WO2017130674A1 - Solid electrolyte and all-solid-state lithium battery using solid electrolyte - Google Patents

Solid electrolyte and all-solid-state lithium battery using solid electrolyte Download PDF

Info

Publication number
WO2017130674A1
WO2017130674A1 PCT/JP2017/000372 JP2017000372W WO2017130674A1 WO 2017130674 A1 WO2017130674 A1 WO 2017130674A1 JP 2017000372 W JP2017000372 W JP 2017000372W WO 2017130674 A1 WO2017130674 A1 WO 2017130674A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
layer
bonding agent
positive electrode
solid
Prior art date
Application number
PCT/JP2017/000372
Other languages
French (fr)
Japanese (ja)
Inventor
渉平 鈴木
純 川治
慎一 折茂
篤 宇根本
吉田 浩二
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017130674A1 publication Critical patent/WO2017130674A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid electrolyte and an all-solid lithium battery using the solid electrolyte.
  • An all-solid secondary battery using a solid electrolyte can improve high heat resistance. Further, since the electrolyte does not leak and does not volatilize, safety can be improved. Therefore, the module cost can be reduced and the energy density can be increased.
  • this solid electrolyte is a hydride-based solid electrolyte.
  • the hydride-based solid electrolyte is excellent in reduction resistance, and can generally be used without forming a high resistance layer with a highly reducing material used for the negative electrode of a lithium ion secondary battery.
  • Patent Document 1 discloses a LiBH 4 -based solid electrolyte in which LiBH 4 and an alkali metal compound are mixed as a solid electrolyte. It has been shown that high ionic conductivity can be obtained over a wide temperature range by mixing LiBH 4 and an alkali metal compound.
  • the solid electrolyte described in Patent Document 1 has a problem that when the proportion of potassium atoms contained in the solid electrolyte is large, a large amount of potassium compound is precipitated in the solid electrolyte, thereby increasing the contact resistance with the electrode. Furthermore, when the proportion of potassium atoms contained in the solid electrolyte is small, the proportion of partial melting even when the solid electrolyte is heated to join the electrode is small, so the solid electrolyte and the electrode cannot be joined well. There is a problem that the contact resistance increases.
  • An object of the present invention is to provide a solid electrolyte having a low contact resistance with an electrode.
  • the molar fraction of I contained in the solid electrolyte with respect to the sum of I and BH 4 contained is y, 0.05 ⁇ x 1 ⁇ 0.275 and 0 ⁇ y ⁇ 0.50 and 0.15 ⁇
  • a solid electrolyte satisfying (yx 1 ) / (1-x 1 ).
  • a solid electrolyte having a low contact resistance with an electrode can be provided.
  • the fragmentary sectional view which shows the solid electrolyte before heat-melting process in one Embodiment of this invention is a partial cross-sectional view showing a solid electrolyte layer and a bonding agent layer before heating and melting treatment in an embodiment of the present invention.
  • the fragmentary sectional view which shows the solid electrolyte layer and bonding agent layer after heat-melting process in one Embodiment of this invention The fragmentary sectional view which shows the state of the all-solid-state lithium battery before heat-melting process in one Embodiment of this invention
  • the fragmentary sectional view which shows the state of the all-solid-state lithium battery after heat-melting process in one Embodiment of this invention The fragmentary sectional view which shows the state of the all-solid-state lithium battery before heat-melting process in one Embodiment of this invention
  • FIG. 1 is a cross-sectional view showing an all-solid-state lithium battery in one embodiment of the present invention.
  • the all solid lithium battery 500 includes a negative electrode 70, a positive electrode 80, a solid electrolyte 100 disposed between the negative electrode 70 and the positive electrode 80, and a battery case 30 that houses the negative electrode 70, the positive electrode 80, and the solid electrolyte 100.
  • the negative electrode 70 includes the negative electrode current collector 10 and the negative electrode mixture layer 40.
  • the positive electrode 80 includes the positive electrode current collector 20 and the positive electrode mixture layer 60.
  • the solid electrolyte 100 has a solid electrolyte layer 50 and a bonding agent layer 90.
  • the negative electrode current collector 10 is electrically connected to the negative electrode mixture layer 40.
  • a copper foil having a thickness of 10 to 100 ⁇ m, a copper perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like is used.
  • those formed of stainless steel, titanium, nickel or the like are also applicable.
  • any current collector can be used without being limited by the material, shape, manufacturing method and the like.
  • the positive electrode current collector 20 is electrically connected to the positive electrode mixture layer 60.
  • an aluminum foil having a thickness of 10 to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, or the like is used.
  • aluminum those formed of stainless steel, titanium or the like are also applicable.
  • any current collector can be used without being limited by the material, shape, manufacturing method and the like.
  • the shape of the battery case 30 may be selected from shapes such as a cylindrical shape, a flat oval shape, a flat oval shape, and a square shape according to the shape of the electrode group composed of the negative electrode 70, the positive electrode 80, and the solid electrolyte 100.
  • the material of the battery case 30 is selected from materials that are corrosion resistant to the nonaqueous electrolyte, such as aluminum, stainless steel, nickel-plated steel, and the like.
  • FIG. 2 is a partial cross-sectional view of solid electrolyte 100 before the heat-melting process in one embodiment of the present invention.
  • the solid electrolyte 100 before the heat melting treatment includes solid electrolyte particles 63 and bonding agent particles 91.
  • the solid electrolyte particles 63 a hydride-based solid electrolyte can be used. Specifically, it is a solid solution (LiI—Li (BH 4 ) solid solution) of lithium iodide and lithium borohydride.
  • the bonding agent particles 91 a mixture of lithium borohydride (Li (BH 4 )) and potassium borohydride (K (BH 4 )) (Li (BH 4 ) -K (BH 4 ) mixture) is used.
  • a method for manufacturing the solid electrolyte 100 shown in FIG. Specifically, (i) a step of producing a LiI-Li (BH 4 ) solid solution, (ii) a step of mixing Li (BH 4 ) and K (BH 4 ), (iii) LiI-Li (BH 4) ) A step of mixing the solid solution with the Li (BH 4 ) —K (BH 4 ) mixture, and (iv) a step of forming the solid electrolyte 100.
  • Li (BH 4 ) and K (BH 4 ) are mixed by, for example, a mixer or a planetary ball mill.
  • the LiI—Li (BH 4 ) solid solution and the Li (BH 4 ) —K (BH 4 ) mixture are mixed by, for example, a mixer or a planetary ball mill.
  • the mixture obtained in (iii) is formed with a tableting machine, for example.
  • the sheet-like solid electrolyte 100 is prepared by dispersing and coating the mixture with N-methyl-2-pyrrolidone (NMP) or tetrahydrofuran (THF), drying, and roll pressing.
  • NMP N-methyl-2-pyrrolidone
  • THF tetrahydrofuran
  • the entire solid electrolyte 100 can be melted by including the bonding agent particles 91 in the entire solid electrolyte 100. Therefore, when joining the solid electrolyte 100 and an electrode, it becomes easy to process the solid electrolyte 100 thinly by melting.
  • FIG. 3 is a partial cross-sectional view of solid electrolyte 100 after the heat-melting process in one embodiment of the present invention.
  • a method for manufacturing the solid electrolyte 100 shown in FIG. Compared with the method for manufacturing the solid electrolyte 100 of FIG. 2, the above two steps are newly added: (v) a step of heating and melting treatment, (vi) a step of cooling.
  • the Li (BH 4 ) -K (BH 4 ) mixture as the bonding agent particles 91 is partially melted by the heat melting treatment, and the partially melted bonding agent particles 91 and the solid electrolyte particles 63 are LiI-Li.
  • the (BH 4 ) solid solution reacts with the reaction product Li 1-x1 K x1 (BH 4 ) (1-y) I y is generated.
  • x 1 is the molar fraction of potassium (K) with respect to the amount of substance of the solid electrolyte particles 63 and the bonding agent particles 91.
  • y is the molar fraction of iodine (I) with respect to the amount of substance of the solid electrolyte particles 63 and the bonding agent particles 91.
  • the molten electrolyte in order to stabilize the shape of the molten electrolyte, it may be soaked into a thin film of cellulose fiber or glass fiber. Further, the higher the x 1 , the higher the proportion of the volume to be melted, and the proportion of the bonded portion 95 and the precipitated phase particles 94 increases. On the other hand, a portion of the solid electrolyte particles 63 when x 1 is less remains rest, the adhesive portion 95 and the precipitated phase particles 94 and the solid electrolyte particles 63 and is mixed electrolyte solid.
  • the reactant Li 1-x1 K x1 (BH 4 ) (1-y) I y is cooled to room temperature, and as shown in the following (formula 1), the precipitated phase particle 94 is iodine Phase separation is performed into potassium halide (KI) and Li (BH 4 ) (1-y) / (1-x1) I (y-x1) / (1-x1) which is the bonding portion 95.
  • ⁇ Mole fraction of I and room temperature conductivity> When the molar fraction of I in the solid electrolyte 100, that is, the molar fraction of I with respect to the sum of the substance amounts of the solid electrolyte particles 63 and the bonding agent particles 91 is small, the solid electrolyte particles 63 undergo a phase transition to a low-temperature phase.
  • the conductivity at room temperature (25 ° C. to 30 ° C.) is significantly reduced. That is, in order to improve the electrical conductivity at room temperature, y is desirably larger than a certain value.
  • the electrical conductivity of the solid electrolyte 100 at room temperature is desirably 1 ⁇ 10 ⁇ 5 Scm ⁇ 1 or more.
  • the conductivity at room temperature is referred to as room temperature conductivity.
  • LiI lithium iodide
  • the molar fraction of K and I is preferably within the following (formula 2).
  • the bonding agent particles 91 need to be sufficiently melted in order to form the bonding portion 95. Bonding agent particles 91, the rate of melting as x 1 is high increases. That is, the contact resistance between the electrode and lower solid electrolyte 100, desirably a 0.05 ⁇ x 1.
  • FIG. 4 is a partial cross-sectional view of solid electrolyte 100 before the heat-melting process in one embodiment of the present invention.
  • the bonding agent layer 90 before the heat melting treatment includes bonding agent particles 91.
  • As the bonding agent particles 91 the same material as described in FIG. 2 is used.
  • As the solid electrolyte particles 63 used for the solid electrolyte layer 50 the same materials as described in FIG. 2 are used.
  • the location where the bonding agent particles 91 are included and the location where the solid electrolyte particles 63 are included in the solid electrolyte 100 are separated.
  • the thickness of the bonding agent layer 90 formed on the solid electrolyte 100 is desirably 5 ⁇ m or more. If the bonding agent layer 90 is thinner than this, the bonding effect may be insufficient.
  • a method for manufacturing the solid electrolyte 100 shown in FIG. Specifically, (i) a step of manufacturing a LiI-Li (BH 4 ) solid solution, (ii) a step of mixing Li (BH 4 ) and K (BH 4 ), (iii) forming the solid electrolyte layer 50 And (iv) a step of forming the bonding agent layer 90 on one surface of the solid electrolyte layer 50.
  • the manufactured LiI—Li (BH 4 ) solid solution is formed on the pellet-shaped solid electrolyte layer 50 by, for example, a tableting machine. Further, for example, the sheet-like solid electrolyte layer 50 is formed by dispersing and applying the mixture with N-methyl-2-pyrrolidone (NMP) or tetrahydrofuran (THF), drying, and roll pressing.
  • NMP N-methyl-2-pyrrolidone
  • THF tetrahydrofuran
  • the bonding agent layer 90 is formed on the pellet-shaped solid electrolyte layer 50 obtained in (iii) with, for example, a tableting machine.
  • the bonding agent layer 90 is formed by dispersing and applying a bonding agent on the sheet-like solid electrolyte layer 50 with N-methyl-2-pyrrolidone (NMP) or tetrahydrofuran (THF), drying, and roll pressing. .
  • NMP N-methyl-2-pyrrolidone
  • THF tetrahydrofuran
  • the solid electrolyte layer 50 on the bonding agent layer 90 side can be melted by forming the solid electrolyte layer 50 and the bonding agent layer 90 separately.
  • the joining of the solid electrolyte 100 and the positive electrode mixture layer 60 is improved without partially melting a hydride-based solid electrolyte 67 in the negative electrode mixture layer 40 described later. it can.
  • FIG. 5 is a partial cross-sectional view of solid electrolyte 100 after the heat-melting treatment in one embodiment of the present invention.
  • the bonding agent particles 91 of the bonding agent layer 90 are partially melted.
  • the partially melted bonding agent particles 91 react with the solid electrolyte particles 63 in the solid electrolyte layer 50 in contact with the partially melted bonding agent particles 91, and Li 1-x2 K x2 (BH 4 ) (1-y ) I y is generated.
  • x 2 is the molar fraction of potassium (K) with respect to the amount of the bonding agent particles 91 contained in the bonding agent layer 90.
  • the solid electrolyte 100 after the heat-melting treatment indicates the solid electrolyte layer 50 and the adhesive portion 95.
  • the room temperature conductivity of the solid electrolyte 100 after the heat-melting treatment is preferably 1 ⁇ 10 ⁇ 5 Scm ⁇ 1 or more.
  • a manufacturing method of the solid electrolyte 100 shown in FIG. Compared with the manufacturing method of the solid electrolyte 100 of FIG. 4, (v) the process of heat-melting treatment and (vi) the process of cooling are performed.
  • the reactant Li 1-x2 K x2 (BH 4 ) (1-y) I y is cooled to cause phase separation, and the adhesion portion 95 and the precipitated phase particles 94 are precipitated.
  • the molar fraction of I at the bonding portion 95 is represented by (yx 1 ) / (1-x 1 ) after the following (Formula 3), This is because I and BH 4 are interdiffused between the solid electrolyte layer 50 and the bonding portion 95 until the rate is not biased.
  • the bonding portion 95 in which the precipitated phase particles 94 are deposited can be generated in the vicinity of the bonding agent layer 90 or the bonding surface between the bonding agent layer 90 and the solid electrolyte layer 50.
  • FIG. 6 is a partial cross-sectional view schematically showing a part of the inside of the battery in one embodiment of the present invention, showing the negative electrode mixture layer 40, the solid electrolyte 100, and the positive electrode mixture layer 60.
  • the solid electrolyte 100 includes the solid electrolyte layer 50 and the bonding agent layer 90, and is sandwiched between the negative electrode mixture layer 40 and the positive electrode mixture layer 60.
  • the solid electrolyte layer 50 includes solid electrolyte particles 63.
  • the bonding agent layer 90 is arrange
  • the bonding agent layer 90 is composed of bonding agent particles 91.
  • the negative electrode mixture layer 40 a negative electrode active material 54 and a hydride-based solid electrolyte 67 are dispersed.
  • the negative electrode mixture layer 40 includes a negative electrode conductive additive or a negative electrode binder 69.
  • a positive electrode active material 62 and a positive electrode Li conductive binder 66 are dispersed in the positive electrode mixture layer 60.
  • the positive electrode mixture layer 60 includes a positive electrode conductive additive or a positive electrode binder 68.
  • FIG. 7 is a partial cross-sectional view showing a state after the heat-melting treatment of the bonding agent layer 90 in the all solid lithium battery of FIG.
  • the bonding agent particles 91 are melted, and a part thereof penetrates into the solid electrolyte layer 50 and the positive electrode mixture layer 60 to form an adhesive portion 95.
  • KI that is the precipitated phase particles 94 generated by the phase separation is distributed.
  • the bonding portion 95 penetrates a part between the particles constituting the solid electrolyte layer 50 and the positive electrode mixture layer 60.
  • the adhesion part 95 may be in a state of penetrating all the particles constituting the solid electrolyte layer 50 and the positive electrode mixture layer 60. That is, the configuration may be such that the adhesive portion 95 penetrates and the precipitated phase particles 94 are distributed over the entire region of the solid electrolyte layer 50 and the positive electrode mixture layer 60.
  • the solid electrolyte 100 of FIG. 6 does not need to be divided into the solid electrolyte layer 50 and the bonding agent layer 90, and may be a solid electrolyte such as the solid electrolyte 100 of FIG.
  • the contact property is improved as compared with a case where the positive electrode mixture layer 60 and the solid electrolyte 100 are mechanically pressurized and brought into contact with each other by the heat melting treatment. And even if the volume change accompanying charging / discharging of a battery arises, a contact interface becomes difficult to peel.
  • the temperature of the lithium ion secondary battery during heating is lower than the heat resistant temperature of the lithium ion secondary battery. Therefore, the interface between the positive electrode mixture layer 60 and the solid electrolyte 100 does not peel off even when the volume changes due to charging / discharging, and stable battery operation becomes possible.
  • the bonding agent particles 91 constituting the bonding agent layer 90 are materials that soften at a temperature lower than the melting point of the solid electrolyte layer 50 and fill the physical gap between the positive electrode mixture layer 60 and the solid electrolyte layer 50. It is desirable.
  • the solid electrolyte particles 63 used in the solid electrolyte layer 50 are excellent in reduction resistance, and are easily deformed by pressurization even at room temperature, so that they can be easily filled between the negative electrode active material particles.
  • the positive electrode mixture layer 60 includes at least a positive electrode active material 62 and a positive electrode Li conductive binder 66.
  • the positive electrode active material 62 may include one or more of the above materials. In the positive electrode active material 62, lithium ions are desorbed in the charging process, and lithium ions desorbed from the negative electrode active material in the negative electrode mixture layer 40 are inserted in the discharging process.
  • the particle diameter of the positive electrode active material 62 is normally specified so as to be equal to or less than the thickness of the positive electrode mixture layer 60.
  • the powder of the positive electrode active material 62 has coarse particles having a size equal to or larger than the thickness of the mixture layer, the coarse particles are previously removed by sieving classification or wind classification to produce particles having a thickness of the mixture layer or less. Is preferred.
  • the positive electrode Li conductive binder 66 has high Li ion conductivity (lithium ion conductivity), exhibits good oxidation resistance with respect to the potential of the positive electrode active material 62, and enters the gap between the positive electrode active materials 62.
  • Materials that can be used can be used.
  • the oxidation resistance it is desirable that the oxidation resistance is 3.5 V or higher in view of the potential of the positive electrode active material 62 and 4 V or higher from the viewpoint of high energy density.
  • a material that can enter the gap between the positive electrode active materials 62 a heat-meltable material that melts by heat or a deliquescence material that melts by deliquescence can be used.
  • Examples of the heat-meltable material that can be used as the positive electrode Li conductive binder 66 include Li 3 BO 3 and Li 3-x C x B 1-x O 3 (0 ⁇ x ⁇ 1).
  • the heat-meltable material can efficiently enter the gaps between the positive electrode active materials 62 by flowing by heating.
  • the positive electrode active material 62 is generally oxide-based and has high electrical resistance
  • a conductive aid for supplementing electrical conductivity may be used.
  • the positive electrode mixture layer 60 includes a positive electrode conductive agent or a positive electrode binder
  • examples of the positive electrode conductive agent include acetylene black, carbon black, and carbon materials such as graphite or amorphous carbon.
  • oxide particles exhibiting electronic conductivity such as indium-tin-oxide (ITO) and antimony-tin-oxide (ATO) can be used.
  • both the positive electrode active material 62 and the positive electrode conductive agent are usually powders
  • a binder having a binding ability can be mixed with the powders to bond the powders to each other and to be bonded to the positive electrode current collector 20 at the same time.
  • the positive electrode binder include styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVdF), and a mixture thereof.
  • the positive electrode mixture layer 60 may include an oxide solid electrolyte layer 81 made of oxide solid electrolyte particles.
  • the oxide solid electrolyte layer 81 may be provided in a portion where the positive electrode mixture layer 60 and the bonding agent layer 90 are in contact with each other.
  • this figure has shown the state before performing the heat-melting process to the binder particle
  • the melted bonding agent particles 91 permeate the adjacent solid electrolyte layer 50, oxide solid electrolyte layer 81, and the like to form an adhesive portion.
  • oxide solid electrolyte examples include solid oxides such as perovskite oxide, NASICON oxide, LISICON oxide, and garnet oxide, and ⁇ -alumina.
  • the thickness of the oxide solid electrolyte layer 81 is 1 ⁇ m to 10 ⁇ m, preferably 5 ⁇ m to 10 ⁇ m. When the thickness is less than the above range, the protective effect of the positive electrode active material 62 by the oxide solid electrolyte layer is not exhibited. If the thickness is larger than the above range, the resistance increases in proportion to the film thickness, and the battery characteristics deteriorate, which is not desirable.
  • the negative electrode mixture layer 40 includes a negative electrode active material 54 and a hydride-based solid electrolyte 67, and may include a negative electrode conductive additive or a negative electrode binder 69.
  • the hydride-based solid electrolyte 67 is dispersed so as to enter the voids between the particles of the negative electrode active material 54. When the hydride-based solid electrolyte 67 enters the gap, the lithium ion conductivity between the negative electrode active materials 54 is increased. Even when the negative electrode active material 54 expands and contracts, the hydride-based solid electrolyte 67 can maintain the lithium ion path between the negative electrode active materials 54.
  • hydride-based solid electrolyte 67 an electrolyte material that is durable with respect to the negative electrode potential and that can enter the voids formed between the negative electrode active materials 54 can be used.
  • examples of the hydride-based solid electrolyte 67 include solid solutions of LiBH 4 and lithium halide compounds (LiI, LiBr, LiCl) and lithium amide (LiNH 2 ).
  • the particle diameter of the negative electrode active material 54 is normally defined so as to be equal to or less than the thickness of the negative electrode mixture layer 40. In the case where there are coarse particles having a size equal to or larger than the thickness of the mixture layer in the powder of the negative electrode active material 54, the coarse particles are removed in advance by sieving classification, wind classification, etc. It is preferable to produce it.
  • the particle size of the negative electrode active material 54 is 0.1 ⁇ m to 5 ⁇ m. The smaller the active material particle size, the shorter the Li diffusion distance in the active material, so that the battery resistance is lowered. However, agglomeration is likely to occur, so that the active material utilization rate is lowered.
  • the negative electrode mixture layer 40 includes a conductive additive or binder
  • the conductive aid include acetylene black, carbon black, and carbon materials such as graphite or amorphous carbon.
  • the binder include styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), and a mixture thereof.
  • ⁇ Mole fraction of K> In the configuration of the present invention, when x 2 is too high, the surface contacting the solid electrolyte 100 and the positive electrode 80, the number precipitation amount of KI is stiff material, not withstand the volumetric expansion and shrinkage due to charge and discharge, the electrode The joint is not good. Therefore, it is desirable that x 2 is smaller than a certain value. On the other hand, when y is too high, Li (BH 4 ) (1-y) / (1-x1) I (y-x1 ) which is the bonding portion 95. ) / (1-x1) , LiI may be precipitated.
  • LiI is a hard material, it causes peeling of the electrode mixture and the electrolyte layer, resulting in a solid electrolyte 100 having high contact resistance with the electrode. Therefore, in order to reduce the contact resistance, y is preferably smaller than a certain value.
  • the bonding agent particles 91 and the positive electrode 80 are in point contact with each other, so that the all solid lithium battery 500 having poor contact resistance between the solid electrolyte 100 and the electrode is obtained. .
  • an adhesive portion 95 is generated, the contact area with the positive electrode 80 is increased, and the all solid lithium battery 500 capable of being efficiently charged and discharged is obtained.
  • the adhesive portion 95 is formed must cement particles 91 is sufficiently melted, the bonding agent particles 91 percentage melting the higher x 2 in the bonding agent layer 90 is increased.
  • the bonding agent particles 91 include a predetermined amount of potassium borohydride (KBH 4 ). From the above, x 2 in the bonding agent layer 90 is greater than a certain value is desirable.
  • solid electrolyte 100 in FIG. 6 was demonstrated using the solid electrolyte 100 shown in FIG.
  • an electrolyte that is not separated into the solid electrolyte layer 50 and the bonding agent layer 90, such as the solid electrolyte 100 shown in FIG. 2 may be used in the structure shown in FIG.
  • y is preferably smaller than a certain value
  • x 1 is desirably larger than a certain value.
  • FIGS. 2 and 3 which are one embodiment of the present invention will be described in more detail.
  • ⁇ Measuring method of melting point> The melting point of the mixture of the solid electrolyte particles 63 and the bonding agent particles 91 was measured by differential scanning calorimetry (DSC). A sample weighed so as to have a volume of 2 ⁇ L was placed in a high-pressure pan made of SUS steel and sealed by caulking. Measurement was performed using Rigaku's Thermo plus Evo 2 / DSC 8230. The sample atmosphere was Ar, and the temperature was raised at 5 ° C./min ⁇ 1 . The peak temperature of the endothermic peak obtained at the time of temperature rise was taken as the melting point. In many cases, a plurality of endothermic peaks are obtained, but the lowest temperature among the endothermic peaks attributed to the melting point is defined as the first melting point. This temperature is the onset temperature of partial melting and is most important for bonding.
  • ⁇ Electrode peeling test method> This is a method for determining whether or not the solid electrolyte 100 and the electrode are sufficiently joined. First, the sheet-shaped solid electrolyte 100 and the electrode produced on the current collector foil were brought into contact with each other, heated at the first melting point, and joined. Thereafter, the current collector foil was picked up with tweezers at room temperature and peeled off from the sheet-like solid electrolyte 100. The case where bonding was insufficient and the current collector foil and the electrode mixture peeled was evaluated as x, and the case where bonding was sufficient and only the current collector foil was peeled and the electrode mixture remained in the solid electrolyte was judged as ⁇ .
  • Room temperature conductivity and battery resistance were measured at room temperature by an AC impedance method using a resistance measuring device (HIOKI CHEMICAL IMPEDANCE METER 3532-80).
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.25, x 1 is 0.10.
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.28, x 1 is 0.15.
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.32, x 1 is 0.20.
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.37, x 1 is 0.25.
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.33, x 1 is 0.10.
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.36, x 1 is 0.15.
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.40, x 1 is 0.20.
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.44, x 1 is 0.25.
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.42, x 1 is 0.10.
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.45, x 1 is 0.15.
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.48, x 1 is 0.20.
  • the sheet-like solid electrolyte 100 was made of the solid electrolyte particles 63 not including the bonding agent particles 91 and y of 0.25.
  • Comparative Example 4 A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.25, x 1 is 0.15.
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.25, x 1 is 0.20.
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.25, x 1 is 0.25.
  • Comparative Example 7 A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.51, x 1 is 0.25.
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.52, x 1 is 0.15.
  • a sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.39, x 1 is 0.28.
  • Table 1 shows determination results as to whether solid electrolytes having good bonding with electrodes and good room temperature conductivity in Examples and Comparative Examples.
  • Y in the solid electrolyte 100, x 1 in the solid electrolyte 100, the value of X, the melting point measured by the melting point measurement method described above, the presence or absence of electrode peeling tested by the electrode peeling test method described above, and the battery resistance measurement method described above Based on the measured room temperature conductivity value, the above numerical values, and the presence or absence of electrode peeling, it is determined whether or not the solid electrolyte 100 has good bonding with the electrode and good room temperature conductivity.
  • the sheet-shaped solid electrolyte 100 is composed of the bonding agent particles 91, the sheet-shaped solid electrolyte 100 and the electrode are sufficiently bonded.
  • the room temperature conductivity is as low as 1.0 ⁇ 10 ⁇ 8 Scm ⁇ 1 .
  • the sheet-like solid electrolyte 100 is composed of the solid electrolyte particles 63 as shown in Comparative Example 2, the room temperature conductivity is 2.0 ⁇ 10 ⁇ 5 Scm ⁇ 1 , and the solid electrolyte used in the battery is Indicates a sufficient value.
  • the bonding agent particles 91 are not present in the sheet-like solid electrolyte 100, the adhesive portion 95 is not generated by melting, and the bonding between the sheet-like solid electrolyte 100 and the electrode is insufficient and peeling occurs.
  • Example 1 to Example 11 and Comparative Example 3 to Comparative Example 9 are examples in which the sheet-like solid electrolyte 100 is composed of solid electrolyte particles 63 and bonding agent particles 91.
  • Example 1 as shown from Comparative Example 3 Comparative Example 6, with the x 1 is increased, the smaller the room temperature electrical conductivity. This is because, as described above, KI is deposited on the sheet-like solid electrolyte 100, so that y is reduced in the sheet-like solid electrolyte 100.
  • Example 2 to Example 11 and Comparative Example 7 to Comparative Example 9 y is increased in order to increase the room temperature conductivity. In this case, the room temperature conductivity was improved and became a sufficient value.
  • FIGS. 4 and 5 which are one embodiment of the present invention will be described more specifically.
  • FIG. 4 and FIG. 5 are the same as the methods in FIG. 2 and FIG. 3 in the melting point measurement method, electrode peel test method, room temperature conductivity and battery resistance measurement method.
  • a bonding agent layer 90 having a thickness of 5 ⁇ m was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100.
  • X 2 in the bonding agent layer 90 was 0.10.
  • a bonding agent layer 90 having a thickness of 5 ⁇ m was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100.
  • X 2 in the bonding agent layer 90 was 0.15.
  • a bonding agent layer 90 having a thickness of 5 ⁇ m was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100.
  • X 2 in the bonding agent layer 90 was 0.20.
  • a bonding agent layer 90 having a thickness of 5 ⁇ m was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100.
  • X 2 in the bonding agent layer 90 was 0.25.
  • a bonding agent layer 90 having a thickness of 10 ⁇ m was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100.
  • X 2 in the bonding agent layer 90 was 0.15.
  • a bonding agent layer 90 of a Li (BH 4 ) —K (BH 4 ) mixture having a thickness of 5 ⁇ m was placed to prepare a sheet-like solid electrolyte 100.
  • X 2 in the bonding agent layer 90 was 0.05.
  • a bonding agent layer 90 having a thickness of 5 ⁇ m was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100.
  • X 2 in the bonding agent layer 90 was 0.30.
  • a bonding agent layer 90 having a thickness of 5 ⁇ m was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100.
  • X 2 in the bonding agent layer 90 was 0.35.
  • a bonding agent layer 90 having a thickness of 10 ⁇ m was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100.
  • X 2 in the bonding agent layer 90 was 0.15.
  • Table 2 shows the determination results as to whether or not the solid electrolyte 100 has good bonding with the electrode and good room temperature conductivity in Examples and Comparative Examples.
  • x 2 in the bonding agent layer 90, the thickness of the solid electrolyte layer 50, and the thickness of the bonding agent layer 90 are described. Note that the thicknesses of the solid electrolyte layers 50 in the comparative examples and examples shown in Table 2 are all 20 ⁇ m.
  • Example 12 to Example 16 and Comparative Example 10 to Comparative Example 13 are examples in which the sheet-like solid electrolyte 100 is composed of the bonding agent layer 90 and the solid electrolyte layer 50.
  • the room temperature conductivity decreases as x 1 and x 2 in the sheet-like solid electrolyte 100 increase. This is because LI, which is the precipitated phase particles 94, is deposited on the sheet-like solid electrolyte 100, thereby reducing LiI from the LiI—Li (BH 4 ) solid solution.
  • Example 16 y is increased as compared with Comparative Example 13.
  • the room temperature conductivity of Example 16 was 1 ⁇ 10 ⁇ 5 Scm ⁇ 1 or more, which was a sufficient value.
  • 0.15 ⁇ X must be satisfied in order to obtain the solid electrolyte 100 having sufficient room temperature conductivity.
  • 0.05 ⁇ x 2 ⁇ 0.275 and 0 ⁇ y ⁇ 0.50 are necessary to improve the bonding with the electrode. These ranges preferably satisfy 0.20 ⁇ X and 5 ⁇ x 2 ⁇ 0.275 and 0 ⁇ y ⁇ 0.50, and more preferably 0.20 ⁇ X and 0.10 ⁇ x 2 ⁇ 0.275. And it is desirable to satisfy 0 ⁇ y ⁇ 0.50.
  • FIGS. 7 and 8 which are one embodiment of the present invention will be described in more detail.
  • the percentage calculated by dividing the initial charge capacity (Ah) by the initial discharge capacity (Ah) was defined as “initial Coulomb efficiency” (%).
  • FIG. 7 and FIG. 8 are the same as the methods in FIG. 2 and FIG. 3 for measuring the room temperature conductivity and battery resistance.
  • the K mole fraction x 2 is 0.15.
  • a bonding agent layer 90 made of a LiBH 4 -KBH 4 mixture of 10 ⁇ m in thickness was prepared, and a positive electrode layer made of Li conductive binder LBO and an active material NMC was brought into contact with pressure, and set in a SUS cell. The SUS cell was heated to the first melting point in a state where pressure was applied in the sample film thickness direction, so that the bonding agent layer 90 was softened and the positive electrode and the solid electrolyte 100 were bonded. Y in the solid electrolyte 100 is 0.21.
  • Example 17 The same as Example 17 except that the oxide solid electrolyte layer LLZ having a thickness of 10 ⁇ m was provided between the positive electrode mixture layer and the bonding agent layer.
  • Example 17 is the same as Example 17 except for the above.
  • Example 17 is the same as Example 17 except that the thickness of the bonding agent layer 90 made of the LiBH 4 -KBH 4 mixture is changed from 10 ⁇ m to 5 ⁇ m so that y becomes 0.23.
  • Example 17 is the same as Example 17 except that the thickness of the solid electrolyte layer 50 made of a LiI—Li (BH 4 ) solid solution is changed from 50 ⁇ m to 200 ⁇ m so that y becomes 0.24.
  • the thickness of the solid electrolyte layer 50 made of a LiI—Li (BH 4 ) solid solution is changed from 50 ⁇ m to 200 ⁇ m so that y becomes 0.24.
  • Example 17 is the same as Example 17 except that the bonding agent layer 90 is changed to a mixture of LiBH 4 -KBH 4 and LiI—Li (BH 4 ) solid solution having y of 0.25 and x 2 of 0.15.
  • a solid electrolyte layer 50 is not provided, and a mixture of a LiBH 4 -KBH 4 mixture having x 1 of 0.15 and y of 0.36 and a LiI-Li (BH 4 ) solid solution is melted in a glass fiber thin film having a thickness of 30 ⁇ m.
  • Example 17 The same as Example 17 except that the y in the solid electrolyte 100 was changed to 0.42.
  • Example 17 is the same as Example 17 except that the thickness of the solid electrolyte layer 50 made of LiI—Li (BH 4 ) solid solution is changed from 50 ⁇ m to 500 ⁇ m so that y becomes 0.25.
  • Example 17 is the same as Example 17 except that the thickness of the bonding agent layer 90 made of the LiBH 4 -KBH 4 mixture is changed from 10 ⁇ m to 3 ⁇ m so that y becomes 0.24.
  • the negative electrode active material 54 is made of Li, and a solid electrolyte layer 50 made of LiI—Li (BH 4 ) solid solution having y of 0.25 is 50 ⁇ m in the negative electrode-electrolyte assembly.
  • a positive electrode layer made of an adhesive lithium borate Li 3 BO 3 : LBO
  • an active material layered lithium / nickel / manganese / cobalt composite oxide: NMC
  • Example 15 The thickness of the solid electrolyte layer 50 made of a LiI-Li (BH 4 ) solid solution was changed from 50 ⁇ m to 3 ⁇ m, the thickness of the bonding agent layer 90 was changed from 10 ⁇ m to 5 ⁇ m, and y in the solid electrolyte 100 was 0.19.
  • Example 17 is the same as Example 17 except that
  • Example 17 is the same as Example 17 except that y in the solid electrolyte 100 is changed to 0.62.
  • Table 3 shows the determination results as to whether or not the solid electrolyte 100 has good bonding with electrodes and good room temperature conductivity in Examples and Comparative Examples.
  • the battery resistance is lower as the conductivity is higher, and is lower as the thickness of the solid electrolyte 100 is thinner. Therefore, the battery resistance was 50 ⁇ cm 2 or less, which was regarded as acceptable.
  • the bonding agent layer 90 When the bonding agent layer 90 is not included as in Comparative Example 14, the bonding between the positive electrode and the solid electrolyte layer 50 cannot be performed well, and the battery has a low capacity retention rate. On the other hand, by providing a bonding agent layer as in Example 17, bonding is improved, and a battery having a low resistance and a high capacity retention rate can be obtained.
  • Example 18 when the oxide solid electrolyte layer 81 is used, a battery having a low resistance and a high capacity retention rate can be obtained.
  • Comparative Example 15, Example 25, and Examples 19 and 21 are results when the thickness of the solid electrolyte layer 50 is changed. If the solid electrolyte layer 50 is too thick, the battery resistance increases, and in the case of 3 ⁇ m, the thin film is too thin, causing a short circuit. From these results, the thickness of the solid electrolyte layer is desirably 5 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the bonding agent layer 90 is made thinner than 10 ⁇ m. If it is too thin, bonding becomes insufficient, and a battery with a low performance with a 20-cycle capacity retention rate of 55% is obtained. Therefore, the thickness of the bonding agent layer 90 is desirably 5 ⁇ m or more.
  • the K mole fraction in the bonding agent layer 90 is changed. If the K mole fraction is too low, melting of the bonding agent layer 90 is suppressed and bonding cannot be performed well, resulting in a low capacity retention rate. On the other hand, if the K mole fraction is too high, the amount of precipitation of KI, which is a hard material, increases, it cannot withstand volume expansion / contraction due to charge / discharge, and the capacity retention rate decreases. Therefore, x 2 is desirably 0.05 ⁇ x 2 ⁇ 0.275.
  • the bonding agent layer 90 of Example 22 includes solid electrolyte particles 63 and bonding agent particles 91 as in the case of the solid electrolyte 100 of FIG.
  • the bonding agent layer 90 is the solid electrolyte 100 of FIG. Also in this case, the bonding can be improved, and the battery has high performance.
  • Example 24 y is increased. If y increases too much, LiI will precipitate in the solid electrolyte 100 and lower the room temperature conductivity. Furthermore, since LiI is hard, it cannot follow volume expansion / contraction, resulting in a battery with a low capacity retention rate. Therefore, 0 ⁇ y ⁇ 0.5 is desirable.

