JP6287187B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6287187B2
JP6287187B2 JP2013268673A JP2013268673A JP6287187B2 JP 6287187 B2 JP6287187 B2 JP 6287187B2 JP 2013268673 A JP2013268673 A JP 2013268673A JP 2013268673 A JP2013268673 A JP 2013268673A JP 6287187 B2 JP6287187 B2 JP 6287187B2
Authority
JP
Japan
Prior art keywords
negative electrode
aqueous electrolyte
secondary battery
electrolyte secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013268673A
Other languages
Japanese (ja)
Other versions
JP2015125858A (en
Inventor
慎一 山見
慎一 山見
圭亮 南
圭亮 南
藤原 豊樹
豊樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2013268673A priority Critical patent/JP6287187B2/en
Publication of JP2015125858A publication Critical patent/JP2015125858A/en
Application granted granted Critical
Publication of JP6287187B2 publication Critical patent/JP6287187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

近年、高エネルギー密度を有する非水電解質二次電池は、ハイブリッド電気自動車(PHEV、HEV)や電気自動車(EV)の駆動用電源等に利用されている。このような駆動電源等に利用される非水電解質二次電池に対する高性能化の要求はますます高くなっている。   In recent years, non-aqueous electrolyte secondary batteries having a high energy density have been used for power sources for driving hybrid electric vehicles (PHEV, HEV), electric vehicles (EV), and the like. There is an increasing demand for higher performance of non-aqueous electrolyte secondary batteries used for such drive power sources.

下記の特許文献1には、初期充放電容量、入出力特性、インピーダンス特性が改善された非水電解質二次電池を提供する技術として、非水溶媒にフルオロスルホン酸塩を含有させるとともに、特定の化合物を含有させる技術が提案されている。   In the following Patent Document 1, as a technique for providing a non-aqueous electrolyte secondary battery with improved initial charge / discharge capacity, input / output characteristics, and impedance characteristics, a non-aqueous solvent contains a fluorosulfonate, Techniques for incorporating compounds have been proposed.

特開2013−152956号公報JP2013-152958A

上記特許文献1に開示されている技術によると優れた電池特性を有する非水電解質二次電池が得られるものの、更なる電池特性の改善が求められる。本発明は、より電池特性の高い非水電解質二次電池、特に高温保存特性に優れた非水電解質二次電池を提供することを目的とする。   According to the technique disclosed in Patent Document 1, a non-aqueous electrolyte secondary battery having excellent battery characteristics can be obtained, but further improvement of battery characteristics is required. An object of the present invention is to provide a nonaqueous electrolyte secondary battery having higher battery characteristics, particularly a nonaqueous electrolyte secondary battery excellent in high temperature storage characteristics.

本発明の一態様の非水電解質二次電池によれば、
正極活物質としてのリチウム遷移金属複合酸化物を含む正極板と、負極活物質としての炭素材料を含む負極板とを有する電極体と、
非水電解質と、
前記電極体と前記非水電解質を収納する外装体と、
を備えた非水電解質二次電池であって、
前記非水電解質はフルオロスルホン酸リチウムを含有し、
前記炭素材料の比表面積は6.7〜8.1m/gである非水電解質二次電池が提供される。
According to the nonaqueous electrolyte secondary battery of one embodiment of the present invention,
An electrode body having a positive electrode plate containing a lithium transition metal composite oxide as a positive electrode active material and a negative electrode plate containing a carbon material as a negative electrode active material;
A non-aqueous electrolyte,
An exterior body that houses the electrode body and the non-aqueous electrolyte;
A non-aqueous electrolyte secondary battery comprising:
The non-aqueous electrolyte contains lithium fluorosulfonate,
A nonaqueous electrolyte secondary battery in which the carbon material has a specific surface area of 6.7 to 8.1 m 2 / g is provided.

前記負極板は、負極芯体の両面に前記炭素材料を含有する負極合剤層が形成されたものであり、
前記負極合剤層の比表面積は、6.5〜10.5m/gであることが好ましい。
The negative electrode plate is formed by forming a negative electrode mixture layer containing the carbon material on both surfaces of a negative electrode core,
The specific surface area of the negative electrode mixture layer is preferably 6.5 to 10.5 m 2 / g.

前記非水電解質は、エチレンカーボネート、エチルメチルカーボネート、及びジエチルカーボネートを含有し、
前記非水電解質中のジエチルカーボネートの含有量は、エチレンカーボネートの含有量よりも大きく、且つエチルメチルカーボネートの含有量よりも大きいことが好ましい。
The non-aqueous electrolyte contains ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate,
The content of diethyl carbonate in the non-aqueous electrolyte is preferably larger than the content of ethylene carbonate and larger than the content of ethyl methyl carbonate.

前記リチウム遷移金属複合酸化物は、ニッケル、コバルト、マンガン、及びジルコニウムを含有することが好ましい。   The lithium transition metal composite oxide preferably contains nickel, cobalt, manganese, and zirconium.

前記電極体は、前記正極板と前記負極板をセパレータを介して巻回した扁平状の巻回電極体であり、
前記外装体は、開口部を有する有底筒状の角形外装体であり、
前記巻回電極体は、前記巻回電極体の巻回軸が前記角形外装体の底部と平行になるように前記角形外装体に収納されており、
前記開口部は封口体により封止されていることが好ましい。
The electrode body is a flat wound electrode body in which the positive electrode plate and the negative electrode plate are wound through a separator,
The exterior body is a bottomed cylindrical prismatic exterior body having an opening,
The wound electrode body is housed in the rectangular exterior body so that the winding axis of the wound electrode body is parallel to the bottom of the rectangular exterior body,
The opening is preferably sealed with a sealing body.

本発明の一態様の非水電解質二次電池によると、非水電解質がフルオロスルホン酸リチウム(FSOLi)を含有し、負極活物質としての炭素材料の比表面積が6.7〜8.1m/gであるため、高温保存特性に優れた非水電解質二次電池が提供される。 According to the nonaqueous electrolyte secondary battery of one embodiment of the present invention, the nonaqueous electrolyte contains lithium fluorosulfonate (FSO 3 Li), and the specific surface area of the carbon material as the negative electrode active material is 6.7 to 8.1 m. Since it is 2 / g, the nonaqueous electrolyte secondary battery excellent in the high temperature storage characteristic is provided.

