JP2011034893A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2011034893A
JP2011034893A JP2009181992A JP2009181992A JP2011034893A JP 2011034893 A JP2011034893 A JP 2011034893A JP 2009181992 A JP2009181992 A JP 2009181992A JP 2009181992 A JP2009181992 A JP 2009181992A JP 2011034893 A JP2011034893 A JP 2011034893A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
electrolyte secondary
secondary battery
lithium salt
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009181992A
Other languages
Japanese (ja)
Inventor
Yoshiaki Minami
圭亮 南
Toyoki Fujiwara
豊樹 藤原
Toshiyuki Noma
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009181992A priority Critical patent/JP2011034893A/en
Publication of JP2011034893A publication Critical patent/JP2011034893A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery excellent in battery characteristics such as preservation characteristics, output characteristics and others. <P>SOLUTION: In the nonaqueous electrolyte secondary battery including a positive electrode containing a positive electrode active material occluding and emitting lithium ions, a negative electrode containing a negative electrode active material occluding and emitting lithium ions, and a nonaqueous electrolyte containing a nonaqueous solvent, the nonaqueous electrolyte contains lithium salt having an oxalato complex as anions and acetonitrile and the content of the acetonitrile is 0.6-1.0 mass% relative to the content of lithium salt having the oxalato complex as anions. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオンの吸蔵・放出が可能な正極活物質を含む正極と、リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極と、非水溶媒を含む非水電解質とを備えた非水電解質二次電池に関し、特に保存特性や出力特性等の電池特性の改良に関する。   The present invention includes a positive electrode including a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions, and a nonaqueous electrolyte including a nonaqueous solvent. The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to improvement of battery characteristics such as storage characteristics and output characteristics.

近年、小型ビデオカメラ、携帯電話、ノートパソコン等の携帯用電子・通信機器等に用いられる電池として、リチウムイオンを吸蔵・放出できる炭素材料あるいは合金等を負極活物質とし、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)等のリチウム遷移金属酸化物を正極活物質とする非水電解質二次電池が、小型軽量で電圧が高く、しかも高容量で充放電可能な電池として実用化されるようになった。また、このような非水電解質二次電池をハイブリッド自動車や電気自動車等の電源に利用することが検討されている。 In recent years, as a battery used in portable electronic / communication equipment such as a small video camera, a mobile phone, and a laptop computer, a carbon material or an alloy that can occlude / release lithium ions is used as a negative electrode active material, and lithium cobalt oxide (LiCoO 2). ), Non-aqueous electrolyte secondary batteries using lithium transition metal oxides such as lithium manganate (LiMn 2 O 4 ) and lithium nickelate (LiNiO 2 ) as a positive electrode active material are small, light, high voltage, and high capacity It has come to be put into practical use as a battery that can be charged and discharged. In addition, the use of such a non-aqueous electrolyte secondary battery as a power source for a hybrid vehicle or an electric vehicle has been studied.

このような非水電解質二次電池については、サイクル特性や保存特性を向上させることが要求されており、サイクル特性や保存特性を向上させる方法として、非水電解質二次電池における非水電解質に、オキサラト錯体をアニオンとするリチウム塩を含有させる技術が提案されている。   For such a non-aqueous electrolyte secondary battery, it is required to improve cycle characteristics and storage characteristics, and as a method for improving cycle characteristics and storage characteristics, the non-aqueous electrolyte in the non-aqueous electrolyte secondary battery, A technique for including a lithium salt having an oxalato complex as an anion has been proposed.

しかしながら、非水電解質にオキサラト錯体をアニオンとするリチウム塩を含有させた非水電解質二次電池では、IV抵抗が増加するため、この種の非水電解質二次電池をハイブリッド自動車や電気自動車等の電源に用いた場合に充分な出力・回生特性が得られないという課題があった。
ここで、IV抵抗とは、電池を複数の電流値にて、一定時間充電または放電したときのそれぞれの電圧値を測定し、各電流値と電圧値をプロットし、電流値に対する電圧値の傾きから求められる値である。このIV抵抗の値が、電池にどの程度の電流を流せるかを知る指標となる。
However, in a non-aqueous electrolyte secondary battery in which a lithium salt containing an oxalate complex as an anion is contained in the non-aqueous electrolyte, the IV resistance increases. Therefore, this type of non-aqueous electrolyte secondary battery is used in a hybrid vehicle or an electric vehicle. There was a problem that sufficient output / regeneration characteristics could not be obtained when used as a power source.
Here, the IV resistance is a value obtained by measuring each voltage value when a battery is charged or discharged at a plurality of current values for a certain period of time, plotting each current value and voltage value, and tilting the voltage value with respect to the current value. It is a value obtained from The value of the IV resistance is an index for knowing how much current can flow through the battery.