Abstract

The purpose of the present invention is to provide a solid electrolyte which has a low contact resistance with respect to an electrode. In order to solve the above-described problem, a solid electrolyte according to the present invention contains Li, I, BH4 and K, and is characterized in that x1 and y satisfy 0.05 < x1 ≤ 0.275, 0 < y ≤ 0.50 and 0.15 ≤ (y - x1)/(1 - x1), where X1 is the molar fraction of K relative to the sum of Li and K, and y is the molar fraction of I relative to the sum of I and BH4.

Description

固定電解質および、固体電解質を用いた全固体リチウム電池All-solid lithium battery using fixed electrolyte and solid electrolyte
 本発明は、固体電解質および、固体電解質を用いた全固体リチウム電池に関する。 The present invention relates to a solid electrolyte and an all-solid lithium battery using the solid electrolyte.
 固体電解質を用いた全固体二次電池は、高耐熱性を向上することが可能である。また、電解質が漏液せず、揮発もしないため、安全性も向上できる。よって、モジュールコストを低減できるとともに、エネルギー密度を高めることが可能である。 An all-solid secondary battery using a solid electrolyte can improve high heat resistance. Further, since the electrolyte does not leak and does not volatilize, safety can be improved. Therefore, the module cost can be reduced and the energy density can be increased.
 この固体電解質の一つとして水素化物系固体電解質があげられる。水素化物系固体電解質は、耐還元性に優れており、一般に、リチウムイオン二次電池の負極に使用される還元性の高い材料と高抵抗層を形成せずに使用することができる。 One example of this solid electrolyte is a hydride-based solid electrolyte. The hydride-based solid electrolyte is excellent in reduction resistance, and can generally be used without forming a high resistance layer with a highly reducing material used for the negative electrode of a lithium ion secondary battery.
 特許文献1には、固体電解質としてLiBHとアルカリ金属化合物とを混合した、LiBH系固体電解質が開示されている。LiBHとアルカリ金属化合物を混合することによって、広い温度範囲において高いイオン伝導度が得られることが示されている。 Patent Document 1 discloses a LiBH 4 -based solid electrolyte in which LiBH 4 and an alkali metal compound are mixed as a solid electrolyte. It has been shown that high ionic conductivity can be obtained over a wide temperature range by mixing LiBH 4 and an alkali metal compound.
特許第5187703号Patent No. 5187703
 特許文献1に記載の固体電解質は、固体電解質に含まれるカリウム原子の割合が大きい場合は、固体電解質において多量のカリウム化合物が析出することで、電極との接触抵抗が大きくなるという課題がある。さらに、固体電解質に含まれるカリウム原子の割合が小さい場合は、電極に接合するために固体電解質を加熱しても部分溶融する割合が小さいことから、固体電解質と電極の接合が上手くいかず、電極との接触抵抗が大きくなるという課題がある。 The solid electrolyte described in Patent Document 1 has a problem that when the proportion of potassium atoms contained in the solid electrolyte is large, a large amount of potassium compound is precipitated in the solid electrolyte, thereby increasing the contact resistance with the electrode. Furthermore, when the proportion of potassium atoms contained in the solid electrolyte is small, the proportion of partial melting even when the solid electrolyte is heated to join the electrode is small, so the solid electrolyte and the electrode cannot be joined well. There is a problem that the contact resistance increases.
 本発明は、電極との接触抵抗が低い固体電解質を提供することを目的とする。 An object of the present invention is to provide a solid electrolyte having a low contact resistance with an electrode.
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。 The features of the present invention for solving the above problems are as follows, for example.
 Liと、Iと、BHと、Kと、を含む固体電解質であって、固体電解質に含まれるLiとKとの和に対する固体電解質に含まれるKのモル分率をx、固体電解質に含まれるIとBHとの和に対する固体電解質に含まれるIのモル分率をyとした場合に、0.05<x≦0.275かつ0<y≦0.50かつ0.15≦(y-x)/(1-x)を満たす固体電解質。 A solid electrolyte containing Li, I, BH 4 and K, wherein the molar fraction of K contained in the solid electrolyte relative to the sum of Li and K contained in the solid electrolyte is x 1 , When the molar fraction of I contained in the solid electrolyte with respect to the sum of I and BH 4 contained is y, 0.05 <x 1 ≦ 0.275 and 0 <y ≦ 0.50 and 0.15 ≦ A solid electrolyte satisfying (yx 1 ) / (1-x 1 ).
 本発明によれば、電極との接触抵抗が低い固体電解質を提供できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, a solid electrolyte having a low contact resistance with an electrode can be provided. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の一実施形態における、全固体リチウム電池を示す概略断面図1 is a schematic cross-sectional view showing an all-solid lithium battery in one embodiment of the present invention. 本発明の一実施形態における、加熱溶融処理前の固体電解質を示す部分断面図The fragmentary sectional view which shows the solid electrolyte before heat-melting process in one Embodiment of this invention 本発明の一実施形態における、加熱溶融処理後の固体電解質を示す部分断面図The fragmentary sectional view which shows the solid electrolyte after heat-melting process in one Embodiment of this invention 本発明の一実施形態における、加熱溶融処理前の固体電解質層と接合剤層を示す部分断面図1 is a partial cross-sectional view showing a solid electrolyte layer and a bonding agent layer before heating and melting treatment in an embodiment of the present invention. 本発明の一実施形態における、加熱溶融処理後の固体電解質層と接合剤層を示す部分断面図The fragmentary sectional view which shows the solid electrolyte layer and bonding agent layer after heat-melting process in one Embodiment of this invention 本発明の一実施形態における、加熱溶融処理前の全固体リチウム電池の状態を示す部分断面図The fragmentary sectional view which shows the state of the all-solid-state lithium battery before heat-melting process in one Embodiment of this invention 本発明の一実施形態における、加熱溶融処理後の全固体リチウム電池の状態を示す部分断面図The fragmentary sectional view which shows the state of the all-solid-state lithium battery after heat-melting process in one Embodiment of this invention 本発明の一実施形態における、加熱溶融処理前の全固体リチウム電池の状態を示す部分断面図The fragmentary sectional view which shows the state of the all-solid-state lithium battery before heat-melting process in one Embodiment of this invention
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 図1は、本発明の一実施形態における、全固体リチウム電池を示す断面図である。全固体リチウム電池500は、負極70と、正極80と、負極70と正極80との間に配置された固体電解質100と、負極70、正極80、固体電解質100を収納する電池ケース30と、を備えている。負極70は、負極集電体10および負極合剤層40を有する。正極80は、正極集電体20および正極合剤層60を有する。固体電解質100は、固体電解質層50と、接合剤層90とを有する。 FIG. 1 is a cross-sectional view showing an all-solid-state lithium battery in one embodiment of the present invention. The all solid lithium battery 500 includes a negative electrode 70, a positive electrode 80, a solid electrolyte 100 disposed between the negative electrode 70 and the positive electrode 80, and a battery case 30 that houses the negative electrode 70, the positive electrode 80, and the solid electrolyte 100. I have. The negative electrode 70 includes the negative electrode current collector 10 and the negative electrode mixture layer 40. The positive electrode 80 includes the positive electrode current collector 20 and the positive electrode mixture layer 60. The solid electrolyte 100 has a solid electrolyte layer 50 and a bonding agent layer 90.
 負極集電体10は、負極合剤層40に電気的に接続されている。負極集電体10としては、厚さが10~100μmの銅箔、厚さが10~100μmで孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板等が用いられる。銅の他に、ステンレス鋼、チタン、ニッケル等で形成されたものも適用可能である。本発明では、材質、形状、製造方法等に制限されることなく、任意の集電体を使用できる。 The negative electrode current collector 10 is electrically connected to the negative electrode mixture layer 40. As the negative electrode current collector 10, a copper foil having a thickness of 10 to 100 μm, a copper perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like is used. In addition to copper, those formed of stainless steel, titanium, nickel or the like are also applicable. In the present invention, any current collector can be used without being limited by the material, shape, manufacturing method and the like.
 正極集電体20は、正極合剤層60に電気的に接続されている。正極集電体20には、厚さが10~100μmのアルミニウム箔、厚さが10~100μmで孔径が0.1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等が用いられる。アルミニウムの他に、ステンレス鋼やチタン等で形成されたものも適用可能である。本発明では、材質、形状、製造方法等に制限されることなく、任意の集電体を使用できる。 The positive electrode current collector 20 is electrically connected to the positive electrode mixture layer 60. For the positive electrode current collector 20, an aluminum foil having a thickness of 10 to 100 μm, an aluminum perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, or the like is used. In addition to aluminum, those formed of stainless steel, titanium or the like are also applicable. In the present invention, any current collector can be used without being limited by the material, shape, manufacturing method and the like.
 電池ケース30の形状は、負極70、正極80、固体電解質100とで構成される電極群の形状に合わせ、円筒形、偏平長円形状、扁平楕円形状、角形等の形状を選択してもよい。電池ケース30の材料としては、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製等、非水電解質に対し耐食性のある材料から選択される。 The shape of the battery case 30 may be selected from shapes such as a cylindrical shape, a flat oval shape, a flat oval shape, and a square shape according to the shape of the electrode group composed of the negative electrode 70, the positive electrode 80, and the solid electrolyte 100. . The material of the battery case 30 is selected from materials that are corrosion resistant to the nonaqueous electrolyte, such as aluminum, stainless steel, nickel-plated steel, and the like.
 <加熱溶融処理前の、固体電解質と接合剤が一体となった固体電解質の例>
 図2は、本発明の一実施形態における、加熱溶融処理前の固体電解質100の部分断面図である。加熱溶融処理前の固体電解質100には、固体電解質粒子63と接合剤粒子91とが含まれる。固体電解質粒子63としては、水素化物系固体電解質を用いることができる。具体的には、ヨウ化リチウムと水素化ホウ素リチウムとの固溶体(LiI-Li(BH)固溶体)である。接合剤粒子91としては、水素化ホウ素リチウム(Li(BH))と水素化ホウ素カリウム(K(BH))の混合物(Li(BH)-K(BH)混合物)を用いる。
<Example of solid electrolyte in which solid electrolyte and bonding agent are integrated before heating and melting treatment>
FIG. 2 is a partial cross-sectional view of solid electrolyte 100 before the heat-melting process in one embodiment of the present invention. The solid electrolyte 100 before the heat melting treatment includes solid electrolyte particles 63 and bonding agent particles 91. As the solid electrolyte particles 63, a hydride-based solid electrolyte can be used. Specifically, it is a solid solution (LiI—Li (BH 4 ) solid solution) of lithium iodide and lithium borohydride. As the bonding agent particles 91, a mixture of lithium borohydride (Li (BH 4 )) and potassium borohydride (K (BH 4 )) (Li (BH 4 ) -K (BH 4 ) mixture) is used.
 図2に示す固体電解質100の製造方法を、次に示す。具体的には、(i)LiI-Li(BH)固溶体を製造する工程、(ii)Li(BH)とK(BH)とを混合する工程、(iii)LiI-Li(BH)固溶体と、Li(BH)-K(BH)混合物とを混合する工程、(iv)固体電解質100を形成する工程を経る。 A method for manufacturing the solid electrolyte 100 shown in FIG. Specifically, (i) a step of producing a LiI-Li (BH 4 ) solid solution, (ii) a step of mixing Li (BH 4 ) and K (BH 4 ), (iii) LiI-Li (BH 4) ) A step of mixing the solid solution with the Li (BH 4 ) —K (BH 4 ) mixture, and (iv) a step of forming the solid electrolyte 100.
 (i)では、例えば特許第5187703号に記載の方法で製造する。(ii)では、Li(BH)とK(BH)とを、例えば混合機や遊星型ボールミルによって混合する。(iii)では、LiI-Li(BH)固溶体とLi(BH)-K(BH)混合物とを、例えば混合機や遊星型ボールミルによって混合する。(iv)では、(iii)で得た混合物を、例えば打錠機で形成する。また、例えばN-メチル-2-ピロリドン(NMP)やテトラヒドロフラン(THF)によって混合物を分散し塗布、乾燥後ロールプレスすることでシート状の固体電解質100を作成する。 In (i), it manufactures, for example by the method of patent 5187703. In (ii), Li (BH 4 ) and K (BH 4 ) are mixed by, for example, a mixer or a planetary ball mill. In (iii), the LiI—Li (BH 4 ) solid solution and the Li (BH 4 ) —K (BH 4 ) mixture are mixed by, for example, a mixer or a planetary ball mill. In (iv), the mixture obtained in (iii) is formed with a tableting machine, for example. Further, for example, the sheet-like solid electrolyte 100 is prepared by dispersing and coating the mixture with N-methyl-2-pyrrolidone (NMP) or tetrahydrofuran (THF), drying, and roll pressing.
 図2に示すように、固体電解質100の全体に接合剤粒子91を含むことで、固体電解質100の全体を溶融できる。よって、固体電解質100と電極を接合する場合に、溶融によって固体電解質100を薄く加工することが容易になる。 As shown in FIG. 2, the entire solid electrolyte 100 can be melted by including the bonding agent particles 91 in the entire solid electrolyte 100. Therefore, when joining the solid electrolyte 100 and an electrode, it becomes easy to process the solid electrolyte 100 thinly by melting.
 <加熱溶融処理後の、固体電解質と接合剤が一体となった固体電解質の例>
 図3は、本発明の一実施形態における、加熱溶融処理後の固体電解質100の部分断面図である。
<Example of solid electrolyte in which solid electrolyte and bonding agent are integrated after heat-melting treatment>
FIG. 3 is a partial cross-sectional view of solid electrolyte 100 after the heat-melting process in one embodiment of the present invention.
 図3に示す固体電解質100の製造方法を、次に示す。図2の固体電解質100の製造方法と比べて、(v)加熱溶融処理をする工程、(vi)冷却をする工程、以上の2つの工程が新たに加わっている。 A method for manufacturing the solid electrolyte 100 shown in FIG. Compared with the method for manufacturing the solid electrolyte 100 of FIG. 2, the above two steps are newly added: (v) a step of heating and melting treatment, (vi) a step of cooling.
 (v)では、加熱溶融処理により、接合剤粒子91であるLi(BH)-K(BH)混合物が部分溶融し、部分溶融した接合剤粒子91と固体電解質粒子63であるLiI-Li(BH)固溶体とが反応し、反応物Li1-x1x1(BH(1-y)
が生成される。xは、固体電解質粒子63と接合剤粒子91との物質量に対するカリウム(K)のモル分率である。yは、固体電解質粒子63と接合剤粒子91との物質量に対するヨウ素(I)のモル分率である。このとき、溶融した電解質の形状を安定させるためにセルロース繊維やガラス繊維の薄膜中に染み込ませてもよい。また、xが高いほど溶融する体積の割合が増大し、接着部95と析出相粒子94の割合が増大する。一方、xが小さい場合には固体電解質粒子63の一部は固体のまま残り、接着部95と析出相粒子94と固体電解質粒子63とが混ざり合った電解質となる。
In (v), the Li (BH 4 ) -K (BH 4 ) mixture as the bonding agent particles 91 is partially melted by the heat melting treatment, and the partially melted bonding agent particles 91 and the solid electrolyte particles 63 are LiI-Li. The (BH 4 ) solid solution reacts with the reaction product Li 1-x1 K x1 (BH 4 ) (1-y) I
y is generated. x 1 is the molar fraction of potassium (K) with respect to the amount of substance of the solid electrolyte particles 63 and the bonding agent particles 91. y is the molar fraction of iodine (I) with respect to the amount of substance of the solid electrolyte particles 63 and the bonding agent particles 91. At this time, in order to stabilize the shape of the molten electrolyte, it may be soaked into a thin film of cellulose fiber or glass fiber. Further, the higher the x 1 , the higher the proportion of the volume to be melted, and the proportion of the bonded portion 95 and the precipitated phase particles 94 increases. On the other hand, a portion of the solid electrolyte particles 63 when x 1 is less remains rest, the adhesive portion 95 and the precipitated phase particles 94 and the solid electrolyte particles 63 and is mixed electrolyte solid.
 (vi)では、反応物Li1-x1x1(BH(1-y)を室温まで冷却することで、以下の(式1)に示すように、析出相粒子94であるヨウ化カリウム(KI)および接着部95であるLi(BH(1-y)/(1-x1)(y-x1)/(1-x1)に相分離する。 In (vi), the reactant Li 1-x1 K x1 (BH 4 ) (1-y) I y is cooled to room temperature, and as shown in the following (formula 1), the precipitated phase particle 94 is iodine Phase separation is performed into potassium halide (KI) and Li (BH 4 ) (1-y) / (1-x1) I (y-x1) / (1-x1) which is the bonding portion 95.
 Li1-x1x1(BH(1-y)→xKI+(1-x)Li(BH(1-y)/(1-x1)(y-x1)/(1-x1)・・・(式1)
 以上の工程により、接着部95に析出相粒子94を析出させた、固体電解質100を得ることができる。
Li 1-x1 K x1 (BH 4 ) (1-y) I y → x 1 KI + (1-x 1 ) Li (BH 4 ) (1-y) / (1-x1) I (y-x1) / (1-x1) (Formula 1)
Through the above steps, the solid electrolyte 100 in which the precipitated phase particles 94 are deposited on the bonding portion 95 can be obtained.
 <Iのモル分率と室温導電率>
 固体電解質100におけるIのモル分率、つまり固体電解質粒子63と接合剤粒子91との物質量の和に対するIのモル分率が小さい場合、固体電解質粒子63が低温相に相転移することにより、室温(25℃から30℃とする)における導電率が著しく低下する。つまり、室温における導電率を良くするためには、yはある値よりも大きいのが望ましい。そして、固体電解質100の室温における導電率は、1×10-5Scm-1以上であることが望ましい。以下、室温における導電率を、室温導電率とする。
<Mole fraction of I and room temperature conductivity>
When the molar fraction of I in the solid electrolyte 100, that is, the molar fraction of I with respect to the sum of the substance amounts of the solid electrolyte particles 63 and the bonding agent particles 91 is small, the solid electrolyte particles 63 undergo a phase transition to a low-temperature phase. The conductivity at room temperature (25 ° C. to 30 ° C.) is significantly reduced. That is, in order to improve the electrical conductivity at room temperature, y is desirably larger than a certain value. The electrical conductivity of the solid electrolyte 100 at room temperature is desirably 1 × 10 −5 Scm −1 or more. Hereinafter, the conductivity at room temperature is referred to as room temperature conductivity.
 <Iのモル分率と接触抵抗>
 一方、yが大きい場合、接着部95において、ヨウ化リチウム(LiI)が析出する可能性が有る。LiIは固い材料であるために電極合剤と電解質層の剥離を引き起こし、電極との接触抵抗が高い固体電解質100となる。よって、接触抵抗を低くするためには、yの上限を定めるのが望ましく、0<y≦0.5に収まるのが望ましい。
<Mole fraction of I and contact resistance>