図1は、実施形態に係る非水電解質二次電池の斜視図である。FIG. 1 is a perspective view of a nonaqueous electrolyte secondary battery according to an embodiment. 図2Aは図1のIIA−IIA線に沿った部分断面図であり、図2Bは図2AのIIB−IIBに沿った部分断面図である。2A is a partial cross-sectional view taken along line IIA-IIA in FIG. 1, and FIG. 2B is a partial cross-sectional view taken along line IIB-IIB in FIG. 2A. 図3Aは、実施形態に係る非水電解質二次電池に用いる正極板の平面図であり、図3Bは図3AのIIIB−IIIB線に沿った断面図である。3A is a plan view of a positive electrode plate used in the nonaqueous electrolyte secondary battery according to the embodiment, and FIG. 3B is a cross-sectional view taken along line IIIB-IIIB in FIG. 3A. 図4Aは、実施形態に係る非水電解質二次電池に用いる負極板の平面図であり、図4Bは図4AのIVB−IVB線に沿った断面図である。4A is a plan view of a negative electrode plate used in the nonaqueous electrolyte secondary battery according to the embodiment, and FIG. 4B is a cross-sectional view taken along line IVB-IVB in FIG. 4A.

以下に本発明の実施形態を詳細に説明する。ただし、以下に示す各実施形態は、本発明の技術思想を理解するために例示するものであり、本発明をこの実施形態に特定する意図はない。   Hereinafter, embodiments of the present invention will be described in detail. However, each embodiment shown below is illustrated in order to understand the technical idea of the present invention, and the present invention is not intended to be specified in this embodiment.

最初に、実施形態に係る非水電解質二次電池の構成を図1〜図3を用いて説明する。   Initially, the structure of the nonaqueous electrolyte secondary battery which concerns on embodiment is demonstrated using FIGS. 1-3.

図2に示すように、非水電解質二次電池は、正極板1と負極板2がセパレータ3を介して巻回された扁平状の巻回電極体4を有している。この扁平状の巻回電極体4の最外周面は、セパレータ3により覆われている。   As shown in FIG. 2, the nonaqueous electrolyte secondary battery has a flat wound electrode body 4 in which a positive electrode plate 1 and a negative electrode plate 2 are wound via a separator 3. The outermost peripheral surface of the flat wound electrode body 4 is covered with a separator 3.

図3に示すように、正極板1はアルミニウム又はアルミニウム合金製の正極芯体1aの両表面に、幅方向の一方側の端部に長手方向に沿って芯体が帯状に露出した正極芯体露出部1bが両面に形成されるように、正極合剤層1cが形成されている。そして、正極合剤層1cの端部近傍の正極芯体1a上には正極保護層1dが形成されている。図4に示すように、負極板2は、銅又は銅合金製の負極芯体2aの両表面に、幅方向の両端部に長手方向に沿って芯体が帯状に露出した負極芯体露出部2bが両面に形成されるように、負極合剤層2cが形成されている。負極合剤層2c上には負極保護層2dが形成されている。ここで、負極板2の幅方向の一方の端部に設けられた負極芯体露出部2bの幅は、負極板2の幅方向の他方の端部に設けられた負極芯体露出部2bの幅よりも大きい。なお、負極芯体露出部2bは、負極板2の幅方向の一方側の端部のみに設けるようにしてもよい。   As shown in FIG. 3, the positive electrode plate 1 is a positive electrode core body in which the core body is exposed in a strip shape along the longitudinal direction at one end in the width direction on both surfaces of a positive electrode core body 1a made of aluminum or aluminum alloy. The positive electrode mixture layer 1c is formed so that the exposed portion 1b is formed on both sides. A positive electrode protective layer 1d is formed on the positive electrode core 1a near the end of the positive electrode mixture layer 1c. As shown in FIG. 4, the negative electrode plate 2 has negative electrode core exposed portions in which the core is exposed in a strip shape along the longitudinal direction at both ends in the width direction on both surfaces of the negative electrode core 2a made of copper or copper alloy. The negative electrode mixture layer 2c is formed so that 2b is formed on both sides. A negative electrode protective layer 2d is formed on the negative electrode mixture layer 2c. Here, the width of the negative electrode core exposed portion 2b provided at one end portion in the width direction of the negative electrode plate 2 is equal to that of the negative electrode core exposed portion 2b provided at the other end portion in the width direction of the negative electrode plate 2. Greater than width. Note that the negative electrode core exposed portion 2 b may be provided only at one end portion in the width direction of the negative electrode plate 2.

これらの正極板1及び負極板2をセパレータ3を介して巻回し、扁平状に成形することにより扁平状の巻回電極体4が作製される。このとき、扁平状の巻回電極体4の一方の端部に巻回された正極芯体露出部1bが形成され、他方の端部に巻回された負極芯体露出部2bが形成されるようにする。   The positive electrode plate 1 and the negative electrode plate 2 are wound through a separator 3 and formed into a flat shape, whereby a flat wound electrode body 4 is produced. At this time, the positive electrode core exposed portion 1b wound around one end of the flat wound electrode body 4 is formed, and the negative electrode core exposed portion 2b wound around the other end is formed. Like that.

図2に示すように、巻回された正極芯体露出部1bは、正極集電体5を介して正極端子6に電気的に接続される。巻回された負極芯体露出部2bは、負極集電体7を介して負極
端子8に電気的に接続される。正極集電体5及び正極端子6はアルミニウム又はアルミニウム合金製であることが好ましい。負極集電体7及び負極端子8は銅又は銅合金製であることが好ましい。正極端子6は、金属製の封口体11を貫通する連結部6a、封口体11の外面側に配置される板状部6b、板状部6b上に設けられるボルト部6cを含むことが好ましい。負極端子8は、封口体11を貫通する連結部8a、封口体11の外面側に配置される板状部8b、板状部8b上に設けられるボルト部8cを含むことが好ましい。
As shown in FIG. 2, the wound positive electrode core exposed portion 1 b is electrically connected to the positive electrode terminal 6 through the positive electrode current collector 5. The wound negative electrode core exposed portion 2 b is electrically connected to the negative electrode terminal 8 through the negative electrode current collector 7. The positive electrode current collector 5 and the positive electrode terminal 6 are preferably made of aluminum or an aluminum alloy. The negative electrode current collector 7 and the negative electrode terminal 8 are preferably made of copper or a copper alloy. The positive electrode terminal 6 preferably includes a connecting portion 6a penetrating the metal sealing body 11, a plate-like portion 6b disposed on the outer surface side of the sealing body 11, and a bolt portion 6c provided on the plate-like portion 6b. The negative electrode terminal 8 preferably includes a connecting portion 8a penetrating the sealing body 11, a plate-like portion 8b disposed on the outer surface side of the sealing body 11, and a bolt portion 8c provided on the plate-like portion 8b.

