JP2013114858A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2013114858A
JP2013114858A JP2011259098A JP2011259098A JP2013114858A JP 2013114858 A JP2013114858 A JP 2013114858A JP 2011259098 A JP2011259098 A JP 2011259098A JP 2011259098 A JP2011259098 A JP 2011259098A JP 2013114858 A JP2013114858 A JP 2013114858A
Authority
JP
Japan
Prior art keywords
active material
electrode
material layer
secondary battery
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011259098A
Other languages
Japanese (ja)
Inventor
Fumito Kouchi
史人 古内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011259098A priority Critical patent/JP2013114858A/en
Publication of JP2013114858A publication Critical patent/JP2013114858A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery which can ensure a high capacity efficiently, by reducing the voltage difference between the charge time and discharge time when using a high capacity electrode material.SOLUTION: In a secondary battery having a first electrode, a nonaqueous electrolyte, and a second electrode, at least the first electrode contains at least a first active material, and a second active material having an electromotive force larger than that of the first active material. When the secondary battery is charged, it is charged by connecting the first active material and the second electrode electrically, and subsequently charged by connecting the second active material and the second electrode electrically. When the secondary battery is discharged, it is discharged by connecting the second active material and the second electrode electrically, and subsequently discharged by connecting the first active material and the second electrode electrically.

Description

本発明は、非水電解質を用いた高容量の二次電池に関するものである。   The present invention relates to a high-capacity secondary battery using a non-aqueous electrolyte.

近年、デジタルモバイル機器の発展に伴い、充電後に長時間の放電が可能な高容量の二次電池が求められており、電極に用いる活物質材料自体の高容量化や、活物質の単位体積当たりの充填率向上などが試みられている。   In recent years, with the development of digital mobile devices, there is a need for high-capacity secondary batteries that can be discharged for a long time after being charged. Attempts have been made to improve the filling rate.

近年、高容量の材料系として、正極用の活物質としてはLiNiO、Li(Ni,Co,Al)O、Li(Co,Ni,Mn)Oなどの新たな材料系(例えば、特許文献1を参照)が、また、負極用の活物質としてはSiおよびSnの合金系の材料(例えば、特許文献2を参照)が開発され、実用化されている。 In recent years, new materials such as LiNiO 2 , Li (Ni, Co, Al) O 2 , and Li (Co, Ni, Mn) O 2 have been used as active materials for positive electrodes as high-capacity material systems (for example, patents) In addition, as an active material for the negative electrode, an alloy material of Si and Sn (see, for example, Patent Document 2) has been developed and put into practical use.

特許第3550783号公報Japanese Patent No. 3550783 特許第4207958号公報Japanese Patent No. 4207958

しかしながら、これらの材料系は、充放電に伴う起電力の変化が大きく、二次電池として高容量化するためには、従来よりも充放電電圧の範囲を拡大する必要があった。一般に、正極では充電の進行に伴い起電力が上昇し、放電の進行に伴い起電力が低下するのに対し、負極では充電の進行に伴い起電力が低下し、放電の進行に伴い起電力が上昇するため、正極と負極の起電力の差である電池の起電力は、充電時には大きく上昇し、放電時には大きく低下する。したがって、二次電池の正極として起電力の大きい高容量系の材料を用いて電池容量を向上させようとしても、使用用途により異なるが通常なら充電終止電圧が4.2V、放電終止電圧が3.0Vでその電圧差は1.2Vのところ、たとえば充電終止電圧を4.3V、放電終止電圧2.0Vとその電圧差を2.3Vに広げるなどする必要が生じ、充電時の電圧と放電時の電圧差が大きくなり、二次電池を使用する機器の特性が不安定になるという問題があった。   However, these material systems have a large change in electromotive force due to charge / discharge, and in order to increase the capacity of the secondary battery, it is necessary to expand the range of the charge / discharge voltage than before. Generally, in the positive electrode, the electromotive force increases as the charging progresses, and the electromotive force decreases as the discharging progresses, whereas in the negative electrode, the electromotive force decreases as the charging progresses, and the electromotive force decreases as the discharging progresses. Since the voltage rises, the electromotive force of the battery, which is the difference between the electromotive forces of the positive electrode and the negative electrode, greatly increases during charging and greatly decreases during discharging. Therefore, even if an attempt is made to improve the battery capacity by using a high-capacity material having a large electromotive force as the positive electrode of the secondary battery, the charge end voltage is usually 4.2 V and the discharge end voltage is 3. At 0V, the voltage difference is 1.2V. For example, the charge end voltage needs to be increased to 4.3V, the discharge end voltage 2.0V, and the voltage difference increased to 2.3V. There is a problem that the voltage difference of becomes large and the characteristics of the device using the secondary battery become unstable.

本発明は、上記の課題に鑑みてなされたもので、充放電時の電圧差を低減し、効率よく高容量を得られる二次電池を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a secondary battery that can reduce a voltage difference during charge and discharge and can efficiently obtain a high capacity.

本発明の二次電池は、第1の電極と、非水電解質と、第2の電極とを有する二次電池において、少なくとも前記第1の電極が、少なくとも第1の活物質と、該第1の活物質よりも大きな起電力を有する第2の活物質とを含み、前記二次電池の充電時には、前記第1の活物質と前記第2の電極を電気的に接続して充電した後、引き続き前記第2の活物質と前記第2の電極を電気的に接続して充電し、放電時には、前記第2の活物質と前記第2の電極を電気的に接続して放電した後、引き続き前記第1の活物質と前記第2の電極を電気的に接続して放電することを特徴とする。   The secondary battery of the present invention is a secondary battery having a first electrode, a nonaqueous electrolyte, and a second electrode, wherein at least the first electrode is at least a first active material, A second active material having an electromotive force greater than that of the active material, and when charging the secondary battery, the first active material and the second electrode are electrically connected and charged, Subsequently, the second active material and the second electrode are electrically connected and charged, and at the time of discharging, the second active material and the second electrode are electrically connected and discharged. The first active material and the second electrode are electrically connected to discharge.

本発明によれば、充放電時の電圧差を低減し、効率よく高容量を得られる二次電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the secondary battery which can reduce the voltage difference at the time of charging / discharging and can obtain a high capacity | capacitance efficiently can be provided.

本発明の一実施形態である二次電池の断面の模式図である。It is a schematic diagram of the cross section of the secondary battery which is one Embodiment of this invention. 充放電挙動の評価用セルの断面の模式図である。It is a schematic diagram of the cross section of the cell for evaluation of charging / discharging behavior. 実施例1の充放電挙動を示した図である。It is the figure which showed the charging / discharging behavior of Example 1.