特開2006−196250号公報JP 2006-196250 A

この課題を解決するため、上記特許文献1では、オキサラト錯体をアニオンとするリチウム塩を含有する非水電解質に、更にビニレンカーボネート等の被膜形成剤を含有させることが提案されている。   In order to solve this problem, Patent Document 1 proposes that a non-aqueous electrolyte containing a lithium salt having an oxalato complex as an anion further contains a film forming agent such as vinylene carbonate.

しかしながら、上記特許文献1では、非水電解質にオキサラト錯体をアニオンとするリチウム塩を含有させた場合に生じるIV抵抗の増加による出力特性の低下を抑制する効果が不十分であり、更なる特性の向上が望まれる。   However, in the said patent document 1, the effect which suppresses the fall of the output characteristic by the increase in IV resistance which arises when the non-aqueous electrolyte contains the lithium salt which uses an oxalato complex as an anion is inadequate. Improvement is desired.

本発明は、上記の課題を解決するためになされたものであり、オキサラト錯体をアニオンとするリチウム塩を含有する非水電解質を用いた非水電解質二次電池の出力特性の向上を目的とする。   The present invention has been made to solve the above-described problems, and aims to improve the output characteristics of a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing a lithium salt having an oxalato complex as an anion. .

本発明は、リチウムイオンの吸蔵・放出が可能な正極活物質を含む正極と、リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極と、非水溶媒を含む非水電解質とを備えた非水電解質二次電池において、前記非水電解質は、オキサラト錯体をアニオンとするリチウム塩およびアセトニトリルを含有し、前記アセトニトリルの含有量は、前記オキサラト錯体をアニオンとするリチウム塩質の含有量に対して0.6質量%〜1.0質量%であることを特徴とする。   The present invention includes a positive electrode including a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions, and a nonaqueous electrolyte including a nonaqueous solvent. In the non-aqueous electrolyte secondary battery, the non-aqueous electrolyte contains a lithium salt having an oxalato complex as an anion and acetonitrile, and the content of acetonitrile is relative to the content of a lithium salt having the oxalato complex as an anion. 0.6 mass% to 1.0 mass%.

本発明者らは、種々の検討を行った結果、オキサラト錯体をアニオンとするリチウム塩を含有する非水電解質が、更にアセトニトリルを特定量含有することにより、非水電解質にオキサラト錯体をアニオンとするリチウム塩を含有する場合に生じるIV抵抗の増加を抑制できることを見出した。   As a result of various investigations, the present inventors have found that a nonaqueous electrolyte containing a lithium salt having an oxalato complex as an anion further contains a specific amount of acetonitrile, so that the nonaqueous electrolyte has an oxalato complex as an anion. It has been found that an increase in IV resistance that occurs when a lithium salt is contained can be suppressed.

本発明において、非水電解質中のアセトニトリルの含有量は、オキサラト錯体をアニオンとするリチウム塩の含有量に対して0.6質量%〜1.0質量%であることが好ましい。   In the present invention, the content of acetonitrile in the non-aqueous electrolyte is preferably 0.6% by mass to 1.0% by mass with respect to the content of lithium salt having an oxalato complex as an anion.

非水電解質中のアセトニトリルの含有量が、オキサラト錯体をアニオンとするリチウム塩の含有量に対して0.6質量%〜1.0質量%である場合、オキサラト錯体をアニオンとするリチウム塩を含有する非水電解質を用いた場合に生じるIV抵抗の増加を抑制すること効果が大きいと考えられる。
したがって、本発明によれば、オキサラト錯体をアニオンとするリチウム塩を含有する非水電解質を用いた場合に生じるIV抵抗の増加を抑制すること可能がとなり、保存特性や出力特性等の電池特性に優れた非水電解質二次電池を得ることができる。
When the content of acetonitrile in the non-aqueous electrolyte is 0.6% by mass to 1.0% by mass with respect to the content of lithium salt having an oxalato complex as an anion, a lithium salt having an oxalato complex as an anion is contained. It is considered that the effect of suppressing the increase in IV resistance generated when using a non-aqueous electrolyte is great.
Therefore, according to the present invention, it is possible to suppress an increase in IV resistance that occurs when a non-aqueous electrolyte containing a lithium salt having an oxalato complex as an anion is used, and battery characteristics such as storage characteristics and output characteristics can be suppressed. An excellent nonaqueous electrolyte secondary battery can be obtained.

