In the non-aqueous electrolyte secondary battery of the embodiment according, during LiCoO 2 is a positive electrode active material of the first layer, as is also shown in the Patent Documents 3 and 4, with respect to LiCoO 2 In order not to cause decomposition reaction or crystal destruction of the electrolytic solution even at a high potential, a trace amount of different metal elements such as zirconium, magnesium, and aluminum may be contained.

また、本発明の非水電解質二次電池においては、前記第1層目の正極合剤層中の正極活物質は、少なくともコバルトとリチウムを含む組成式LiCoOで表される複合酸化物からなり、前記第2層目の正極合剤層中の正極活物質は少なくともコバルト及びニッケル及びマンガンを含む組成式LiNi1−x−yCoMn(0<x<1、0<y<1、0<x+y<1)で表される複合酸化物からなるものとすることができる。 In the nonaqueous electrolyte secondary battery of the present invention, the positive electrode active material in the first positive electrode mixture layer is composed of a composite oxide represented by a composition formula LiCoO 2 containing at least cobalt and lithium. The positive electrode active material in the positive electrode mixture layer of the second layer has a composition formula LiNi 1-xy Co x Mn y O 2 (0 <x <1, 0 <y <) containing at least cobalt, nickel, and manganese. The composite oxide represented by 1, 0 <x + y <1) may be used.

このコバルト及びニッケル及びマンガンを含む組成式LiNi1−x−yCoMn(0<x<1、0<y<1、0<x+y<1)で表される複合酸化物も、組成によって変化はするが、いずれも組成式LiCoOで表される複合酸化物よりも酸性水溶液に浸漬した際のニッケルイオン及びコバルトイオンの溶出量が大幅に少ない。そのため、係る態様の非水電解質二次電池によっても連続充電時や高温保存時の容量劣化や充放電サイクル寿命の劣化を抑制することができるようになる。 The composite oxide represented by the composition formula LiNi 1-xy Co x Mn y O 2 (0 <x <1, 0 <y <1, 0 <x + y <1) containing cobalt, nickel, and manganese is Although it changes depending on the composition, the elution amount of nickel ions and cobalt ions when immersed in an acidic aqueous solution is significantly smaller than that of the composite oxide represented by the composition formula LiCoO 2 . Therefore, even with the nonaqueous electrolyte secondary battery according to this aspect, it is possible to suppress the capacity deterioration during continuous charging or high-temperature storage and the deterioration of the charge / discharge cycle life.

また、本発明の非水電解質二次電池においては、充電終止電圧は、リチウム基準で4.40V以上とすることができる。   In the nonaqueous electrolyte secondary battery of the present invention, the end-of-charge voltage can be 4.40 V or more on the basis of lithium.

本発明の非水電解質二次電池は、正極の充電電圧を従来のものよりも高いリチウム基準で4.40V以上とすることができるため、高容量でありながら、連続充電時や高温保存時の容量劣化や充放電サイクル寿命の劣化を抑制することができるようになる。なお、負極活物質として炭素質材料を用いた場合、リチウム基準の炭素質材料の電位は0.10Vであるから、充電終止電圧は4.30V以上となる。なお、充電終止電圧の上限値は、正極活物質の組成によっても変化するが、熱的安定性及び安全性の確保のため、リチウム基準で5.00V以下が望ましい。   In the nonaqueous electrolyte secondary battery of the present invention, since the charging voltage of the positive electrode can be 4.40 V or higher on the basis of lithium higher than that of the conventional one, it has a high capacity, but at the time of continuous charging or storage at high temperature. Capacitance deterioration and charge / discharge cycle life deterioration can be suppressed. Note that when a carbonaceous material is used as the negative electrode active material, the potential of the lithium-based carbonaceous material is 0.10 V, and thus the end-of-charge voltage is 4.30 V or more. In addition, although the upper limit of a charge end voltage changes also with a composition of a positive electrode active material, in order to ensure thermal stability and safety, 5.00 V or less is desirable on the basis of lithium.

以下、本願発明を実施するための最良の形態を実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, the best mode for carrying out the present invention will be described in detail using examples and comparative examples. However, the following examples illustrate non-aqueous electrolyte secondary batteries for embodying the technical idea of the present invention, and are not intended to specify the present invention to these examples. The present invention can be equally applied to various modifications without departing from the technical idea shown in the claims.

[各正極活物質の溶解性の調査」
最初に各正極材料の耐酸化性を評価するため、LiCoO、LiNi0.8Co0.2、LiNi0.5Co0.2Mn0.3、LiNi0.33Co0.33Mn0.33及びLiFePOの5種類の正極活物質試料を用意し、それぞれの正極活物質を1g採取し、25℃の0.1mol/Lの塩酸水溶液10mL中に一定質量の正極活物質を浸漬して1時間放置した。次いで、各容器内の水についてICP(誘導結合プラズマ)発光分析法によって溶出した金属成分の濃度(Liを除く)(mg/g)を測定し、結果をmol/L単位に換算し、LiCoOから溶出したCo濃度を100%として規格化して各正極活物質から溶出した金属量(%)を求めた。結果を表1に示した。
[Investigation of solubility of each positive electrode active material]
First, in order to evaluate the oxidation resistance of each positive electrode material, LiCoO 2 , LiNi 0.8 Co 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.33 Co 0. 33 5 types of positive electrode active material samples of Mn 0.33 O 2 and LiFePO 4 were prepared, 1 g of each positive electrode active material was sampled, and a positive electrode having a constant mass in 10 mL of a 0.1 mol / L hydrochloric acid aqueous solution at 25 ° C. The active material was immersed and left for 1 hour. Next, the concentration (excluding Li) (mg / g) of the metal component eluted by ICP (inductively coupled plasma) emission spectrometry was measured for the water in each container, and the results were converted to mol / L units, and LiCoO 2 The amount of metal (%) eluted from each positive electrode active material was determined by standardizing Co concentration eluted from 100%. The results are shown in Table 1.