On the other hand, when y is large, there is a possibility that lithium iodide (LiI) precipitates at the bonding portion 95. Since LiI is a hard material, it causes peeling of the electrode mixture and the electrolyte layer, resulting in a solid electrolyte 100 having high contact resistance with the electrode. Therefore, in order to reduce the contact resistance, it is desirable to set the upper limit of y, and it is desirable that 0 <y ≦ 0.5.
 <KとIの関係>
 固体電解質100におけるIのモル分率が大きいほど、固体電解質100の室温導電率は大きくなる。しかし、固体電解質100において析出相粒子94が析出すると、析出相粒子94が析出した量に応じて、Iのモル分率は小さくなる。つまり、固体電解質100の室温導電率は小さくなる。よって、固体電解質100におけるKのモル分率が大きいほど、Iのモル分率も大きくすることで、析出相粒子94が析出した場合でも、Iのモル分率を高く保つことができ、固体電解質100の室温導電率が小さくなるのを抑えることができる。よって、Kのモル分率が高いほど、Iのモル分率も高くするのが望ましい。
<Relationship between K and I>
The larger the molar fraction of I in the solid electrolyte 100, the greater the room temperature conductivity of the solid electrolyte 100. However, when the precipitated phase particles 94 are precipitated in the solid electrolyte 100, the molar fraction of I decreases according to the amount of precipitated phase particles 94 deposited. That is, the room temperature conductivity of the solid electrolyte 100 becomes small. Therefore, by increasing the molar fraction of I as the molar fraction of K in the solid electrolyte 100 is increased, even when the precipitated phase particles 94 are precipitated, the molar fraction of I can be kept high. It can suppress that the room temperature conductivity of 100 becomes small. Therefore, it is desirable to increase the molar fraction of I as the molar fraction of K increases.
 以上より、本発明の一実施形態における固体電解質100において、KとIのモル分率は、以下の(式2)に収まるのが望ましい。 As described above, in the solid electrolyte 100 according to one embodiment of the present invention, the molar fraction of K and I is preferably within the following (formula 2).
 0.15≦(y-x)/(1-x)・・・(式2)
 なお、簡略化のため、(y-x)/(1-x)=Xとする。
0.15 ≦ (y−x 1 ) / (1−x 1 ) (Formula 2)
For simplification, (y−x 1 ) / (1−x 1 ) = X.
 <Kのモル分率と接触抵抗>
 前述したようにxが高いほど、溶融する体積の割合が増大する。それに加え、固体電解質100において析出相粒子94(KI)が析出する量が大きくなる。一方、xが高すぎると、固い材料であるKIの析出量が多くなり、充放電に伴う体積膨張収縮に耐えられず、電極との接合が良くない。そのため、x≦0.275となることが望ましい。
<Mole fraction of K and contact resistance>
As x 1 is higher as described above, the ratio of the volume of melt is increased. In addition, the amount of precipitated phase particles 94 (KI) deposited in the solid electrolyte 100 increases. On the other hand, when x 1 is too high, the number of precipitation amount of KI is stiff material, not withstand the volumetric expansion and shrinkage due to charge and discharge, poor bonding between the electrodes. Therefore, it is desirable that x 1 ≦ 0.275.
 また、接着部95が形成されるには接合剤粒子91が十分に融解する必要がある。接合剤粒子91は、xが高いほど融解する割合が大きくなる。つまり、電極との接触抵抗が低い固体電解質100とするためには、0.05<xとなるのが望ましい。 Further, the bonding agent particles 91 need to be sufficiently melted in order to form the bonding portion 95. Bonding agent particles 91, the rate of melting as x 1 is high increases. That is, the contact resistance between the electrode and lower solid electrolyte 100, desirably a 0.05 <x 1.
 以上より、本発明の固体電解質100において、0.05<x≦0.275に収まることが望ましい。 As described above, in the solid electrolyte 100 of the present invention, it is desirable that 0.05 <x 1 ≦ 0.275.
 <加熱溶融処理前の固体電解質の例>
 図4は、本発明の一実施形態における、加熱溶融処理前の固体電解質100の部分断面図である。加熱溶融処理前の接合剤層90には、接合剤粒子91が含まれる。接合剤粒子91としては、図2で説明した材料と同じものを用いる。固体電解質層50に使用する固体電解質粒子63としては、図2で説明した材料と同じものを用いる。
<Example of solid electrolyte before heat melting treatment>
FIG. 4 is a partial cross-sectional view of solid electrolyte 100 before the heat-melting process in one embodiment of the present invention. The bonding agent layer 90 before the heat melting treatment includes bonding agent particles 91. As the bonding agent particles 91, the same material as described in FIG. 2 is used. As the solid electrolyte particles 63 used for the solid electrolyte layer 50, the same materials as described in FIG. 2 are used.
 図2と異なり、図4に示す本発明の一実施形態では、固体電解質100において接合剤粒子91が含まれる場所と固体電解質粒子63が含まれる場所とが分かれている。 Unlike FIG. 2, in the embodiment of the present invention shown in FIG. 4, the location where the bonding agent particles 91 are included and the location where the solid electrolyte particles 63 are included in the solid electrolyte 100 are separated.
 固体電解質100に形成される接合剤層90の厚みは、5μm以上であることが望ましい。接合剤層90がこれよりも薄い場合、接合の効果は不十分になる可能性がある。 The thickness of the bonding agent layer 90 formed on the solid electrolyte 100 is desirably 5 μm or more. If the bonding agent layer 90 is thinner than this, the bonding effect may be insufficient.
 図4に示す固体電解質100の製造方法を、次に示す。具体的には、(i)LiI-Li(BH)固溶体を製造する工程、(ii)Li(BH)とK(BH)とを混合する工程、(iii)固体電解質層50を形成する工程、(iv)固体電解質層50の片方の面上に接合剤層90を形成する工程を経る。 A method for manufacturing the solid electrolyte 100 shown in FIG. Specifically, (i) a step of manufacturing a LiI-Li (BH 4 ) solid solution, (ii) a step of mixing Li (BH 4 ) and K (BH 4 ), (iii) forming the solid electrolyte layer 50 And (iv) a step of forming the bonding agent layer 90 on one surface of the solid electrolyte layer 50.
 (i)と(ii)は、図2で述べた方法と同様である。(iii)では、製造したLiI-Li(BH)固溶体を、例えば打錠機でペレット状の固体電解質層50に形成する。また、例えばN-メチル-2-ピロリドン(NMP)やテトラヒドロフラン(THF)によって混合物を分散し塗布、乾燥後ロールプレスすることで、シート状の固体電解質層50を作成する。(iv)では、(iii)で得たペレット状の固体電解質層50の上に、例えば打錠機で接合剤層90を形成する。また、例えばシート状の固体電解質層50の上にN-メチル-2-ピロリドン(NMP)やテトラヒドロフラン(THF)によって接合剤を分散し塗布、乾燥後ロールプレスすることで接合剤層90を作成する。 (I) and (ii) are the same as the method described in FIG. In (iii), the manufactured LiI—Li (BH 4 ) solid solution is formed on the pellet-shaped solid electrolyte layer 50 by, for example, a tableting machine. Further, for example, the sheet-like solid electrolyte layer 50 is formed by dispersing and applying the mixture with N-methyl-2-pyrrolidone (NMP) or tetrahydrofuran (THF), drying, and roll pressing. In (iv), the bonding agent layer 90 is formed on the pellet-shaped solid electrolyte layer 50 obtained in (iii) with, for example, a tableting machine. Further, for example, the bonding agent layer 90 is formed by dispersing and applying a bonding agent on the sheet-like solid electrolyte layer 50 with N-methyl-2-pyrrolidone (NMP) or tetrahydrofuran (THF), drying, and roll pressing. .
 図4に示すように、固体電解質層50と接合剤層90とを別々に形成することで、接合剤層90側の固体電解質層50を溶融できる。この結果、固体電解質100と電極を接合する場合に、後述する負極合剤層40中の水素化物系固体電解質67を部分融解させることなく、固体電解質100と正極合剤層60との接合を改善できる。 As shown in FIG. 4, the solid electrolyte layer 50 on the bonding agent layer 90 side can be melted by forming the solid electrolyte layer 50 and the bonding agent layer 90 separately. As a result, when the solid electrolyte 100 and the electrode are joined, the joining of the solid electrolyte 100 and the positive electrode mixture layer 60 is improved without partially melting a hydride-based solid electrolyte 67 in the negative electrode mixture layer 40 described later. it can.
 <加熱溶融処理後の固体電解質の例>
 図5は、本発明の一実施形態における、加熱溶融処理後の固体電解質100の部分断面図である。加熱溶融処理により、接合剤層90の接合剤粒子91が部分溶融する。そして、部分溶融した接合剤粒子91と、部分溶融した接合剤粒子91に接触する固体電解質層50中の固体電解質粒子63とが反応し、Li1-x2x2(BH(1-y)を生成する。xは、接合剤層90に含まれる接合剤粒子91の物質量に対するカリウム(K)のモル分率である。この反応物Li1-x2x2(BH(1-y)を室温まで冷却すると(式1)のように相分離し、接着部95および析出相粒子94が生成される。接着部95は、固体電解質層50を構成する固体電解質粒子63の間の一部に浸透している。
<Example of solid electrolyte after heat melting treatment>
FIG. 5 is a partial cross-sectional view of solid electrolyte 100 after the heat-melting treatment in one embodiment of the present invention. By the heat melting treatment, the bonding agent particles 91 of the bonding agent layer 90 are partially melted. Then, the partially melted bonding agent particles 91 react with the solid electrolyte particles 63 in the solid electrolyte layer 50 in contact with the partially melted bonding agent particles 91, and Li 1-x2 K x2 (BH 4 ) (1-y ) I y is generated. x 2 is the molar fraction of potassium (K) with respect to the amount of the bonding agent particles 91 contained in the bonding agent layer 90. When this reaction product Li 1-x2 K x2 (BH 4 ) (1-y) I y is cooled to room temperature, it phase-separates as shown in (Formula 1), and an adhesive portion 95 and precipitated phase particles 94 are generated. The bonding portion 95 penetrates a part between the solid electrolyte particles 63 constituting the solid electrolyte layer 50.
 なお、図5に示すように加熱溶融処理後の固体電解質100は、固体電解質層50及び接着部95のことを示す。加熱溶融処理後の固体電解質100の室温導電率は、1×10-5Scm-1以上であることが好ましい。 As shown in FIG. 5, the solid electrolyte 100 after the heat-melting treatment indicates the solid electrolyte layer 50 and the adhesive portion 95. The room temperature conductivity of the solid electrolyte 100 after the heat-melting treatment is preferably 1 × 10 −5 Scm −1 or more.
 図5に示す固体電解質100の製造方法を、次に示す。図4の固体電解質100の製造方法と比べて、(v)加熱溶融処理をする工程、(vi)冷却をする工程を経る。 A manufacturing method of the solid electrolyte 100 shown in FIG. Compared with the manufacturing method of the solid electrolyte 100 of FIG. 4, (v) the process of heat-melting treatment and (vi) the process of cooling are performed.
 (v)では、加熱溶融処理により、部分溶融した接合剤粒子91が接触する固体電解質粒子63と反応し、Li1-x2x2(BH(1-y)となる。 In (v), the partially melted bonding agent particles 91 react with the solid electrolyte particles 63 that are in contact with each other by the heat melting treatment to become Li 1-x2 K x2 (BH 4 ) (1-y) I y .
 (vi)では、反応物Li1-x2x2(BH(1-y)を冷却することで、相分離が起こり、接着部95および析出相粒子94が析出する。ここで、接着部95でのIのモル分率が(y-x)/(1-x)で表わされるのは、以下の(式3)の後に、固体電解質100全体においてIモル分率に偏りがなくなるまでIおよびBHが固体電解質層50および接着部95間で相互拡散するためである。 In (vi), the reactant Li 1-x2 K x2 (BH 4 ) (1-y) I y is cooled to cause phase separation, and the adhesion portion 95 and the precipitated phase particles 94 are precipitated. Here, the molar fraction of I at the bonding portion 95 is represented by (yx 1 ) / (1-x 1 ) after the following (Formula 3), This is because I and BH 4 are interdiffused between the solid electrolyte layer 50 and the bonding portion 95 until the rate is not biased.
 Li1-x2x2(BH(1-y)→xKI+(1-x)Li(BH(1-y)/(1-x2)(y-x2)/(1-x2)・・・(式3)
 また、前述の理由により、yとxとの値は、(式2)の範囲に収まることが望ましい。
Li 1-x2 K x2 (BH 4 ) (1-y) I y → x 2 KI + (1-x 2 ) Li (BH 4 ) (1-y) / (1-x2) I (y-x2) / (1-x2) (Formula 3)
For the above-described reason, it is desirable that the values of y and x 1 fall within the range of (Expression 2).
 以上の工程により、接合剤層90または、接合剤層90と固体電解質層50との接合面付近に、析出相粒子94が析出した接着部95を生成させることができる。 Through the above steps, the bonding portion 95 in which the precipitated phase particles 94 are deposited can be generated in the vicinity of the bonding agent layer 90 or the bonding surface between the bonding agent layer 90 and the solid electrolyte layer 50.
 <固体電解質と接合剤が別の場合の、全固体リチウム電池の例>
 図6は、本発明の一実施形態における電池の内部の一部を模式的に示す部分断面図であり、負極合剤層40、固体電解質100および正極合剤層60を示している。
<Example of an all-solid-state lithium battery when the solid electrolyte and the bonding agent are different>
FIG. 6 is a partial cross-sectional view schematically showing a part of the inside of the battery in one embodiment of the present invention, showing the negative electrode mixture layer 40, the solid electrolyte 100, and the positive electrode mixture layer 60.
 図6において、固体電解質100は固体電解質層50および接合剤層90を含み、負極合剤層40と正極合剤層60との間に挟み込まれた状態となっている。固体電解質層50は、固体電解質粒子63を含む。そして、固体電解質層50と正極合剤層60との間には、両者の接合性を高めるために接合剤層90が配置されている。接合剤層90は、接合剤粒子91で構成されている。 6, the solid electrolyte 100 includes the solid electrolyte layer 50 and the bonding agent layer 90, and is sandwiched between the negative electrode mixture layer 40 and the positive electrode mixture layer 60. The solid electrolyte layer 50 includes solid electrolyte particles 63. And between the solid electrolyte layer 50 and the positive mix layer 60, the bonding agent layer 90 is arrange | positioned in order to improve both bondability. The bonding agent layer 90 is composed of bonding agent particles 91.
 負極合剤層40には、負極活物質54および水素化物系固体電解質67が分散されている。このほか、本図においては、負極合剤層40は、負極導電助剤又は負極バインダ69を含む。なお、負極導電助剤又は負極バインダ69については必須ではないが、含まれていてもよい。 In the negative electrode mixture layer 40, a negative electrode active material 54 and a hydride-based solid electrolyte 67 are dispersed. In addition, in this drawing, the negative electrode mixture layer 40 includes a negative electrode conductive additive or a negative electrode binder 69. In addition, although it is not essential about the negative electrode conductive support agent or the negative electrode binder 69, it may be contained.
 一方、正極合剤層60には、正極活物質62及び正極Li伝導性結着剤66(正極リチウム伝導性結着剤)が分散されている。このほか、本図においては、正極合剤層60は、正極導電助剤又は正極バインダ68を含む。なお、正極導電助剤又は正極バインダ68については必須ではないが、含まれていてもよい。 Meanwhile, a positive electrode active material 62 and a positive electrode Li conductive binder 66 (a positive electrode lithium conductive binder) are dispersed in the positive electrode mixture layer 60. In addition, in this drawing, the positive electrode mixture layer 60 includes a positive electrode conductive additive or a positive electrode binder 68. In addition, although it is not essential about the positive electrode conductive support agent or the positive electrode binder 68, it may be contained.
 図7は、図6の全固体リチウム電池における接合剤層90の加熱溶融処理後の状態を示す部分断面図である。 FIG. 7 is a partial cross-sectional view showing a state after the heat-melting treatment of the bonding agent layer 90 in the all solid lithium battery of FIG.
 図7においては、接合剤粒子91が溶融し、その一部が固体電解質層50及び正極合剤層60に浸透し、接着部95を形成している。図5で説明したように、相分離によって生じた析出相粒子94であるKIが分布している。接着部95は、固体電解質層50及び正極合剤層60を構成する粒子の間の一部に浸透している。なお、接着部95は、固体電解質層50及び正極合剤層60を構成する粒子の間の全部に浸透した状態であってもよい。すなわち、固体電解質層50及び正極合剤層60のすべての領域にわたって、接着部95が浸透し、析出相粒子94が分布した構成であってもよい。さらに、図6の固体電解質100は固体電解質層50と接合剤層90とに分かれている必要はなく、図2の固体電解質100のような固体電解質でも良い。 In FIG. 7, the bonding agent particles 91 are melted, and a part thereof penetrates into the solid electrolyte layer 50 and the positive electrode mixture layer 60 to form an adhesive portion 95. As described with reference to FIG. 5, KI that is the precipitated phase particles 94 generated by the phase separation is distributed. The bonding portion 95 penetrates a part between the particles constituting the solid electrolyte layer 50 and the positive electrode mixture layer 60. In addition, the adhesion part 95 may be in a state of penetrating all the particles constituting the solid electrolyte layer 50 and the positive electrode mixture layer 60. That is, the configuration may be such that the adhesive portion 95 penetrates and the precipitated phase particles 94 are distributed over the entire region of the solid electrolyte layer 50 and the positive electrode mixture layer 60. Furthermore, the solid electrolyte 100 of FIG. 6 does not need to be divided into the solid electrolyte layer 50 and the bonding agent layer 90, and may be a solid electrolyte such as the solid electrolyte 100 of FIG.
 加熱溶融処理により、正極合剤層60と固体電解質100とを機械的に加圧して接触させた場合と比べて、接触性が良くなる。そして、電池の充放電に伴う体積変化が生じても、接触界面が剥離しにくくなる。 The contact property is improved as compared with a case where the positive electrode mixture layer 60 and the solid electrolyte 100 are mechanically pressurized and brought into contact with each other by the heat melting treatment. And even if the volume change accompanying charging / discharging of a battery arises, a contact interface becomes difficult to peel.
 なお、加熱の際におけるリチウムイオン二次電池の温度は、リチウムイオン二次電池の耐熱温度未満である。これにより、充放電に伴う体積変化によっても正極合剤層60と固体電解質100との界面が剥離せず安定した電池作動が可能となる。 Note that the temperature of the lithium ion secondary battery during heating is lower than the heat resistant temperature of the lithium ion secondary battery. Thereby, the interface between the positive electrode mixture layer 60 and the solid electrolyte 100 does not peel off even when the volume changes due to charging / discharging, and stable battery operation becomes possible.
 接合剤層90を構成する接合剤粒子91としては、固体電解質層50の融点よりも低い温度で軟化し、正極合剤層60と固体電解質層50との間の物理的空隙を埋める材料であることが望まれる。 The bonding agent particles 91 constituting the bonding agent layer 90 are materials that soften at a temperature lower than the melting point of the solid electrolyte layer 50 and fill the physical gap between the positive electrode mixture layer 60 and the solid electrolyte layer 50. It is desirable.