正極板1と正極端子6の間の導電経路には、電池内圧が所定値より大きくなった場合に作動し、正極板1と正極端子6の間の導電経路を遮断する電流遮断機構16が設けられている。   The conductive path between the positive electrode plate 1 and the positive electrode terminal 6 is provided with a current interrupting mechanism 16 that operates when the internal pressure of the battery exceeds a predetermined value and interrupts the conductive path between the positive electrode plate 1 and the positive electrode terminal 6. It has been.

図1、図2Aに示すように、正極端子6は、絶縁部材9を介して封口体11に固定されている。負極端子8は絶縁部材10を介して封口体11に固定される。   As shown in FIGS. 1 and 2A, the positive electrode terminal 6 is fixed to the sealing body 11 via an insulating member 9. The negative electrode terminal 8 is fixed to the sealing body 11 via the insulating member 10.

扁平状の巻回電極体4は、樹脂製の絶縁シート15により覆われた状態で金属製の角形外装体12内に収納される。封口体11は、角形外装体12の開口部に当接され、封口体11と角形外装体12との当接部がレーザ溶接される。   The flat wound electrode body 4 is housed in a metal rectangular outer package 12 in a state of being covered with a resin insulating sheet 15. The sealing body 11 is brought into contact with the opening of the rectangular exterior body 12, and the contact portion between the sealing body 11 and the rectangular exterior body 12 is laser-welded.

角形外装体12は有底筒状であり、一対の大面積側壁12a、大面積側壁12aよりも面積の小さい一対の小面積側壁12b、及び底部12cを有する。扁平状の巻回電極体4の扁平部は、一対の平坦な外面がそれぞれ一対の大面積側壁12aに対向するように配置されている。   The rectangular exterior body 12 has a bottomed cylindrical shape, and includes a pair of large area side walls 12a, a pair of small area side walls 12b having a smaller area than the large area side wall 12a, and a bottom portion 12c. The flat portion of the flat wound electrode body 4 is disposed such that a pair of flat outer surfaces face the pair of large-area side walls 12a.

封口体11は電解液注液口13を有し、この電解液注液口13から非水電解液が注液され、その後ブラインドリベット等により電解液注液口13が封止される。封口体11には、電池内圧が電流遮断機構16の作動圧よりも大きな値となった場合に破断し、電池内部のガスを電池外部に排出するガス排出弁14が形成されている。   The sealing body 11 has an electrolytic solution injection port 13 from which a nonaqueous electrolytic solution is injected, and then the electrolytic solution injection port 13 is sealed with a blind rivet or the like. The sealing body 11 is formed with a gas discharge valve 14 that breaks when the battery internal pressure becomes larger than the operating pressure of the current interrupt mechanism 16 and discharges the gas inside the battery to the outside of the battery.

次に、非水電解質二次電池における正極板1、負極板2、扁平状の巻回電極体4及び非水電解質としての非水電解液の製造方法について説明する。   Next, the positive electrode plate 1, the negative electrode plate 2, the flat wound electrode body 4, and the method for producing the nonaqueous electrolyte solution as the nonaqueous electrolyte in the nonaqueous electrolyte secondary battery will be described.

[正極板の作製]
正極活物質としてLi(Ni0.35Co0.35Mn0.300.95Zr0.05で表されるリチウム遷移金属複合酸化物を用いた。この正極活物質と、導電剤としての炭素粉末と、結着剤としてのポリフッ化ビニリデン(PVdF)とを、それぞれの質量比で91:7:2となるように秤量し、分散媒としてのN−メチルー2―ピロリドン(NMP)と混合して正極合剤スラリーを作製した。
[Production of positive electrode plate]
As the positive electrode active material, a lithium transition metal composite oxide represented by Li (Ni 0.35 Co 0.35 Mn 0.30 ) 0.95 Zr 0.05 O 2 was used. This positive electrode active material, carbon powder as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder are weighed so as to have a mass ratio of 91: 7: 2, and N as a dispersion medium. -Mix-2-pyrrolidone (NMP) was mixed to prepare a positive electrode mixture slurry.

アルミナ粉末、PVdF、炭素粉末、及び分散媒としてのNMPを質量比で21:4:1:74の割合で混合して正極保護層スラリーを作製した。   A positive electrode protective layer slurry was prepared by mixing alumina powder, PVdF, carbon powder, and NMP as a dispersion medium at a mass ratio of 21: 4: 1: 74.

上述の方法で作製した正極合剤スラリーを、正極芯体1aとしての厚さ15μmのアルミニウム箔の両面にダイコーターにより塗布した。次いで、正極合剤スラリーを塗布した領域端部の正極芯体1a上に上述の方法で作製した正極保護層スラリーを塗布した。その後、極板を乾燥させて分散媒としてのNMPを除去し、ロールプレスによって所定厚さとなるように圧縮した。そして、正極板1の幅方向の一方の端部に長手方向に沿って両面に正極合剤層1cが形成されていない正極芯体露出部1bが形成されるように所定寸法に切断し正極板1とした。   The positive electrode mixture slurry produced by the above-described method was applied to both surfaces of a 15 μm-thick aluminum foil as the positive electrode core 1a by a die coater. Next, the positive electrode protective layer slurry produced by the above-described method was applied on the positive electrode core 1a at the end of the region where the positive electrode mixture slurry was applied. Thereafter, the electrode plate was dried to remove NMP as a dispersion medium, and compressed to a predetermined thickness by a roll press. And it cut | disconnects to a predetermined dimension so that the positive electrode core body exposure part 1b in which the positive mix layer 1c is not formed in both surfaces along the longitudinal direction may be formed in one edge part of the width direction of the positive electrode plate 1 may be positive electrode plate. It was set to 1.

[負極板の作製]
負極活物質としての比表面積が7.46m/gの黒鉛粉末と、増粘剤としてのカルボキシメチルセルロース(CMC)と、結着剤としてのスチレン−ブタジエンゴム(SBR)とを、それぞれの質量比で98:1:1の割合で水に分散させ負極合剤スラリーを作製した。
[Production of negative electrode plate]
Mass ratio of graphite powder having a specific surface area of 7.46 m 2 / g as a negative electrode active material, carboxymethyl cellulose (CMC) as a thickener, and styrene-butadiene rubber (SBR) as a binder. Was dispersed in water at a ratio of 98: 1: 1 to prepare a negative electrode mixture slurry.