Figure 2009105017
Figure 2009105017

表1に示した結果から、LiNi0.8Co0.2、LiNi0.5Co0.2Mn0.3及びLiNi0.33Co0.33Mn0.33からの金属成分の溶出量は非常に少ないが、LiCoO及びLiFePOからの金属成分の溶出量は多いことが分かる。従って、LiCoO及びLiFePOは正極集電体の表面に形成される第1層目(下層側)の正極合剤層中に添加することが望ましく、LiNi0.8Co0.2、LiNi0.5Co0.2Mn0.3及びLiNi0.33Co0.33Mn0.33は第2層目(表面側)の正極合剤層中に添加することが望ましいことがわかる。 From the results shown in Table 1, LiNi 0.8 Co 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 and LiNi 0.33 Co 0.33 Mn 0.33 O 2 It can be seen that the elution amount of the metal component is very small, but the elution amount of the metal component from LiCoO 2 and LiFePO 4 is large. Therefore, LiCoO 2 and LiFePO 4 are preferably added to the positive electrode mixture layer of the first layer (lower layer side) formed on the surface of the positive electrode current collector, LiNi 0.8 Co 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 and LiNi 0.33 Co 0.33 Mn 0.33 O 2 are desirably added to the positive electrode mixture layer of the second layer (surface side). I understand that.

[正極極板の作成]
各実施例及び比較例で使用する正極極板は次のようにして作成した。すなわち、各正極活物質材料85質量部と、導電剤としての黒鉛粉末5質量部とカーボンブラック5質量部とを充分に混合した。この後、N−メチル−2−ピロリドン(NMP)に溶かした結着剤としてのフッ化ビニリデン系重合体を固形分として5質量部となるように混合して、正極合剤スラリーを作製した。このようにして作成された正極合剤スラリーを用い、実施例1〜4の電池では、図2に示すように、アルミニウム箔等からなる正極集電体11Aの両面にそれぞれ異なる種類の正極活物質を含む第1層目の正極合剤層11Bと第2層目の正極合剤層11Cとを実質的に同じ厚さに形成した。なお、図2は実施例1〜4の正極極板の部分断面図である。なお、実施例1〜4のそれぞれの電池の第1層目の正極合剤層中11Bの活物質及び第2層目の正極合剤層11C中の活物質は、下記表2に示したように、上記表1の結果に基いて第1層目の正極合剤層11B内の正極活物質よりも第2層目の正極合剤層11C内の正極活物質の方が酸性水溶液に対する溶出量が少ないものとなるように組み合わせた。
[Creation of positive electrode plate]
The positive electrode plate used in each example and comparative example was prepared as follows. That is, 85 parts by mass of each positive electrode active material, 5 parts by mass of graphite powder as a conductive agent, and 5 parts by mass of carbon black were sufficiently mixed. Thereafter, a vinylidene fluoride polymer as a binder dissolved in N-methyl-2-pyrrolidone (NMP) was mixed to a solid content of 5 parts by mass to prepare a positive electrode mixture slurry. In the batteries of Examples 1 to 4 using the positive electrode mixture slurry thus prepared, as shown in FIG. 2, different types of positive electrode active materials on both surfaces of the positive electrode current collector 11A made of aluminum foil or the like. The first positive electrode mixture layer 11 </ b> B and the second positive electrode mixture layer 11 </ b> C including substantially the same thickness were formed. FIG. 2 is a partial cross-sectional view of the positive electrode plates of Examples 1 to 4. The active material in 11B in the first positive electrode mixture layer and the active material in the second positive electrode mixture layer 11C of each battery of Examples 1 to 4 are as shown in Table 2 below. Further, based on the results in Table 1, the amount of elution of the positive electrode active material in the second positive electrode mixture layer 11C with respect to the acidic aqueous solution is larger than the positive electrode active material in the first positive electrode mixture layer 11B. Are combined so that there are few.

すなわち、上記のようにして作製した正極合剤スラリーのうち、第1層目の正極合剤層11Bとして塗布する正極合剤スラリーをドクターブレード法により厚み20μmのアルミニウム製正極集電体11Aの両面に塗布し、十分に乾燥させた後、第2層目の正極合剤層11Cとして第1層目の正極合剤層11Bとは異なる種類の正極活物質を含む正極合剤スラリーを第1層目の正極合剤層11Bを覆うようにして同様にほぼ同じ厚さに塗布した。その後、第2層目の正極合剤層11Cも十分に乾燥させた後、所定の厚みになるまでローラプレス機により圧延し、その後、幅40mmの短冊状に切断して正極極板11を作製した。なお、実施例1〜4のそれぞれの非水電解質二次電池の正極合剤層中の活物質を下記表2にまとめて示した。   That is, of the positive electrode mixture slurry produced as described above, the positive electrode mixture slurry applied as the first positive electrode mixture layer 11B is formed on both surfaces of the aluminum positive electrode current collector 11A having a thickness of 20 μm by the doctor blade method. And then sufficiently drying, a positive electrode mixture slurry containing a positive electrode active material of a type different from that of the first positive electrode mixture layer 11B as the second positive electrode mixture layer 11C is applied to the first layer. Similarly, it was applied to substantially the same thickness so as to cover the positive electrode mixture layer 11B of the eye. Thereafter, the positive electrode mixture layer 11C of the second layer is also sufficiently dried and then rolled with a roller press until a predetermined thickness is obtained, and then cut into a strip shape having a width of 40 mm to produce the positive electrode plate 11. did. In addition, the active material in the positive mix layer of each nonaqueous electrolyte secondary battery of Examples 1-4 was put together in the following Table 2, and was shown.