 固体電解質層50で用いる固体電解質粒子63は、耐還元性に優れるほか、常温においても加圧に対し変形しやすいため、負極活物質粒子間に容易に充填できる。 The solid electrolyte particles 63 used in the solid electrolyte layer 50 are excellent in reduction resistance, and are easily deformed by pressurization even at room temperature, so that they can be easily filled between the negative electrode active material particles.
 <正極合剤層60>
 正極合剤層60は、少なくとも正極活物質62と正極Li伝導性結着剤66とを含む構成とする。
<Positive electrode mixture layer 60>
The positive electrode mixture layer 60 includes at least a positive electrode active material 62 and a positive electrode Li conductive binder 66.
 正極活物質62としては、LiCoO、LiNiO、LiMn、LiMnO、LiMn、LiMnO、LiMn12、LiMn2-x(ただし、Mは、Co、Ni、Fe、Cr、Zn及びTiからなる群から選ばれる少なくとも1種であり、x=0.01~0.2である。)等が挙げられる。正極活物質62として上記の材料が一種単独または二種以上含まれていてもよい。正極活物質62は、充電過程においてリチウムイオンが脱離し、放電過程において負極合剤層40中の負極活物質から脱離したリチウムイオンが挿入される。 Examples of the positive electrode active material 62 include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , LiMn 2−x M x O 2 (where M is And at least one selected from the group consisting of Co, Ni, Fe, Cr, Zn, and Ti, and x = 0.01 to 0.2). The positive electrode active material 62 may include one or more of the above materials. In the positive electrode active material 62, lithium ions are desorbed in the charging process, and lithium ions desorbed from the negative electrode active material in the negative electrode mixture layer 40 are inserted in the discharging process.
 正極活物質62の粒径は、正極合剤層60の厚さ以下になるように通常は規定される。正極活物質62の粉末中に合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級や風流分級等により粗粒を除去し、合剤層厚さ以下の粒子を作製することが好ましい。 The particle diameter of the positive electrode active material 62 is normally specified so as to be equal to or less than the thickness of the positive electrode mixture layer 60. When the powder of the positive electrode active material 62 has coarse particles having a size equal to or larger than the thickness of the mixture layer, the coarse particles are previously removed by sieving classification or wind classification to produce particles having a thickness of the mixture layer or less. Is preferred.
 正極Li伝導性結着剤66としては、Liイオン伝導性(リチウムイオン伝導性)が高く、正極活物質62の電位に対して良好な耐酸化性を示し、正極活物質62間の空隙に入り込むことができる材料を用いることができる。耐酸化性としては、正極活物質62の電位を考慮すると3.5V以上、高エネルギー密度の観点から4V以上における耐酸化性を有することが望ましい。正極活物質62間の空隙に入り込むことができる材料としては、熱により溶融する熱溶融性材料または、潮解により溶融する潮解性材料を用いることができる。 The positive electrode Li conductive binder 66 has high Li ion conductivity (lithium ion conductivity), exhibits good oxidation resistance with respect to the potential of the positive electrode active material 62, and enters the gap between the positive electrode active materials 62. Materials that can be used can be used. As for the oxidation resistance, it is desirable that the oxidation resistance is 3.5 V or higher in view of the potential of the positive electrode active material 62 and 4 V or higher from the viewpoint of high energy density. As a material that can enter the gap between the positive electrode active materials 62, a heat-meltable material that melts by heat or a deliquescence material that melts by deliquescence can be used.
 正極Li伝導性結着剤66として用いることができる熱溶融性材料は、例えばLiBOやLi3-x1-x(0<x<1)があげられる。熱溶融性材料は、加熱
により流動することで、正極活物質62間の空隙に効率的に入り込むことができる。
Examples of the heat-meltable material that can be used as the positive electrode Li conductive binder 66 include Li 3 BO 3 and Li 3-x C x B 1-x O 3 (0 <x <1). The heat-meltable material can efficiently enter the gaps between the positive electrode active materials 62 by flowing by heating.
 また、正極活物質62は、一般に酸化物系であるために電気抵抗が高いので、電気伝導性を補うための導電助剤を利用してもよい。正極合剤層60に正極導電剤や正極バインダが含まれる場合、正極導電剤として、アセチレンブラック、カーボンブラック、及び黒鉛又は非晶質炭素等の炭素材料等が挙げられる。あるいは、インジウム-錫-酸化物(ITO)やアンチモン-錫-酸化物(ATO)などの電子伝導性を示す酸化物粒子を用いることもできる。 In addition, since the positive electrode active material 62 is generally oxide-based and has high electrical resistance, a conductive aid for supplementing electrical conductivity may be used. When the positive electrode mixture layer 60 includes a positive electrode conductive agent or a positive electrode binder, examples of the positive electrode conductive agent include acetylene black, carbon black, and carbon materials such as graphite or amorphous carbon. Alternatively, oxide particles exhibiting electronic conductivity such as indium-tin-oxide (ITO) and antimony-tin-oxide (ATO) can be used.
 正極活物質62及び正極導電剤はともに、通常は粉末であるので、粉末に結着能力のあるバインダを混合して、粉末同士を結合させると同時に正極集電体20へ接着させることができる。正極バインダとして、スチレン-ブタジエンゴム、カルボキシメチルセルロース及びポリフッ化ビニリデン(PVdF)、これらの混合物等が挙げられる。 Since both the positive electrode active material 62 and the positive electrode conductive agent are usually powders, a binder having a binding ability can be mixed with the powders to bond the powders to each other and to be bonded to the positive electrode current collector 20 at the same time. Examples of the positive electrode binder include styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVdF), and a mixture thereof.
 図8に示すように、正極合剤層60は、酸化物固体電解質の粒子で構成された酸化物固体電解質層81を含むものとしてもよい。言い換えると、正極合剤層60と接合剤層90とが接する部分に酸化物固体電解質層81を設けてもよい。なお、本図は、接合剤層90を構成する接合剤粒子91に加熱溶融処理を施す前の状態を示している。加熱溶融処理を施した後は図示していないが、溶融した接合剤粒子91は、隣接する固体電解質層50、酸化物固体電解質層81等に浸透し、接着部を形成する。酸化物固体電解質層81を設けることにより、電池使用時の活物質粒子の劣化速度を抑制でき、長寿命となるため望ましい。 As shown in FIG. 8, the positive electrode mixture layer 60 may include an oxide solid electrolyte layer 81 made of oxide solid electrolyte particles. In other words, the oxide solid electrolyte layer 81 may be provided in a portion where the positive electrode mixture layer 60 and the bonding agent layer 90 are in contact with each other. In addition, this figure has shown the state before performing the heat-melting process to the binder particle | grains 91 which comprise the binder layer 90. FIG. Although not shown after the heat-melting treatment, the melted bonding agent particles 91 permeate the adjacent solid electrolyte layer 50, oxide solid electrolyte layer 81, and the like to form an adhesive portion. By providing the oxide solid electrolyte layer 81, the deterioration rate of the active material particles at the time of battery use can be suppressed, and it is desirable because the life becomes long.
 用いることのできる酸化物固体電解質としては、例えば、ペロブスカイト型酸化物、NASICON型酸化物、LISICON型酸化物、ガーネット型酸化物等の酸化物系固体電解質や、βアルミナ等が挙げられる。 酸化物固体電解質層81の厚さとしては、1μm~10μm、望ましくは、5μm~10μmがよい。厚さが上記範囲よりも薄いと、酸化物固体電解質層による正極活物質62の保護効果が発揮されない。厚さが上記範囲よりも厚いと、膜厚に比例して抵抗が高まり、電池特性が下がるため望ましくない。 Examples of the oxide solid electrolyte that can be used include solid oxides such as perovskite oxide, NASICON oxide, LISICON oxide, and garnet oxide, and β-alumina. The thickness of the oxide solid electrolyte layer 81 is 1 μm to 10 μm, preferably 5 μm to 10 μm. When the thickness is less than the above range, the protective effect of the positive electrode active material 62 by the oxide solid electrolyte layer is not exhibited. If the thickness is larger than the above range, the resistance increases in proportion to the film thickness, and the battery characteristics deteriorate, which is not desirable.
 <負極合剤層40>
 負極合剤層40は、負極活物質54、水素化物系固体電解質67を有しており、負極導電助剤又は負極バインダ69を含んでいてもよい。水素化物系固体電解質67は負極活物質54の粒子間の空隙に入り込むように分散している。水素化物系固体電解質67が空隙に入り込むことで、負極活物質54間のリチウムイオンの伝導性が高くなる。また、負極活物質54が膨張収縮した場合であっても、水素化物系固体電解質67により負極活物質54同士のリチウムイオンの経路を保つことができる。
<Negative electrode mixture layer 40>
The negative electrode mixture layer 40 includes a negative electrode active material 54 and a hydride-based solid electrolyte 67, and may include a negative electrode conductive additive or a negative electrode binder 69. The hydride-based solid electrolyte 67 is dispersed so as to enter the voids between the particles of the negative electrode active material 54. When the hydride-based solid electrolyte 67 enters the gap, the lithium ion conductivity between the negative electrode active materials 54 is increased. Even when the negative electrode active material 54 expands and contracts, the hydride-based solid electrolyte 67 can maintain the lithium ion path between the negative electrode active materials 54.
 水素化物系固体電解質67としては、負極電位に対して耐久性のある電解質材料であり、さらに負極活物質54の間に形成される空隙に侵入できるものを用いることができる。水素化物系固体電解質67として、例えばLiBHとリチウムハライド化合物(LiI、LiBr、LiCl)およびリチウムアミド(LiNH)との固溶体を挙げることができる。 As the hydride-based solid electrolyte 67, an electrolyte material that is durable with respect to the negative electrode potential and that can enter the voids formed between the negative electrode active materials 54 can be used. Examples of the hydride-based solid electrolyte 67 include solid solutions of LiBH 4 and lithium halide compounds (LiI, LiBr, LiCl) and lithium amide (LiNH 2 ).
 負極活物質54の粒径は、負極合剤層40の厚さ以下になるように通常は規定される。負極活物質54の粉末中に合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級や風流分級等により粗粒を除去し、負極合剤層40の厚さ以下の粒子を作製することが好ましい。負極活物質54の粒径は、0.1μm~5μmである。活物質粒径は、小さいほど活物質中のLi拡散距離が短くなるため、電池抵抗が低下するが、凝集が起こりやすくなるため、活物質利用率の低下が引き起こされる。負極合剤層40に導電助剤やバインダが含まれる場合、導電助剤として、アセチレンブラック、カーボンブラック、及び黒鉛又は非晶質炭素等の炭素材料等が挙げられる。バインダとして、スチレン-ブタジエンゴム、カルボキシメチルセルロース及びポリフッ化ビニリデン(PVDF)、これらの混合物等が挙げられる。 The particle diameter of the negative electrode active material 54 is normally defined so as to be equal to or less than the thickness of the negative electrode mixture layer 40. In the case where there are coarse particles having a size equal to or larger than the thickness of the mixture layer in the powder of the negative electrode active material 54, the coarse particles are removed in advance by sieving classification, wind classification, etc. It is preferable to produce it. The particle size of the negative electrode active material 54 is 0.1 μm to 5 μm. The smaller the active material particle size, the shorter the Li diffusion distance in the active material, so that the battery resistance is lowered. However, agglomeration is likely to occur, so that the active material utilization rate is lowered. When the negative electrode mixture layer 40 includes a conductive additive or binder, examples of the conductive aid include acetylene black, carbon black, and carbon materials such as graphite or amorphous carbon. Examples of the binder include styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), and a mixture thereof.
 <Kのモル分率>
 本発明の構成では、xが高すぎる場合、固体電解質100と正極80とが接する面に、固い材料であるKIの析出量が多くなり、充放電に伴う体積膨張収縮に耐えられず、電極との接合が良くない。そのため、xはある値より小さいことが望ましい。一方、yが高すぎる場合、接着部95であるLi(BH(1-y)/(1-x1)(y-x1
)/(1-x1)において、LiIが析出する可能性がある。LiIは固い材料であるた
めに電極合剤と電解質層の剥離を引き起こし、電極との接触抵抗が高い固体電解質100となる。よって、接触抵抗を低くするためには、yはある値よりも小さいのが望ましい。
<Mole fraction of K>
In the configuration of the present invention, when x 2 is too high, the surface contacting the solid electrolyte 100 and the positive electrode 80, the number precipitation amount of KI is stiff material, not withstand the volumetric expansion and shrinkage due to charge and discharge, the electrode The joint is not good. Therefore, it is desirable that x 2 is smaller than a certain value. On the other hand, when y is too high, Li (BH 4 ) (1-y) / (1-x1) I (y-x1 ) which is the bonding portion 95.
) / (1-x1) , LiI may be precipitated. Since LiI is a hard material, it causes peeling of the electrode mixture and the electrolyte layer, resulting in a solid electrolyte 100 having high contact resistance with the electrode. Therefore, in order to reduce the contact resistance, y is preferably smaller than a certain value.
 加熱溶融処理を行う前に固体電解質100を正極80と接合すると、接合剤粒子91と正極80とは点接触をするため、固体電解質100と電極との接触抵抗が悪い全固体リチウム電池500となる。一方、加熱溶融処理を行うことで接着部95が生成し、正極80との接触面積が増大し、効率良く充放電可能な全固体リチウム電池500となる。接着部95が形成されるには接合剤粒子91が十分に融解する必要があり、接合剤粒子91は接合剤層90中のxが高いほど融解する割合が大きくなる。つまり、固体電解質100と電極との接触抵抗を良くするためには、接合剤粒子91として水素化ホウ素カリウム(KBH)がある所定の量だけ含まれているのが望ましい。以上より、接合剤層90中のxは、ある値よりも大きいのが望ましい。 If the solid electrolyte 100 is joined to the positive electrode 80 before the heat-melting treatment, the bonding agent particles 91 and the positive electrode 80 are in point contact with each other, so that the all solid lithium battery 500 having poor contact resistance between the solid electrolyte 100 and the electrode is obtained. . On the other hand, by performing the heat melting treatment, an adhesive portion 95 is generated, the contact area with the positive electrode 80 is increased, and the all solid lithium battery 500 capable of being efficiently charged and discharged is obtained. The adhesive portion 95 is formed must cement particles 91 is sufficiently melted, the bonding agent particles 91 percentage melting the higher x 2 in the bonding agent layer 90 is increased. That is, in order to improve the contact resistance between the solid electrolyte 100 and the electrode, it is desirable that the bonding agent particles 91 include a predetermined amount of potassium borohydride (KBH 4 ). From the above, x 2 in the bonding agent layer 90 is greater than a certain value is desirable.
 なお、図6における固体電解質100は、図4に示す固体電解質100を用いて説明した。しかし、図2に示す固体電解質100のように、固体電解質層50と接合剤層90とに分離していない電解質を、図6のような構造に用いても良い。この場合においても上で述べたように、yはある値よりも小さいのが望ましく、さらに、xは、ある値よりも大きいのが望ましい。 In addition, the solid electrolyte 100 in FIG. 6 was demonstrated using the solid electrolyte 100 shown in FIG. However, an electrolyte that is not separated into the solid electrolyte layer 50 and the bonding agent layer 90, such as the solid electrolyte 100 shown in FIG. 2, may be used in the structure shown in FIG. Also in this case, as described above, y is preferably smaller than a certain value, and x 1 is desirably larger than a certain value.
 以下、本発明の一実施形態である図2、図3を更に具体的に説明する。 Hereinafter, FIGS. 2 and 3 which are one embodiment of the present invention will be described in more detail.
 <シート状の固体電解質100の作製>
 固体電解質粒子63と接合剤粒子91とをNMPに分散して得たスラリーを厚さ30μmのガラス繊維薄膜上に塗工し、乾燥した。加熱溶融することで
繊維薄膜中に固体電解質100が充填された、厚さ30μmのシート状の固体電解質100を得た。XRD測定により、Li(BH)の高温相またはLi(BH)の低温相とKIの混合物となっていることを確認した。
<Preparation of Sheet-shaped Solid Electrolyte 100>
A slurry obtained by dispersing solid electrolyte particles 63 and bonding agent particles 91 in NMP was applied onto a glass fiber thin film having a thickness of 30 μm and dried. By heating and melting, a sheet-like solid electrolyte 100 having a thickness of 30 μm, in which the solid electrolyte 100 was filled in the fiber thin film, was obtained. The XRD measurement, it was confirmed that a low-temperature phase and a mixture of KI in Li high temperature phase or Li (BH 4) of (BH 4).
 <融点測定方法>
 固体電解質粒子63と接合剤粒子91との混合物の融点を示差走査熱量測定(DSC)により測定した。体積が2μLとなるように秤量した試料を、SUS鋼製の高圧パンに入れ、かしめることにより密閉した。測定は、リガク製Thermo plus Evo 2/DSC 8230を用いた。試料雰囲気はArとし、5℃・min-1で昇温した。昇温時に得られる吸熱ピークのピーク温度を融点とした。吸熱ピークは多くの場合複数得られるが、融点に帰属される吸熱ピークのうち最小の温度を第一融点とした。この温度は部分融解の開始温度であり、接合にとって最も重要である。
<Measuring method of melting point>
The melting point of the mixture of the solid electrolyte particles 63 and the bonding agent particles 91 was measured by differential scanning calorimetry (DSC). A sample weighed so as to have a volume of 2 μL was placed in a high-pressure pan made of SUS steel and sealed by caulking. Measurement was performed using Rigaku's Thermo plus Evo 2 / DSC 8230. The sample atmosphere was Ar, and the temperature was raised at 5 ° C./min −1 . The peak temperature of the endothermic peak obtained at the time of temperature rise was taken as the melting point. In many cases, a plurality of endothermic peaks are obtained, but the lowest temperature among the endothermic peaks attributed to the melting point is defined as the first melting point. This temperature is the onset temperature of partial melting and is most important for bonding.
 <電極剥離試験方法>
 固体電解質100と電極の接合が十分であるか否かの判定方法である。まず、シート状の固体電解質100と集電箔上に作製した電極とを接触させ、第一融点で加熱し接合した。その後、室温において集電箔をピンセットでつまみ、シート状の固体電解質100から剥離した。接合が不十分で集電箔と電極合剤が剥離する場合を×、接合が十分で集電箔のみが剥離し固体電解質に電極合剤が残る場合を○と判定した。
<Electrode peeling test method>
This is a method for determining whether or not the solid electrolyte 100 and the electrode are sufficiently joined. First, the sheet-shaped solid electrolyte 100 and the electrode produced on the current collector foil were brought into contact with each other, heated at the first melting point, and joined. Thereafter, the current collector foil was picked up with tweezers at room temperature and peeled off from the sheet-like solid electrolyte 100. The case where bonding was insufficient and the current collector foil and the electrode mixture peeled was evaluated as x, and the case where bonding was sufficient and only the current collector foil was peeled and the electrode mixture remained in the solid electrolyte was judged as ◯.