アルミナ粉末、結着剤(アクリル系樹脂)、及び分散媒としてのNMPを質量比で30:0.9:69.1の割合で混合し、ビーズミルにて混合分散処理を施した負極保護層スラリーを作製した。   Negative electrode protective layer slurry in which alumina powder, binder (acrylic resin), and NMP as a dispersion medium are mixed at a mass ratio of 30: 0.9: 69.1 and mixed and dispersed by a bead mill. Was made.

上述の方法で作製した負極合剤スラリーを、負極芯体2aとしての厚さ8μmの銅箔の両面にダイコーターにより塗布した。次いで、乾燥させて分散媒としての水を除去し、ロールプレスによって所定厚さとなるように圧縮した。その後、上述の方法で作製した負極保護層スラリーを負極合剤層2c上に塗布した後、溶剤として使用したNMPを乾燥除去して、負極保護層2dを形成した。そして、負極板の幅方向の両端部に長手方向に沿って両面に負極合剤層2cが形成されていない負極芯体露出部2bが形成されるように所定寸法に切断し負極板2とした。   The negative electrode mixture slurry produced by the above-described method was applied to both surfaces of a copper foil having a thickness of 8 μm as the negative electrode core 2a by a die coater. Subsequently, it was dried to remove water as a dispersion medium, and compressed to a predetermined thickness by a roll press. Then, after apply | coating the negative electrode protective layer slurry produced by the above-mentioned method on the negative mix layer 2c, NMP used as a solvent was dried and removed and the negative electrode protective layer 2d was formed. And it cut | disconnected to the predetermined dimension so that the negative electrode core layer exposure part 2b in which the negative mix layer 2c was not formed in both surfaces along the longitudinal direction in the both ends of the width direction of a negative electrode plate was used as the negative electrode plate 2 .

なお、負極板2において負極合剤層2cの比表面積は、8.5m/gであった。負極合剤層2cの測定方法は次の通りである。 The specific surface area of the negative electrode mixture layer 2c in the negative electrode plate 2 was 8.5 m 2 / g. The measuring method of the negative electrode mixture layer 2c is as follows.

[負極合剤層の比表面積の測定方法]
負極板2において負極芯体2aの両面に負極合剤層2cが形成された領域を平面視で2cm×5cmの大きさに切断した比表面積測定用極板を3枚作成し、マウンテック社製MACSORB HM model−1201により比表面積を測定した。なお、負極合剤層2cの比表面積の算出にあたり、負極合剤層2cの表面積に比べ負極芯体2aの表面積は十分に小さいため、負極芯体2aの表面積は0m/gとした。また、比表面積測定用極板の重量から、負極芯体2aの重量を除いて計算を行った。負極合剤層表面に負極保護層が形成されている場合は、負極保護層を含めて負極合剤層の比表面積とする。
[Method for Measuring Specific Surface Area of Negative Electrode Mixture Layer]
In the negative electrode plate 2, three electrode plates for specific surface area measurement were prepared by cutting the areas where the negative electrode mixture layer 2c was formed on both surfaces of the negative electrode core 2a into a size of 2 cm × 5 cm in plan view, and MACSORB manufactured by Mountec Co., Ltd. The specific surface area was measured by HM model-1201. In calculating the specific surface area of the negative electrode mixture layer 2c, the surface area of the negative electrode core body 2a was sufficiently smaller than the surface area of the negative electrode mixture layer 2c. Therefore, the surface area of the negative electrode core body 2a was set to 0 m 2 / g. Moreover, it calculated by remove | excluding the weight of the negative electrode core 2a from the weight of the electrode plate for a specific surface area measurement. When the negative electrode protective layer is formed on the surface of the negative electrode mixture layer, the specific surface area of the negative electrode mixture layer including the negative electrode protective layer is set.

[扁平状の巻回電極体の作製]
上述の方法で作製した正極板1と負極板2を、ポリプロピレン製のセパレータ3を介して巻回した後、扁平状に成形して扁平状の巻回電極体4を作製した。扁平状の巻回電極体4の巻き軸方向の一方の端部には巻回された正極芯体露出部1bが形成され、他方の端部には巻回された負極芯体露出部2bが形成される。扁平状の巻回電極体4の最外周にはセパレータ3が位置する。また、負極板2の巻き終り端部が、正極板1の巻き終り端部よりも外周側に位置する。
[Production of flat wound electrode body]
The positive electrode plate 1 and the negative electrode plate 2 produced by the above-described method were wound through a polypropylene separator 3 and then formed into a flat shape to produce a flat wound electrode body 4. The wound positive electrode core exposed portion 1b is formed at one end in the winding axis direction of the flat wound electrode body 4, and the wound negative electrode core exposed portion 2b is formed at the other end. It is formed. The separator 3 is located on the outermost periphery of the flat wound electrode body 4. Further, the end of winding of the negative electrode plate 2 is located on the outer peripheral side of the end of winding of the positive electrode plate 1.

[非水電解液の調整]
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジエチルカーボネート(DEC)とを体積比(25℃、1気圧)で3:3:4となるように混合した混合溶媒を作製した。この混合溶媒に、LiPFを1mol/Lとなるように添加し、さらに全非水電解質質量に対してそれぞれ、ビニレンカーボネート(VC)を0.3質量%、フルオロスルホン酸リチウムを1.0質量%添加して非水電解液とした。
[Adjustment of non-aqueous electrolyte]
A mixed solvent was prepared by mixing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) at a volume ratio (25 ° C., 1 atm) of 3: 3: 4. LiPF 6 was added to this mixed solvent so as to be 1 mol / L, and vinylene carbonate (VC) was 0.3% by mass and lithium fluorosulfonate was 1.0% by mass with respect to the total non-aqueous electrolyte mass. % To make a non-aqueous electrolyte.