比較例1〜6のそれぞれの電池の正極極板は、表2に示したように、LiCoOを含む正極合剤を1層塗布した正極極板(比較例1)、LiNiO.33Co0.33Mn0.33を含む正極合剤を1層塗布した正極極板(比較例2)、LiCoOとLiNiO.8Co0.2を質量比1:1で混合した正極活物質を含む正極合剤を1層塗布した正極極板(比較例3)、LiCoOとLiNi0.5Co0.2MnO.3を質量比1:1で混合した正極活物質を含む正極合剤を1層塗布した正極極板(比較例4)、LiCoOとLiNi0.33Co0.33Mn0.33を質量比1:1で混合した正極活物質を含む正極合剤を1層塗布した正極極板(比載例5)、第1層目にLiNiO0.33Co0.33MnO.33を含む正極合剤層、第2層目にLiCoOを含む正極合剤層を形成した正極極板(比較例6、実施例3の逆パターン)のそれぞれの正極極板を作製した。なお、比較例1〜5の電池では、正極合剤層を1層のみ形成した正極極板としたが、この場合は実施例1〜4の正極極板と同じ厚さになるように正極合剤スラリーを塗布し、実施例1〜4の場合と同様にして作製した。なお、比較例1〜6のそれぞれの非水電解質二次電池の正極合剤層中の活物質を下記表2にまとめて示した。 As shown in Table 2, the positive electrode plate of each battery of Comparative Examples 1 to 6 was a positive electrode plate (Comparative Example 1) coated with one layer of a positive electrode mixture containing LiCoO 2 , LiNi O 2. A positive electrode plate (Comparative Example 2) coated with one layer of a positive electrode mixture containing 33 Co 0.33 Mn 0.33 O 2 , LiCoO 2 and LiNi O 2 . A positive electrode plate (Comparative Example 3) coated with one layer of a positive electrode mixture containing a positive electrode active material in which 8 Co 0.2 O 2 is mixed at a mass ratio of 1: 1, LiCoO 2 and LiNi 0.5 Co 0.2 Mn O. A positive electrode plate (Comparative Example 4) coated with one layer of a positive electrode mixture containing a positive electrode active material in which 3 O 2 is mixed at a mass ratio of 1: 1, LiCoO 2 and LiNi 0.33 Co 0.33 Mn 0.33 O 2 mass ratio of 1: positive electrode plate was 1 layer coating positive electrode mixture containing a mixed positive electrode active material in 1 (ratio Norei 5), LiNiO 0.33 Co 0.33 Mn O. to the first-layer A positive electrode plate (a reverse pattern of Comparative Example 6 and Example 3) in which a positive electrode mixture layer containing 33 O 2 and a positive electrode mixture layer containing LiCoO 2 were formed in the second layer was prepared. . In the batteries of Comparative Examples 1 to 5, a positive electrode plate having only one positive electrode mixture layer was formed. In this case, the positive electrode mixture was made to have the same thickness as the positive electrode plates of Examples 1 to 4. An agent slurry was applied and produced in the same manner as in Examples 1 to 4. In addition, the active material in the positive mix layer of each nonaqueous electrolyte secondary battery of Comparative Examples 1 to 6 is shown in Table 2 below.

[負極の作製]
天然黒鉛(Lc値が150Å以上で、d値が3.38Å以下のもの)粉末95質量部に、N−メチル−2−ピロリドン(NMP)に溶かした結着剤としてのフッ化ビニリデン系重合体を固形分として5質量部となるように混合して、負極合剤スラリーを調製した。この後、得られた負極合剤スラリーを厚みが18μmの負極集電体(銅箔)の両面にドクターブレード法により塗布して、負極集電体の両面に負極合剤層を形成した。次いで、乾燥後、所定の厚みになるまでローラプレス機により圧延し、幅42mmの短冊状に切断して、端部に負極リードを溶接し負極極板12(図1参照)を作製した。
[Production of negative electrode]
Vinylidene fluoride polymer as a binder dissolved in N-methyl-2-pyrrolidone (NMP) in 95 parts by mass of natural graphite (Lc value is 150 Å or more and d value is 3.38 Å or less) powder Were mixed so as to be 5 parts by mass as a solid content to prepare a negative electrode mixture slurry. Thereafter, the obtained negative electrode mixture slurry was applied to both surfaces of a negative electrode current collector (copper foil) having a thickness of 18 μm by a doctor blade method to form a negative electrode mixture layer on both surfaces of the negative electrode current collector. Next, after drying, the product was rolled with a roller press until a predetermined thickness was obtained, cut into a strip shape having a width of 42 mm, and a negative electrode lead was welded to the end portion to prepare a negative electrode plate 12 (see FIG. 1).

[電池の作製]
上記のようにして作製された実施例1〜4及び比較例1〜6の正極極板のそれぞれと負極極板を幅44mm、厚さ25μmのポリエチレン製微多孔膜のセパレータ13を介して相対向するように配置した後、円柱状の巻き芯の周りに巻回し、円筒状の巻回電極体を作製した。更にこの円筒状の巻回電極体がほどけぬように最外周をポリプロピレン製テープで固定した。次いで、この円筒状の巻回電極体をプレスして、横断面形状が長円形状の巻回電極体を得た。プレスした後の長円形状の巻回電極体の厚みは、4.2mmになるように、プレスの圧力を制御した。その後、長円形状の巻回電極体の缶底に当たる面にテープを貼り付け、缶底部分との絶縁を行った。これらの長円形状の巻回電極体を図1に示したような直方体の電池缶内に挿入し、注液口を設けた封口体をレーザ溶接にて封止した。そして、封口体部分に設けられた電解液注液用の穴に電解液を2.5g注液し、注液口にアルミニウム製のプレートを設置してレーザ溶接により密栓することにより、高さ45mm、幅54mm、厚み5.0mmの実施例1〜4及び比較例1〜6の非水電解質二次電池を作製した。なお、電解液としてはエチレンカーボネート、ジエチルカーボネートを質量比3:7で混合した溶媒に1mol/LのLiPFを溶解させたものを使用した。
[Production of battery]
Each of the positive electrode plates of Examples 1 to 4 and Comparative Examples 1 to 6 prepared as described above and the negative electrode plate are opposed to each other through a polyethylene microporous membrane separator 13 having a width of 44 mm and a thickness of 25 μm. After being arranged in such a manner, it was wound around a cylindrical winding core to produce a cylindrical wound electrode body. Furthermore, the outermost periphery was fixed with a polypropylene tape so that the cylindrical wound electrode body could not be unwound. Next, this cylindrical wound electrode body was pressed to obtain a wound electrode body having an oval cross-sectional shape. The press pressure was controlled so that the thickness of the oval wound electrode body after pressing was 4.2 mm. Thereafter, a tape was affixed to the surface of the oval wound electrode body that contacted the bottom of the can to insulate it from the can bottom. These oval wound electrode bodies were inserted into a rectangular battery can as shown in FIG. 1, and the sealing body provided with the liquid inlet was sealed by laser welding. Then, by injecting 2.5 g of electrolyte into a hole for electrolyte injection provided in the sealing body portion, an aluminum plate is installed in the injection port, and sealed by laser welding to a height of 45 mm. Non-aqueous electrolyte secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 6 having a width of 54 mm and a thickness of 5.0 mm were produced. As the electrolytic solution, a solution obtained by dissolving 1 mol / L LiPF 6 in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a mass ratio of 3: 7 was used.