これは、次のような理由と推測される。非水電解質がオキサラト錯体をアニオンとするリチウム塩を含有すると、充放電によりオキサラト錯体をアニオンとするリチウム塩が負極表面にて還元分解し、負極表面に安定でかつリチウムイオンの透過性に優れた被膜を形成すると考えられる。この被膜により、非水電解質と負極の反応が抑制され、サイクル特性や保存特性等が向上すると考えられる。しかしながら、負極表面に形成された被膜の抵抗により、IV抵抗が増加することが課題であった。
本発明によると、非水電解質に含有されたアセトニトリルが負極表面上に形成される被膜に取り込まれることにより、被膜抵抗を低減し、IV抵抗の増加を抑制できると考えられる。
This is presumed to be as follows. When the non-aqueous electrolyte contains a lithium salt having an oxalato complex as an anion, the lithium salt having an oxalato complex as an anion is reduced and decomposed on the negative electrode surface by charge and discharge, and is stable on the negative electrode surface and excellent in lithium ion permeability. It is thought that a film is formed. It is considered that this coating suppresses the reaction between the nonaqueous electrolyte and the negative electrode and improves the cycle characteristics, storage characteristics, and the like. However, the problem is that the IV resistance increases due to the resistance of the coating formed on the negative electrode surface.
According to the present invention, it is considered that the acetonitrile contained in the non-aqueous electrolyte is taken into the film formed on the negative electrode surface, whereby the film resistance can be reduced and the increase in IV resistance can be suppressed.

本発明において、非水電解質中のオキサラト錯体をアニオンとするリチウム塩の含有量は、非水溶媒に対して0.08〜0.14モル/リットルであることが好ましい。   In the present invention, the content of the lithium salt having an oxalato complex as an anion in the non-aqueous electrolyte is preferably 0.08 to 0.14 mol / liter with respect to the non-aqueous solvent.

非水電解質中のオキサラト錯体をアニオンとするリチウム塩の含有量が、非水溶媒に対して0.08〜0.14モル/リットルであると、負極表面に良好な被膜が十分に形成されるため、優れたサイクル特性や保存特性が得られる。   When the content of the lithium salt having an oxalato complex as an anion in the non-aqueous electrolyte is 0.08 to 0.14 mol / liter with respect to the non-aqueous solvent, a good film is sufficiently formed on the negative electrode surface. Therefore, excellent cycle characteristics and storage characteristics can be obtained.

本発明において、オキサラト錯体をアニオンとするリチウム塩としては、LiB(C、LiBF(C)、LiPF(C)等を用いることができるが、特にLiB(Cであることが好ましい。 In the present invention, LiB (C 2 O 4 ) 2 , LiBF 2 (C 2 O 4 ), LiPF 2 (C 2 O 4 ) and the like can be used as the lithium salt having an oxalato complex as an anion. LiB (C 2 O 4 ) 2 is preferable.

リチウム−ビス(オキサラト)ボレート(LiB(C)を用いると、LiBF(C)やLiPF(C)を用いた場合に比べて、負極表面に生成する被膜は安定であり、サイクル特性や保存特性が向上の効果が大きい。 When lithium-bis (oxalato) borate (LiB (C 2 O 4 ) 2 ) is used, it is formed on the surface of the negative electrode as compared with the case of using LiBF 2 (C 2 O 4 ) or LiPF 2 (C 2 O 4 ). The coating film is stable and has a great effect of improving cycle characteristics and storage characteristics.

本発明において、非水電解質は、オキサラト錯体をアニオンとするリチウム塩とは異なる他のリチウム塩を含有することが好ましい。   In the present invention, the non-aqueous electrolyte preferably contains another lithium salt different from the lithium salt having an oxalato complex as an anion.

オキサラト錯体をアニオンとするリチウム塩とは異なる他のリチウム塩としては、非水電解質二次電池において一般に使用されているものを用いることができる。例えば、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12や、これらの混合物等を用いることができる。オキサラト錯体をアニオンとするリチウム塩とは異なる他のリチウム塩の添加量として、非水溶媒に対して、0.8〜1.4Mの濃度範囲とすることが好ましく、1.0〜1.2Mの濃度範囲とすることがより好ましい。 As another lithium salt different from the lithium salt having an oxalato complex as an anion, those generally used in non-aqueous electrolyte secondary batteries can be used. For example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 2 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , a mixture thereof, or the like can be used. As the addition amount of the other lithium salt different from the lithium salt having an oxalato complex as an anion, it is preferable that the concentration range is 0.8 to 1.4M with respect to the nonaqueous solvent, and 1.0 to 1.2M. It is more preferable to set the concentration range.

本発明において、非水電解質は、ビニレンカーボネート(VC)を含有することが好ましい。   In the present invention, the nonaqueous electrolyte preferably contains vinylene carbonate (VC).

非水電解質中にビニレンカーボネートが含有されていると、負極表面に形成される被膜が更に良好となり、電池特性が向上する。非水電解質中のビニレンカーボネートの含有量は、非水溶媒の全質量に対して、0.1〜5.0質量%の範囲とすることが好ましく、0.5〜3.0質量%の範囲とすることがより好ましく、1.0〜2.0質量%の範囲とすることが更に好ましい。   When vinylene carbonate is contained in the nonaqueous electrolyte, the coating film formed on the negative electrode surface is further improved, and the battery characteristics are improved. The content of vinylene carbonate in the nonaqueous electrolyte is preferably in the range of 0.1 to 5.0 mass%, and in the range of 0.5 to 3.0 mass%, based on the total mass of the nonaqueous solvent. More preferably, it is more preferable to set it as the range of 1.0-2.0 mass%.