 <室温導電率および電池抵抗の測定方法>
 室温導電率および電池抵抗は、抵抗測定装置(HIOKI CHEMICAL IMPEDANCE METER 3532-80)を用いて交流インピーダンス法により室温で測定した。
<Method of measuring room temperature conductivity and battery resistance>
Room temperature conductivity and battery resistance were measured at room temperature by an AC impedance method using a resistance measuring device (HIOKI CHEMICAL IMPEDANCE METER 3532-80).
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.25、xは0.10である。 A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.25, x 1 is 0.10.
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.28、xは0.15である。 A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.28, x 1 is 0.15.
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.32、xは0.20である。 A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.32, x 1 is 0.20.
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.37、xは0.25である。 A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.37, x 1 is 0.25.
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.33、xは0.10である。 A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.33, x 1 is 0.10.
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.36、xは0.15である。 A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.36, x 1 is 0.15.
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyが0.40、xが0.20である。 A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.40, x 1 is 0.20.
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.44、xは0.25である。 A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.44, x 1 is 0.25.
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.42、xは0.10である。 A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.42, x 1 is 0.10.
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyが0.45、xが0.15である。 A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.45, x 1 is 0.15.
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.48、xは0.20である。 A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.48, x 1 is 0.20.
 (比較例1)
 固体電解質粒子63を含まず、xが0.15の接合剤粒子91でシート状の固体電解質100を作製した。
(Comparative Example 1)
Free of solid electrolyte particles 63, to prepare a sheet-like solid electrolyte 100 in bonding agent particles 91 x 1 0.15.
 (比較例2)
 接合剤粒子91を含まず、yが0.25の固体電解質粒子63でシート状の固体電解質100を作製した。
(Comparative Example 2)
The sheet-like solid electrolyte 100 was made of the solid electrolyte particles 63 not including the bonding agent particles 91 and y of 0.25.
 (比較例3)
 固体電解質粒子63と接合剤粒子91とでシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.25、xは0.05である。
(Comparative Example 3)
A sheet-like solid electrolyte 100 was created with the solid electrolyte particles 63 and the bonding agent particles 91. Y of a sheet-like solid in the electrolyte 100 is 0.25, x 1 is 0.05.
 (比較例4)
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.25、xは0.15である。
(Comparative Example 4)
A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.25, x 1 is 0.15.
 (比較例5)
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.25、xは0.20である。
(Comparative Example 5)
A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.25, x 1 is 0.20.
 (比較例6)
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.25、xは0.25である。
(Comparative Example 6)
A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.25, x 1 is 0.25.
 (比較例7)
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.51、xは0.25である。
(Comparative Example 7)
A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.51, x 1 is 0.25.
 (比較例8)
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.52、xは0.15である。
(Comparative Example 8)
A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.52, x 1 is 0.15.
 (比較例9)
 比較例3と同じ材料でシート状の固体電解質100を作成した。シート状の固体電解質100中のyは0.39、xは0.28である。
(Comparative Example 9)
A sheet-like solid electrolyte 100 was made of the same material as in Comparative Example 3. Y of a sheet-like solid in the electrolyte 100 is 0.39, x 1 is 0.28.
 表1に、実施例及び比較例において、電極との接合が良く、かつ室温導電率が良い固体電解質か否かの判定結果を示す。固体電解質100中のy、固体電解質100中のx、Xの値、前述した融点測定方法により測定した融点、前述した電極剥離試験方法により試験した電極剥離の有無、前述した電池抵抗測定方法により測定した室温導電率の値、以上の数値や電極剥離の有無に基づいて、電極との接合が良く、かつ室温導電率が良い固体電解質100か否かを判定している。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows determination results as to whether solid electrolytes having good bonding with electrodes and good room temperature conductivity in Examples and Comparative Examples. Y in the solid electrolyte 100, x 1 in the solid electrolyte 100, the value of X, the melting point measured by the melting point measurement method described above, the presence or absence of electrode peeling tested by the electrode peeling test method described above, and the battery resistance measurement method described above Based on the measured room temperature conductivity value, the above numerical values, and the presence or absence of electrode peeling, it is determined whether or not the solid electrolyte 100 has good bonding with the electrode and good room temperature conductivity.
Figure JPOXMLDOC01-appb-T000001
 比較例1に示すように、シート状の固体電解質100が接合剤粒子91で構成される場合は、シート状の固体電解質100と電極との接合が十分である。しかし、室温導電率は1.0×10-8Scm-1と非常に低い。 As shown in Comparative Example 1, when the sheet-shaped solid electrolyte 100 is composed of the bonding agent particles 91, the sheet-shaped solid electrolyte 100 and the electrode are sufficiently bonded. However, the room temperature conductivity is as low as 1.0 × 10 −8 Scm −1 .
 一方、比較例2に示すようにシート状の固体電解質100が固体電解質粒子63で構成される場合では、室温導電率は2.0×10-5Scm-1であり、電池に用いる固体電解質としては十分な値を示す。しかし、シート状の固体電解質100に接合剤粒子91が存在しないことから、溶融により接着部95が生成されず、シート状の固体電解質100と電極との接合が不十分で、剥離が起こる。 On the other hand, when the sheet-like solid electrolyte 100 is composed of the solid electrolyte particles 63 as shown in Comparative Example 2, the room temperature conductivity is 2.0 × 10 −5 Scm −1 , and the solid electrolyte used in the battery is Indicates a sufficient value. However, since the bonding agent particles 91 are not present in the sheet-like solid electrolyte 100, the adhesive portion 95 is not generated by melting, and the bonding between the sheet-like solid electrolyte 100 and the electrode is insufficient and peeling occurs.
 実施例1から実施例11と、比較例3から比較例9は、シート状の固体電解質100が固体電解質粒子63と接合剤粒子91とで構成される例である。 Example 1 to Example 11 and Comparative Example 3 to Comparative Example 9 are examples in which the sheet-like solid electrolyte 100 is composed of solid electrolyte particles 63 and bonding agent particles 91.
 実施例1と、比較例3から比較例6に示すように、xが増大するに伴い、室温導電率は小さくなる。これは、前述した通り、シート状の固体電解質100にKIが析出することで、シート状の固体電解質100においてyが小さくなるからである。 Example 1, as shown from Comparative Example 3 Comparative Example 6, with the x 1 is increased, the smaller the room temperature electrical conductivity. This is because, as described above, KI is deposited on the sheet-like solid electrolyte 100, so that y is reduced in the sheet-like solid electrolyte 100.
 比較例4から比較例6とでは室温導電率が1.0×10-5Scm-1を下回り、電池に用いるシート状の固体電解質100としては不十分な値となった。 In Comparative Examples 4 to 6, the room temperature conductivity was below 1.0 × 10 −5 Scm −1, which was an insufficient value for the sheet-like solid electrolyte 100 used in the battery.
 実施例2から実施例11と比較例7から比較例9では、室温導電率を高くするためにyを増大させている。この場合においては、室温導電率に改善が見られ、十分な値となった。 In Example 2 to Example 11 and Comparative Example 7 to Comparative Example 9, y is increased in order to increase the room temperature conductivity. In this case, the room temperature conductivity was improved and became a sufficient value.
 一方、比較例3、9に示すように、シート状の固体電解質100中のxが0.05および0.28の場合には剥離が生じ、シート状の固体電解質100と電極との接合が不十分であることがわかる。これは、xが低すぎる場合には部分融解する固体電解質100の量が少なく、xが高すぎる場合には固いKI粒子の析出量が多くなるからである。 On the other hand, as shown in Comparative Examples 3 and 9, when x 1 in the sheet-like solid electrolyte 100 is 0.05 and 0.28, peeling occurs, and the joining of the sheet-like solid electrolyte 100 and the electrode is caused. It turns out that it is insufficient. This small amount of the solid electrolyte 100 to partially melt when x 1 is too low, because the greater the amount of precipitation of solid KI particles when x 1 is too high.
 そして、比較例7、8に示すように、yが大きい場合には、接着部95において固いLiIが析出し、シート状の固体電解質100と電極との接合が不十分になることがわかる。 Then, as shown in Comparative Examples 7 and 8, when y is large, it can be seen that hard LiI precipitates at the bonding portion 95 and the bonding between the sheet-like solid electrolyte 100 and the electrode becomes insufficient.
 以上から、十分な室温導電率を有する固体電解質100とするには、0.15≦Xを満たす必要があることが分かる。そして、電極との接合が良い固体電解質100とするためには、0.05<x≦0.275かつ0<y≦0.50である必要があることがわかる。これらの範囲は望ましくは、0.20≦Xかつ0.05<x≦0.275かつ0<y≦0.50を満たし、さらに望ましくは0.20≦Xかつ0.10≦x≦0.275かつ0<y≦0.50を満たす。 From the above, it can be seen that 0.15 ≦ X must be satisfied in order to obtain the solid electrolyte 100 having sufficient room temperature conductivity. Then, it can be seen that 0.05 <x 1 ≦ 0.275 and 0 <y ≦ 0.50 are necessary to obtain a solid electrolyte 100 with good bonding to the electrode. These ranges preferably satisfy 0.20 ≦ X and 0.05 <x 1 ≦ 0.275 and 0 <y ≦ 0.50, and more preferably 0.20 ≦ X and 0.10 ≦ x 1 ≦. 0.275 and 0 <y ≦ 0.50 are satisfied.
 以下、本発明の一実施形態である図4、図5を更に具体的に説明する。 Hereinafter, FIGS. 4 and 5 which are one embodiment of the present invention will be described more specifically.
 <シート状の固体電解質100の作製>
 固体電解質粒子63をNMPに分散して得たスラリーを塗工し、乾燥した後、一軸加圧し、シート状の固体電解質層50を得た。このシート状の固体電解質層50上に、接合剤粒子91をNMPに分散して得たスラリーを塗工し、乾燥した後、一軸加圧した。そして、第一融点で熱処理することで、厚さ200μmのシート状の固体電解質100を得た。XRD測定により固体電解質層50側がLiBHの高温相となっていることを確認した。
<Preparation of Sheet-shaped Solid Electrolyte 100>
A slurry obtained by dispersing solid electrolyte particles 63 in NMP was applied, dried, and then uniaxially pressurized to obtain a sheet-like solid electrolyte layer 50. On this sheet-like solid electrolyte layer 50, a slurry obtained by dispersing the bonding agent particles 91 in NMP was applied, dried, and then uniaxially pressurized. And it heat-processed with 1st melting | fusing point, and obtained the sheet-like solid electrolyte 100 of thickness 200 micrometers. It was confirmed by XRD measurement that the solid electrolyte layer 50 side was a high temperature phase of LiBH 4 .
 図4と図5における融点測定方法、電極剥離試験方法、室温導電率および電池抵抗の測定方法は、図2と図3における方法と同様である。 4 and FIG. 5 are the same as the methods in FIG. 2 and FIG. 3 in the melting point measurement method, electrode peel test method, room temperature conductivity and battery resistance measurement method.
 固体電解質層50上に厚み5μmの接合剤層90をのせ、シート状の固体電解質100を作成した。固体電解質100中のyは0.20、xは0.02である。接合剤層90中のxは0.10とした。 A bonding agent layer 90 having a thickness of 5 μm was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100. The y in the solid electrolyte 100 0.20, x 1 is 0.02. X 2 in the bonding agent layer 90 was 0.10.
 固体電解質層50上に厚み5μmの接合剤層90をのせ、シート状の固体電解質100を作成した。固体電解質100中のyは0.20、xは0.03である。接合剤層90中のxは0.15とした。 A bonding agent layer 90 having a thickness of 5 μm was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100. The y in the solid electrolyte 100 0.20, x 1 is 0.03. X 2 in the bonding agent layer 90 was 0.15.
 固体電解質層50上に厚み5μmの接合剤層90をのせ、シート状の固体電解質100を作成した。固体電解質100中のyは0.20、xは0.04である。接合剤層90中のxは0.20とした。 A bonding agent layer 90 having a thickness of 5 μm was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100. The y in the solid electrolyte 100 0.20, x 1 is 0.04. X 2 in the bonding agent layer 90 was 0.20.
 固体電解質層50上に厚み5μmの接合剤層90をのせ、シート状の固体電解質100を作成した。固体電解質100中のyは0.20、xは0.05である。接合剤層90中のxは0.25とした。 A bonding agent layer 90 having a thickness of 5 μm was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100. The y in the solid electrolyte 100 0.20, x 1 is 0.05. X 2 in the bonding agent layer 90 was 0.25.
 固体電解質層50上に厚み10μmの接合剤層90をのせ、シート状の固体電解質100を作成した。固体電解質100中のyは0.23、xは0.05である。接合剤層90中のxは0.15とした。 A bonding agent layer 90 having a thickness of 10 μm was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100. The y in the solid electrolyte 100 0.23, x 1 is 0.05. X 2 in the bonding agent layer 90 was 0.15.
 (比較例10)
 固体電解質層50上に厚み5μmのLi(BH)-K(BH)混合物の接合剤層90をのせ、シート状の固体電解質100を作成した。固体電解質100中のyは0.20、xは0.01である。接合剤層90中のxは0.05とした。
(Comparative Example 10)
On the solid electrolyte layer 50, a bonding agent layer 90 of a Li (BH 4 ) —K (BH 4 ) mixture having a thickness of 5 μm was placed to prepare a sheet-like solid electrolyte 100. The y in the solid electrolyte 100 0.20, x 1 is 0.01. X 2 in the bonding agent layer 90 was 0.05.
 (比較例11)
 固体電解質層50上に厚み5μmの接合剤層90をのせ、シート状の固体電解質100を作成した。固体電解質100中のyは0.20、xは0.06である。接合剤層90中のxは0.30とした。
(Comparative Example 11)
A bonding agent layer 90 having a thickness of 5 μm was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100. The y in the solid electrolyte 100 0.20, x 1 is 0.06. X 2 in the bonding agent layer 90 was 0.30.
 (比較例12)
 固体電解質層50上に厚み5μmの接合剤層90をのせ、シート状の固体電解質100を作成した。固体電解質100中のyは0.20、xは0.07である。接合剤層90中のxは0.35とした。
(Comparative Example 12)
A bonding agent layer 90 having a thickness of 5 μm was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100. The y in the solid electrolyte 100 0.20, x 1 is 0.07. X 2 in the bonding agent layer 90 was 0.35.
 (比較例13)
 固体電解質層50上に厚み10μmの接合剤層90をのせ、シート状の固体電解質100を作成した。固体電解質100中のyは0.17、xは0.05である。接合剤層90中のxは0.15とした。
(Comparative Example 13)
A bonding agent layer 90 having a thickness of 10 μm was placed on the solid electrolyte layer 50 to prepare a sheet-like solid electrolyte 100. The y in the solid electrolyte 100 0.17, x 1 is 0.05. X 2 in the bonding agent layer 90 was 0.15.
 表2は表1と同様に、実施例及び比較例において、電極との接合が良く、かつ室温導電率が良い固体電解質100か否かの判定結果を示したものである。表1に加えて、接合剤層90中のx、固体電解質層50の厚み、接合剤層90の厚みを記載している。なお、表2に示した比較例と実施例における固体電解質層50の厚みは、全て20μmである。
Figure JPOXMLDOC01-appb-T000002
Similar to Table 1, Table 2 shows the determination results as to whether or not the solid electrolyte 100 has good bonding with the electrode and good room temperature conductivity in Examples and Comparative Examples. In addition to Table 1, x 2 in the bonding agent layer 90, the thickness of the solid electrolyte layer 50, and the thickness of the bonding agent layer 90 are described. Note that the thicknesses of the solid electrolyte layers 50 in the comparative examples and examples shown in Table 2 are all 20 μm.
Figure JPOXMLDOC01-appb-T000002
 実施例12から実施例16および比較例10から比較例13は、シート状の固体電解質100が接合剤層90と固体電解質層50とで構成される例である。 Example 12 to Example 16 and Comparative Example 10 to Comparative Example 13 are examples in which the sheet-like solid electrolyte 100 is composed of the bonding agent layer 90 and the solid electrolyte layer 50.
 実施例12~15と比較例10~12に示すように、シート状の固体電解質100におけるxおよびxが増大するに伴い、室温導電率は小さくなる。これは、シート状の固体電解質100に析出相粒子94であるKIが析出することで、LiI-Li(BH)固溶体からLiIが減少するためである。 As shown in Examples 12 to 15 and Comparative Examples 10 to 12, the room temperature conductivity decreases as x 1 and x 2 in the sheet-like solid electrolyte 100 increase. This is because LI, which is the precipitated phase particles 94, is deposited on the sheet-like solid electrolyte 100, thereby reducing LiI from the LiI—Li (BH 4 ) solid solution.
 比較例10~12に示すように、接合剤層90中のxが0.05または0.30および0.35の場合には剥離が生じ、シート状の固体電解質100と電極との接合が不十分であることがわかる。 As shown in Comparative Examples 10 to 12, when x 2 in the bonding agent layer 90 is 0.05 or 0.30 and 0.35, peeling occurs, and the bonding between the sheet-like solid electrolyte 100 and the electrode occurs. It turns out that it is insufficient.
 比較例13では接合剤層90の厚みを10μmにしたため、析出相粒子94であるKIの析出が多くなり、室温導電率が1.0×10-5Scm-1を下回り、電池に用いる固体電解質としては不十分な値となった。 In Comparative Example 13, since the thickness of the bonding agent layer 90 was 10 μm, precipitation of KI, which is the precipitated phase particle 94, increased, and the room temperature conductivity was below 1.0 × 10 −5 Scm −1, and the solid electrolyte used in the battery As a result, it was insufficient.