[通常の充電電圧での連続充電試験]
最初に充電上限電圧として普通に使用されている4.20V(正極電位はリチウム基準で4.30Vとなる)を採用した場合の各種測定データを求めた。まず、実施例1〜4及び比較例1〜6のそれぞれの電池について、25℃の雰囲気下にて、0.60Aの定電流で電池電圧が4.20Vになるまで充電し、その後4.20Vの定電圧で充電電流が0.03Aとなるまで充電した。その後、10分休止したのち、0.12Aの定電流で電池電圧が2.75Vとなるまで放電し、初期放電容量を測定した。その後、25℃の雰囲気下にて、0.60Aの定電流で電池電圧が4.20Vになるまで充電し、その後4.20Vの定電圧で60日間の連続充電を実施した。連続充電終了後、25℃の雰囲気下にて、0.12Aの定電流で電池電圧が2.75Vとなるまで放電させ、さらに0.60Aの定電流で電池電圧が4.20Vになるまで充電し、その後4.20Vの定電圧で充電電流が0.03Aとなるまで充電した。その後、10分休止したのち、0.12Aの定電流で電池電圧が2.75Vとなるまで放電させて連続充電後の復帰放電容量を測定した。これらの結果から、下記の式(1)に従って連続充電後の容量復帰率(%)を求めた。結果をまとめて表2に示した。
連続充電後の容量復帰率(%)
=(連続充電後の復帰放電容量/初期放電容量)×100 (1)
[Continuous charging test at normal charging voltage]
First, various measurement data were obtained when 4.20 V (the positive electrode potential is 4.30 V with respect to lithium), which is normally used as the upper limit voltage for charging, was employed. First, the batteries of Examples 1 to 4 and Comparative Examples 1 to 6 were charged in a 25 ° C. atmosphere at a constant current of 0.60 A until the battery voltage reached 4.20 V, and then 4.20 V. The battery was charged at a constant voltage until the charging current reached 0.03 A. After 10 minutes of rest, the battery was discharged at a constant current of 0.12 A until the battery voltage reached 2.75 V, and the initial discharge capacity was measured. Thereafter, the battery was charged at a constant current of 0.60 A until the battery voltage reached 4.20 V in an atmosphere of 25 ° C., and then continuously charged for 60 days at a constant voltage of 4.20 V. After the continuous charging, the battery is discharged at a constant current of 0.12 A until the battery voltage reaches 2.75 V in an atmosphere of 25 ° C., and further charged until the battery voltage reaches 4.20 V at a constant current of 0.60 A. Thereafter, the battery was charged at a constant voltage of 4.20 V until the charging current reached 0.03 A. Then, after resting for 10 minutes, the battery was discharged at a constant current of 0.12 A until the battery voltage reached 2.75 V, and the return discharge capacity after continuous charging was measured. From these results, the capacity recovery rate (%) after continuous charging was determined according to the following equation (1). The results are summarized in Table 2.
Capacity recovery rate after continuous charging (%)
= (Reset discharge capacity after continuous charge / initial discharge capacity) × 100 (1)

[通常の充電電圧での高温保存試験]
実施例1〜4及び比較例1〜6の電池について、25℃の雰囲気下にて、0.60Aの定電流で電池電圧が4.20Vになるまで充電し、その後4.20Vの定電圧で充電電流が0.03Aとなるまで充電した。その後、10分休止したのち、0.12Aの定電流で電池電圧が2.75Vとなるまで放電し、初期放電容量を測定した。次いで、25℃の雰囲気下にて、0.60Aの定電流で電池電圧が4.20Vになるまで充電し、その後4.20Vの定電圧で充電電流が0.03Aとなるまで充電した後、60℃の雰囲気下に60日間保存した。保存試験終了後、25℃の雰囲気下にて、0.12Aの定電流で電池電圧が2.75Vとなるまで放電させ、さらに0.60Aの定電流で電池電圧が4.20Vになるまで充電し、その後4.20Vの定電圧で充電電流が0.03Aとなるまで充電した。その後、10分休止したのち、0.12Aの定電流で電池電圧が2.75Vとなるまで放電させて高温保存後の復帰放電容量を測定した。これらの結果から、下記の式(2)に従って高温保存後の容量復帰率(%)を求めた。結果をまとめて表2に示した。
高温保存後の容量復帰率(%)
=(高温保存後の復帰放電容量/初期放電容量)×100 (2)
[High temperature storage test at normal charging voltage]
The batteries of Examples 1 to 4 and Comparative Examples 1 to 6 were charged at a constant current of 0.60 A until the battery voltage reached 4.20 V in an atmosphere at 25 ° C., and then at a constant voltage of 4.20 V. The battery was charged until the charge current reached 0.03A. After 10 minutes of rest, the battery was discharged at a constant current of 0.12 A until the battery voltage reached 2.75 V, and the initial discharge capacity was measured. Next, in an atmosphere of 25 ° C., the battery was charged with a constant current of 0.60 A until the battery voltage reached 4.20 V, and then charged with a constant voltage of 4.20 V until the charging current became 0.03 A, It preserve | saved for 60 days in 60 degreeC atmosphere. After the storage test is completed, the battery is discharged at a constant current of 0.12 A until the battery voltage reaches 2.75 V in an atmosphere at 25 ° C., and further charged until the battery voltage reaches 4.20 V at a constant current of 0.60 A. Thereafter, the battery was charged at a constant voltage of 4.20 V until the charging current reached 0.03 A. Then, after resting for 10 minutes, the battery was discharged at a constant current of 0.12 A until the battery voltage reached 2.75 V, and the return discharge capacity after high temperature storage was measured. From these results, the capacity recovery rate (%) after high-temperature storage was determined according to the following formula (2). The results are summarized in Table 2.
Capacity recovery rate after storage at high temperature (%)
= (Reset discharge capacity after high temperature storage / Initial discharge capacity) × 100 (2)