本発明で使用することのできる正極活物質としては、LiCoO、LiNiO、LiMn、LiMnO、LiNi1−xMn(0<x<1)、LiNi1−xCo(0<x<1)、LiNiMnCo(0<x,y,z<1、x+y+z=1)等のリチウム遷移金属酸化物、LiFePO等のオリビン構造を有するリン酸化合物等が挙げられる。また、本発明で使用することができる負極活物質としては、黒鉛、難黒鉛化性炭素及び易黒鉛化性炭素等の炭素原料、LiTiO及びTiO等が挙げられる。 Examples of the positive electrode active material that can be used in the present invention include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiNi 1-x Mn x O 2 (0 <x <1), LiNi 1-x Co x. O 2 (0 <x <1), LiNi x Mn y Co z O 2 (0 <x, y, z <1, x + y + z = 1) and other olivines such as LiFePO 4 Examples thereof include a phosphoric acid compound having a structure. As the negative electrode active material can be used in the present invention, graphite, non-graphitizable carbon and graphitizable carbon material such as carbon, it includes LiTiO 2 and TiO 2 or the like.

本発明において、リチウムイオンの吸蔵・放出が可能な正極活物質がリチウム遷移金属酸化物であり、リチウムイオンの吸蔵・放出が可能な負極活物質が炭素材料であることが好ましく、特に黒鉛が好ましい。   In the present invention, the positive electrode active material capable of occluding and releasing lithium ions is a lithium transition metal oxide, and the negative electrode active material capable of occluding and releasing lithium ions is preferably a carbon material, and graphite is particularly preferred. .

なお、本発明における非水溶媒としては、非水電解質二次電池において一般に使用されているものを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートを用いることができる。特に、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましい。   In addition, what is generally used in the nonaqueous electrolyte secondary battery can be used as the nonaqueous solvent in the present invention. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate can be used. In particular, it is preferable to use a mixed solvent of a cyclic carbonate and a chain carbonate.

図1は、実施例1及び比較例1における非水電解質二次電池の放電時のIV抵抗(mΩ)を示す図である。FIG. 1 is a diagram showing IV resistance (mΩ) during discharge of the nonaqueous electrolyte secondary battery in Example 1 and Comparative Example 1.

以下、本発明を実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池の例を示すものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, the present invention will be described in detail using examples and comparative examples. However, the following examples show examples of non-aqueous electrolyte secondary batteries for embodying the technical idea of the present invention, and are not intended to specify the present invention to these examples. The present invention can be equally applied to various modifications without departing from the technical idea shown in the claims.

最初に実施例及び比較例に共通する正極板及び負極板の作成方法を説明する。
[負極板の作製]
負極活物質としての人造黒鉛と、結着剤としてのポリイミド(PI)とを溶かしたN−メチルピロリドン(NMP)溶液とを混練して負極スラリーを作製した。ここで、負極活物質:ポリイミド(PI)の質量比が97:3となるように混合した。ついで、作製した負極スラリーを負極芯体としての銅箔(厚さが10μm)の上に塗布した後、乾燥させてスラリー作製時に溶媒として使用したNMPを除去し負極活物質合剤層を形成した。その後、圧延ローラーを用いて所定の充填密度(1.1g/cc)になるまで圧延し、負極集電タブを取り付けて負極板を作製した。
First, a method for producing a positive electrode plate and a negative electrode plate common to the examples and the comparative examples will be described.
[Production of negative electrode plate]
Artificial graphite as a negative electrode active material and an N-methylpyrrolidone (NMP) solution in which polyimide (PI) as a binder was dissolved were kneaded to prepare a negative electrode slurry. Here, it mixed so that mass ratio of negative electrode active material: polyimide (PI) might be set to 97: 3. Next, the prepared negative electrode slurry was applied on a copper foil (thickness: 10 μm) as a negative electrode core, and then dried to remove NMP used as a solvent at the time of slurry preparation to form a negative electrode active material mixture layer. . Then, it rolled until it became a predetermined packing density (1.1 g / cc) using the rolling roller, the negative electrode current collection tab was attached, and the negative electrode plate was produced.