本発明の一実施形態について、図1を基に説明する。本実施形態の二次電池は、負極である第1の電極1と正極である第2の電極2との間にセパレータ3を有する発電要素4を、非水電解質(図示せず)を充填した電池ケース5に収納したものである。第1の電極1および第2の電極2は、構成要素として充放電に伴い起電力を生じる活物質と、活物質から電気を引き出す集電体とを有しており、必要に応じて導電剤や結着剤を含んでいてもよい。   An embodiment of the present invention will be described with reference to FIG. In the secondary battery of the present embodiment, a power generation element 4 having a separator 3 between a first electrode 1 as a negative electrode and a second electrode 2 as a positive electrode is filled with a nonaqueous electrolyte (not shown). The battery case 5 is housed. The first electrode 1 and the second electrode 2 have, as constituent elements, an active material that generates an electromotive force upon charging and discharging, and a current collector that draws electricity from the active material, and a conductive agent as necessary Or a binder.

第1の電極1は、第1の活物質を含む第1活物質層1aと、第2の電極2との電位差が第1の活物質よりも小さい第2の活物質を含む第2活物質層1bとが、介在層1cを介して積層され、第2の活物質層1bがセパレータ3と接するように配置されている。配線6a、6bおよび6cは、それぞれ第1活物質層1a、第2活物質層1bおよび第2の電極2に接続するように設けられている。   The first electrode 1 includes a second active material containing a second active material in which the potential difference between the first active material layer 1a containing the first active material and the second electrode 2 is smaller than that of the first active material. The layer 1b is laminated via the intervening layer 1c, and the second active material layer 1b is disposed so as to be in contact with the separator 3. The wirings 6a, 6b and 6c are provided so as to be connected to the first active material layer 1a, the second active material layer 1b and the second electrode 2, respectively.

集電体は、第2の電極2においては、セパレータ3と接する表面とは異なる表面に設ければよい。また、第1の電極1においては、第1活物質層1aおよび第2活物質層1bの介在層1cと接していない表面にそれぞれ互いに接触しないように設ければよい。なお、集電体の形態を網目状や有孔膜状にすることが、第1の電極1および第2の電極2を構成する各活物質と、非水電解質との接触を確保する上で好ましい。また、導電剤と活物質とを混合して電極を形成することで、電極自体に集電機能を持たせてもよい。   In the second electrode 2, the current collector may be provided on a surface different from the surface in contact with the separator 3. In the first electrode 1, the first active material layer 1a and the second active material layer 1b may be provided so as not to contact each other on the surface not in contact with the intervening layer 1c. In order to secure the contact between each active material constituting the first electrode 1 and the second electrode 2 and the non-aqueous electrolyte, the current collector may have a mesh shape or a porous film shape. preferable. In addition, the electrode itself may have a current collecting function by mixing the conductive agent and the active material to form the electrode.

なお、第1活物質層1a、第2活物質層1bおよび第2の電極2は、それぞれ2種類以上の活物質を混合したものであってもよい。   The first active material layer 1a, the second active material layer 1b, and the second electrode 2 may each be a mixture of two or more active materials.

そして、本実施形態の二次電池は、第1の電極1を負極、第2の電極2を正極とした場合、充電時には、まず、配線6aおよび6cを接続して第1活物質層1aを充電した後、引き続き配線6bおよび6cを接続して、より正極との電位差が小さい、すなわちより高い起電力を有する第2活物質層1bを充電し、また、放電時には、配線6bおよび6cを接続してより高い起電力をもつ第2活物質層1bを放電した後、引き続き配線6aおよび6cを接続して第1活物質層1aを放電する。   In the secondary battery of this embodiment, when the first electrode 1 is a negative electrode and the second electrode 2 is a positive electrode, at the time of charging, first, the wirings 6a and 6c are connected to connect the first active material layer 1a. After charging, the wirings 6b and 6c are continuously connected to charge the second active material layer 1b having a smaller potential difference from the positive electrode, that is, having a higher electromotive force. In discharging, the wirings 6b and 6c are connected. Then, after discharging the second active material layer 1b having a higher electromotive force, the wirings 6a and 6c are connected to discharge the first active material layer 1a.

このような構成とすることで、充電時には、正極の起電力が上昇するのに応じて、負極をより起電力の大きい第2の活物質に切替え、また、放電時には、正極の起電力が低下するのに応じて負極をより起電力の小さい第1の活物質に切替えることができ、より効率的に電気を充放電することが可能になる。   By adopting such a configuration, the negative electrode is switched to the second active material having a higher electromotive force when the positive electrode electromotive force increases during charging, and the positive electromotive force decreases during discharging. Accordingly, the negative electrode can be switched to the first active material having a smaller electromotive force, and it becomes possible to charge and discharge electricity more efficiently.

また、第1の電極1を正極、第2の電極2を負極とした場合には、負極の起電力が低下するのに応じて正極をより起電力の小さい第2の活物質に切替え、また、放電時には、負極の起電力が上昇するのに応じて正極をより起電力の大きい第1の活物質に切替えることができ、同様により効率的に電気を充放電することができる。具体的には、充電時には、まず、配線6aと6cを接続して第1活物質層1aを充電した後、引き続き配線6bと6cを接続して、より負極との電位差が小さい、すなわちより低い起電力を有する第2活物質層1bを充電し、また、放電時には、配線6bと6cを接続してより低い起電力をもつ第2活物質層1bを放電した後、引き続き配線6aと6cを接続して第1活物質層1aを
放電する。
When the first electrode 1 is a positive electrode and the second electrode 2 is a negative electrode, the positive electrode is switched to a second active material having a smaller electromotive force as the electromotive force of the negative electrode decreases. In discharging, the positive electrode can be switched to the first active material having a larger electromotive force as the electromotive force of the negative electrode increases, and similarly, electricity can be charged and discharged more efficiently. Specifically, at the time of charging, first, the wirings 6a and 6c are connected to charge the first active material layer 1a, and then the wirings 6b and 6c are connected, so that the potential difference from the negative electrode is smaller, that is, lower. The second active material layer 1b having an electromotive force is charged, and at the time of discharging, the wires 6b and 6c are connected to discharge the second active material layer 1b having a lower electromotive force, and then the wires 6a and 6c are continuously connected. The first active material layer 1a is discharged by connection.

配線6a、6bと配線6cの接続切替操作は、たとえば外部電源と回路制御システムを用いて行うことができる。たとえば、充放電による電極電流または電圧の変化を計測したり、充放電に伴う第1活物質層1aと第2活物質層1bの少なくともいずれか一方の体積変化を変位センサや圧力センサなどで検知するなどし、これらの計測値に応じて、配線6a、6bと配線6cとの接続を、充放電の電圧差が低減するように制御すればよい。この場合、電解質として固体電解質を用いてもよい。   The connection switching operation between the wirings 6a and 6b and the wiring 6c can be performed using, for example, an external power supply and a circuit control system. For example, a change in electrode current or voltage due to charge / discharge is measured, or a volume change in at least one of the first active material layer 1a and the second active material layer 1b due to charge / discharge is detected by a displacement sensor or a pressure sensor. Then, according to these measured values, the connection between the wirings 6a and 6b and the wiring 6c may be controlled so that the voltage difference between charging and discharging is reduced. In this case, a solid electrolyte may be used as the electrolyte.