Figure 2009105017
Figure 2009105017

表2に示した結果から以下のことが分かる。すなわち、正極極板として第2層目に酸性水溶液に浸漬した際の金属元素の溶出量の少ない正極活物質を用いた実施例1〜3の非水電解質二次電池と、これらの材料を混合して塗布した極板を用いた比較例3〜5の非水電解質二次電池の結果を対比すると、初期容量はほぼ同等であるが、連続充電後の容量復帰率、高温保存後の容量復帰率ともに実施例1〜3の非水電解質二次電池の方が良好な結果となった。また、正極極板が正極活物質としてLiCoOを含む単一層である比較例1の非水電解質二次電池は、初期放電容量は良好な結果が得られているが、連続充電後の容量復帰率、高温保存後の容量復帰率は劣る。更に、正極極板が正極活物質としてLiNi0.33Co0.33Mn0.33を含む単一層である比較例2の非水電解質二次電池は、連続充電後の容量復帰率、高温保存後の容量復帰率は良好な結果が得られているが、初期放電容量は劣る。 From the results shown in Table 2, the following can be understood. That is, the nonaqueous electrolyte secondary battery of Examples 1 to 3 using a positive electrode active material with a small amount of metal element elution when immersed in an acidic aqueous solution in the second layer as a positive electrode plate, and these materials were mixed When comparing the results of the non-aqueous electrolyte secondary batteries of Comparative Examples 3 to 5 using the coated electrode plate, the initial capacity is almost the same, but the capacity recovery rate after continuous charging and the capacity recovery after high temperature storage Both the non-aqueous electrolyte secondary batteries of Examples 1 to 3 gave better results. In addition, the nonaqueous electrolyte secondary battery of Comparative Example 1 in which the positive electrode plate is a single layer containing LiCoO 2 as the positive electrode active material has a good initial discharge capacity, but the capacity is restored after continuous charging. The capacity recovery rate after storage at high temperature is poor. Furthermore, the nonaqueous electrolyte secondary battery of Comparative Example 2 in which the positive electrode plate is a single layer containing LiNi 0.33 Co 0.33 Mn 0.33 O 2 as a positive electrode active material has a capacity recovery rate after continuous charging, Although a good result has been obtained for the capacity recovery rate after high-temperature storage, the initial discharge capacity is inferior.

更に、第1層と第2層の配置関係が互いに逆である実施例3の非水電解質二次電池と比較例6の非水電解質二次電池の結果とを対比すると、初期放電容量は両者ともに良好な結果が得られているが、連続充電後の容量復帰率及び高温保存後の容量復帰率は比較例6の非水電解質二次電池の方が劣る。なお、第1層目が正極活物質としてLiFePOを含む層であり、第2層目が正極活物質としてLiCoOを含む層である実施例4の非水電解質二次電池は、初期放電容量は劣るが連続充電後の容量復帰率、高温保存後の容量復帰率は良好な結果が得られている。この実施例4の測定結果は、第1層目が酸性水溶液に浸漬させた際のリチウムを除く金属元素の溶出量が最も多い正極活物質であるLiFePOであっても、この第1層目の表面にLiFePOよりも酸性水溶液に浸漬した際の金属元素の溶出量の少ない正極活物質を含む第2層目を形成すると、連続充電後の容量復帰率、高温保存後の容量復帰率が良好になるということを示している。 Furthermore, when comparing the results of the nonaqueous electrolyte secondary battery of Example 3 and the nonaqueous electrolyte secondary battery of Comparative Example 6 in which the arrangement relationship of the first layer and the second layer is opposite to each other, the initial discharge capacity is Although good results were obtained for both, the non-aqueous electrolyte secondary battery of Comparative Example 6 was inferior in terms of the capacity recovery rate after continuous charging and the capacity recovery rate after high-temperature storage. In addition, the nonaqueous electrolyte secondary battery of Example 4 in which the first layer is a layer containing LiFePO 4 as a positive electrode active material and the second layer is a layer containing LiCoO 2 as a positive electrode active material has an initial discharge capacity. However, the capacity recovery rate after continuous charging and the capacity recovery rate after high-temperature storage are good. The measurement result of Example 4 shows that even when LiFePO 4 , which is the positive electrode active material having the largest amount of elution of metal elements excluding lithium when the first layer is immersed in an acidic aqueous solution, When the second layer containing a positive electrode active material with a small amount of metal element elution when immersed in an acidic aqueous solution than LiFePO 4 is formed on the surface, the capacity recovery rate after continuous charging and the capacity recovery rate after high-temperature storage are It shows that it becomes good.

[高い充電電圧での連続充電試験]
次に充電上限電圧として通常採用されている4.20Vよりも高い4.30V(正極電位はリチウム基準で4.40Vとなる)を採用した場合の各種測定データを求めた。まず、実施例1〜4及び比較例1〜6のそれぞれの電池について、25℃の雰囲気下にて、0.60Aの定電流で電池電圧が4.30Vになるまで充電し、その後4.30Vの定電圧で充電電流が0.03Aとなるまで充電した。その後、10分休止したのち、0.12Aの定電流で電池電圧が2.75Vとなるまで放電し、初期放電容量を測定した。その後、25℃の雰囲気下にて、0.60Aの定電流で電池電圧が4.30Vになるまで充電し、その後4.30Vの定電圧で60日間の連続充電を実施した。連続充電終了後、25℃の雰囲気下にて、0.12Aの定電流で電池電圧が2.75Vとなるまで放電させ、さらに0.60Aの定電流で電池電圧が4.30Vになるまで充電し、その後4.30Vの定電圧で充電電流が0.03Aとなるまで充電した。その後、10分休止したのち、0.12Aの定電流で電池電圧が2.75Vとなるまで放電させて連続充電後の復帰放電容量を測定した。これらの結果から、上記の式(1)に従って連続充電後の容量復帰率(%)を求めた。結果をまとめて表3に示した。
[Continuous charge test at high charge voltage]
Next, various measurement data were obtained when 4.30 V (the positive electrode potential was 4.40 V on the basis of lithium) higher than the 4.20 V that is normally employed as the charge upper limit voltage. First, each of the batteries of Examples 1 to 4 and Comparative Examples 1 to 6 was charged in a 25 ° C. atmosphere at a constant current of 0.60 A until the battery voltage reached 4.30 V, and then 4.30 V. The battery was charged at a constant voltage until the charging current reached 0.03 A. After 10 minutes of rest, the battery was discharged at a constant current of 0.12 A until the battery voltage reached 2.75 V, and the initial discharge capacity was measured. Thereafter, the battery was charged at a constant current of 0.60 A until the battery voltage reached 4.30 V in an atmosphere of 25 ° C., and then continuously charged for 60 days at a constant voltage of 4.30 V. After the end of continuous charging, the battery is discharged at a constant current of 0.12 A until the battery voltage reaches 2.75 V in an atmosphere of 25 ° C., and further charged until the battery voltage reaches 4.30 V at a constant current of 0.60 A. Thereafter, the battery was charged at a constant voltage of 4.30 V until the charging current reached 0.03 A. Then, after resting for 10 minutes, the battery was discharged at a constant current of 0.12 A until the battery voltage reached 2.75 V, and the return discharge capacity after continuous charging was measured. From these results, the capacity recovery rate (%) after continuous charging was determined according to the above equation (1). The results are summarized in Table 3.