[非水電解質二次電池の組み立て]
正極端子6と正極集電体5が電気的に接続された状態とし、絶縁部材9を介して、正極端子6と正極集電体5をアルミニウム製の封口体11に固定する。正極端子6と正極集電体5の間には、電池内圧の上昇に伴い、正極端子6と正極集電体5の間の導電経路が切断される安全機構を設けることが好ましい。負極端子8と負極集電体7が電気的に接続された状態とし、絶縁部材10を介して、負極端子8と負極集電体7を封口体11に固定する
。その後、巻回された正極芯体露出部1bの最外面に正極集電体5及び受け部品5aを接続し、負極芯体露出部2bの最外面に負極集電体7及び受け部品を接続する。
[Assembly of non-aqueous electrolyte secondary battery]
The positive electrode terminal 6 and the positive electrode current collector 5 are in an electrically connected state, and the positive electrode terminal 6 and the positive electrode current collector 5 are fixed to the aluminum sealing body 11 via the insulating member 9. It is preferable to provide a safety mechanism between the positive electrode terminal 6 and the positive electrode current collector 5 so that the conductive path between the positive electrode terminal 6 and the positive electrode current collector 5 is cut as the battery internal pressure increases. The negative electrode terminal 8 and the negative electrode current collector 7 are electrically connected, and the negative electrode terminal 8 and the negative electrode current collector 7 are fixed to the sealing body 11 via the insulating member 10. Thereafter, the positive electrode current collector 5 and the receiving component 5a are connected to the outermost surface of the wound positive electrode core exposed portion 1b, and the negative electrode current collector 7 and the receiving component are connected to the outermost surface of the negative electrode core exposed portion 2b. .

次に、扁平状の巻回電極体4を箱状に折り曲げ成形したポリプロピレン製の絶縁シート15で覆い、アルミニウム製の角形外装体12内に挿入した。そして、角形外装体12と封口体11の当接部をレーザ溶接し、角形外装体12の開口部を封止した。   Next, the flat wound electrode body 4 was covered with a polypropylene insulating sheet 15 bent into a box shape and inserted into the aluminum rectangular exterior body 12. And the contact part of the square exterior body 12 and the sealing body 11 was laser-welded, and the opening part of the square exterior body 12 was sealed.

上述の方法で作製した非水電解液を封口体11の電解液注液口13より注液した後、電解液注液口13をブラインドリベットにより封止した。この実施形態に係る非水電解質二次電池を電池1とした。   After injecting the nonaqueous electrolytic solution produced by the above-described method from the electrolytic solution injection port 13 of the sealing body 11, the electrolytic solution injection port 13 was sealed with a blind rivet. The nonaqueous electrolyte secondary battery according to this embodiment is referred to as a battery 1.

非水電解質にフルオロスルホン酸リチウムが添加されていないことを除いては、電池1と同様の構成を有する非水電解質二次電池を作製し、電池2とした。   A nonaqueous electrolyte secondary battery having the same configuration as that of the battery 1 was prepared except that lithium fluorosulfonate was not added to the nonaqueous electrolyte.

上述の方法で作製した電池1及び電池2について、以下の方法で常温抵抗、低温出力、低温回生、初期容量及び保存後容量維持率を測定した。   About the battery 1 and the battery 2 produced by the above-mentioned method, the normal temperature resistance, the low temperature output, the low temperature regeneration, the initial capacity, and the capacity retention rate after storage were measured by the following methods.

[常温抵抗値の測定]
25℃の条件下で1Cの定電流で充電深度(SOC)79%まで充電した。その後、7.5C、15C、22.5C、30C、37.5C、45C、52.5c及び60Cの定電流で10秒間放電を行い、それぞれの電池電圧を測定し、電池電圧をy軸、電流値をx軸として各測定結果をプロットして、その傾きを常温抵抗値とした。
[Measurement of room temperature resistance]
The battery was charged to a charge depth (SOC) of 79% at a constant current of 1 C under the condition of 25 ° C. After that, discharging was performed at a constant current of 7.5C, 15C, 22.5C, 30C, 37.5C, 45C, 52.5c and 60C for 10 seconds, and each battery voltage was measured. Each measurement result was plotted with the value as the x-axis, and the slope was taken as the normal temperature resistance value.

[低温出力の測定]
25℃の条件下において、1Cの定電流で、充電深度(SOC)が27%となるよう定電流充電した。この後、−30℃にて、これらの電池を、それぞれ2.5C、5C、7.5C、10C、12.5C、15C、17.5C及び20Cの定電流で2秒間放電を行い、それぞれの電池電圧を測定し、各電流値と電池電圧とをプロットして、低温出力(2.2V放電時の電力(W))を求めた。
[Measurement of low-temperature output]
Under the condition of 25 ° C., constant current charging was performed at a constant current of 1 C so that the depth of charge (SOC) was 27%. Thereafter, these batteries were discharged at a constant current of 2.5C, 5C, 7.5C, 10C, 12.5C, 15C, 17.5C and 20C for 2 seconds at -30 ° C, respectively. The battery voltage was measured, and each current value and the battery voltage were plotted to obtain a low-temperature output (power (W) at 2.2 V discharge).

[低温回生の測定]
25℃の条件下において、1Cの定電流で、充電深度(SOC)が27%となるよう定電流充電した。この後、−30℃にて、これらの電池を、それぞれ0.75C、1.5C、2.25C、3C、3.75C、4.5C、5.25C及び6Cの定電流で5秒間充電を行い、それぞれの電池電圧を測定し、各電流値と電池電圧とをプロットして、低温回生(4.175V充電時の電力(W))を求めた。
[Measurement of low temperature regeneration]
Under the condition of 25 ° C., constant current charging was performed at a constant current of 1 C so that the depth of charge (SOC) was 27%. After that, at −30 ° C., these batteries were charged for 5 seconds with constant currents of 0.75C, 1.5C, 2.25C, 3C, 3.75C, 4.5C, 5.25C and 6C, respectively. Each battery voltage was measured, and each current value and the battery voltage were plotted to obtain low-temperature regeneration (power (W) at 4.175 V charging).

[初期容量、保存後容量維持率の測定]
25℃の条件下で1Cの定電流で4.1Vまで充電し、4.1Vで2時間充電後、1/2Cの定電流で3Vまで放電し、3Vで3時間放電した。このときの放電容量を、初期容量とした。その後、1Cの定電流でSOC80%まで充電し、60℃で40日間保存した。保存後、1Cの定電流で4.1Vまで充電し、4.1Vで2時間充電後、1/2Cの定電流で3Vまで放電し、3Vで3時間放電した。このときの放電容量を、保存後容量とした。以下の式より保存後容量維持率を求めた。
保存後容量維持率(%) = 初期容量 / 保存前容量 ×100
[Measurement of initial capacity and capacity retention after storage]
The battery was charged to 4.1 V with a constant current of 1 C under the condition of 25 ° C., charged for 2 hours at 4.1 V, discharged to 3 V with a constant current of 1/2 C, and discharged at 3 V for 3 hours. The discharge capacity at this time was defined as the initial capacity. Then, it charged to SOC80% with the constant current of 1C, and preserve | saved at 60 degreeC for 40 days. After storage, the battery was charged to 4.1 V at a constant current of 1 C, charged at 4.1 V for 2 hours, discharged to 3 V at a constant current of 1/2 C, and discharged at 3 V for 3 hours. The discharge capacity at this time was defined as the capacity after storage. The capacity retention rate after storage was determined from the following formula.
Capacity retention after storage (%) = initial capacity / capacity before storage x 100

上述の測定結果を表1に示す。表1において、初期容量、常温抵抗、低温出力及び低温回生については、電池2の測定結果を100%とし、電池1の測定結果を電池2の測定結果に対する相対値として示す。   The above measurement results are shown in Table 1. In Table 1, for the initial capacity, normal temperature resistance, low temperature output, and low temperature regeneration, the measurement result of the battery 2 is assumed to be 100%, and the measurement result of the battery 1 is shown as a relative value with respect to the measurement result of the battery 2.