 実施例16では比較例13と比べてyを増大させている。実施例16の室温導電率は、1×10-5Scm-1以上となり、十分な値となった。 In Example 16, y is increased as compared with Comparative Example 13. The room temperature conductivity of Example 16 was 1 × 10 −5 Scm −1 or more, which was a sufficient value.
 以上から、十分な室温導電率を有する固体電解質100とするには、0.15≦Xを満たす必要があることが分かる。その上、電極との接合をよくするためには0.05<x≦0.275かつ0<y≦0.50である必要があることがわかる。これらの範囲は望ましくは0.20≦Xかつ5<x≦0.275かつ0<y≦0.50を満たし、さらに望ましくは0.20≦Xかつ0.10≦x≦0.275かつ0<y≦0.50を満たすことが望ましい。 From the above, it can be seen that 0.15 ≦ X must be satisfied in order to obtain the solid electrolyte 100 having sufficient room temperature conductivity. Moreover, it can be seen that 0.05 <x 2 ≦ 0.275 and 0 <y ≦ 0.50 are necessary to improve the bonding with the electrode. These ranges preferably satisfy 0.20 ≦ X and 5 <x 2 ≦ 0.275 and 0 <y ≦ 0.50, and more preferably 0.20 ≦ X and 0.10 ≦ x 2 ≦ 0.275. And it is desirable to satisfy 0 <y ≦ 0.50.
 以下、本発明の一実施形態である図7、図8を更に具体的に説明する。 Hereinafter, FIGS. 7 and 8 which are one embodiment of the present invention will be described in more detail.
 <シート状の固体電解質100の作製>
 図4、図5のシート状の固体電解質100と同様の作製方法である。
<Preparation of Sheet-shaped Solid Electrolyte 100>
This is a manufacturing method similar to that of the sheet-like solid electrolyte 100 of FIGS.
 <正極Li伝導性結着剤66(LiBO)の合成>
 炭酸リチウムLiCO3.92gと酸化ホウ素B11.08gを配合し、ジルコニアボールを用いた遊星ボールミルで混合した。混合後、アルミナるつぼに混合粉を加え、600℃で24時間加熱処理した。得られた粉体の結晶構造をXRDで分析した結果、LiBOであることを確認した。これをLiBO結着剤とした。示差走査熱量測定(DSC)により融点を測定したところ、690℃であった。
<Synthesis of Positive Electrode Li Conductive Binder 66 (Li 3 BO 3 )>
Lithium carbonate Li 2 CO 3 3.92 g and boron oxide B 2 O 3 11.08 g were blended and mixed in a planetary ball mill using zirconia balls. After mixing, the mixed powder was added to the alumina crucible and heat-treated at 600 ° C. for 24 hours. As a result of analyzing the crystal structure of the obtained powder by XRD, it was confirmed to be Li 3 BO 3 . This was used as a Li 3 BO 3 binder. It was 690 degreeC when melting | fusing point was measured by the differential scanning calorimetry (DSC).
 <正極80の作製>
 平均粒径が10μmのLiCoO粉末1.5gに対し、LiBOの粉末を0.3g添加し、乳鉢に取り分け、混合したのち、5質量%のエチルセルロース溶液を1.5g加え、混練した。混練した正極ペーストを10mm径のAl箔上にスクリーン塗布した。150℃で乾燥し溶媒を蒸発させた後、ハンドプレスで冷間プレスした。試料をアルミナ板の上に載せ、700℃で加熱し、エチルセルロースを分解、除去し、LiBOを溶融させた。冷却後、質量を測定した結果、塗布量は、電極1cmあたりのLiCoOの質量で3mg/cmであった。
<Preparation of positive electrode 80>
0.3 g of Li 3 BO 3 powder was added to 1.5 g of LiCoO 2 powder having an average particle size of 10 μm, and after mixing and mixing in a mortar, 1.5 g of 5% by mass ethylcellulose solution was added and kneaded. . The kneaded positive electrode paste was screen-coated on a 10 mm diameter Al foil. After drying at 150 ° C. to evaporate the solvent, it was cold pressed with a hand press. The sample was placed on an alumina plate and heated at 700 ° C. to decompose and remove ethyl cellulose, and Li 3 BO 3 was melted. As a result of measuring the mass after cooling, the coating amount was 3 mg / cm 2 in terms of the mass of LiCoO 2 per 1 cm 2 of the electrode.
 <正極80と接合剤層90の接合>
 作製した正極80を、正極合剤層60と接合剤層90とが接するように配置した。その後、接合剤の第一融点以上の温度で加熱することで正極80と接合剤層90を接合した。この試料を正極-電解質接合体とした。
<Joining of positive electrode 80 and bonding agent layer 90>
The produced positive electrode 80 was disposed so that the positive electrode mixture layer 60 and the bonding agent layer 90 were in contact with each other. Thereafter, the positive electrode 80 and the bonding agent layer 90 were bonded by heating at a temperature equal to or higher than the first melting point of the bonding agent. This sample was used as a positive electrode-electrolyte assembly.
 <負極70の作製>
 負極活物質54であるLiは、作製した正極-電解質接合体の固体電解質層50と接触させるように配置し、負極70とした。
<Preparation of negative electrode 70>
Li as the negative electrode active material 54 was disposed so as to be in contact with the solid electrolyte layer 50 of the produced positive electrode-electrolyte assembly, thereby forming the negative electrode 70.
 <電池の充放電特性の評価方法>
 電池の充放電特性は、充放電試験機(Sorlartron製、1470型)を用いて評価した。充放電試験時のマントルヒーターの設定温度は150℃である。充放電時の印加電流は満充電した電池が10時間で放電終了となる電流(0.1C)とした。
<Evaluation method of charge / discharge characteristics of battery>
The charge / discharge characteristics of the battery were evaluated using a charge / discharge tester (manufactured by Sorartron, model 1470). The set temperature of the mantle heater during the charge / discharge test is 150 ° C. The applied current at the time of charging / discharging was set to a current (0.1 C) at which the fully charged battery would be discharged in 10 hours.
 20サイクル後の放電容量(Ah)を測定し、これを1サイクル放電容量(Ah)で割って算出した百分率を「20サイクル後の容量維持率」(%)と定義した。 The discharge capacity (Ah) after 20 cycles was measured, and the percentage calculated by dividing this by 1 cycle discharge capacity (Ah) was defined as “capacity maintenance ratio after 20 cycles” (%).
 また、初回充電容量(Ah)を初回放電容量(Ah)で割って算出した百分率を「初回クーロン効率」(%)と定義した。 Also, the percentage calculated by dividing the initial charge capacity (Ah) by the initial discharge capacity (Ah) was defined as “initial Coulomb efficiency” (%).
 図7と図8における、室温導電率および電池抵抗の測定方法は、図2と図3における方法と同様である。 7 and FIG. 8 are the same as the methods in FIG. 2 and FIG. 3 for measuring the room temperature conductivity and battery resistance.
 負極活物質54にLiを用い、かつ、LiI-Li(BH)固溶体からなる固体電解質層50を50μmとした負極-電解質接合体の電解質層側に、Kモル分率xが0.15のLiBH-KBH混合物からなる接合剤層90を厚さ10μmで作製し、Li伝導性結着剤LBOおよび活物質NMCからなる正極層を加圧により接触させ、SUSセル内にセットした。試料膜厚方向に圧力がかかる状態でSUSセルを第一融点に加熱することで、接合剤層90を軟化させ、正極と固体電解質100を接合した。固体電解質100中のyは0.21である。 On the electrolyte layer side of the negative electrode-electrolyte assembly in which Li is used for the negative electrode active material 54 and the solid electrolyte layer 50 made of LiI-Li (BH 4 ) solid solution is 50 μm, the K mole fraction x 2 is 0.15. A bonding agent layer 90 made of a LiBH 4 -KBH 4 mixture of 10 μm in thickness was prepared, and a positive electrode layer made of Li conductive binder LBO and an active material NMC was brought into contact with pressure, and set in a SUS cell. The SUS cell was heated to the first melting point in a state where pressure was applied in the sample film thickness direction, so that the bonding agent layer 90 was softened and the positive electrode and the solid electrolyte 100 were bonded. Y in the solid electrolyte 100 is 0.21.
 正極合剤層と接合剤層との間に厚み10μmの酸化物固体電解質層LLZを設けた以外は実施例17と同様である。 The same as Example 17 except that the oxide solid electrolyte layer LLZ having a thickness of 10 μm was provided between the positive electrode mixture layer and the bonding agent layer.
 LiI-Li(BH)固溶体からなる固体電解質層50の厚さを50μmから5μmに変更し接合剤層90の厚さを10μmから5μmに変更し、固体電解質100中のyが0.25となるようにした以外は実施例17と同様である。 The thickness of the solid electrolyte layer 50 made of a LiI-Li (BH 4 ) solid solution is changed from 50 μm to 5 μm, the thickness of the bonding agent layer 90 is changed from 10 μm to 5 μm, and y in the solid electrolyte 100 is 0.25. Example 17 is the same as Example 17 except for the above.
 LiBH-KBH混合物からなる接合剤層90の厚さを10μmから5μmに変更
し、yが0.23となるようにした以外は実施例17と同様である。
Example 17 is the same as Example 17 except that the thickness of the bonding agent layer 90 made of the LiBH 4 -KBH 4 mixture is changed from 10 μm to 5 μm so that y becomes 0.23.
 LiI-Li(BH)固溶体からなる固体電解質層50の厚さを50μmから200μmに変更し、yが0.24となるようにした以外は実施例17と同様である。 Example 17 is the same as Example 17 except that the thickness of the solid electrolyte layer 50 made of a LiI—Li (BH 4 ) solid solution is changed from 50 μm to 200 μm so that y becomes 0.24.
 接合剤層90を、yが0.25かつxが0.15のLiBH-KBH混合物およびLiI-Li(BH)固溶体の混合物に変更した以外は実施例17と同様である。 Example 17 is the same as Example 17 except that the bonding agent layer 90 is changed to a mixture of LiBH 4 -KBH 4 and LiI—Li (BH 4 ) solid solution having y of 0.25 and x 2 of 0.15.
 固体電解質層50を設けず、xが0.15のおよびyが0.36のLiBH-KBH混合物とLiI-Li(BH)固溶体の混合物を、厚み30μmのガラス繊維薄膜中に溶融含浸した以外は実施例17と同様である。 A solid electrolyte layer 50 is not provided, and a mixture of a LiBH 4 -KBH 4 mixture having x 1 of 0.15 and y of 0.36 and a LiI-Li (BH 4 ) solid solution is melted in a glass fiber thin film having a thickness of 30 μm. The same as Example 17 except for impregnation.
 固体電解質100中のyが0.42となるように変更した以外は実施例17と同様である。 The same as Example 17 except that the y in the solid electrolyte 100 was changed to 0.42.
 LiI-Li(BH)固溶体からなる固体電解質層50の厚さを50μmから500μmに変更し、yが0.25となるようにした以外は実施例17と同様である。 Example 17 is the same as Example 17 except that the thickness of the solid electrolyte layer 50 made of LiI—Li (BH 4 ) solid solution is changed from 50 μm to 500 μm so that y becomes 0.25.
 LiBH-KBH混合物からなる接合剤層90の厚さを10μmから3μmに変更し、yが0.24となるようにした以外は実施例17と同様である。 Example 17 is the same as Example 17 except that the thickness of the bonding agent layer 90 made of the LiBH 4 -KBH 4 mixture is changed from 10 μm to 3 μm so that y becomes 0.24.
 (比較例14)
 負極活物質54にLiを用い、かつ、yが0.25のLiI-Li(BH)固溶体からなる固体電解質層50を50μmとした負極-電解質接合体の電解質層側に、Li伝導性結着剤(ホウ酸リチウムLiBO:LBO)および活物質(層状型リチウム・ニッケル・マンガン・コバルト複合酸化物:NMC)からなる正極層を加圧により接触させた試料を比較例14とした。
(Comparative Example 14)
The negative electrode active material 54 is made of Li, and a solid electrolyte layer 50 made of LiI—Li (BH 4 ) solid solution having y of 0.25 is 50 μm in the negative electrode-electrolyte assembly. A sample in which a positive electrode layer made of an adhesive (lithium borate Li 3 BO 3 : LBO) and an active material (layered lithium / nickel / manganese / cobalt composite oxide: NMC) was brought into contact by pressurization was used as Comparative Example 14. .
 (比較例15)
 LiI-Li(BH)固溶体からなる固体電解質層50の厚さを50μmから3μmに変更し、接合剤層90の厚さを10μmから5μmに変更し、固体電解質100中のyが0.19となるようにした以外は実施例17と同様である。
(Comparative Example 15)
The thickness of the solid electrolyte layer 50 made of a LiI-Li (BH 4 ) solid solution was changed from 50 μm to 3 μm, the thickness of the bonding agent layer 90 was changed from 10 μm to 5 μm, and y in the solid electrolyte 100 was 0.19. Example 17 is the same as Example 17 except that
 (比較例16)
 接合剤層90中のxを0.15から0.05に変更した以外は実施例17と同様である。
(Comparative Example 16)
The bonding agent layer x 2 in 90 was changed from 0.15 to 0.05 is similar to that in Example 17.
 (比較例17)
 接合剤層90中のxを0.15から0.28に変更した以外は実施例17と同様である。
(Comparative Example 17)
The bonding agent layer x 2 in 90 was changed from 0.15 to 0.28 is similar to that in Example 17.
 (比較例18)
 固体電解質100中のyが0.62となるように変更した以外は実施例17と同様である。
(Comparative Example 18)
Example 17 is the same as Example 17 except that y in the solid electrolyte 100 is changed to 0.62.
 表3は表1、2と同様に、実施例及び比較例において、電極との接合が良く、かつ室温導電率が良い固体電解質100か否かの判定結果を示したものである。容量維持率が高いほど電極との接合が十分であり、剥離が起こりづらい。そこで、容量維持率が70%以上で合格とした。また、電池抵抗は、導電率が高いほど低い値となり、固体電解質100の厚みが薄いほど低い値となる。そこで、電池抵抗が50Ωcm以下で合格とした。
Figure JPOXMLDOC01-appb-T000003
As in Tables 1 and 2, Table 3 shows the determination results as to whether or not the solid electrolyte 100 has good bonding with electrodes and good room temperature conductivity in Examples and Comparative Examples. The higher the capacity retention rate, the better the bonding with the electrode, and the more difficult it is to peel off. Therefore, the capacity maintenance rate was set to 70% or more, and it was determined as acceptable. In addition, the battery resistance is lower as the conductivity is higher, and is lower as the thickness of the solid electrolyte 100 is thinner. Therefore, the battery resistance was 50 Ωcm 2 or less, which was regarded as acceptable.
Figure JPOXMLDOC01-appb-T000003
 比較例14のように接合剤層90を含まない場合には、正極と固体電解質層50の接合は上手くできないことから、容量維持率が低い電池となる。一方、実施例17のように接合剤層を設けることで接合が改善し、低抵抗で容量維持率の高い電池を得ることができる。 When the bonding agent layer 90 is not included as in Comparative Example 14, the bonding between the positive electrode and the solid electrolyte layer 50 cannot be performed well, and the battery has a low capacity retention rate. On the other hand, by providing a bonding agent layer as in Example 17, bonding is improved, and a battery having a low resistance and a high capacity retention rate can be obtained.
 さらに、実施例18で示すように、酸化物固体電解質層81を用いた場合も、低抵抗で容量維持率の高い電池を得ることができる。 Furthermore, as shown in Example 18, when the oxide solid electrolyte layer 81 is used, a battery having a low resistance and a high capacity retention rate can be obtained.
 比較例15、実施例25および実施例19、21は固体電解質層50の厚みを変化させた場合の結果である。固体電解質層50は厚すぎると電池抵抗が増大し、3μmの場合では薄すぎるために短絡が起きてしまった。これらの結果から、固体電解質層の厚みは5μm以上200μm以下であることが望ましい。 Comparative Example 15, Example 25, and Examples 19 and 21 are results when the thickness of the solid electrolyte layer 50 is changed. If the solid electrolyte layer 50 is too thick, the battery resistance increases, and in the case of 3 μm, the thin film is too thin, causing a short circuit. From these results, the thickness of the solid electrolyte layer is desirably 5 μm or more and 200 μm or less.
 実施例20、実施例26では、接合剤層90の厚みを10μmよりも薄くしている。薄すぎると接合は不十分となり、20サイクル容量維持率が55%の性能の低い電池となる。よって、接合剤層90の厚みは5μm以上であることが望ましい。 In Example 20 and Example 26, the thickness of the bonding agent layer 90 is made thinner than 10 μm. If it is too thin, bonding becomes insufficient, and a battery with a low performance with a 20-cycle capacity retention rate of 55% is obtained. Therefore, the thickness of the bonding agent layer 90 is desirably 5 μm or more.
 比較例16、比較例17では接合剤層90中のKモル分率を変更している。Kモル分率が低すぎると接合剤層90の溶融が抑えられ、接合が上手くできず容量維持率が低くなる。一方、Kモル分率が高すぎると固い材料であるKIの析出量が多くなり、充放電に伴う体積膨張収縮に耐えられず、容量維持率が低くなる。このことから、xは、0.05<x≦0.275であることが望ましい。 In Comparative Example 16 and Comparative Example 17, the K mole fraction in the bonding agent layer 90 is changed. If the K mole fraction is too low, melting of the bonding agent layer 90 is suppressed and bonding cannot be performed well, resulting in a low capacity retention rate. On the other hand, if the K mole fraction is too high, the amount of precipitation of KI, which is a hard material, increases, it cannot withstand volume expansion / contraction due to charge / discharge, and the capacity retention rate decreases. Therefore, x 2 is desirably 0.05 <x 2 ≦ 0.275.
 実施例22の接合剤層90には、図2の固体電解質100と同様に、固体電解質粒子63と接合剤粒子91とが含まれる。このように、固体電解質層50と図2の固体電解質100とを組み合わせた固体電解質100でも、性能の高い電池となる。実施例23は、接合剤層90を図2の固体電解質100とした場合である。この場合も、接合の改善ができ、性能の高い電池となる。 The bonding agent layer 90 of Example 22 includes solid electrolyte particles 63 and bonding agent particles 91 as in the case of the solid electrolyte 100 of FIG. Thus, even a solid electrolyte 100 in which the solid electrolyte layer 50 and the solid electrolyte 100 of FIG. 2 are combined is a battery with high performance. In Example 23, the bonding agent layer 90 is the solid electrolyte 100 of FIG. Also in this case, the bonding can be improved, and the battery has high performance.
 実施例24と比較例18は、yを増大させている。yが増えすぎると固体電解質100中にLiIが析出し、室温導電率を低下させる。さらに、LiIは固いために体積膨張収縮に追従できず、容量維持率が低い電池となる。このことから、0<y≦0.5が望ましい。 In Example 24 and Comparative Example 18, y is increased. If y increases too much, LiI will precipitate in the solid electrolyte 100 and lower the room temperature conductivity. Furthermore, since LiI is hard, it cannot follow volume expansion / contraction, resulting in a battery with a low capacity retention rate. Therefore, 0 <y ≦ 0.5 is desirable.
 10:負極集電体、20:正極集電体、30:電池ケース、40:負極合剤層、50:固体電解質層、54:負極活物質、60:正極合剤層、62:正極活物質、63:固体電解質粒子、66:正極Li伝導性結着剤、67:水素化物系固体電解質、68:正極導電助剤又は正極バインダ、69:負極導電助剤又は負極バインダ、70:負極、80:正極、81:酸化物固体電解質層、90:接合剤層、94:析出相粒子、95:接着部、100:固体電解質、500:全固体リチウム電池 10: negative electrode current collector, 20: positive electrode current collector, 30: battery case, 40: negative electrode mixture layer, 50: solid electrolyte layer, 54: negative electrode active material, 60: positive electrode mixture layer, 62: positive electrode active material 63: solid electrolyte particles, 66: positive electrode Li conductive binder, 67: hydride-based solid electrolyte, 68: positive electrode conductive auxiliary or positive electrode binder, 69: negative electrode conductive auxiliary or negative electrode binder, 70: negative electrode, 80 : Positive electrode, 81: oxide solid electrolyte layer, 90: bonding agent layer, 94: deposited phase particles, 95: adhesion part, 100: solid electrolyte, 500: all solid lithium battery