[正極板の作製]
LiCOと(Ni0.35Co0.35Mn0.3とを、Liと(Ni0.35Co0.35Mn0.3)とのモル比が1:1となるように混合した。次いで、この混合物を空気雰囲気中にて900℃で20時間焼成し、LiNi0.35Co0.35Mn0.3で表されるリチウム遷移金属酸化物を得て、正極活物質とした。以上のようにして得られた正極活物質、導電剤として薄片化黒鉛およびカーボンブラック、結着剤としてポリフッ化ビニリデン(PVdF)のNMP溶液とを、リチウム遷移金属酸化物:薄片化黒鉛:カーボンブラック:ポリフッ化ビニリデン(PVdF)の質量比が88:7:2:3となるように混練し、正極スラリーを作製した。作製した正極スラリーを正極芯体としてアルミニウム合金箔(厚さ15μm)の上に塗布した後、乾燥させてスラリー作製時に溶媒として使用したNMPを除去し正極活物質合剤層を形成した。その後、圧延ロールを用いて所定の充填密度(2.6g/cc)になるまで圧延し、所定寸法に切断した後、正極集電タブを取り付けて正極板を作製した。
[Production of positive electrode plate]
Li 2 CO 3 and (Ni 0.35 Co 0.35 Mn 0.3 ) 3 O 4 have a molar ratio of Li and (Ni 0.35 Co 0.35 Mn 0.3 ) of 1: 1. It mixed so that it might become. Next, this mixture was fired at 900 ° C. for 20 hours in an air atmosphere to obtain a lithium transition metal oxide represented by LiNi 0.35 Co 0.35 Mn 0.3 O 2 , and used as a positive electrode active material. . The positive electrode active material obtained as described above, exfoliated graphite and carbon black as a conductive agent, NMP solution of polyvinylidene fluoride (PVdF) as a binder, lithium transition metal oxide: exfoliated graphite: carbon black : Polyvinylidene fluoride (PVdF) was kneaded so as to have a mass ratio of 88: 7: 2: 3 to prepare a positive electrode slurry. The prepared positive electrode slurry was applied as a positive electrode core onto an aluminum alloy foil (thickness: 15 μm), and then dried to remove NMP used as a solvent during slurry preparation to form a positive electrode active material mixture layer. Then, it rolled until it became a predetermined packing density (2.6g / cc) using the rolling roll, and after cut | disconnecting to the predetermined dimension, the positive electrode current collection tab was attached and the positive electrode plate was produced.

[実施例1]
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を体積比で3:7となるように混合させた非水溶媒に対して、電解質塩として六フッ化リン酸リチウム(LiPF)を1モル/リットルの割合で溶解させた。
このようにして得られた溶液に、ビニレンカーボネート(VC)を非水溶媒の質量に対して1質量%、リチウム−ビス(オキサラト)ボレート(LiB(C)を非水溶媒に対して0.1モル/リットル、アセトニトリルをLiB(Cの質量に対して0.8質量%となるようにそれぞれ添加して非水電解質を調製した。
[Example 1]
1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) is used as an electrolyte salt with respect to a non-aqueous solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 3: 7. Dissolved in liters.
In the solution thus obtained, vinylene carbonate (VC) is 1% by mass relative to the mass of the non-aqueous solvent, and lithium-bis (oxalato) borate (LiB (C 2 O 4 ) 2 ) is used as the non-aqueous solvent. A non-aqueous electrolyte was prepared by adding 0.1 mol / liter and acetonitrile to 0.8% by mass with respect to the mass of LiB (C 2 O 4 ) 2 .

[非水電解質二次電池の作製]
上述のように作製した正極板と、上述のようにして作製した負極板とをそれぞれ用い、これらの間にポリプロピレン製微多孔膜からなるセパレータを介在させて積層した後、渦巻状にそれぞれ巻回して渦巻状電極群とした。ついで、この渦巻状電極群を有底円筒状の金属製外装缶に挿入した後、金属製外装缶の上部外周に絞り加工を施して絞り部を形成した。その後、負極板から延出する負極集電タブを金属製外装缶の内底面に溶接した。一方、正極板から延出する正極集電タブを、封口体の正極蓋の底面に溶接し、封口体の外周部にリング状の絶縁ガスケットを配置した。なお、正極蓋の上部にはキャップ状の正極端子が配設されていて、このキャップ状の正極端子内には正極蓋の中心部に形成された排気孔を封止する弁板とこれを押圧するスプリングからなる弁体が配設されている。ついで、上述のようにして調製された非水電解質を金属製外装缶内に注入した。この後、金属製外装缶の上部外周に形成された絞り部の上に、外周部にリング状の絶縁ガスケットが配置された封口体を配置した後、金属製外装缶の上端部を封口体側にかしめて封口し、実施例1の非水電解質二次電池を作製した。
[Production of non-aqueous electrolyte secondary battery]
Each of the positive electrode plate produced as described above and the negative electrode plate produced as described above was laminated with a separator made of a polypropylene microporous film interposed therebetween, and then wound in a spiral shape. Thus, a spiral electrode group was obtained. Next, after inserting the spiral electrode group into a bottomed cylindrical metal outer can, the upper outer periphery of the metal outer can was drawn to form a drawn portion. Thereafter, a negative electrode current collecting tab extending from the negative electrode plate was welded to the inner bottom surface of the metal outer can. On the other hand, the positive electrode current collection tab extended from a positive electrode plate was welded to the bottom face of the positive electrode cover of the sealing body, and the ring-shaped insulating gasket was arrange | positioned in the outer peripheral part of the sealing body. In addition, a cap-shaped positive terminal is disposed on the upper part of the positive cover, and a valve plate for sealing an exhaust hole formed at the center of the positive cover and the cap is pressed into the cap-shaped positive terminal. A valve body made of a spring is arranged. Next, the nonaqueous electrolyte prepared as described above was poured into a metal outer can. Then, after placing a sealing body with a ring-shaped insulating gasket disposed on the outer peripheral portion on the narrowed portion formed on the upper outer periphery of the metallic outer can, the upper end portion of the metallic outer can is placed on the sealing body side. The non-aqueous electrolyte secondary battery of Example 1 was produced by caulking and sealing.