表1の示す通り、非水電解質がフルオロスルホン酸リチウムを含有し、負極活物質としての炭素材料の比表面積が6.7〜8.1m/gであることにより、出力特性及び高温保存特性に優れた非水電解質二次電池が得られる。 As shown in Table 1, when the non-aqueous electrolyte contains lithium fluorosulfonate and the specific surface area of the carbon material as the negative electrode active material is 6.7 to 8.1 m 2 / g, output characteristics and high temperature storage characteristics A non-aqueous electrolyte secondary battery excellent in the above can be obtained.

なお、非水電解質中にフルオロスルホン酸リチウムが含有されていれば上述の効果が得られるが、非水電解質中のフルオロスルホン酸リチウムの含有量は0.1〜2.0質量%とすることが好ましく、0.5〜1.5質量%とすることがより好ましい。また、負極活物質としては、黒鉛が好ましく、特に黒鉛の表面が非結晶性の炭素材料に被覆されたものを用いることが好ましい。   The above effect can be obtained if the nonaqueous electrolyte contains lithium fluorosulfonate, but the content of lithium fluorosulfonate in the nonaqueous electrolyte should be 0.1 to 2.0% by mass. Is preferable, and it is more preferable to set it as 0.5-1.5 mass%. Further, as the negative electrode active material, graphite is preferable, and it is particularly preferable to use a material in which the surface of graphite is coated with an amorphous carbon material.

また、非水電解液中の溶媒において、ECの含有割合が20〜40体積%、EMCの含有割合が20〜40体積%、DECの含有割合が30〜50体積%であることが好ましい。なお、非水電解液が、EC、EMC及びDEC以外の溶媒を含むようにしても良い。   In the solvent in the non-aqueous electrolyte, the EC content is preferably 20 to 40% by volume, the EMC content is 20 to 40% by volume, and the DEC content is preferably 30 to 50% by volume. The non-aqueous electrolyte may contain a solvent other than EC, EMC, and DEC.

<その他の事項>
(追加事項)
正極活物質としては、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)、リチウムニッケルマンガン複合酸化物(LiNi1−xMn(0<x<1))、リチウムニッケルコバルト複合酸化物(LiNi1−xCo(0<x<1))、リチウムニッケルコバルトマンガン複合酸化物(LiNiCoMn(0<x<1、0<y<1、0<z<1、x+y+z=1))等のリチウム遷移金属複合酸化物が挙げられる。また、上記のリチウム遷移金属複合酸化物にAl、Ti、Zr、Nb、B、W、Mg又はMo等を添加したものも使用し得る。例えば、Li1+aNiCoMn(M=Al、Ti、Zr、Nb、B、Mg及びMoから選択される少なくとも1種の元素、0≦a≦0.2、0.2≦x≦0.5、0.2≦y≦0.5、0.2≦z≦0.4、0≦b≦0.02、a+b+x+y+z=1)で表されるリチウム遷移金属複合酸化物が挙げられる。
<Other matters>
(Additions)
As the positive electrode active material, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), lithium nickel manganese composite oxide (LiNi 1-x Mn x O 2 (0 < x <1)), lithium nickel cobalt composite oxide (LiNi 1-x Co x O 2 (0 <x <1)), lithium nickel cobalt manganese composite oxide (LiNi x Co y Mn z O 2 (0 <x <1, 0 <y <1, 0 <z <1, x + y + z = 1)) and the like. Moreover, what added Al, Ti, Zr, Nb, B, W, Mg, Mo, etc. to said lithium transition metal complex oxide can also be used. For example, Li 1 + a Ni x Co y Mn z M b O 2 (M = at least one element selected from Al, Ti, Zr, Nb, B, Mg, and Mo, 0 ≦ a ≦ 0.2, 0. 2 ≦ x ≦ 0.5, 0.2 ≦ y ≦ 0.5, 0.2 ≦ z ≦ 0.4, 0 ≦ b ≦ 0.02, a + b + x + y + z = 1) Is mentioned.

負極活物質としてはリチウムイオンの吸蔵・放出が可能な炭素材料を用いることができる。リチウムイオンの吸蔵・放出が可能な炭素材料としては、黒鉛、難黒鉛性炭素、易黒鉛性炭素、繊維状炭素、コークス及びカーボンブラック等が挙げられる。これらの内、特に黒鉛が好ましい。   As the negative electrode active material, a carbon material capable of occluding and releasing lithium ions can be used. Examples of the carbon material capable of occluding and releasing lithium ions include graphite, non-graphitizable carbon, graphitizable carbon, fibrous carbon, coke, and carbon black. Of these, graphite is particularly preferable.

非水電解質の非水溶媒(有機溶媒)としては、カーボネート類、ラクトン類、エーテル類、ケトン類、エステル類等を使用することができ、これらの溶媒の2種類以上を混合して用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートを用いることができる。特に、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましい。また、ビニレンカーボネート(VC)などの不飽和環状炭酸エステルを非水電解質に添加することもできる
As the nonaqueous solvent (organic solvent) of the nonaqueous electrolyte, carbonates, lactones, ethers, ketones, esters and the like can be used, and two or more of these solvents can be used in combination. it can. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, and chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate can be used. In particular, it is preferable to use a mixed solvent of a cyclic carbonate and a chain carbonate. Moreover, unsaturated cyclic carbonates such as vinylene carbonate (VC) can also be added to the nonaqueous electrolyte.