Claims (6)

  1.  Li、I、BH、およびKを含む固体電解質であって、
     前記固体電解質に含まれるLiKとの和に対する前記固体電解質に含まれるKのモル分率をx
     前記固体電解質に含まれるIとBHとの和に対するIのモル分率をy、とした場合に、
     0.05<x≦0.275、
     0<y≦0.50、
     0.15≦(y-x)/(1-x)、
     を満たす固体電解質。
    A solid electrolyte comprising Li, I, BH 4 , and K,
    X 1 represents the molar fraction of K contained in the solid electrolyte with respect to the sum of LiK contained in the solid electrolyte.
    When the molar fraction of I with respect to the sum of I and BH 4 contained in the solid electrolyte is y,
    0.05 <x 1 ≦ 0.275,
    0 <y ≦ 0.50,
    0.15 ≦ (y−x 1 ) / (1−x 1 ),
    Meet solid electrolyte.
  2.  接合剤層および固体電解質層を備える固体電解質であって、
     前記接合剤層は、Li、BH、およびKを含み、
     前記固体電解質層は、Li、I、およびBHを含み、
     前記接合剤層に含まれるLiとKとの和に対する前記接合剤層に含まれるKのモル分率をx
     前記固体電解質に含まれるLiとKとの和に対する前記固体電解質に含まれるKのモル分率をx
     前記固体電解質に含まれるIとBHとの和に対するIのモル分率をy、とした場合に、
     0.05<x≦0.275
     0<y≦0.50、
     0.15≦(y-x)/(1-x)、
     を満たす固体電解質。
    A solid electrolyte comprising a bonding agent layer and a solid electrolyte layer,
    The bonding agent layer includes Li, BH 4 , and K,
    The solid electrolyte layer includes Li, I, and BH 4 ;
    The molar fraction of K contained in the binder layer relative to the sum of Li and K contained in the binder layer is x 2 ,
    X 1 represents the molar fraction of K contained in the solid electrolyte with respect to the sum of Li and K contained in the solid electrolyte.
    When the molar fraction of I with respect to the sum of I and BH 4 contained in the solid electrolyte is y,
    0.05 <x 2 ≦ 0.275
    0 <y ≦ 0.50,
    0.15 ≦ (y−x 1 ) / (1−x 1 ),
    Meet solid electrolyte.
  3.  請求項2に記載の固体電解質において、
     前記接合剤層の厚みは5μm以上30μm以下である
     固体電解質。
    The solid electrolyte according to claim 2,
    The bonding agent layer has a thickness of 5 μm or more and 30 μm or less.
  4.  請求項2に記載の固体電解質において、
     前記固体電解質層の厚みは5μm以上200μm以下である
     固体電解質。
    The solid electrolyte according to claim 2,
    The solid electrolyte layer has a thickness of 5 μm or more and 200 μm or less.
  5.  請求項1に記載の固体電解質と、負極合剤層と、正極合剤層と、を備え、
     前記負極合剤層は負極活物質と、を含み、
     前記正極合剤層は、正極活物質と、正極リチウム伝導性結着剤と、を含み、
     前記正極合剤層と前記負極合剤層との間には、前記固体電解質が設けられている、
     全固体リチウム電池。
    A solid electrolyte according to claim 1, a negative electrode mixture layer, and a positive electrode mixture layer,
    The negative electrode mixture layer includes a negative electrode active material,
    The positive electrode mixture layer includes a positive electrode active material and a positive electrode lithium conductive binder,
    The solid electrolyte is provided between the positive electrode mixture layer and the negative electrode mixture layer.
    All solid lithium battery.
  6.  請求項2に記載の固体電解質と、負極合剤層と、正極合剤層と、を備え、
     前記負極合剤層は負極活物質と、を含み、
     前記正極合剤層は、正極活物質と、正極リチウム伝導性結着剤と、を含み、
     前記正極合剤層と前記固体電解質層との間には、前記接合剤層が設けられている、
     全固体リチウム電池。
    A solid electrolyte according to claim 2, a negative electrode mixture layer, and a positive electrode mixture layer,
    The negative electrode mixture layer includes a negative electrode active material,
    The positive electrode mixture layer includes a positive electrode active material and a positive electrode lithium conductive binder,
    Between the positive electrode mixture layer and the solid electrolyte layer, the bonding agent layer is provided,
    All solid lithium battery.
PCT/JP2017/000372 2016-01-27 2017-01-10 Solid electrolyte and all-solid-state lithium battery using solid electrolyte WO2017130674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016012929A JP2019071164A (en) 2016-01-27 2016-01-27 Solid electrolyte and all solid lithium battery using solid electrolyte
JP2016-012929 2016-01-27