[高い充電電圧での高温保存試験]
実施例1〜4及び比較例1〜6の電池について、25℃の雰囲気下にて、0.60Aの定電流で電池電圧が4.30Vになるまで充電し、その後4.30Vの定電圧で充電電流が0.03Aとなるまで充電した。その後、10分休止したのち、0.12Aの定電流で電池電圧が2.75Vとなるまで放電し、初期放電容量を測定した。次いで、25℃の雰囲気下にて、0.60Aの定電流で電池電圧が4.30Vになるまで充電し、その後4.30Vの定電圧で充電電流が0.03Aとなるまで充電した後、60℃の雰囲気下に60日間保存した。保存試験終了後、25℃の雰囲気下にて、0.12Aの定電流で電池電圧が2.75Vとなるまで放電させ、さらに0.60Aの定電流で電池電圧が4.30Vになるまで充電し、その後4.30Vの定電圧で充電電流が0.03Aとなるまで充電した。その後、10分休止したのち、0.12Aの定電流で電池電圧が2.75Vとなるまで放電させて高温保存後の復帰放電容量を測定した。これらの結果から、上記の式(2)に従って高温保存後の容量復帰率(%)を求めた。結果をまとめて表3に示した。
[High temperature storage test at high charging voltage]
For the batteries of Examples 1 to 4 and Comparative Examples 1 to 6, the battery was charged at a constant current of 0.60 A at a constant current of 0.60 A until the battery voltage reached 4.30 V, and then at a constant voltage of 4.30 V. The battery was charged until the charge current reached 0.03A. After 10 minutes of rest, the battery was discharged at a constant current of 0.12 A until the battery voltage reached 2.75 V, and the initial discharge capacity was measured. Next, in an atmosphere of 25 ° C., the battery was charged with a constant current of 0.60 A until the battery voltage reached 4.30 V, and then charged with a constant voltage of 4.30 V until the charging current became 0.03 A. It preserve | saved for 60 days in 60 degreeC atmosphere. After the storage test is completed, the battery is discharged at a constant current of 0.12 A until the battery voltage reaches 2.75 V in an atmosphere of 25 ° C., and further charged until the battery voltage reaches 4.30 V at a constant current of 0.60 A. Thereafter, the battery was charged at a constant voltage of 4.30 V until the charging current reached 0.03 A. Then, after resting for 10 minutes, the battery was discharged at a constant current of 0.12 A until the battery voltage reached 2.75 V, and the return discharge capacity after high temperature storage was measured. From these results, the capacity recovery rate (%) after high-temperature storage was determined according to the above equation (2). The results are summarized in Table 3.

Figure 2009105017
Figure 2009105017

表2及び表3の結果を同時に対比すると明らかなように、充電上限電圧4.30Vで充電を行うと、充電上限電圧4.20Vで充電を行った場合と比較すると実施例1〜4及び比較例1〜6の全ての非水電解質二次電池において初期放電容量は増加している。そして、充電上限電圧4.30Vで充電を行った場合の実施例1〜4の非水電解質二次電池の結果と比較例1〜6の非水電解質二次電池の結果との間の関係は、充電上限電圧4.20Vで充電を行った場合の結果と同様な傾向の結果が得られている。しかしながら、実施例1〜4の非水電解質二次電池では、充電上限電圧4.30Vで充電を行った場合と充電上限電圧4.20Vで充電を行った場合とで連続充電後の容量復帰率及び高温保存後の容量復帰率ともに実質的に同等の結果が得られている。それに対し、比較例1〜6の非水電解質二次電池では、充電上限電圧4.30Vで充電を行った場合、充電上限電圧4.20Vで充電を行った場合の連続充電後の容量復帰率及び高温保存後の容量復帰率と比すると大幅に劣化している。従って、正極極板として第2層目11Cに酸性水溶液に浸漬した際の金属元素の溶出量の少ない正極活物質を用いると、充電上限電圧が4.20Vの場合でも4.30Vの場合でも、連続充電後の容量復帰率及び高温保存後の容量復帰率共に良好な結果が得られることが分かる。   As is clear when the results of Table 2 and Table 3 are compared at the same time, when charging is performed at the charging upper limit voltage 4.30V, compared with the case where charging is performed at the charging upper limit voltage 4.20V, Examples 1-4 and comparison In all the non-aqueous electrolyte secondary batteries of Examples 1 to 6, the initial discharge capacity is increased. And the relationship between the result of the nonaqueous electrolyte secondary battery of Examples 1-4 at the time of charging with charge upper limit voltage 4.30V and the result of the nonaqueous electrolyte secondary battery of Comparative Examples 1-6 is The result of the tendency similar to the result at the time of charging with charge upper limit voltage 4.20V is obtained. However, in the nonaqueous electrolyte secondary batteries of Examples 1 to 4, the capacity recovery rate after continuous charging in the case of charging at a charging upper limit voltage of 4.30 V and in the case of charging at a charging upper limit voltage of 4.20 V In addition, substantially the same results were obtained for both the capacity recovery rate after high-temperature storage. On the other hand, in the nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 6, when charging was performed at the charging upper limit voltage of 4.30 V, the capacity recovery rate after continuous charging when charging was performed at the charging upper limit voltage of 4.20 V In addition, compared with the capacity recovery rate after storage at high temperature, it is greatly degraded. Therefore, when a positive electrode active material with a small amount of metal element eluted when immersed in an acidic aqueous solution in the second layer 11C is used as the positive electrode plate, the charge upper limit voltage is 4.20V or 4.30V, It can be seen that good results are obtained for both the capacity recovery rate after continuous charging and the capacity recovery rate after high-temperature storage.