非水電解質の電解質塩としては、従来のリチウムイオン二次電池において電解質塩として一般に使用されているものを用いることができる。例えば、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12、LiB(C、LiB(C)F、LiP(C、LiP(C、LiP(C)F等及びそれらの混合物が用いられる。これらの中でも、LiPFが特に好ましい。また、前記非水溶媒に対する電解質塩の溶解量は、0.5〜2.0mol/Lとするのが好ましい。 As the electrolyte salt of the non-aqueous electrolyte, those generally used as the electrolyte salt in the conventional lithium ion secondary battery can be used. For example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , LiB (C 2 O 4 ) 2 , LiB ( C 2 O 4 ) F 2 , LiP (C 2 O 4 ) 3 , LiP (C 2 O 4 ) 2 F 2 , LiP (C 2 O 4 ) F 4 and the like and mixtures thereof are used. Among these, LiPF 6 is particularly preferable. The amount of electrolyte salt dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.

セパレータとしては、ポリプロピレン(PP)やポリエチレン(P)などのポリオレフィン製の多孔質セパレータを用いることが好ましい。特にポリプロピレン(PP)とポリエチレン(PE)の3層構造(PP/PE/PP、あるいはPE/PP/PE)を有するセパレータを用いることが好ましい。また、ポリマー電解質をセパレータとして用いてもよい。

As the separator, it is preferable to use a porous separator made of polyolefin such as polypropylene (PP) or polyethylene (P E ). In particular, it is preferable to use a separator having a three-layer structure (PP / PE / PP or PE / PP / PE) of polypropylene (PP) and polyethylene (PE). Further, a polymer electrolyte may be used as a separator.

電極体は、複数枚の正極板と複数枚の負極板とをセパレータを積層した積層電極体とすることもできる。   The electrode body may be a laminated electrode body in which a plurality of positive plates and a plurality of negative plates are laminated with separators.

1 正極板
1a 正極芯体
1b 正極芯体露出部
1c 正極合剤層
1d 正極保護層
2 負極板
2a 負極芯体
2b 負極芯体露出部
2c 負極合剤層
2d 負極保護層
3 セパレータ
4 巻回電極体
5 正極集電体
6 正極端子
7 負極集電体
8 負極端子
9、10 絶縁部材
11 封口体
12 角形外装体
12a 大面積側壁
12b 小面積側壁
12c 底部
13 電解液注液口
14 ガス排出弁
15 絶縁シート
16 電流遮断機構
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 1a Positive electrode core body 1b Positive electrode core body exposed part 1c Positive electrode mixture layer 1d Positive electrode protective layer 2 Negative electrode plate 2a Negative electrode core body 2b Negative electrode core body exposed part 2c Negative electrode mixture layer 2d Negative electrode protective layer 3 Separator 4 Winding electrode Body 5 Positive electrode current collector 6 Positive electrode terminal 7 Negative electrode current collector 8 Negative electrode terminal 9, 10 Insulating member 11 Sealing body 12 Rectangular outer body 12a Large area side wall 12b Small area side wall 12c Bottom 13 Electrolyte injection port 14 Gas discharge valve 15 Insulation sheet 16 Current interruption mechanism

Claims (8)

正極活物質としてのリチウム遷移金属複合酸化物を含む正極板と、負極活物質としての炭素材料を含む負極板とを有する電極体と、
非水電解質と、
前記電極体と前記非水電解質を収納する外装体と、
を備えた非水電解質二次電池であって、
前記非水電解質はフルオロスルホン酸リチウムを含有し、
前記炭素材料の比表面積は6.7〜8.1m/gであり、
前記負極板は、負極芯体の両面に前記炭素材料を含有する負極合剤層が形成されたものであり、
前記負極合剤層の比表面積は、6.5〜10.5m /gである非水電解質二次電池。
An electrode body having a positive electrode plate containing a lithium transition metal composite oxide as a positive electrode active material and a negative electrode plate containing a carbon material as a negative electrode active material;
A non-aqueous electrolyte,
An exterior body that houses the electrode body and the non-aqueous electrolyte;
A non-aqueous electrolyte secondary battery comprising:
The non-aqueous electrolyte contains lithium fluorosulfonate,
The specific surface area of the carbon material Ri 6.7~8.1m 2 / g der,
The negative electrode plate is formed by forming a negative electrode mixture layer containing the carbon material on both surfaces of a negative electrode core,
The specific surface area of the negative electrode mixture layer, 6.5~10.5m 2 / g Der Ru nonaqueous electrolyte secondary battery.
前記非水電解質は、エチレンカーボネート、エチルメチルカーボネート、及びジエチルカーボネートを含有し、
前記非水電解質中のジエチルカーボネートの含有量は、エチレンカーボネートの含有量よりも大きく、且つエチルメチルカーボネートの含有量よりも大きい請求項1に記載の非水電解質二次電池。
The non-aqueous electrolyte contains ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate,
The nonaqueous electrolyte secondary battery according to claim 1, wherein the content of diethyl carbonate in the nonaqueous electrolyte is larger than the content of ethylene carbonate and larger than the content of ethyl methyl carbonate.
前記リチウム遷移金属複合酸化物は、ニッケル、コバルト、マンガン、及びジルコニウムを含有する請求項1又は2に記載の非水電解質二次電池。 The lithium transition metal complex oxide, nickel, cobalt, manganese, and a non-aqueous electrolyte secondary battery according to claim 1 or 2 containing zirconium. 前記電極体は、前記正極板と前記負極板をセパレータを介して巻回した扁平状の巻回電極体であり、
前記外装体は、開口部を有する有底筒状の角形外装体であり、
前記巻回電極体は、前記巻回電極体の巻回軸が前記角形外装体の底部と平行になるように前記角形外装体に収納されており、
前記開口部は封口体により封止されている請求項1〜のいずれかに記載の非水電解質二次電池。
The electrode body is a flat wound electrode body in which the positive electrode plate and the negative electrode plate are wound through a separator,
The exterior body is a bottomed cylindrical prismatic exterior body having an opening,
The wound electrode body is housed in the rectangular exterior body so that the winding axis of the wound electrode body is parallel to the bottom of the rectangular exterior body,
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the openings are sealed by the sealing member.
正極活物質としてのリチウム遷移金属複合酸化物を含む正極板と、負極活物質としての炭素材料を含む負極板とを有する電極体と、An electrode body having a positive electrode plate containing a lithium transition metal composite oxide as a positive electrode active material and a negative electrode plate containing a carbon material as a negative electrode active material;
非水電解質と、A non-aqueous electrolyte,
前記電極体と前記非水電解質を収納する外装体と、An exterior body that houses the electrode body and the non-aqueous electrolyte;
を備え、With
前記炭素材料の比表面積は6.7〜8.1mThe specific surface area of the carbon material is 6.7 to 8.1 m. 2 /gであり、/ G,
前記負極板は、負極芯体の両面に前記炭素材料を含有する負極合剤層が形成されたものであり、The negative electrode plate is formed by forming a negative electrode mixture layer containing the carbon material on both surfaces of a negative electrode core,
前記負極合剤層の比表面積は、6.5〜10.5mThe specific surface area of the negative electrode mixture layer is 6.5 to 10.5 m. 2 /gである非水電解質二次電池の製造方法であって、/ G of non-aqueous electrolyte secondary battery manufacturing method,
フルオロスルホン酸リチウムを含有する前記非水電解質を前記外装体内に配置する工程を有する非水電解質二次電池の製造方法。A method for producing a nonaqueous electrolyte secondary battery, comprising a step of disposing the nonaqueous electrolyte containing lithium fluorosulfonate in the outer package.
前記非水電解質は、エチレンカーボネート、エチルメチルカーボネート、及びジエチルカーボネートを含有し、The non-aqueous electrolyte contains ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate,
前記非水電解質中のジエチルカーボネートの含有量は、エチレンカーボネートの含有量よりも大きく、且つエチルメチルカーボネートの含有量よりも大きい請求項5に記載の非水電解質二次電池の製造方法。The method for producing a non-aqueous electrolyte secondary battery according to claim 5, wherein the content of diethyl carbonate in the non-aqueous electrolyte is larger than the content of ethylene carbonate and larger than the content of ethyl methyl carbonate.
前記リチウム遷移金属複合酸化物は、ニッケル、コバルト、マンガン、及びジルコニウムを含有する請求項5又は6に記載の非水電解質二次電池の製造方法。The method for producing a nonaqueous electrolyte secondary battery according to claim 5 or 6, wherein the lithium transition metal composite oxide contains nickel, cobalt, manganese, and zirconium. 前記電極体は、前記正極板と前記負極板をセパレータを介して巻回した扁平状の巻回電極体であり、The electrode body is a flat wound electrode body in which the positive electrode plate and the negative electrode plate are wound through a separator,
前記外装体は、開口部を有する有底筒状の角形外装体であり、The exterior body is a bottomed cylindrical prismatic exterior body having an opening,
前記巻回電極体は、前記巻回電極体の巻回軸が前記角形外装体の底部と平行になるように前記角形外装体に収納されており、The wound electrode body is housed in the rectangular exterior body so that the winding axis of the wound electrode body is parallel to the bottom of the rectangular exterior body,
前記開口部は封口体により封止されている請求項5〜7のいずれかに記載の非水電解質二次電池の製造方法。The method for manufacturing a nonaqueous electrolyte secondary battery according to claim 5, wherein the opening is sealed with a sealing body.
JP2013268673A 2013-12-26 2013-12-26 Nonaqueous electrolyte secondary battery Active JP6287187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013268673A JP6287187B2 (en) 2013-12-26 2013-12-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013268673A JP6287187B2 (en) 2013-12-26 2013-12-26 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015125858A JP2015125858A (en) 2015-07-06
JP6287187B2 true JP6287187B2 (en) 2018-03-07