また、第1および第2の活物質として充放電により体積変化する材料を用い、介在層1cとして異方性導電材料を用いることにより、第1活物質層1aおよび第2活物質層1bと第2の電極2との接続切替操作をより容易に行うことができる。たとえば、第1活物質層1aおよび第2の活物質層1bを、充電により体積膨張する材料を含むものとし、介在層1cとして異方導電性のペーストまたは接着剤を用いて、発電要素の構成を、第1活物質層1a、介在層1c、第2活物質層1b、セパレータ、第2の電極2の順で重ね合わせたものとした場合、配線6aと6bを同時に6cを接続することで、まず第2の電極2との電位差がより大きい第1活物質層1aが充電される。第1活物質層1aは充電の進行に伴い膨張して介在層1cを圧縮し、第1活物質層1aと第2活物質層1b間の電気抵抗が低下して、第1活物質層1aと介在層1cを介して第2活物質層1bが第2の電極2と電気的に接続されることにより、第2活物質層1bへの充電が始まる。そして第2活物質層1bの充電の進行に伴い第2活物質層1bが膨張すると、第2活物質層1bと電池ケース5の間に存在する空間が遮蔽され、第1活物質層1aと第2の電極2の間での電解液の流通と伝導イオンの授受が遮蔽され、第1活物質層1aへの充電は停止する。放電の際は、第2活物質層1bが放電の進行に伴い収縮し、第2活物質層1bと電池ケース5との間に空間が生じて、第1活物質層1aと第2の電極2との間で電解液の流通と伝導イオンの授受が可能となり、第1活物質層1aの放電が始まる。さらに第1活物質層1aが放電して収縮すると、第1活物質層1aと第2活物質層1b間の電気抵抗が上昇し、第2活物質層1bと第2の電極2の電気的接続が遮断されて初期の状態に戻る。   Further, by using a material that changes in volume by charge and discharge as the first and second active materials, and using an anisotropic conductive material as the intervening layer 1c, the first active material layer 1a, the second active material layer 1b, The connection switching operation with the two electrodes 2 can be performed more easily. For example, it is assumed that the first active material layer 1a and the second active material layer 1b include a material that expands in volume upon charging, and an anisotropic conductive paste or adhesive is used as the intervening layer 1c to configure the power generation element. When the first active material layer 1a, the intervening layer 1c, the second active material layer 1b, the separator, and the second electrode 2 are stacked in this order, the wirings 6a and 6b are simultaneously connected to the 6c, First, the first active material layer 1a having a larger potential difference from the second electrode 2 is charged. The first active material layer 1a expands as the charging progresses and compresses the intervening layer 1c, and the electrical resistance between the first active material layer 1a and the second active material layer 1b decreases, and the first active material layer 1a When the second active material layer 1b is electrically connected to the second electrode 2 through the intervening layer 1c, charging of the second active material layer 1b starts. And if the 2nd active material layer 1b expands with progress of charge of the 2nd active material layer 1b, the space which exists between the 2nd active material layer 1b and the battery case 5 will be shielded, and the 1st active material layer 1a and The flow of the electrolytic solution between the second electrodes 2 and the exchange of conduction ions are shielded, and charging to the first active material layer 1a is stopped. During the discharge, the second active material layer 1b contracts as the discharge progresses, and a space is generated between the second active material layer 1b and the battery case 5, and the first active material layer 1a and the second electrode are formed. The electrolyte solution and the conduction ions can be exchanged between the first active material layer 1 and the first active material layer 1a. Further, when the first active material layer 1a is discharged and contracts, the electrical resistance between the first active material layer 1a and the second active material layer 1b increases, and the electrical current between the second active material layer 1b and the second electrode 2 increases. The connection is interrupted and the initial state is restored.

この場合、充電終了および放電開始時においても、第2活物質層1b内部のイオン伝導性により、第2の電極2と、第1活物質層1aおよび第2活物質層1bとが同時に電気的に接続される状態が出現し、第1活物質層1aへも若干の充放電が行われるが、第2活物質層1bの膨張時のイオン伝導性を抑制することで、第1活物質層1aへの充放電が抑制されて第2活物質層1bへの充放電が優位になる、すなわち第1の電極1の電位は主として第2活物質層1bの寄与によるものとなる。   In this case, the second electrode 2, the first active material layer 1a, and the second active material layer 1b are simultaneously electrically connected to each other by the ionic conductivity inside the second active material layer 1b even at the end of charging and the start of discharging. The first active material layer 1a is slightly charged / discharged, but by suppressing the ionic conductivity during expansion of the second active material layer 1b, the first active material layer 1a appears. Charging / discharging to 1a is suppressed and charging / discharging to the second active material layer 1b becomes dominant, that is, the potential of the first electrode 1 is mainly due to the contribution of the second active material layer 1b.

このように第2活物質層1bの膨張時のイオン伝導性を抑制するためには、第2活物質層1bの膨張時に第2活物質層1b内で圧縮されるバインダ量を調整するなどすればよい。   As described above, in order to suppress the ionic conductivity when the second active material layer 1b expands, the amount of binder compressed in the second active material layer 1b when the second active material layer 1b expands is adjusted. That's fine.

なお、第1および第2の活物質のいずれか一方を充電により体積膨張する活物質とし、活物質の体積膨張と外部の回路制御システムとを併用して、第1活物質層1aおよび第2活物質層1bと第2の電極2との電気的接続の切替操作を行うこともできる。   One of the first and second active materials is used as an active material that expands in volume by charging, and the first active material layer 1a and the second active material layer 2a are combined with the volume expansion of the active material and an external circuit control system. Switching operation of the electrical connection between the active material layer 1b and the second electrode 2 can also be performed.

正極活物質としては、リチウム含有遷移金属酸化物が好適に用いられ、具体的にはリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、リン酸系リチウム鉄複合酸化物、リチウムチタン複合酸化物などが挙げられる。正極を第1の電極1とする場合は、たとえば第1および第2の活物質の組合せとして、LiCoOおよびLiCo1/3Ni1/3Mn1/3、LiCoOおよびLiFePO、LiCo1/2Ni1/2および
LiCo1/3Ni1/3Mn1/3等の組合せを選択すればよい。また、充電時のLiイオン脱離により体積膨張するものとしては、たとえば、LiCoO、LiCo1/2Ni1/22、LiNiO等が知られており、活物質の体積変化を利用して第1活物質層1aおよび第2活物質層1bと第2の電極2との電気的接続の切替操作を行う上で好ましい。
As the positive electrode active material, lithium-containing transition metal oxides are preferably used. Specifically, lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium nickel cobalt manganese composite oxide, phosphoric acid And lithium lithium composite oxide, lithium titanium composite oxide, and the like. When the positive electrode is the first electrode 1, for example, as a combination of the first and second active materials, LiCoO 2 and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiCoO 2 and LiFePO 4 , LiCo A combination such as 1/2 Ni 1/2 O 2 and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 may be selected. Further, those of volume expansion by Li-ion desorption during charging, for example, LiCoO 2, LiCo 1/2 Ni 1/2 O 2, and LiNiO 2 and the like are known, using the change in volume of the active material Therefore, it is preferable for switching operation of electrical connection between the first active material layer 1a and the second active material layer 1b and the second electrode 2.