なお、実施例1〜4では第1層目の活物質としては、一種類の正極活物質のみを使用した例を示したが、二種以上の正極活物質の混合物でもよい。また、第1層目の正極活物質には第2層目の正極活物質と同じ物質が混合されていてもよい。更に、第2層目の正極活物質も同様に一種類のみでもよいし、二種以上の活物質が混合されていてもよい。また、実施例1〜4では、第1層目と第2層目の塗布厚みが同じになるように作製したが、第1層目及び第2層目の厚みは同じでなくてもよい。更に、実施例1〜4では正極集電体の材質としてアルミニウムを用いた例を示したが、アルミニウム合金やその他の金属を使用することができる。更に、正極集電体の構造としては箔以外にパンチングメタルも使用できる。   In Examples 1 to 4, an example in which only one type of positive electrode active material is used as the first layer active material is shown, but a mixture of two or more types of positive electrode active materials may be used. Moreover, the same material as the positive electrode active material of the second layer may be mixed in the positive electrode active material of the first layer. Furthermore, the positive electrode active material of the second layer may also be one kind, or two or more kinds of active materials may be mixed. In Examples 1 to 4, the first layer and the second layer were formed so that the coating thicknesses were the same, but the thicknesses of the first layer and the second layer may not be the same. Furthermore, in Examples 1-4, although the example which used aluminum as a material of a positive electrode electrical power collector was shown, an aluminum alloy and another metal can be used. Further, as the structure of the positive electrode current collector, punching metal can be used in addition to the foil.

従来の角形の非水電解質二次電池を縦方向に切断して示す斜視図である。It is a perspective view which cut | disconnects and shows the conventional square nonaqueous electrolyte secondary battery to the vertical direction. 実施例の正極極板の部分断面図である。It is a fragmentary sectional view of the positive electrode plate of an Example.

符号の説明Explanation of symbols

10:非水電解質二次電池 11:正極極板 11A:正極集電体 11B:第1層目の正極合剤層 11C:第2層目の正極合剤層 12:負極極板 13:セパレータ 14:偏平状の巻回電極体 15:角形の電池外装缶 16:封口板 17:絶縁体 18:負極端子 19:負極タブ 20:絶縁スペーサ 21:電解液注液孔 10: Nonaqueous electrolyte secondary battery 11: Positive electrode plate 11A: Positive electrode current collector 11B: First positive electrode mixture layer 11C: Second positive electrode mixture layer 12: Negative electrode plate 13: Separator 14 : Flat wound electrode body 15: Rectangular battery outer can 16: Sealing plate 17: Insulator 18: Negative electrode terminal 19: Negative electrode tab 20: Insulating spacer 21: Electrolyte injection hole

Claims (4)

リチウムを含む正極活物質を含有する正極合剤が正極集電体に塗布された正極極板と、負極活物質を含有する負極合剤が負極集電体に塗布された負極極板と、セパレータ及び非水溶媒に電解質塩を溶解させた非水電解液を備えた非水電解質二次電池において、
前記正極極板は、正極集電体の両面又は片面に形成された第1層目の正極合剤層と、前記第1層目の正極合剤層の表面に形成された前記第1層目とは異なる組成の第2層目の正極合剤層が形成されており、
前記第2層目の正極合剤層中の正極活物質は、前記第1層目の正極合剤層中の正極活物質よりも酸性水溶液に浸漬させた際のリチウムを除く金属元素の溶出量が少ないものであることを特徴とする非水電解質二次電池。
A positive electrode plate in which a positive electrode mixture containing a positive electrode active material containing lithium is applied to a positive electrode current collector, a negative electrode plate in which a negative electrode mixture containing a negative electrode active material is applied to a negative electrode current collector, and a separator And a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent,
The positive electrode plate includes a first positive electrode mixture layer formed on both sides or one side of a positive electrode current collector, and a first layer formed on a surface of the first positive electrode mixture layer. A second positive electrode mixture layer having a composition different from that of
The amount of elution of metal elements excluding lithium when the positive electrode active material in the second positive electrode mixture layer is immersed in an acidic aqueous solution rather than the positive electrode active material in the first positive electrode mixture layer A non-aqueous electrolyte secondary battery characterized by having a low content.
前記第1層目の正極合剤層中の正極活物質は、少なくともコバルトとリチウムを含む組成式LiCoOで表される複合酸化物からなり、前記第2層目の正極合剤層中の正極活物質は少なくともコバルト及びニッケルを含む組成式LiNi1−xCo(0<x<1)で表される複合酸化物からなることを特徴とする請求項1に記載の非水電解質二次電池。 The positive electrode active material in the first positive electrode mixture layer is composed of a composite oxide represented by a composition formula LiCoO 2 containing at least cobalt and lithium, and the positive electrode in the second positive electrode mixture layer 2. The non-aqueous electrolyte 2 according to claim 1, wherein the active material is composed of a composite oxide represented by a composition formula LiNi 1-x Co x O 2 (0 <x <1) containing at least cobalt and nickel. Next battery. 前記第1層目の正極合剤層中の正極活物質は、少なくともコバルトとリチウムを含む組成式LiCoOで表される複合酸化物からなり、前記第2層目の正極合剤層中の正極活物質は少なくともコバルト及びニッケル及びマンガンを含む組成式LiNi1−x−yCoMn(0<x<1、0<y<1、0<x+y<1)で表される複合酸化物からなることを特徴とする請求項1に記載の非水電解質二次電池。 The positive electrode active material in the first positive electrode mixture layer is composed of a composite oxide represented by a composition formula LiCoO 2 containing at least cobalt and lithium, and the positive electrode in the second positive electrode mixture layer The active material is a composite oxidation represented by the composition formula LiNi 1-xy Co x Mn y O 2 (0 <x <1, 0 <y <1, 0 <x + y <1) including at least cobalt, nickel, and manganese. The non-aqueous electrolyte secondary battery according to claim 1, comprising a product. 前記非水電解質二次電池の充電終止電圧は、リチウム基準で4.40V以上であることを特徴とする請求項1〜3のいずれかに記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein an end-of-charge voltage of the non-aqueous electrolyte secondary battery is 4.40 V or more based on lithium.
JP2007278194A 2007-10-25 2007-10-25 Nonaqueous electrolyte secondary battery Pending JP2009105017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007278194A JP2009105017A (en) 2007-10-25 2007-10-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007278194A JP2009105017A (en) 2007-10-25 2007-10-25 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2009105017A true JP2009105017A (en) 2009-05-14

Family

ID=40706472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007278194A Pending JP2009105017A (en) 2007-10-25 2007-10-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2009105017A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023241A (en) * 2009-07-16 2011-02-03 Sony Corp Secondary battery, anode, cathode, and electrolyte
WO2013024739A1 (en) * 2011-08-16 2013-02-21 三洋電機株式会社 Active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and manufacturing method for active material for non-aqueous electrolyte secondary battery
JP2013114858A (en) * 2011-11-28 2013-06-10 Kyocera Corp Secondary battery
KR20180056407A (en) * 2016-11-18 2018-05-28 주식회사 엘지화학 Cathode for lithium secondary battery and Lithium secondary battery comprising the same
JP2018170145A (en) * 2017-03-29 2018-11-01 Tdk株式会社 Positive electrode and lithium ion secondary battery
WO2020208963A1 (en) 2019-04-12 2020-10-15 住友化学株式会社 Lithium metal composite oxide powder, and positive electrode active material for lithium secondary battery
JP2020174003A (en) * 2019-04-12 2020-10-22 株式会社Soken Non-aqueous electrolyte secondary battery
CN113314694A (en) * 2021-06-08 2021-08-27 江西安驰新能源科技有限公司 High-rate lithium ion battery positive plate and preparation method thereof, and lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255762A (en) * 1997-03-10 1998-09-25 Sanyo Electric Co Ltd Lithium battery
JP2006134770A (en) * 2004-11-08 2006-05-25 Sony Corp Cathode and battery
JP2007026676A (en) * 2004-07-21 2007-02-01 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
WO2007087714A1 (en) * 2006-02-01 2007-08-09 HYDRO-QUéBEC Multilayer material, method for making same and use as electrode
JP2007250499A (en) * 2006-03-20 2007-09-27 Nec Tokin Corp Lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255762A (en) * 1997-03-10 1998-09-25 Sanyo Electric Co Ltd Lithium battery
JP2007026676A (en) * 2004-07-21 2007-02-01 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2006134770A (en) * 2004-11-08 2006-05-25 Sony Corp Cathode and battery
WO2007087714A1 (en) * 2006-02-01 2007-08-09 HYDRO-QUéBEC Multilayer material, method for making same and use as electrode
JP2007250499A (en) * 2006-03-20 2007-09-27 Nec Tokin Corp Lithium ion secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023241A (en) * 2009-07-16 2011-02-03 Sony Corp Secondary battery, anode, cathode, and electrolyte
WO2013024739A1 (en) * 2011-08-16 2013-02-21 三洋電機株式会社 Active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and manufacturing method for active material for non-aqueous electrolyte secondary battery
JP2013114858A (en) * 2011-11-28 2013-06-10 Kyocera Corp Secondary battery
KR20180056407A (en) * 2016-11-18 2018-05-28 주식회사 엘지화학 Cathode for lithium secondary battery and Lithium secondary battery comprising the same
KR102476648B1 (en) * 2016-11-18 2022-12-12 주식회사 엘지에너지솔루션 Cathode for lithium secondary battery and Lithium secondary battery comprising the same
JP2018170145A (en) * 2017-03-29 2018-11-01 Tdk株式会社 Positive electrode and lithium ion secondary battery
WO2020208963A1 (en) 2019-04-12 2020-10-15 住友化学株式会社 Lithium metal composite oxide powder, and positive electrode active material for lithium secondary battery
JP2020174003A (en) * 2019-04-12 2020-10-22 株式会社Soken Non-aqueous electrolyte secondary battery
KR20210151085A (en) 2019-04-12 2021-12-13 스미또모 가가꾸 가부시끼가이샤 Lithium metal composite oxide powder and positive electrode active material for lithium secondary batteries
JP7272851B2 (en) 2019-04-12 2023-05-12 株式会社Soken Non-aqueous electrolyte secondary battery
CN113314694A (en) * 2021-06-08 2021-08-27 江西安驰新能源科技有限公司 High-rate lithium ion battery positive plate and preparation method thereof, and lithium ion battery

Similar Documents

Publication Publication Date Title
EP3370294B1 (en) Secondary battery and preparation method therefor
JP5260838B2 (en) Non-aqueous secondary battery
JP4794180B2 (en) Nonaqueous electrolyte secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP4794172B2 (en) Non-aqueous electrolyte secondary battery and charging method thereof
JP5465755B2 (en) Non-aqueous secondary battery
JP2009129721A (en) Non-aqueous secondary battery
JP2009105017A (en) Nonaqueous electrolyte secondary battery
JP2011034893A (en) Nonaqueous electrolyte secondary battery
US20140045057A1 (en) Non-aqueous electrolyte secondary battery
JP2012094459A (en) Lithium ion secondary battery
US20140080010A1 (en) Non-aqueous electrolyte secondary battery
JP5030559B2 (en) Nonaqueous electrolyte secondary battery
JP2009110886A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP4097443B2 (en) Lithium secondary battery
JP5260857B2 (en) Square non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JP2009158335A (en) Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell
JP4794193B2 (en) Nonaqueous electrolyte secondary battery
JP2009295290A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
JP2009081067A (en) Non-aqueous secondary battery
JP2010140737A (en) Nonaqueous electrolyte secondary battery
JP5326923B2 (en) Non-aqueous electrolyte secondary battery
JP5036204B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP4737952B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305