Family

ID=53536445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013268673A Active JP6287187B2 (en) 2013-12-26 2013-12-26 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6287187B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019016483A (en) * 2017-07-05 2019-01-31 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP6864851B2 (en) * 2017-08-03 2021-04-28 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP6863462B2 (en) * 2017-08-07 2021-04-21 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery and module
JP2019040796A (en) * 2017-08-28 2019-03-14 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP6994153B2 (en) 2017-12-11 2022-02-03 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP7251959B2 (en) 2017-12-11 2023-04-04 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
JP6994157B2 (en) * 2018-02-09 2022-01-14 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and battery assembly
US20220013780A1 (en) * 2018-11-30 2022-01-13 Panasonic Intellectual Property Management Co., Ltd. Secondary battery and electrolyte solution
US20220069359A1 (en) * 2018-12-19 2022-03-03 Sanyo Electric Co., Ltd. Rectangular secondary battery
CN113228368B (en) * 2018-12-28 2024-10-18 三洋电机株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
WO2024004252A1 (en) * 2022-06-27 2024-01-04 ビークルエナジージャパン株式会社 Lithium ion secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3428034B2 (en) * 1992-02-29 2003-07-22 ソニー株式会社 Non-aqueous electrolyte secondary battery
JPH07296849A (en) * 1994-04-28 1995-11-10 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2010238469A (en) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5418828B2 (en) * 2009-08-27 2014-02-19 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
KR101726144B1 (en) * 2010-02-12 2017-04-11 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
JP5987431B2 (en) * 2011-04-13 2016-09-07 三菱化学株式会社 Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery
JP2013211223A (en) * 2012-03-30 2013-10-10 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and battery using the same

Also Published As

Publication number Publication date
JP2015125858A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP6567280B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method
JP6287187B2 (en) Nonaqueous electrolyte secondary battery
US20190013543A1 (en) Nonaqueous electrolyte secondary battery
KR20160110380A (en) Negative electrode material for nonaqueous electrolyte secondary batteries and method for producing negative electrode active material particles
JP6424426B2 (en) Assembled battery
JP6287185B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
US20140045077A1 (en) Non-aqueous electrolyte secondary battery
US20140045057A1 (en) Non-aqueous electrolyte secondary battery
US20140080010A1 (en) Non-aqueous electrolyte secondary battery
KR20160134808A (en) Nonaqueous electrolyte secondary battery
JP2013201077A (en) Nonaqueous electrolytic secondary battery
JP2009037740A (en) Nonaqueous electrolyte secondary battery
US20140045056A1 (en) Non-aqueous electrolyte secondary battery
US20140045011A1 (en) Non-aqueous electrolyte secondary battery
JP6064615B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6287186B2 (en) Nonaqueous electrolyte secondary battery
JP7337096B2 (en) Non-aqueous electrolyte secondary battery
US20140127561A1 (en) Non-aqueous electrolyte secondary battery
JP7488770B2 (en) Nonaqueous electrolyte secondary battery and method of manufacturing same
CN113228368B (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
US12136698B2 (en) Non-aqueous electrolyte secondary battery and method for manufacturing same
US20140045013A1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R151 Written notification of patent or utility model registration

Ref document number: 6287187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151