[比較例1]
アセトニトリルの添加量をLiB(Cの質量に対して0.3質量%とした以外は実施例1と同様の方法で、比較例1の非水電解質二次電池を作製した。
[Comparative Example 1]
A nonaqueous electrolyte secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the amount of acetonitrile added was 0.3% by mass with respect to the mass of LiB (C 2 O 4 ) 2 .

実施例1及び比較例1の非水電解質二次電池について、以下の試験を行なった。   The following tests were performed on the nonaqueous electrolyte secondary batteries of Example 1 and Comparative Example 1.

[IV抵抗測定]
1Aの充電電流で充電深度(SOC)50%になるまで充電させた状態で、それぞれ1/3A、1A、3Aおよび5Aの電流で10秒間放電を行い、それぞれの電池電圧を測定し、各電流値に対して電池電圧をプロットして、その傾きを放電時におけるIV抵抗とした。このようにして求められたIV抵抗を、初期のIV抵抗とした。
[IV resistance measurement]
With a charge current of 1A, until the depth of charge (SOC) reaches 50%, the battery is discharged for 10 seconds with a current of 1 / 3A, 1A, 3A and 5A, and each battery voltage is measured. The battery voltage was plotted against the value, and the slope was taken as the IV resistance during discharge. The IV resistance obtained in this way was used as the initial IV resistance.

[保存試験]
1Aの充電電流で充電深度(SOC)50%になるまで充電させた状態で70℃にて所定期間保存し、上記と同様の方法にてIV抵抗を求めた。保存期間は、7日間、14日間、21日間、28日間、42日間とした。
[Preservation test]
The battery was charged at a charging current of 1 A until the depth of charge (SOC) reached 50%, stored at 70 ° C. for a predetermined period, and IV resistance was determined by the same method as described above. The storage period was 7 days, 14 days, 21 days, 28 days, and 42 days.

図1に、試験結果を示す。図1は、実施例1及び比較例1の非水電解質二次電池の初期、及びSOC50%の状態で70℃にて所定期間保存した後に測定した放電時のIV抵抗の値を示す。図1より、アセトニトリルをLiB(Cの質量に対して0.3質量%添加した非水電解質を用いた比較例1の非水電解質二次電池に比べ、アセトニトリルをLiB(Cの質量に対して0.8質量%添加した非水電解質を用いた実施例1の非水電解質二次電池では、初期及び保存後のIV抵抗の増加を抑制することが可能であり、特に保存後のIV抵抗の増加を抑制する効果が大きいことが分かる。 FIG. 1 shows the test results. FIG. 1 shows IV resistance values measured at the initial stage of the nonaqueous electrolyte secondary batteries of Example 1 and Comparative Example 1 and after discharging after storage for a predetermined period at 70 ° C. in a state of SOC 50%. Than 1, compared with the non-aqueous electrolyte secondary battery of Comparative Example 1 using LiB (C 2 O 4) non-aqueous electrolyte was added 0.3 wt% with respect to 2 mass acetonitrile, acetonitrile LiB (C 2 O 4 ) In the non-aqueous electrolyte secondary battery of Example 1 using the non-aqueous electrolyte added by 0.8 mass% with respect to the mass of 2 , it is possible to suppress an increase in IV resistance after the initial stage and after storage. In particular, it can be seen that the effect of suppressing an increase in IV resistance after storage is great.

このことから、非水電解質中のアセトニトリルの含有量が、オキサラト錯体をアニオンとするリチウム塩の質量に対して0.6質量%〜1.0質量%程度である場合、オキサラト錯体をアニオンとするリチウム塩の質量に対して0.3質量%程度含有する場合と比較し、オキサラト錯体をアニオンとするリチウム塩を含有する非水電解質を用いた場合に生じるIV抵抗の増加を抑制することが可能であると考えられる。   From this, when the content of acetonitrile in the non-aqueous electrolyte is about 0.6% by mass to 1.0% by mass with respect to the mass of the lithium salt having the oxalato complex as an anion, the oxalato complex is used as an anion. Compared with the case of containing about 0.3% by mass with respect to the mass of the lithium salt, it is possible to suppress an increase in IV resistance that occurs when a non-aqueous electrolyte containing a lithium salt having an oxalato complex as an anion is used. It is thought that.

以上のとおり、本願発明によれば、オキサラト錯体をアニオンとするリチウム塩を含有する非水電解質を用いた場合に生じるIV抵抗の増加を抑制することが可能となり、
保存特性や出力特性等の電池特性に優れた非水電解質二次電池を提供することができる。












As described above, according to the present invention, it is possible to suppress an increase in IV resistance that occurs when a non-aqueous electrolyte containing a lithium salt having an oxalato complex as an anion is used,
A nonaqueous electrolyte secondary battery having excellent battery characteristics such as storage characteristics and output characteristics can be provided.












Claims (6)

リチウムイオンの吸蔵・放出が可能な正極活物質を含む正極と、リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極と、非水溶媒を含む非水電解質とを備えた非水電解質二次電池において、
前記非水電解質は、オキサラト錯体をアニオンとするリチウム塩およびアセトニトリルを含有し、前記アセトニトリルの含有量は、前記オキサラト錯体をアニオンとするリチウム塩の含有量に対して0.6質量%〜1.0質量%であることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte comprising: a positive electrode including a positive electrode active material capable of occluding and releasing lithium ions; a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions; and a non-aqueous electrolyte including a non-aqueous solvent. In the next battery,
The non-aqueous electrolyte contains a lithium salt having an oxalato complex as an anion and acetonitrile, and the content of acetonitrile is 0.6% by mass to 1.% by mass with respect to the content of the lithium salt having an oxalato complex as an anion. A non-aqueous electrolyte secondary battery characterized by being 0% by mass.
前記非水電解質中のオキサラト錯体をアニオンとするリチウム塩の含有量は、前記非水溶媒に対して0.08〜0.14モル/リットルであることを特徴とする請求項1に記載の非水電解質二次電池。   2. The non-aqueous electrolyte according to claim 1, wherein a content of the lithium salt having an oxalato complex as an anion in the non-aqueous electrolyte is 0.08 to 0.14 mol / liter with respect to the non-aqueous solvent. Water electrolyte secondary battery. 前記オキサラト錯体をアニオンとするリチウム塩は、リチウム−ビス(オキサラト)ボレート(LiB(C)であることを特徴とする請求項1または請求項2に記載の非水電解質二次電池。 3. The non-aqueous electrolyte secondary according to claim 1, wherein the lithium salt having the oxalato complex as an anion is lithium-bis (oxalato) borate (LiB (C 2 O 4 ) 2 ). battery. 前記非水電解質は、オキサラト錯体をアニオンとするリチウム塩とは異なる他のリチウム塩を含有することを特徴とする請求項1から請求項3のいずれかに記載の非水電解質二次電池。   4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte contains another lithium salt different from a lithium salt having an oxalato complex as an anion. 5. 前記非水電解質は、ビニレンカーボネートを含有することを特徴とする請求項1から請求項4のいずれかに記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the nonaqueous electrolyte contains vinylene carbonate. 前記リチウムイオンの吸蔵・放出が可能な正極活物質がリチウム遷移金属酸化物であり、前記リチウムイオンの吸蔵・放出が可能な負極活物質が炭素材料であることを特徴とする請求項1から請求項5のいずれかに記載の非水電解質二次電池。







The positive electrode active material capable of occluding and releasing lithium ions is a lithium transition metal oxide, and the negative electrode active material capable of occluding and releasing lithium ions is a carbon material. Item 6. The nonaqueous electrolyte secondary battery according to any one of Items 5 to 6.







JP2009181992A 2009-08-05 2009-08-05 Nonaqueous electrolyte secondary battery Pending JP2011034893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009181992A JP2011034893A (en) 2009-08-05 2009-08-05 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009181992A JP2011034893A (en) 2009-08-05 2009-08-05 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2011034893A true JP2011034893A (en) 2011-02-17

Family

ID=43763750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009181992A Pending JP2011034893A (en) 2009-08-05 2009-08-05 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2011034893A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057311A1 (en) * 2010-10-29 2012-05-03 旭化成イーマテリアルズ株式会社 Nonaqueous electrolyte and nonaqueous secondary battery
WO2012161305A1 (en) * 2011-05-25 2012-11-29 新神戸電機株式会社 Nonaqueous electrolyte solution and lithium ion secondary battery using same
WO2013065223A1 (en) 2011-10-31 2013-05-10 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery, manufacturing method thereof, and evaluation method
WO2014002611A1 (en) 2012-06-29 2014-01-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2014035925A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2014035926A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
CN104518220A (en) * 2013-09-30 2015-04-15 株式会社杰士汤浅国际 Electric storage device
JP2016192377A (en) * 2015-03-31 2016-11-10 旭化成株式会社 Ion conducting polymer electrolyte
JP2017054822A (en) * 2011-10-28 2017-03-16 旭化成株式会社 Non-aqueous secondary battery
US9755238B2 (en) 2011-11-22 2017-09-05 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2021066174A1 (en) 2019-10-04 2021-04-08 旭化成株式会社 Non-aqueous lithium power storage element
US11094965B2 (en) 2018-09-19 2021-08-17 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolytic solution for lithium ion secondary cell
US11581580B2 (en) 2019-02-27 2023-02-14 Toyota Jidosha Kabushiki Kaisha Electrolyte for lithium ion secondary battery, lithium ion secondary battery, and module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196250A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
JP2008235008A (en) * 2007-03-20 2008-10-02 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and nonaqeous electrolytic solution battery
JP2008262902A (en) * 2007-03-19 2008-10-30 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution and non-aqueous electrolytic solution battery
JP2009054311A (en) * 2007-08-23 2009-03-12 Nippon Chem Ind Co Ltd Electrolyte composition for power storage device and power storage device using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196250A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
JP2008262902A (en) * 2007-03-19 2008-10-30 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution and non-aqueous electrolytic solution battery
JP2008235008A (en) * 2007-03-20 2008-10-02 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and nonaqeous electrolytic solution battery
JP2009054311A (en) * 2007-08-23 2009-03-12 Nippon Chem Ind Co Ltd Electrolyte composition for power storage device and power storage device using it

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893378B2 (en) 2010-10-29 2018-02-13 Asahi Kasei Kabushiki Kaisha Non-aqueous electrolyte solution and non-aqueous secondary battery
WO2012057311A1 (en) * 2010-10-29 2012-05-03 旭化成イーマテリアルズ株式会社 Nonaqueous electrolyte and nonaqueous secondary battery
JPWO2012057311A1 (en) * 2010-10-29 2014-05-12 旭化成イーマテリアルズ株式会社 Non-aqueous electrolyte and non-aqueous secondary battery
WO2012161305A1 (en) * 2011-05-25 2012-11-29 新神戸電機株式会社 Nonaqueous electrolyte solution and lithium ion secondary battery using same
JP2017054822A (en) * 2011-10-28 2017-03-16 旭化成株式会社 Non-aqueous secondary battery
WO2013065223A1 (en) 2011-10-31 2013-05-10 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery, manufacturing method thereof, and evaluation method
US9755238B2 (en) 2011-11-22 2017-09-05 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2014002611A1 (en) 2012-06-29 2014-01-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
KR20150031314A (en) 2012-06-29 2015-03-23 도요타지도샤가부시키가이샤 Nonaqueous electrolyte secondary battery
US9768446B2 (en) 2012-06-29 2017-09-19 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
JP2014035926A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2014035925A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US9455091B2 (en) 2013-09-30 2016-09-27 Gs Yuasa International Ltd. Electric storage device
EP2863456A1 (en) * 2013-09-30 2015-04-22 GS Yuasa International Ltd. Electric storage device
CN104518220A (en) * 2013-09-30 2015-04-15 株式会社杰士汤浅国际 Electric storage device
CN104518220B (en) * 2013-09-30 2019-02-05 株式会社杰士汤浅国际 Charge storage element
JP2016192377A (en) * 2015-03-31 2016-11-10 旭化成株式会社 Ion conducting polymer electrolyte
US11094965B2 (en) 2018-09-19 2021-08-17 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolytic solution for lithium ion secondary cell
US11581580B2 (en) 2019-02-27 2023-02-14 Toyota Jidosha Kabushiki Kaisha Electrolyte for lithium ion secondary battery, lithium ion secondary battery, and module
WO2021066174A1 (en) 2019-10-04 2021-04-08 旭化成株式会社 Non-aqueous lithium power storage element
KR20220044994A (en) 2019-10-04 2022-04-12 아사히 가세이 가부시키가이샤 Non-aqueous lithium storage device

Similar Documents

Publication Publication Date Title
JP5094027B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP2011034893A (en) Nonaqueous electrolyte secondary battery
JP5283544B2 (en) Nonaqueous electrolyte secondary battery
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2019016483A (en) Nonaqueous electrolyte secondary battery
JP6287187B2 (en) Nonaqueous electrolyte secondary battery
JP7469434B2 (en) Nonaqueous electrolyte battery and method of manufacturing same
JP6165425B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2007123251A (en) Nonaqueous electrolyte secondary battery
KR20100087679A (en) Nonaqueous electrolyte secondary battery
KR20090100228A (en) Nonaqueous electrolyte secondary battery
JP2020102348A (en) Manufacturing method of lithium ion battery, and lithium ion battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2014035923A (en) Non-aqueous electrolyte secondary battery
JP2014035922A (en) Nonaqueous electrolyte secondary battery
JP2009238387A (en) Nonaqueous electrolyte secondary battery
JP3580209B2 (en) Lithium ion secondary battery
JP6287186B2 (en) Nonaqueous electrolyte secondary battery
JP7337096B2 (en) Non-aqueous electrolyte secondary battery
US20140127561A1 (en) Non-aqueous electrolyte secondary battery
JP5326923B2 (en) Non-aqueous electrolyte secondary battery
JP7403474B2 (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP7488770B2 (en) Nonaqueous electrolyte secondary battery and method of manufacturing same
JP2014035893A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120726

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112