負極活物質としては、リチウムイオンを吸蔵放出可能な材料が好適に用いられ、具体的には、黒鉛、ハードカーボン、ソフトカーボンなどの炭素系材料や、スズ(Sn)、シリコン(Si)、アルミニウム(Al)、アンチモン(Sb)、亜鉛(Zn)、ビスマス(Bi)などの金属やこれらの合金、またはSnOやSiOなどの酸化物が挙げられる。負極を第1の電極1とする場合は、たとえば第1および第2の活物質の組合せとして、カーボンおよびSi、SiおよびSn等の組合せを選択すればよい。SiおよびSnは、いずれも高容量で、充電時の伝導イオンの吸蔵による体積膨張が大きいことが知られており、活物質の体積変化を利用して第1活物質層1aおよび第2活物質層1bと第2の電極2との電気的接続の切替操作を行う場合、これらの材料を組合せて用いることが好ましい。   As the negative electrode active material, materials capable of occluding and releasing lithium ions are preferably used. Specifically, carbon-based materials such as graphite, hard carbon, and soft carbon, tin (Sn), silicon (Si), aluminum Examples thereof include metals such as (Al), antimony (Sb), zinc (Zn), and bismuth (Bi), alloys thereof, and oxides such as SnO and SiO. When the negative electrode is the first electrode 1, for example, a combination of carbon and Si, Si, Sn, etc. may be selected as the combination of the first and second active materials. Si and Sn are both known to have a high capacity and large volume expansion due to occlusion of conductive ions during charging. The first active material layer 1a and the second active material are utilized by utilizing the volume change of the active material. When performing the switching operation of the electrical connection between the layer 1b and the second electrode 2, it is preferable to use a combination of these materials.

第1の電極1および第2の電極2は、集電体となるたとえば金属箔等の表面に、活物質を含むスラリーを塗工・乾燥したり、ゾルゲル法や化学気相成長法などで成膜するなどして、集電体の表面上に活物質層を形成する方法や、ポリエチレンテレフタレート(PET)等の基材フィルム上に活物質を含むシートを形成して必要に応じて熱処理や焼成を行った後、無孔、有孔の金属箔や網目状金属と接合したり、スパッタや蒸着で導電性膜を形成するなどして作製することができる。   The first electrode 1 and the second electrode 2 are formed by applying and drying a slurry containing an active material on the surface of a current collector, such as a metal foil, or by a sol-gel method or a chemical vapor deposition method. A method of forming an active material layer on the surface of the current collector by forming a film, or a sheet containing the active material on a base film such as polyethylene terephthalate (PET), and heat treatment or baking as necessary Then, it can be produced by bonding to a non-porous or perforated metal foil or mesh metal, or forming a conductive film by sputtering or vapor deposition.

活物質を含むスラリーを集電体の表面上に塗工する場合は、活物質の原料粉末に必要に応じて導電剤や結着剤を添加して溶媒に混合・分散して活物質を含むスラリーを作製し、そのスラリーを集電体となる金属箔等の表面にドクターブレード等の周知の方法により塗工した後、乾燥して溶剤を揮発させ、必要に応じプレスで圧縮するなどの方法を用いればよい。導電剤としては、カーボンブラックなどの炭素材料や、金属粉末等が挙げられ、結着剤としては、ポリフッ化ビニリデン(PVDF)や、ポリテトラフルオロエチレン(PTFE)などが挙げられる。   When applying a slurry containing an active material on the surface of a current collector, a conductive agent or a binder is added to the raw material powder of the active material as necessary, and the active material is mixed and dispersed in a solvent. A method of preparing a slurry, coating the slurry on the surface of a metal foil or the like as a current collector by a known method such as a doctor blade, drying, volatilizing the solvent, and compressing with a press if necessary May be used. Examples of the conductive agent include carbon materials such as carbon black, metal powder, and the like, and examples of the binder include polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).

集電体の表面上への成膜により活物質層を形成する場合の手法としては、ゾルゲル法、化学気相成長法の他、活物質の原料粉末のエアロゾルを集電体となる金属箔等の表面に吹きつける衝撃固化法などが挙げられる。また、活物質として金属を用いる場合はめっき法により形成してもよい。   As a method for forming an active material layer by forming a film on the surface of a current collector, in addition to a sol-gel method and a chemical vapor deposition method, an active material powder aerosol is used as a current collector metal foil, etc. For example, an impact solidification method of spraying on the surface of the material. Further, when a metal is used as the active material, it may be formed by a plating method.

活物質を含むシートを作製する場合には、たとえば活物質を含むスラリーに、集電体の表面上に塗工する場合よりも多くの結着剤と、必要に応じ導電剤を混合し、そのスラリーをポリエチレンテレフタレート(PET)フィルムなどの基材上にドクターブレード等の周知の方法で塗工した後、乾燥して溶剤を揮発させ、必要に応じプレス圧縮するなどの方法が用いられる。また、得られた活物質を含むシートに、さらに加熱や焼成処理を施してもよい。なお、導電剤を含むシート状に電極を成形することにより、活物質自体は導電性を有さない場合でも、シート自体に導電性が付与され集電機能を兼ね備えた電極とすることができるため、電極表面に別途集電体を設けなくても、電極の一部を配線や回路に接続することにより十分な電池特性を得ることが可能である。同様に、活物質として導電性の材料を用いる場合も電極の一部を配線や回路に接続すればよい。   When producing a sheet containing an active material, for example, a slurry containing an active material is mixed with more binder and, if necessary, a conductive agent than when applied on the surface of a current collector, The slurry is coated on a base material such as a polyethylene terephthalate (PET) film by a known method such as a doctor blade, and then dried to volatilize the solvent, and press-compress as required. Moreover, you may heat-process and baking processing to the sheet | seat containing the obtained active material. Note that by forming the electrode into a sheet containing a conductive agent, even if the active material itself does not have conductivity, the sheet itself can be provided with conductivity and have a current collecting function. Even if a current collector is not separately provided on the electrode surface, sufficient battery characteristics can be obtained by connecting a part of the electrode to a wiring or a circuit. Similarly, when a conductive material is used as the active material, a part of the electrode may be connected to a wiring or a circuit.

第1の電極は、上述のように作製した第1活物質層1aと第2活物質層1bを、介在層1cを介して積層することで形成される。なお、第1活物質層1aと第2活物質層1bの集電体と接していない側同士が介在層1cを介して対向するように配置することが、それ
ぞれの集電体同士の接触を防止する上で好ましい。介在層1cの材料としては、外部圧力により電子伝導性が変化し、かつ、リチウムイオン伝導性が低いものを用いる。このような材料としては、絶縁性の樹脂等に導電性粒子を均一分散させた異方導電性を有するペーストやフィルムを用いることが好ましい。異方導電性を有するペーストやフィルムは、圧力の印加により絶縁性の樹脂が圧縮されて、樹脂中に分散している導電性粒子同士が接触・導通し、圧力印加方向に導電性が生じるものである。また、導電性を有する粒子又はフィラーを、弾性を有するポリマーの粒子と混合したものや、多孔質材料あるいは電解液を含むゲル状物質に分散させたものを介在層1cとして用いてもよい。
The first electrode is formed by laminating the first active material layer 1a and the second active material layer 1b produced as described above via the intervening layer 1c. In addition, it arrange | positions so that the side which is not in contact with the electrical power collector of the 1st active material layer 1a and the 2nd active material layer 1b may oppose through the intervening layer 1c, and contact between each electrical power collector is carried out. It is preferable in preventing. As the material of the intervening layer 1c, a material whose electron conductivity is changed by an external pressure and whose lithium ion conductivity is low is used. As such a material, it is preferable to use a paste or film having anisotropic conductivity in which conductive particles are uniformly dispersed in an insulating resin or the like. An anisotropic conductive paste or film is an insulating resin that is compressed by the application of pressure, and the conductive particles dispersed in the resin come into contact with each other and become conductive in the pressure application direction. It is. Further, the intervening layer 1c may be formed by mixing conductive particles or fillers with polymer particles having elasticity, or by dispersing them in a gel material containing a porous material or an electrolytic solution.

なお、リチウムイオン伝導性が高い材料を用いると、第1活物質層1aと第2活物質層1bとの間でリチウムイオン伝導が発生し、第1活物質層1aおよび第2活物質層1bと第2の電極2との接続切替操作の制御が困難となる可能性がある。   When a material having high lithium ion conductivity is used, lithium ion conduction occurs between the first active material layer 1a and the second active material layer 1b, and the first active material layer 1a and the second active material layer 1b. There is a possibility that control of the connection switching operation between the first electrode 2 and the second electrode 2 becomes difficult.

このような材料を第1活物質層1aと第2活物質層1bとの間に介在させることで、第1活物質層1aおよび第2活物質層1bと第2の電極2との電気的接続の切替操作を、第1活物質層1aと第2活物質層1bの体積変化により制御することが可能になり、第1活物質層1aと第2活物質層1bとの間でのリチウムイオン伝導を抑制することも可能となる。   By interposing such a material between the first active material layer 1a and the second active material layer 1b, electrical connection between the first active material layer 1a and the second active material layer 1b and the second electrode 2 is achieved. The connection switching operation can be controlled by the volume change of the first active material layer 1a and the second active material layer 1b, and the lithium between the first active material layer 1a and the second active material layer 1b can be controlled. It is also possible to suppress ionic conduction.

集電体としては、導電性を有する金属箔が好適に用いられ、その材料としては、正極側ではアルミニウム(Al)、白金(Pt)、金(Au)等を用いることが好ましく、負極側では、銅(Cu)、白金(Pt)、金(Au)等を用いることが好ましい。   As the current collector, a conductive metal foil is preferably used. As the material, aluminum (Al), platinum (Pt), gold (Au) or the like is preferably used on the positive electrode side, and on the negative electrode side. Preferably, copper (Cu), platinum (Pt), gold (Au), or the like is used.

第1の電極1においては、第1活物質層1aのみに集電体が設けられていてもよいが、第1活物質層1aおよび第2活物質層1bにそれぞれ集電体が設けられていることが、それぞれの活物質層と第2の電極2との電気的接続を独立して制御できることから好ましい。   In the first electrode 1, a current collector may be provided only in the first active material layer 1a, but a current collector is provided in each of the first active material layer 1a and the second active material layer 1b. It is preferable that the electrical connection between each active material layer and the second electrode 2 can be controlled independently.

非水電解質としては、リチウムイオン伝導性を有する固体電解質、有機電解液、イオン液体等を用いればよい。固体電解質を用いる場合は、セパレータ3に替えて固体電解質を配置する。なお、外部の回路制御システムによらず、第1活物質層1aおよび第2活物質層1bの体積変化を利用して第1活物質層1aおよび第2活物質層1bと第2の電極2との電気的接続の切替操作を行う場合には、第1の電極1と第2の電極2との間にセパレータ3を配し、有機電解液またはイオン液体を用いることが好ましい。有機電解液やイオン液体は、イオン伝導性が高く、第1の電極1および第2の電極2に存在する細孔内に浸透して、高い電池性能を実現できる。   As the nonaqueous electrolyte, a solid electrolyte, an organic electrolyte, an ionic liquid, or the like having lithium ion conductivity may be used. When using a solid electrolyte, it replaces with the separator 3 and arrange | positions a solid electrolyte. Note that the first active material layer 1a, the second active material layer 1b, and the second electrode 2 are utilized by utilizing the volume change of the first active material layer 1a and the second active material layer 1b regardless of an external circuit control system. When the switching operation of the electrical connection is performed, it is preferable to arrange the separator 3 between the first electrode 1 and the second electrode 2 and use an organic electrolytic solution or an ionic liquid. The organic electrolyte or ionic liquid has high ion conductivity, and can penetrate into the pores existing in the first electrode 1 and the second electrode 2 to realize high battery performance.

有機電解液は、有機溶媒と電解質塩によって構成され、必要に応じて、電極表面への固体電解質層の形成抑制、過充電防止、難燃性の付与等を目的とした添加剤を加えてもよい。   The organic electrolyte is composed of an organic solvent and an electrolyte salt, and if necessary, additives for the purpose of suppressing formation of a solid electrolyte layer on the electrode surface, preventing overcharge, imparting flame retardancy, etc. may be added. Good.

有機溶媒としては、高誘電率を有し、低粘性、低蒸気圧のものが好適に用いられ、このような材料としては、たとえば、エチレンカーボネイト、プロピレンカーボネイト、ブチレンカーボネイト、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、炭酸ジメチル、炭酸ジエチル、メチルエチルカーボネイト、ジメチルカーボネイト、ジエチルカーボネイトなどから選ばれる1種もしくは2種以上を混合した溶媒が挙げられる。   As the organic solvent, those having a high dielectric constant, low viscosity and low vapor pressure are preferably used. Examples of such materials include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, Mix one or more selected from 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, diethyl carbonate, etc. Solvent.

電解質塩としては、例えばLiClO、LiBF、LiPF、LiCFSO
、LiN(CFSO)、LiN(CSO)などのリチウム塩があげられる。
Examples of the electrolyte salt include LiClO 4 , LiBF 4 , LiPF 6 , and LiCF 3 SO 3.
, LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and the like.

セパレータには、有機樹脂繊維の不織布や、無機繊維の不織布、セラミックの多孔質材料などを用いることができるが、ポリプロピレンやポリエチレンなどのポリオレフィンを主成分とした有機多孔質膜にセラミック粒子を混合したものや、セラミックフィラーを含む多孔質膜を接着したもの、無機繊維の不織布、有機材料と無機材料の複合多孔質膜、セラミックの多孔質材料を用いることが好ましい。これらは耐熱性が高く、特に、第1および第2の電極の活物質としていずれも高容量の材料を用いて二次電池を形成する場合に、二次電池の熱暴走に対する安全性をより高めることができる。   For the separator, a nonwoven fabric of organic resin fibers, a nonwoven fabric of inorganic fibers, a porous ceramic material, etc. can be used. Ceramic particles are mixed in an organic porous film mainly composed of polyolefin such as polypropylene or polyethylene. It is preferable to use a ceramic, a porous membrane containing a ceramic filler, a non-woven fabric of inorganic fibers, a composite porous membrane of an organic material and an inorganic material, or a porous ceramic material. These have high heat resistance, and in particular, when a secondary battery is formed using a material having a high capacity as the active material of the first and second electrodes, the safety of the secondary battery against thermal runaway is further increased. be able to.

電池ケースの材料としては、金属、樹脂、セラミック、もしくはそれらを複合した材料等が用いられるが、特に第1活物質層1aおよび第2活物質層1bの体積変化を利用して第1活物質層1aおよび第2活物質層1bと第2の電極2との電気的接続の切替操作を制御する場合には、セラミックやガラス等の絶縁性を有する変形の少ない材料を用いることにより、第1活物質層1aおよび第2活物質層1bの体積が膨張して電池ケースと接触しても、発電要素4がショートすることなく、第1活物質層1aおよび第2活物質層1bと第2の電極2との電気的接続の切替操作を再現性良く行うことができ、充放電挙動が安定した二次電池となる。   As the material of the battery case, metal, resin, ceramic, or a composite material thereof is used. In particular, the first active material is obtained by utilizing the volume change of the first active material layer 1a and the second active material layer 1b. When controlling the switching operation of the electrical connection between the layer 1a and the second active material layer 1b and the second electrode 2, by using an insulating material such as ceramic or glass that has little deformation, the first Even if the volume of the active material layer 1a and the second active material layer 1b expands and comes into contact with the battery case, the power generating element 4 does not short-circuit, and the first active material layer 1a, the second active material layer 1b, and the second The switching operation of the electrical connection with the electrode 2 can be performed with good reproducibility, and a secondary battery with stable charge / discharge behavior is obtained.

なお、本発明の電池の形状は、角型、円筒型、ボタン型、コイン型、扁平型等のいずれでもよく、特に限定するものではない。   The shape of the battery of the present invention may be any of a square shape, a cylindrical shape, a button shape, a coin shape, a flat shape, and the like, and is not particularly limited.

以下、実施例により、本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

まず、正極用活物質として、LiCoOおよびLiCo1/3Ni1/3Mn1/3
、負極用活物質として黒鉛、Si、Snを用い、集電体付きの活物質含有シートを作製した。
First, LiCoO 2 and LiCo 1/3 Ni 1/3 Mn 1/3 O are used as positive electrode active materials.
2. An active material-containing sheet with a current collector was prepared using graphite, Si, and Sn as the negative electrode active material.

LiCoOおよびLiCo1/3Ni1/3Mn1/3は、LiCO粉末、Co
O粉末、NiO粉末、MnO粉末を用いて、それぞれの組成比となるよう調合し、アルコールを溶媒としてボールミルにて混合し、大気中、LiCoOは600℃、LiCo1/3Ni1/3Mn1/3は900℃でそれぞれ熱処理することにより、平均粒径5μ
mの原料粉末を得た。得られた原料粉末は、X線回折(XRD)測定によりそれぞれLiCoOおよびLiCo1/3Ni1/3Mn1/3の結晶相が形成されていることを
確認した。
LiCoO 2 and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 are LiCO 3 powder, Co
Using O powder, NiO powder, and MnO powder, they are prepared so as to have respective composition ratios, mixed with a ball mill using alcohol as a solvent, LiCoO 2 is 600 ° C. in the air, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 was heat treated at 900 ° C. to obtain an average particle size of 5 μm.
m raw material powder was obtained. From the obtained raw material powder, it was confirmed by X-ray diffraction (XRD) measurement that crystal phases of LiCoO 2 and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 were formed, respectively.

得られたLiCoO原料粉末、LiCo1/3Ni1/3Mn1/3原料粉末、お
よび平均粒径1μmのSi原料粉末、平均粒径1μmのSn原料粉末を用い、それぞれ原料粉末90質量%に、結着剤としてポリフッ化ビニリデン(PVDF)を5質量%、導電剤としてカーボンブラックを5質量%、さらにN−メチルピロリドン(NMP)溶媒を加えて混練し、銅箔に厚さ塗工、乾燥したのち、プレスを行い、集電体付きの活物質含有シート(厚さ20μmおよび40μm)を作製し、直径15mmの電極サイズに切断した。
Using the obtained LiCoO 2 raw material powder, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 raw material powder, Si raw material powder having an average particle diameter of 1 μm, and Sn raw material powder having an average particle diameter of 1 μm, raw material powder 90 Add 5% by mass of polyvinylidene fluoride (PVDF) as a binder, 5% by mass of carbon black as a conductive agent, and add N-methylpyrrolidone (NMP) solvent to the mass%. After the work and drying, pressing was performed to produce active material-containing sheets (thicknesses 20 μm and 40 μm) with current collectors, and cut into electrode sizes having a diameter of 15 mm.

黒鉛の場合は、原料粉末として、平均粒径10μmの黒鉛粉末95質量%に、結着剤としてポリフッ化ビニリデン(PVDF)を5質量%、さらにN−メチルピロリドン(NMP)溶媒を加えて混練し、銅箔に塗工、乾燥したのち、プレスを行い、集電体付きの黒鉛含有シート(厚さ40μmおよび80μm)を作製し、同様に直径15mmの電極サイズに切断した。   In the case of graphite, 95% by mass of graphite powder having an average particle size of 10 μm as raw material powder, 5% by mass of polyvinylidene fluoride (PVDF) as a binder, and N-methylpyrrolidone (NMP) solvent are added and kneaded. After coating and drying on the copper foil, pressing was performed to produce a graphite-containing sheet with a current collector (thickness 40 μm and 80 μm), and similarly cut into an electrode size of 15 mm in diameter.

作製したこれらの電極材料を用いて、第1活物質層1a、第2活物質層1b、第2の電極2として表1のような組合せの発電要素4を構成し、電池容量と充放電特性の評価を行った。なお、第1活物質層1aと第2活物質層1bの間に位置する介在層1cとしては、表1に示すものを用いた。   Using these produced electrode materials, the first active material layer 1a, the second active material layer 1b, and the second electrode 2 constitute a power generation element 4 having a combination as shown in Table 1, and the battery capacity and charge / discharge characteristics. Was evaluated. In addition, as the intervening layer 1c located between the 1st active material layer 1a and the 2nd active material layer 1b, what was shown in Table 1 was used.

評価用セルは、図2に示すように、内径15mm、長さ10mmのガラス管7の一方の開口部を白金箔8に接着したものを用いた。評価用セルのガラス管7の内部に、白金箔8、第1活物質層1a、介在層1c、第2活物質層1b、セパレータ3および第2の電極2をこの順になるように配置し、電解液を注入して発電要素を構成した後、さらに第2の電極2上にSUS製の重石9を載せて、発電要素4全体を白金箔8に押し付ける形とした。このとき、第1活物質層1aは集電体である銅箔が白金箔8に面するように、第2活物質層1bは銅箔が介在層1cに面するように配置し、第2の電極2は銅箔が重石9と接するように配置した。なお、評価用セル全体はアルゴン置換した容器内に設置して充放電挙動の評価を行った。   As shown in FIG. 2, the evaluation cell used was one in which one opening of a glass tube 7 having an inner diameter of 15 mm and a length of 10 mm was bonded to a platinum foil 8. Inside the glass tube 7 of the evaluation cell, the platinum foil 8, the first active material layer 1a, the intervening layer 1c, the second active material layer 1b, the separator 3 and the second electrode 2 are arranged in this order, After injecting the electrolytic solution to configure the power generation element, a SUS-made heavy stone 9 was further placed on the second electrode 2 to press the entire power generation element 4 against the platinum foil 8. At this time, the first active material layer 1a is arranged so that the copper foil as a current collector faces the platinum foil 8, and the second active material layer 1b is arranged so that the copper foil faces the intervening layer 1c, and the second The electrode 2 was arranged so that the copper foil was in contact with the weight 9. In addition, the whole cell for evaluation was installed in the container substituted with argon, and charge / discharge behavior was evaluated.

第1活物質層1aおよび第2活物質層1bには、厚さ40μmの活物質含有シートを用い、第2の電極2には、厚さ80μmの活物質含有シートを用いた。なお、試料No.5〜7については第1の電極として、厚さ80μmの活物質含有シート1種類のみを用いた。また、電極材料単独の容量は、評価用セルのガラス管7の内部に白金箔8、金属リチウム箔、セパレータ、活物質含有シートの順になるように配置して評価した。   An active material-containing sheet having a thickness of 40 μm was used for the first active material layer 1 a and the second active material layer 1 b, and an active material-containing sheet having a thickness of 80 μm was used for the second electrode 2. Sample No. About 5-7, only 1 type of 80-micrometer-thick active material containing sheet | seat was used as a 1st electrode. Moreover, the capacity | capacitance of electrode material independent was arrange | positioned and evaluated so that it might become in order of the platinum foil 8, metal lithium foil, a separator, and an active material containing sheet | seat inside the glass tube 7 of the cell for evaluation.

表1に記載したいずれの組合せについても、セパレータ3には、ガラス繊維の不織布を用い、電解液には、エチレンカーボネイトとジメチルカーボネイトとを3:7の体積比で混合した有機溶媒に1mol/LのLiPFを溶解したものを用いた。 For any combination described in Table 1, a glass fiber non-woven fabric is used for the separator 3, and the electrolyte is 1 mol / L in an organic solvent in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 3: 7. The one in which LiPF 6 was dissolved was used.

第1活物質層1aには白金箔8を介して配線6aを接続し、第2活物質層1bには介在層1cに接する集電体に配線6bを接続し、第2の電極2にはSUS製の重石9を介して配線6cを接続した。配線6a、6bおよび6cは、配線6aと6bの接続を切替可能な手動スイッチを有する外部電源に接続した。   A wiring 6 a is connected to the first active material layer 1 a via a platinum foil 8, a wiring 6 b is connected to a current collector in contact with the intervening layer 1 c, and the second electrode 2 is connected to the second electrode 2. The wiring 6c was connected through the SUS-made weight stone 9. The wirings 6a, 6b and 6c were connected to an external power source having a manual switch capable of switching the connection between the wirings 6a and 6b.

電池特性の評価は、第2の電極2の容量を基準として、0.1Cのレートで充放電試験を行った。第1の電極1と第2の電極2とを組合せた発電要素4について、第1活物質層1a、第2活物質層1bおよび第2の電極2に用いた電極材料単独での容量と、発電要素4の測定条件である充電終止電圧、放電終止電圧、および電池容量を表1に示す。なお、試料No.2については、充放電試験中の電池電圧を計測し、その値をもとに手動スイッチを用いて第2の電極2と、第1活物質層1aおよび第2活物質層1bとの電気的接続の切替操作を行った。   The battery characteristics were evaluated by conducting a charge / discharge test at a rate of 0.1 C with reference to the capacity of the second electrode 2. About the power generation element 4 combining the first electrode 1 and the second electrode 2, the capacity of the electrode material alone used for the first active material layer 1a, the second active material layer 1b, and the second electrode 2, Table 1 shows the charge end voltage, the discharge end voltage, and the battery capacity, which are measurement conditions of the power generation element 4. Sample No. 2, the battery voltage during the charge / discharge test is measured, and the electrical connection between the second electrode 2 and the first active material layer 1a and the second active material layer 1b using a manual switch based on the measured value. A connection switching operation was performed.

Figure 2013114858
Figure 2013114858

図3は、試料No.1における充放電曲線を示す。充電時には、より電位の低い第1活物質層1aの充電が進み、第1活物質層1aの電位がさらに低下したところで、より電位の高い第2活物質層1bの充電が始まり、放電時には、より電位の高い第2活物質層1bの電位がさらに上昇したところで、より電位の低い第1活物質層1aの放電が始まることにより、電池全体としては充放電の電圧差が小さいものとなっている。   FIG. 1 shows a charge / discharge curve in FIG. At the time of charging, charging of the first active material layer 1a having a lower potential proceeds, and when the potential of the first active material layer 1a further decreases, charging of the second active material layer 1b having a higher potential starts. When the potential of the second active material layer 1b having a higher potential is further increased, the discharge of the first active material layer 1a having a lower potential starts, so that the voltage difference between charging and discharging is small as a whole battery. Yes.

このように、試料No.1〜4では、充放電の電圧差が小さいままでも高容量を得ることができた。一方、第1の電極1として1種類の活物質のみを用いた試料No.5〜7では、充放電の電圧差が小さい場合は容量が小さく、充放電の電圧差を拡大することで高容量が得られるものであった。   In this way, sample no. In 1-4, a high capacity could be obtained even with a small voltage difference between charge and discharge. On the other hand, sample No. 1 using only one type of active material as the first electrode 1 was used. In 5-7, when the voltage difference of charging / discharging was small, capacity | capacitance was small, and high capacity | capacitance was obtained by expanding the voltage difference of charging / discharging.

1・・・・第1の電極
1a・・・第1活物質層
1b・・・第2活物質層
1c・・・介在層
2・・・・第2の電極
3・・・・セパレータ
4・・・・発電要素
5・・・・電池ケース
6a・・・第1活物質層に接続する配線
6b・・・第2活物質層に接続する配線
6c・・・第2の電極に接続する配線
7・・・・ガラス管
8・・・・白金箔
9・・・・SUS製重石
DESCRIPTION OF SYMBOLS 1 ...... 1st electrode 1a ... 1st active material layer 1b ... 2nd active material layer 1c ... Intervening layer 2 ...... 2nd electrode 3 .... Separator 4. ... Power generation element 5 .... Battery case 6a ... Wiring connected to first active material layer 6b ... Wiring connected to second active material layer 6c ... Wiring connected to second electrode 7 .... Glass tube 8 .... Platinum foil 9 .... SUS stainless steel

Claims (6)

第1の電極と、非水電解質と、第2の電極とを有する二次電池において、少なくとも前記第1の電極が、少なくとも第1の活物質と、第2の電極との電位差が前記第1の活物質よりも小さい第2の活物質とを含み、
前記二次電池の充電時には、前記第1の活物質と前記第2の電極を電気的に接続して充電した後、引き続き前記第2の活物質と前記第2の電極を電気的に接続して充電し、
放電時には、前記第2の活物質と前記第2の電極を電気的に接続して放電した後、引き続き前記第1の活物質と前記第2の電極を電気的に接続して放電することを特徴とする二次電池。
In a secondary battery including a first electrode, a non-aqueous electrolyte, and a second electrode, a potential difference between at least the first electrode, at least the first active material, and the second electrode is the first electrode. A second active material smaller than the active material of
When charging the secondary battery, the first active material and the second electrode are electrically connected and charged, and then the second active material and the second electrode are electrically connected. Charge
In discharging, the second active material and the second electrode are electrically connected and discharged, and then the first active material and the second electrode are electrically connected and discharged. Secondary battery characterized.
前記第1の活物質および前記第2の活物質のうち少なくともいずれか一方が、充電により体積膨張することを特徴とする請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein at least one of the first active material and the second active material expands in volume by charging. 前記第1の電極が、前記第1の活物質を含む第1活物質層と、前記第2の活物質を含む第2活物質層とを有することを特徴とする請求項1または2に記載の二次電池。   3. The first electrode according to claim 1, wherein the first electrode includes a first active material layer containing the first active material and a second active material layer containing the second active material. Secondary battery. 前記第1活物質層と前記第2活物質層とが、異方性導電材料を介して積層されていることを特徴とする請求項3に記載の二次電池。   The secondary battery according to claim 3, wherein the first active material layer and the second active material layer are laminated via an anisotropic conductive material. 前記第1活物質層、前記第2活物質層、セパレータ、前記第2の電極がこの順で積層されていることを特徴とする請求項3または4に記載の二次電池。   5. The secondary battery according to claim 3, wherein the first active material layer, the second active material layer, the separator, and the second electrode are laminated in this order. 前記第1の電極が負極であり、前記第2の活物質として、SiおよびSnのいずれかを含む金属または合金を用いることを特徴とする請求項1乃至5のいずれかに記載の二次電池。   The secondary battery according to claim 1, wherein the first electrode is a negative electrode, and a metal or alloy containing any of Si and Sn is used as the second active material. .
JP2011259098A 2011-11-28 2011-11-28 Secondary battery Pending JP2013114858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011259098A JP2013114858A (en) 2011-11-28 2011-11-28 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011259098A JP2013114858A (en) 2011-11-28 2011-11-28 Secondary battery

Publications (1)

Publication Number Publication Date
JP2013114858A true JP2013114858A (en) 2013-06-10

Family

ID=48710222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011259098A Pending JP2013114858A (en) 2011-11-28 2011-11-28 Secondary battery

Country Status (1)

Country Link
JP (1) JP2013114858A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017037A (en) * 2001-07-02 2003-01-17 Sony Corp Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2006134770A (en) * 2004-11-08 2006-05-25 Sony Corp Cathode and battery
JP2006196247A (en) * 2005-01-12 2006-07-27 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2008300239A (en) * 2007-05-31 2008-12-11 Panasonic Corp Electrode for non-aqueous electrolyte secondary battery, lithium-ion secondary battery, and manufacturing method of electrode for non-aqueous electrolyte secondary battery
JP2009105017A (en) * 2007-10-25 2009-05-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2010238426A (en) * 2009-03-30 2010-10-21 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2011119144A (en) * 2009-12-04 2011-06-16 Hitachi Vehicle Energy Ltd Lithium secondary battery and manufacturing method thereof
JP2012195055A (en) * 2011-03-14 2012-10-11 Mitsubishi Motors Corp State management method of lithium ion battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017037A (en) * 2001-07-02 2003-01-17 Sony Corp Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2006134770A (en) * 2004-11-08 2006-05-25 Sony Corp Cathode and battery
JP2006196247A (en) * 2005-01-12 2006-07-27 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2008300239A (en) * 2007-05-31 2008-12-11 Panasonic Corp Electrode for non-aqueous electrolyte secondary battery, lithium-ion secondary battery, and manufacturing method of electrode for non-aqueous electrolyte secondary battery
JP2009105017A (en) * 2007-10-25 2009-05-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2010238426A (en) * 2009-03-30 2010-10-21 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2011119144A (en) * 2009-12-04 2011-06-16 Hitachi Vehicle Energy Ltd Lithium secondary battery and manufacturing method thereof
JP2012195055A (en) * 2011-03-14 2012-10-11 Mitsubishi Motors Corp State management method of lithium ion battery

Similar Documents

Publication Publication Date Title
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
JP6754768B2 (en) Non-aqueous electrolyte secondary battery
US9899662B2 (en) Method for producing electrodes for all-solid battery and method for producing all-solid battery
CN106654164B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2016219275A (en) Lithium ion secondary battery
JP6998335B2 (en) Negative electrode active material and power storage device
JP4992203B2 (en) Lithium ion secondary battery
JP2017073328A (en) Nonaqueous electrolyte secondary battery
JP2016058335A (en) All-solid battery, manufacturing method thereof, and method for recovering capacity
KR101551682B1 (en) Electrode and method of manufacturing an active material for the electrode
JP4561041B2 (en) Lithium secondary battery
JPWO2017213149A1 (en) Lithium ion secondary battery and battery pack
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP2018113220A (en) Method for manufacturing lithium ion secondary battery
JP2014022245A (en) Lithium ion secondary battery and manufacturing method thereof
JP4120439B2 (en) Lithium ion secondary battery
JP2012138290A (en) Lithium secondary battery system and method for controlling the lithium secondary battery system
WO2015159331A1 (en) Solid-state battery, electrode for solid-state battery, and production processes therefor
WO2017130674A1 (en) Solid electrolyte and all-solid-state lithium battery using solid electrolyte
JP2017039250A (en) Laminate
JP6631363B2 (en) Negative electrode active material, negative electrode including negative electrode active material, and lithium ion secondary battery including negative electrode
JP2016143577A (en) Lithium ion secondary battery
JP2013114858A (en) Secondary battery
WO2016194589A1 (en) Lithium ion secondary battery
CN113498561B (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006