Publications (1)

Publication Number Publication Date
WO2017130674A1 true WO2017130674A1 (en) 2017-08-03

Family

ID=59397957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000372 WO2017130674A1 (en) 2016-01-27 2017-01-10 Solid electrolyte and all-solid-state lithium battery using solid electrolyte

Country Status (2)

Country Link
JP (1) JP2019071164A (en)
WO (1) WO2017130674A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071325A (en) * 2019-04-01 2019-07-30 上海理工大学 A kind of preparation method of multiphase composition metal-boron-hydrogen compound solid electrolyte material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388868B (en) * 2021-12-23 2023-10-13 南京大学 All-solid-state lithium-iodine secondary battery and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139382A1 (en) * 2008-05-13 2009-11-19 国立大学法人東北大学 Solid electrolyte, method for producing the same, and secondary battery comprising solid electrolyte
JP2012209106A (en) * 2011-03-29 2012-10-25 Denso Corp All-solid battery
JP2012209104A (en) * 2011-03-29 2012-10-25 Denso Corp All-solid battery
JP2013191769A (en) * 2012-03-14 2013-09-26 Tohoku Univ Solid electric double layer capacitor
US20130266878A1 (en) * 2012-04-04 2013-10-10 GM Global Technology Operations LLC Hydrogen storage system including a lithium conductor
JP2014120265A (en) * 2012-12-14 2014-06-30 Toho Titanium Co Ltd All-solid-state lithium battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139382A1 (en) * 2008-05-13 2009-11-19 国立大学法人東北大学 Solid electrolyte, method for producing the same, and secondary battery comprising solid electrolyte
JP2012209106A (en) * 2011-03-29 2012-10-25 Denso Corp All-solid battery
JP2012209104A (en) * 2011-03-29 2012-10-25 Denso Corp All-solid battery
JP2013191769A (en) * 2012-03-14 2013-09-26 Tohoku Univ Solid electric double layer capacitor
US20130266878A1 (en) * 2012-04-04 2013-10-10 GM Global Technology Operations LLC Hydrogen storage system including a lithium conductor
JP2014120265A (en) * 2012-12-14 2014-06-30 Toho Titanium Co Ltd All-solid-state lithium battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071325A (en) * 2019-04-01 2019-07-30 上海理工大学 A kind of preparation method of multiphase composition metal-boron-hydrogen compound solid electrolyte material

Also Published As

Publication number Publication date
JP2019071164A (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
US20200335756A1 (en) Solid-state battery separators and methods of fabrication
CN110574191B (en) Method for forming lithium metal and inorganic material composite thin film, and method for prelithiating negative electrode of lithium secondary battery using the same
JP2016201310A (en) All-solid-state lithium secondary battery
JP6934727B2 (en) All-solid-state battery and its manufacturing method
JP6259704B2 (en) Method for producing electrode for all solid state battery and method for producing all solid state battery
JP6704295B2 (en) All-solid-state lithium secondary battery and manufacturing method thereof
JP2017004910A (en) Lithium ion secondary battery
JP7129144B2 (en) All-solid-state battery and manufacturing method thereof
KR102564315B1 (en) Production method of electrode for all-solid-state batteries and production method of all-solid-state battery
JP2016184483A (en) All solid-state lithium secondary battery
JP2013097912A (en) Secondary battery
CN113300051A (en) Method for compounding pole piece and diaphragm of lithium ion battery and lithium ion battery
JP2016058335A (en) All-solid battery, manufacturing method thereof, and method for recovering capacity
WO2017130674A1 (en) Solid electrolyte and all-solid-state lithium battery using solid electrolyte
WO2015159331A1 (en) Solid-state battery, electrode for solid-state battery, and production processes therefor
WO2017217079A1 (en) All-solid battery
JP2001093535A (en) Solid electrolyte cell
CN114342118A (en) Negative electrode for all-solid-state battery and all-solid-state battery
JP2020095814A (en) Electrode for lithium ion battery, lithium ion battery, and method for manufacturing electrode for lithium ion battery
JP2019197728A (en) All-solid battery and manufacturing method thereof
CN110521044A (en) Secondary cell and its manufacturing method
JP2017111989A (en) Electrode for all-solid battery, all-solid battery, and manufacturing methods thereof
JP2016207477A (en) Ionically conductive material and all solid-state battery using the same, and manufacturing method of all solid-state battery
JP2022119107A (en) All-solid-state rechargeable battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP