JP2001093535A - Solid electrolyte cell - Google Patents

Solid electrolyte cell

Info

Publication number
JP2001093535A
JP2001093535A JP27535499A JP27535499A JP2001093535A JP 2001093535 A JP2001093535 A JP 2001093535A JP 27535499 A JP27535499 A JP 27535499A JP 27535499 A JP27535499 A JP 27535499A JP 2001093535 A JP2001093535 A JP 2001093535A
Authority
JP
Japan
Prior art keywords
solid electrolyte
active material
negative electrode
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27535499A
Other languages
Japanese (ja)
Inventor
Toshihiko Kamimura
俊彦 上村
Makoto Osaki
誠 大崎
Hiromitsu Mishima
洋光 三嶋
Shinji Umagome
伸二 馬込
Toru Hara
亨 原
Nobuyuki Kitahara
暢之 北原
Hisashi Higuchi
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27535499A priority Critical patent/JP2001093535A/en
Publication of JP2001093535A publication Critical patent/JP2001093535A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that an internal resistance of a cell is high and charging-discharging property is deteriorated since and adhesion strength between an electrode and a solid electrolyte is small. SOLUTION: The solid electrolyte cell is formed by arranging solid electrolyte between a pair of positive an negative electrodes comprising an active substance containing transition metal element, the transition metal element included in the positive electrode active substance is diffused in the solid electrolyte of the positive electrode side and the transition metal element included in the negative electrode active substance is diffused in the solid electrolyte of the negative electrode side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体電解質電池に関
し、特に電極と固体電解質の界面を改良した固体電解質
電池に関する。
The present invention relates to a solid electrolyte battery, and more particularly to a solid electrolyte battery having an improved interface between an electrode and a solid electrolyte.

【0002】[0002]

【従来技術】携帯電話やパーソナルコンピューターに代
表される携帯機器の近年の目覚しい発達に伴い、その電
源としての電池の需要も急速に増加している。特にリチ
ウムイオン電池は、原子量が小さく、かつイオン化エネ
ルギーが大きなリチウムを使う電池であることから、高
エネルギー密度を得ることができる電池として盛んに研
究され、現在では携帯機器の電源をはじめとして広範囲
に用いられるに至っている。これらリチウムイオン電池
には、大きく分けて円筒型と角型があるが、いずれも正
極と負極がセパレータを介して倦回された極群を電槽缶
内に挿入し、そこに有機電解液が注入されて封口された
構造となっている。
2. Description of the Related Art With the recent remarkable development of portable devices typified by portable telephones and personal computers, demand for batteries as power sources has been rapidly increasing. In particular, lithium ion batteries are batteries that use lithium, which has a low atomic weight and a large ionization energy, and are therefore being actively studied as batteries that can obtain high energy densities. It has been used. These lithium-ion batteries are roughly classified into cylindrical type and square type.In both cases, the positive electrode and the negative electrode are inserted through a separator into a battery case. The structure has been injected and sealed.

【0003】上述したリチウムイオン電池では、正極活
物質としてコバルト酸リチウム(LiCoO2)やマン
ガン酸リチウム(LiMn24)が一般的に用いられて
いる。また、負極活物質には、コークスや炭素繊維など
の炭素材料が用いられている。ここで挙げたLiCoO
2やLiMn24の充放電電圧は約4Vである。これに
対して炭素材料の充放電位は0V付近である。したがっ
て、これらの正極活物質と負極活物質を組み合わせるこ
とでリチウムイオン電池は約3.5Vの高電圧を達成し
ている。
In the above-mentioned lithium ion battery, lithium cobalt oxide (LiCoO 2 ) and lithium manganate (LiMn 2 O 4 ) are generally used as a positive electrode active material. Further, a carbon material such as coke and carbon fiber is used for the negative electrode active material. LiCoO listed here
2 and LiMn 2 O 4 have a charge / discharge voltage of about 4V. On the other hand, the charge / discharge potential of the carbon material is around 0V. Therefore, a lithium ion battery achieves a high voltage of about 3.5 V by combining these positive electrode active materials and negative electrode active materials.

【0004】また、近年、ビデオ撮影装置やノートパソ
コン、携帯電話等の携帯用情報端末機器に代表される各
種電子応用機器の薄型かつ軽量小型化の要求に伴い、前
述のような有機電解液に代えて、正負一対の電極間に高
分子電解質と有機電解液を混合させたポリマー電解質電
池が注目されている。しかし、これらリチウムイオン電
池またはポリマー電解質電池は、電解質に液体を使用し
ているため液漏れの問題を皆無とすることができない。
また、電池に短絡等の異常が生じた場合、有機電解液が
反応を起こし電池が発火する危険性がある。そのため、
電池の安全性を確保するため、不燃性の固体で形成され
るリチウム電池の開発が望まれている。
[0004] In recent years, with the demand for thin, light and small electronic devices such as video photographing devices, notebook personal computers, and portable information terminals such as portable telephones, the above-mentioned organic electrolytic solution has been required. Instead, a polymer electrolyte battery in which a polymer electrolyte and an organic electrolyte are mixed between a pair of positive and negative electrodes has attracted attention. However, these lithium ion batteries or polymer electrolyte batteries use a liquid for the electrolyte, and thus cannot eliminate the problem of liquid leakage at all.
Further, when an abnormality such as a short circuit occurs in the battery, there is a risk that the organic electrolyte solution reacts and the battery is ignited. for that reason,
In order to ensure battery safety, development of a lithium battery formed of a nonflammable solid is desired.

【0005】このような問題を解決するために無機系の
固体電解質を用いたリチウム電池の開発が盛んに行われ
ている。
In order to solve such a problem, lithium batteries using an inorganic solid electrolyte have been actively developed.

【0006】特にナトリウムイオン伝導性固体電解質
(NASICON系材料)と同様の結晶構造を有するリ
チウムイオン伝導性結晶質固体電解質は、近年では、1
×10 -3〜1×10-4S・cm-1のリチウムイオン伝導
率を有する固体電解質が提案されている。
[0006] In particular, sodium ion conductive solid electrolyte
(A NASICON-based material)
In recent years, lithium ion conductive crystalline solid electrolytes have been
× 10 -3~ 1 × 10-FourS ・ cm-1Lithium ion conduction
Solid electrolytes having a high modulus have been proposed.

【0007】例えば、特開平5−299101号公報で
は、Li1+(4-n)xxTi2-x(PO 43(Mは1価また
は2価の陽イオン、Mが1価のときn=1、Mが2価の
ときn=2、xは0.1〜0.5)で表わされる粒状電
解質等を焼結させることにより、1×10-3〜1×10
-4S・cm-1のリチウムイオン伝導率を得ることができ
ている。さらに、特開平10−97811号公報では、
所定の組成比のP25、SiO2、TiO2、Al23
Li2Oなどを溶融成形後、熱処理によってLi1+x+y
xTi2-y3-y12(0≦x≦0.4、0<y≦0.
6)を析出させることにより、1.0×10-3〜2.0
×10-3S・cm-1のリチウムイオン伝導度を有する固
体電解質を提案している。
For example, Japanese Patent Application Laid-Open No. 5-299101 discloses
Is Li1+ (4-n) xMxTi2-x(PO Four)Three(M is monovalent or
Is a divalent cation, n = 1 when M is monovalent, and M is divalent
Where n = 2, and x is 0.1 to 0.5)
1 × 10 by sintering-3~ 1 × 10
-FourS ・ cm-1Lithium ion conductivity can be obtained
ing. Further, in Japanese Patent Application Laid-Open No. 10-97811,
P of a given composition ratioTwoOFive, SiOTwo, TiOTwo, AlTwoOThree,
LiTwoAfter melt molding O etc., heat treatment1 + x + yA
lxTi2-yP3-yO12(0 ≦ x ≦ 0.4, 0 <y ≦ 0.
By depositing 6), 1.0 × 10-3~ 2.0
× 10-3S ・ cm-1Having a lithium ion conductivity of
Propose body electrolytes.

【0008】また、特開平6−111831号公報で
は、MnO2またはアルカリ金属とマンガンとの複合酸
化物からなる正極と固体電解質とが一体形成されてなる
固体電解質で、固体電解質がMnO2またはアルカリ金
属とマンガンとの複合酸化物にリチウム化合物を反応さ
せて正極の表面に形成されたLi2MnO3層からなるこ
とにより、正極と固体電解質との界面の接触面積が小さ
く、電池の内部抵抗が小さいので、充放電特性に優れる
ことを提案している。
Japanese Patent Application Laid-Open No. 6-111831 discloses a solid electrolyte in which a positive electrode comprising MnO 2 or a composite oxide of an alkali metal and manganese and a solid electrolyte are integrally formed, and the solid electrolyte is MnO 2 or an alkali. By forming a Li 2 MnO 3 layer formed on the surface of the positive electrode by reacting a lithium compound with a composite oxide of metal and manganese, the contact area of the interface between the positive electrode and the solid electrolyte is small, and the internal resistance of the battery is reduced. Since it is small, it proposes that it has excellent charge / discharge characteristics.

【0009】[0009]

【発明が解決しようとする課題】従来、固体電解質を用
いる電池の場合、電極と固体電解質の接合は、圧接のみ
で形成される場合が多く、電極と固体電解質の接触面
積、および接合強度が弱くなり、これらの界面における
抵抗が大きくなり、電池としての内部抵抗が大きくな
り、充放電特性が劣るという欠点を有していた。特に充
放電電流が大きくなるに従い、電池の内部抵抗に起因す
る電圧降下が大きくなり、電流密度が制限されるという
問題があった。
Conventionally, in the case of a battery using a solid electrolyte, the connection between the electrode and the solid electrolyte is often formed only by pressure welding, and the contact area between the electrode and the solid electrolyte and the bonding strength are weak. Therefore, the resistance at these interfaces is increased, the internal resistance of the battery is increased, and the charge and discharge characteristics are inferior. In particular, there has been a problem that as the charge / discharge current increases, the voltage drop due to the internal resistance of the battery increases, and the current density is limited.

【0010】また、結晶質の固体電解質は、イオン伝導
経路に異方性を有しているものが多いため、固体電解質
内の粒界抵抗が問題となる。従って、結晶質の固体電解
質は、焼結体を用いることが多く、特開平5−2991
01号公報は、この問題を改善する提案となっている。
しかしながら、このイオン伝導経路の問題は、電極と固
体電解質界面に関しても該当し、圧接のみによる接触で
は界面の抵抗が大きくなるという問題が残されている。
[0010] Further, many crystalline solid electrolytes have anisotropy in the ion conduction path, so that the grain boundary resistance in the solid electrolyte becomes a problem. Therefore, a sintered body is often used as the crystalline solid electrolyte.
No. 01 proposes to improve this problem.
However, the problem of the ion conduction path also applies to the interface between the electrode and the solid electrolyte, and there is a problem that contact only by pressure welding increases the resistance of the interface.

【0011】特開平6−111831号公報は、電極と
固体電解質の界面抵抗を改善する提案であるが、この方
法はMnO2の形成をスパッタリングで行ったり、Li2
MnO3の形成を前述のMnO2とLiOHとを反応させ
るなどプロセスが煩雑である問題を有している。
JP-A-6-111831 proposes to improve the interface resistance between an electrode and a solid electrolyte, but this method involves forming MnO 2 by sputtering or Li 2
The formation of MnO 3 has a problem that the process is complicated, such as the reaction between MnO 2 and LiOH.

【0012】本発明は、上述のような従来の問題に鑑み
てなされたものであり、電極と固体電解質の接合強度が
弱くて電池としての内部抵抗が大きくなり、充放電特性
が劣るという従来の問題点を解消した固体電解質電池を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has a problem in that the bonding strength between an electrode and a solid electrolyte is weak, the internal resistance as a battery is large, and the charge / discharge characteristics are poor. It is an object of the present invention to provide a solid electrolyte battery that has solved the problems.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、遷移金属元素を含んだ活物質から成る正負一対の電
極間に固体電解質を配設して成る固体電解質電池であっ
て、前記正極側の固体電解質に前記正極の活物質に含ま
れる遷移金属元素を拡散させ、前記負極側の固体電解質
に前記負極の活物質に含まれる遷移金属元素を拡散させ
た。
According to another aspect of the present invention, there is provided a solid electrolyte battery having a solid electrolyte disposed between a pair of positive and negative electrodes made of an active material containing a transition metal element. The transition metal element included in the active material of the positive electrode was diffused in the solid electrolyte on the negative side, and the transition metal element included in the active material of the negative electrode was diffused in the solid electrolyte on the negative electrode side.

【0014】また、前記固体電解質がリチウム(L
i)、チタン(Ti)、リン(P)および酸素(O)元
素を含むリチウムイオン伝導性を有する結晶質の固体電
解質であることが望ましい。
Further, the solid electrolyte is lithium (L
It is preferable that the solid electrolyte is a crystalline solid electrolyte having lithium ion conductivity containing i), titanium (Ti), phosphorus (P) and oxygen (O).

【0015】また、前記正極の活物質がLi1+xMn2-x
4(0≦x≦0.2)またはLiMn2-yMey4(M
e=Ni、Cr、Cu、Zn、0<y≦0.6)から成
り、前記負極の活物質がLi4Ti512またはLi4
512から成ることが望ましい。
Further, the active material of the positive electrode is Li 1 + x Mn 2-x
O 4 (0 ≦ x ≦ 0.2) or LiMn 2-y Me y O 4 (M
e = Ni, Cr, Cu, Zn, 0 <y ≦ 0.6), and the active material of the negative electrode is Li 4 Ti 5 O 12 or Li 4 M
Desirably, it consists of n 5 O 12 .

【0016】[0016]

【作用】本発明の固体電解質電池では、正極側の固体電
解質に正極の活物質に含まれる遷移金属元素が拡散し、
負極側の固体電解質に負極の活物質に含まれる遷移金属
元素が拡散していることにより、電極と固体電解質の接
合が強固になる。したがって、界面の接触面積が大きく
なることにより、電池の内部抵抗を低減することができ
る。電極の活物質中の遷移金属元素が固体電解質中に拡
散した場合、界面近傍の活物質構造は、本来の結晶構造
を保っていない可能性が高いが、本発明によれば、何ら
影響しないことが確認された。
In the solid electrolyte battery of the present invention, the transition metal element contained in the active material of the positive electrode diffuses into the solid electrolyte on the positive electrode side,
Since the transition metal element contained in the active material of the negative electrode is diffused in the solid electrolyte on the negative electrode side, the bonding between the electrode and the solid electrolyte is strengthened. Therefore, the internal resistance of the battery can be reduced by increasing the contact area of the interface. When the transition metal element in the active material of the electrode diffuses into the solid electrolyte, the active material structure near the interface is likely not to maintain the original crystal structure, but according to the present invention, there is no effect. Was confirmed.

【0017】[0017]

【発明の実施の形態】以下、本発明のリチウム電池の実
施形態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the lithium battery of the present invention will be described.

【0018】図1は、本発明に係るリチウム電池の構成
例を示す断面図である。図1において、1はパッケー
ジ、2は一対の電極、2aは正極、2bは負極、3は固
体電解質層、4は正極集電体、5は負極集電体である。
FIG. 1 is a sectional view showing a configuration example of a lithium battery according to the present invention. In FIG. 1, 1 is a package, 2 is a pair of electrodes, 2a is a positive electrode, 2b is a negative electrode, 3 is a solid electrolyte layer, 4 is a positive electrode current collector, and 5 is a negative electrode current collector.

【0019】パッケージ1は、気密性を保持できれば材
質には限定されず、例えばアルミニウム製ラミネート
材、ニッケル、アルミニウムなどの金属、あるいはシュ
リンクケースなどを用いることができる。
The material of the package 1 is not limited as long as it can maintain airtightness. For example, a laminate made of aluminum, a metal such as nickel or aluminum, or a shrink case can be used.

【0020】正極集電体4または負極集電体5は、正極
2aまたは負極2bの集電のために設けられ、例えばア
ルミニウム(Al)、ニッケル(Ni)、銅(Cu)な
どの金属箔を用いることができる。
The positive electrode current collector 4 or the negative electrode current collector 5 is provided for current collection of the positive electrode 2a or the negative electrode 2b, and is made of a metal foil such as aluminum (Al), nickel (Ni), copper (Cu). Can be used.

【0021】正極2aの活物質は、Li1+xMn2-x4
(0≦x≦0.2)、LiMn2-yMey4(Me=N
i、Cr、Cu、Zn、0<y≦0.6)のいずれかが
選択される。負極2bの活物質は、Li4Ti512、L
4Mn512のいずれかが選択される。ここで、正極活
物質と負極活物質には明確な区別はなく、2種類の化合
物の充放電電位を比較して貴な電位を示すものを正極
に、卑な電位を示すものを負極にそれぞれ用いて1〜
3.5Vの電圧の電池を構成することができる。
The active material of the positive electrode 2a is Li 1 + x Mn 2-x O 4
(0 ≦ x ≦ 0.2), LiMn 2-y Me y O 4 (Me = N
i, Cr, Cu, Zn, 0 <y ≦ 0.6) is selected. The active material of the negative electrode 2b is Li 4 Ti 5 O 12 , L
One of i 4 Mn 5 O 12 is selected. Here, there is no clear distinction between the positive electrode active material and the negative electrode active material, and those showing a noble potential by comparing the charge and discharge potentials of the two compounds are shown as the positive electrode, and those showing the noble potential are shown as the negative electrode. 1 to
A battery with a voltage of 3.5 V can be configured.

【0022】また、電極の活物質に用いるのは、遷移金
属元素を含むリチウム酸化物であることが望ましい。金
属リチウムを負極に用いると、より電圧の高い電池が得
られるが、固体電解質と金属リチウムが接触した場合、
固体電解質が還元反応を起し、固体電解質としての特性
を損ねる可能性があるためである。リチウムイオン電池
に一般に用いられるコークスや炭素繊維も、より電圧の
高い電池が得られる。しかし、これらの炭素材料は、無
機化合物との濡れ性が悪く、固体電解質中に拡散しにく
いため、固体電解質との接合が不十分になるという問題
がある。したがって、電極の活物質としては、固体電解
質中に拡散しやすい遷移金属を含むリチウム酸化物であ
ることが望ましい。また、固体電解質電池では、セパレ
ータや有機電解液を用いないために、充放電反応に伴う
電極の膨張収縮を許容するには制限がある。したがっ
て、本発明に用いる電極の活物質としては、充放電反応
に伴う膨張収縮の小さい、Li1+xMn2-x4(0≦x
≦0.2)、LiMn2-yMe y4(Me=Ni、C
r、Cu、Zn、0<y≦0.6)、Li4Ti512
たはLi4Mn512であることが望ましい。
The active material of the electrode is transition gold.
It is desirable that the oxide be a lithium oxide containing a group element. Money
When lithium metal is used for the negative electrode, a battery with higher voltage can be obtained.
However, when the solid electrolyte and metallic lithium come into contact,
The solid electrolyte undergoes a reduction reaction, resulting in characteristics as a solid electrolyte
This is because there is a possibility of damaging it. Lithium ion battery
Coke and carbon fiber, which are commonly used in
A high battery is obtained. However, these carbon materials are
Poor wettability with organic compounds and difficult to diffuse into solid electrolyte
Problem that bonding with the solid electrolyte becomes insufficient
There is. Therefore, as the active material of the electrode, solid electrolytic
Lithium oxide containing transition metal that easily diffuses
Is desirable. In the case of solid electrolyte batteries,
Data and organic electrolytes are not used.
There is a limit in allowing the electrodes to expand and contract. Accordingly
The active material of the electrode used in the present invention includes a charge / discharge reaction
Li with small expansion and contraction accompanying1 + xMn2-xOFour(0 ≦ x
≦ 0.2), LiMn2-yMe yOFour(Me = Ni, C
r, Cu, Zn, 0 <y ≦ 0.6), LiFourTiFiveO12Ma
Or LiFourMnFiveO12It is desirable that

【0023】ここで、活物質に含まれる遷移金属元素お
よび固体電解質中に拡散させる遷移金属元素は、マンガ
ン(Mn)およびチタン(Ti)を示す。LiMn2-y
Mey4(Me=Ni、Cr、Cu、Zn、0<y≦
0.6)で表わされる電極活物質は、マンガンおよびチ
タン以外の遷移金属元素(前記化学式中のMe)を含ん
でいるが、これら遷移金属元素が、固体電解質中にマン
ガンと共に拡散しても問題はない。
Here, the transition metal element contained in the active material and the transition metal element diffused into the solid electrolyte are manganese (Mn) and titanium (Ti). LiMn 2-y
Me y O 4 (Me = Ni, Cr, Cu, Zn, 0 <y ≦
The electrode active material represented by the formula (0.6) contains transition metal elements other than manganese and titanium (Me in the above chemical formula). However, even if these transition metal elements diffuse together with manganese in the solid electrolyte, there is a problem. There is no.

【0024】電極2(2a、2b)の形成方法として
は、(1)活物質を成形助剤を溶解させた水もしくは溶
剤に分散させてスラリーを調整し、このスラリーを基材
フィルム上に塗付・乾燥した後、裁断したものを焼成す
る方法、(2)活物質を紛体を直接あるいは造粒して金
型に投入し、プレス機で加圧成形した後焼成する方法、
(3)造粒した紛体をロールプレス機で加圧成形してシ
ート状に加工した後、そのシートを裁断して焼成する方
法などが挙げられる。(2)、(3)の造粒は、(1)
の方法で述べたスラリーから造粒する湿式造粒であって
も溶剤を用いない乾式造粒であっても構わない。また、
(2)の方法では成形助剤を用いなくてもよい。
The method of forming the electrodes 2 (2a, 2b) is as follows: (1) A slurry is prepared by dispersing an active material in water or a solvent in which a molding aid is dissolved, and this slurry is coated on a base film. (2) a method in which the active material is powdered directly or granulated and charged into a metal mold, and then subjected to pressure molding with a press machine, followed by firing;
(3) A method in which the granulated powder is press-formed by a roll press machine, processed into a sheet shape, and then cut and fired. The granulation of (2) and (3) is (1)
The wet granulation using granulation from the slurry described in the above method or the dry granulation using no solvent may be used. Also,
In the method (2), a molding aid may not be used.

【0025】ここで使用可能な成形助剤としては、一般
的なセラミックスの造粒用の有機バインダーを用いるこ
とができる。
As a molding aid usable here, a general organic binder for granulating ceramics can be used.

【0026】基材フィルムとしては、例えばポリエチレ
ンテレフタレート、ポリプロピレン、ポリエチレン、テ
トラフルオロエチレンなどの樹脂フィルム、アルミニウ
ム、ステンレス、銅などの金属箔が使用可能である。
As the base film, for example, resin films such as polyethylene terephthalate, polypropylene, polyethylene, and tetrafluoroethylene, and metal foils such as aluminum, stainless steel, and copper can be used.

【0027】固体電解質3は、公知のリチウムイオン伝
導性固体電解質が利用できる。特に、リチウム(L
i)、チタン(Ti)、リン(P)および酸素(O)元
素を含むリチウムイオン伝導性を有する結晶質の固体電
解質であることが望ましく、Li 1+xxTi2-x(P
43(ここでMはAl、Sc、Y、La)、Li1+x
Ti2- x(PO43、Li0.5-3x0.5+xTiO3(ここ
でRはLa、Pr、Nd、Sm)、Li1+x+yAlxTi
2-xSiy3-y12、Li1+(4-n)xTi2-x(PO43
(Mは1価または2価の陽イオン)などが挙げられる。
The solid electrolyte 3 is made of a known lithium ion
Conductive solid electrolytes can be used. In particular, lithium (L
i), titanium (Ti), phosphorus (P) and oxygen (O) elements
Crystalline solid-state electrodes with lithium ion conductivity containing iodine
Desirably degraded, Li 1 + xMxTi2-x(P
OFour)Three(Where M is Al, Sc, Y, La), Li1 + x
Ti2- x(POFour)Three, Li0.5-3xR0.5 + xTiOThree(here
And R is La, Pr, Nd, Sm), Li1 + x + yAlxTi
2-xSiyP3-yO12, Li1+ (4-n)MxTi2-x(POFour)Three
(M is a monovalent or divalent cation).

【0028】無機系の固体電解質としては、大別して結
晶質と非結晶質に分類されるが、非結晶質で酸化物系の
固体電解質は、リチウムイオン伝導度が室温で1×10
-6S・cm-1程度であり、十分に特性を満たす固体電解
質は見出されていない。また、硫化物系の固体電解質で
は室温でのリチウムイオン伝導度は1×10-3S・cm
-1と有機電解液に匹敵する特性を有しているが、吸湿性
があるなどの問題を有している。さらに非晶質系の固体
電解質は、熱処理の過程において、電極の活物質と互い
に反応を起こし、電極と固体電解質の界面に反応生成物
を形成することが多く、界面の抵抗が高くなる要因とな
る。したがって、用いる固体電解質は、結晶質の固体電
解質であることが望ましい。
Inorganic solid electrolytes are roughly classified into crystalline and non-crystalline. A non-crystalline oxide-based solid electrolyte has a lithium ion conductivity of 1 × 10 at room temperature.
-6 S · cm −1 , and a solid electrolyte that sufficiently satisfies the characteristics has not been found. The sulfide-based solid electrolyte has a lithium ion conductivity of 1 × 10 −3 S · cm at room temperature.
-1, which is comparable to that of organic electrolytes, but has problems such as hygroscopicity. Furthermore, during the heat treatment, the amorphous solid electrolyte reacts with the active material of the electrode, and often forms a reaction product at the interface between the electrode and the solid electrolyte. Become. Therefore, it is desirable that the solid electrolyte used is a crystalline solid electrolyte.

【0029】固体電解質3の形成方法としては、前述の
電極2の形成方法と同様の方法で得られる。
The method for forming the solid electrolyte 3 is the same as the method for forming the electrode 2 described above.

【0030】また、電極2および固体電解質3は、単独
で焼成させるだけでなく、焼結させた固体電解質3を生
成形体の正極2aおよび負極2bで挟持させた状態で積
層した後に処理する方法でも構わない。
The electrode 2 and the solid electrolyte 3 are not only baked alone, but also processed by stacking the sintered solid electrolyte 3 while sandwiching it between the formed positive electrode 2a and negative electrode 2b. I do not care.

【0031】固体電解質3に活物質の遷移金属元素を拡
散させる方法としては、各々単独で焼成した正極2a、
固体電解質3、負極2bを用いて固体電解質3を正極2
aおよび負極2bで挟持させる形で積層して熱処理する
方法、あるいは固体電解質3の焼結体を生成形体の正極
2a、負極2bで同様に積層して熱処理する方法が挙げ
られる。ここで、熱処理の方法としては、常圧による熱
処理、加圧を伴う熱処理が挙げられる。特に加圧による
熱処理は、固体電解質3に対する電極の活物質の遷移金
属元素が速やかに拡散され熱処理の時間を短縮できる効
果がある。
As a method for diffusing the transition metal element of the active material into the solid electrolyte 3, the positive electrode 2 a fired independently,
Using the solid electrolyte 3 and the negative electrode 2b, the solid electrolyte 3 is
and a method in which the laminated body is heat-treated by sandwiching the solid electrolyte 3 and a method in which the sintered body of the solid electrolyte 3 is similarly laminated and heat-treated in the formed positive electrode 2a and the negative electrode 2b. Here, examples of the heat treatment method include a heat treatment at normal pressure and a heat treatment with pressurization. In particular, the heat treatment by pressurizing has an effect that the transition metal element of the active material of the electrode with respect to the solid electrolyte 3 is rapidly diffused, and the time of the heat treatment can be shortened.

【0032】本発明が適用される固体電解質電池は、一
次電池であっても二次電池であってもよい。電池形状は
円筒型、角型、ボタン型、コイン型および扁平型などに
限定されるものではない。
The solid electrolyte battery to which the present invention is applied may be a primary battery or a secondary battery. The battery shape is not limited to a cylindrical type, a square type, a button type, a coin type, a flat type and the like.

【0033】[0033]

【実施例】[実施例]水酸化リチウムと二酸化マンガン
をLiとMnのモル比が1.1:1.9となるように混
合し、この混合物を大気中の650℃で15時間加熱焼
成することによりリチウムマンガン複合酸化物(Li
1.1Mn1.94)を合成し、これを正極の活物質とし
た。次に水酸化リチウムと二酸化マンガンをLiとMn
のモル比が4:5となるように混合し、この混合物を大
気中の600℃で15時間加熱焼成することによりリチ
ウムマンガン複合酸化物(Li4Mn512)を合成し、
これを負極の活物質とした。
EXAMPLES [Example] Lithium hydroxide and manganese dioxide were mixed so that the molar ratio of Li and Mn was 1.1: 1.9, and this mixture was heated and fired at 650 ° C. in the air for 15 hours. The lithium manganese composite oxide (Li
1.1 Mn 1.9 O 4 ) was synthesized and used as an active material of the positive electrode. Next, lithium hydroxide and manganese dioxide were converted to Li and Mn.
And the mixture was heated and calcined at 600 ° C. in the air for 15 hours to synthesize a lithium manganese composite oxide (Li 4 Mn 5 O 12 ).
This was used as the active material of the negative electrode.

【0034】得られた活物質を各々成形助剤を溶解させ
た溶剤に分散させスラリーを調整した。次いでこのスラ
リーをドクターブレード法でグリーンテープ状に成形
し、電極の生成形体を得た。この時の厚みは約50μm
であった。
The obtained active materials were dispersed in a solvent in which a molding aid was dissolved to prepare a slurry. Next, the slurry was formed into a green tape shape by a doctor blade method to obtain a formed electrode. The thickness at this time is about 50 μm
Met.

【0035】固体電解質3としては、主結晶相がLi
1+x+yAlxTi2-xSiy3-y12で表わされる結晶質
の固体電解質を用いた。粉末状の固体電解質を成形用助
剤を溶解させた溶剤に分散させてスラリーを調整した。
このスラリーをドクターブレード法でグリーンテープ状
に成形し、固体電解質の生成形体を得た。この時の厚み
は約70μmであった。次いでこのグリーンテープを3
5cm×35cmのサイズに裁断し、1250℃の温度
で3時間焼成し固体電解質3の焼結体を得た。この時の
焼結体の厚みは約55μmであり、28cm×28cm
のサイズであった。
As the solid electrolyte 3, the main crystal phase is Li
1 + x + y using Al x Ti 2-x Si y P 3-y O 12 crystalline solid electrolyte represented by. The slurry was prepared by dispersing the powdery solid electrolyte in a solvent in which a molding aid was dissolved.
This slurry was formed into a green tape by a doctor blade method to obtain a solid electrolyte formed form. The thickness at this time was about 70 μm. Next, apply this green tape to 3
It was cut into a size of 5 cm × 35 cm and fired at a temperature of 1250 ° C. for 3 hours to obtain a sintered body of the solid electrolyte 3. The thickness of the sintered body at this time is about 55 μm, and is 28 cm × 28 cm
It was the size of.

【0036】先に得られた正極および負極の生成形体を
25cm×25cmのサイズに裁断し、固体電解質の焼
結体を挟持する形で積層して加圧熱処理を行い、正極2
a−固体電解質3−負極2bの積層体を得た。加圧熱処
理は、350℃の温度で1時間の脱バインダーを行った
後、550℃の温度で20分、加圧荷重5.4MPaで
行ったものである。この時の積層体の正極および負極
は、厚みが28μm、25mm×25mmのサイズであ
り、厚み方向のみの収縮が確認された。
The obtained shaped bodies of the positive electrode and the negative electrode obtained above were cut into a size of 25 cm × 25 cm, laminated with a solid electrolyte sintered body sandwiched therebetween, and subjected to pressure heat treatment.
A laminate of a-solid electrolyte 3-negative electrode 2b was obtained. The pressure heat treatment is performed by removing the binder at a temperature of 350 ° C. for 1 hour and then performing a pressure load of 5.4 MPa at a temperature of 550 ° C. for 20 minutes. At this time, the positive electrode and the negative electrode of the laminate had a thickness of 28 μm and a size of 25 mm × 25 mm, and contraction only in the thickness direction was confirmed.

【0037】積層体の正極2aに正極集電体4を接合す
ると共に、同様に負極2bに負極集電体5を接合してパ
ッケージ1のアルミ製ラミネートに装着した。アルミ製
ラミネートは35mm×35mmのサイズに切断したも
のを2枚準備し、集電体を接合した積層体を挟み、アル
ミ製ラミネートの外周部を熱圧着することで、図1に示
した35mm×35mmの角型固体電解質電池を組み立
てた。
The positive electrode current collector 4 was joined to the positive electrode 2a of the laminate, and the negative electrode current collector 5 was similarly joined to the negative electrode 2b and mounted on the aluminum laminate of the package 1. The aluminum laminate was prepared by cutting two pieces having a size of 35 mm × 35 mm, sandwiching the laminated body in which the current collectors were joined, and thermocompression-bonding the outer periphery of the aluminum laminate to obtain the 35 mm × 35 mm shown in FIG. A 35 mm square solid electrolyte battery was assembled.

【0038】さらに、固体電解質電池の断面の界面をE
PMAで分析したところ、固体電解質3の正極2aおよ
び負極2bとの界面付近には、マンガン(Mn)元素が
存在していることが確認された。また、固体電解質3の
中央部には、マンガン元素は検出されなかった。このこ
とから、電極活物質中のマンガン元素が固体電解質中に
拡散していることが確認された。
Further, the interface of the cross section of the solid electrolyte battery is denoted by E
Analysis by PMA confirmed that the manganese (Mn) element was present near the interface between the solid electrolyte 3 and the positive electrode 2a and the negative electrode 2b. No manganese element was detected in the center of the solid electrolyte 3. This confirmed that the manganese element in the electrode active material was diffused into the solid electrolyte.

【0039】[比較例]正極の活物質および負極の活物
質の合成方法および固体電解質の焼成方法は、実施例と
同様に行った。また、得られた固体電解質の厚みは約5
3μmであった。
COMPARATIVE EXAMPLE The method for synthesizing the active material for the positive electrode and the active material for the negative electrode and the method for firing the solid electrolyte were the same as in the example. The thickness of the obtained solid electrolyte is about 5
It was 3 μm.

【0040】電極の形成は以下の手順で行った。先に得
られた正極および負極の活物質をポリフッ化ビニリデン
を溶解させたN−メチル−2−ピロリドンに分散させて
スラリーを調整した。得られたスラリーをドクターブレ
ード法でアルミ箔上に塗付し、N−メチル−2−ピロリ
ドンを除去させることで正極および負極の電極を得た。
更に得られた電極の紛体の充填率を向上させる目的でロ
ール加圧した。得られた電極の厚みは各々30μmであ
った。
The electrodes were formed in the following procedure. The active materials for the positive electrode and the negative electrode obtained above were dispersed in N-methyl-2-pyrrolidone in which polyvinylidene fluoride was dissolved to prepare a slurry. The obtained slurry was applied on an aluminum foil by a doctor blade method, and N-methyl-2-pyrrolidone was removed to obtain a positive electrode and a negative electrode.
Further, roll pressure was applied for the purpose of improving the powder filling rate of the obtained electrode. The thickness of each of the obtained electrodes was 30 μm.

【0041】得られた電極を25mm×25mmのサイ
ズに裁断し、先に得られた固体電解質の焼結体を挟持す
る形で積層し、更に電極と固体電解質の密着性を向上さ
せる目的でポリフッ化ビニリデンの融点付近である約1
70℃の温度で加熱した。
The obtained electrode is cut into a size of 25 mm × 25 mm, and the obtained sintered body of the solid electrolyte is laminated so as to be sandwiched therebetween. About 1 which is near the melting point of vinylidene
Heated at a temperature of 70 ° C.

【0042】得られた積層体は実施例と同様にして角型
の固体電解質電池を組み立てた。また、実施例と同様に
固体電解質中のマンガン元素の分布状態をEPMAで確
認したが、いずれの場所においてもマンガン元素の存在
は確認されなかった。
From the obtained laminate, a rectangular solid electrolyte battery was assembled in the same manner as in the example. Further, the distribution state of the manganese element in the solid electrolyte was confirmed by EPMA in the same manner as in the example, but the presence of the manganese element was not confirmed at any place.

【0043】(評価)かくして得られた角型固体電解質
電池を用いて、充放電装置により、充電条件として10
0μA/cm2、200μA/cm2、500μA/cm
2の電流で前述の角型固体電解質電池に1.5Vまで充
電を行い、電圧が1.5Vに到達後、充電を停止して5
分間保持し、その後0.5Vの電圧まで充電時と同じ電
流で放電し、次に再度1.5Vまで充電し、この電圧に
到達後、充電を停止して5分間保持する充放電サイクル
評価を行った。
(Evaluation) Using the thus obtained rectangular solid electrolyte battery, the charging condition was set to 10
0 μA / cm 2 , 200 μA / cm 2 , 500 μA / cm
The above-mentioned rectangular solid electrolyte battery is charged to 1.5 V with a current of 2 , and after the voltage reaches 1.5 V, charging is stopped and 5
After that, the battery was discharged to the voltage of 0.5 V with the same current as that at the time of charging, then charged again to 1.5 V, and after reaching this voltage, the charging was stopped and held for 5 minutes. went.

【0044】その結果を表1に示す。なお、表中の数字
は各放電電流に対する放電容量を示し、単位はmAhで
ある。
Table 1 shows the results. The numbers in the table indicate the discharge capacity for each discharge current, and the unit is mAh.

【0045】[0045]

【表1】 [Table 1]

【0046】以上のことから、固体電解質に電極の活物
質に含まれる遷移金属元素を拡散させた固体電解質電池
は、固体電解質に電極を密着させただけの固体電解質電
池と比較すると、充放電特性に優れていることがわか
る。特に放電電流が大きくなっても放電容量の低下が小
さいことが顕著である。
As described above, the solid electrolyte battery in which the transition metal element contained in the active material of the electrode is diffused in the solid electrolyte has a higher charge / discharge characteristic than the solid electrolyte battery in which the electrode is merely adhered to the solid electrolyte. It turns out that it is excellent. In particular, it is remarkable that the decrease in the discharge capacity is small even when the discharge current increases.

【0047】これは、本発明の固体電解質電池では、正
極側の固体電解質に正極の活物質に含まれる遷移金属元
素が拡散し、負極側の固体電解質に負極の活物質に含ま
れる遷移金属元素が拡散していることにより、電極と固
体電解質の接合が強固になって、電極と固体電解質の界
面の抵抗が低減され、結果として内部抵抗が小さくなっ
たためと推測される。
This is because, in the solid electrolyte battery of the present invention, the transition metal element contained in the active material of the positive electrode diffuses into the solid electrolyte on the positive electrode side, and the transition metal element contained in the active material of the negative electrode diffuses into the solid electrolyte on the negative electrode side. Is presumed to be due to the fact that the bonding between the electrode and the solid electrolyte is strengthened due to the diffusion of, the resistance at the interface between the electrode and the solid electrolyte is reduced, and as a result, the internal resistance is reduced.

【0048】[0048]

【発明の効果】以上のように、本発明に係わる固体電解
質電池によれば、正極側の固体電解質に正極の活物質に
含まれる遷移金属元素が拡散し、負極側の固体電解質に
負極の活物質に含まれる遷移金属元素が拡散しているこ
とから、電極と固体電解質の接合が強固になる。そのこ
とから、界面の接触面積が大きくなることにより、電池
の内部抵抗を低減することができ、充放電特性に優れた
固体電解質電池を得ることができる。
As described above, according to the solid electrolyte battery of the present invention, the transition metal element contained in the active material of the positive electrode diffuses into the solid electrolyte on the positive electrode side, and the active material of the negative electrode flows into the solid electrolyte on the negative electrode side. Since the transition metal element contained in the substance is diffused, the bonding between the electrode and the solid electrolyte is strengthened. As a result, the internal contact resistance of the battery can be reduced by increasing the contact area of the interface, and a solid electrolyte battery having excellent charge / discharge characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるリチウム電池の一実施形態を示
す断面図である。
FIG. 1 is a cross-sectional view showing one embodiment of a lithium battery according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・・パッケージ、2・・・・一対の電極、2a・
・・・正極、2b・・・・負極、3・・・・固体電解質
層、4・・・・正極集電体、5・・・・負極集電体
1 ··· package, 2 ··· pair of electrodes, 2a ·
... Positive electrode, 2b ... Negative electrode, 3 ... Solid electrolyte layer, 4 ... Positive electrode current collector, 5 ... Negative electrode current collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬込 伸二 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 原 亨 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 北原 暢之 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 樋口 永 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 Fターム(参考) 5H003 AA01 BB05 BC01 BC06 BD00 5H024 AA02 CC04 CC07 FF23 HH00 5H029 AJ01 AK03 AL03 AM12 BJ04 DJ17 HJ02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shinji Magome 3-5 Koikodai, Seika-cho, Soraku-gun, Kyoto Prefecture Inside the Central Research Laboratories of Kyocera Corporation (72) Inventor Toru Hara 3-cho, Koikadai, Soraku-gun, Kyoto 5 Kyocera Corporation Central Research Laboratory (72) Inventor Nobuyuki Kitahara 3-chome, Seika-cho, Soraku-gun, Kyoto Prefecture 5-5-2 Kyocera Corporation Central Research Laboratory (72) Inventor, Ei Higuchi Seika-cho, Kyoto 3-5-5 Kyocera Corporation Central Research Laboratory F-term (reference) 5H003 AA01 BB05 BC01 BC06 BD00 5H024 AA02 CC04 CC07 FF23 HH00 5H029 AJ01 AK03 AL03 AM12 BJ04 DJ17 HJ02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 遷移金属元素を含んだ活物質から成る正
負一対の電極間に固体電解質を配設して成る固体電解質
電池であって、前記正極側の固体電解質に前記正極の活
物質に含まれる遷移金属元素が拡散し、前記負極側の固
体電解質に前記負極の活物質に含まれる遷移金属元素が
拡散していることを特徴とする固体電解質電池。
1. A solid electrolyte battery comprising a solid electrolyte disposed between a pair of positive and negative electrodes made of an active material containing a transition metal element, wherein the solid electrolyte on the positive electrode side is included in the active material of the positive electrode. Wherein the transition metal element contained in the active material of the negative electrode is diffused into the solid electrolyte on the negative electrode side.
【請求項2】 前記固体電解質がリチウム(Li)、チ
タン(Ti)、リン(P)および酸素(O)元素を含む
リチウムイオン伝導性を有する結晶質であることを特徴
とする請求項1に記載の固体電解質電池。
2. The method according to claim 1, wherein the solid electrolyte is a crystalline material having lithium ion conductivity including lithium (Li), titanium (Ti), phosphorus (P) and oxygen (O) elements. The solid electrolyte battery according to any one of the preceding claims.
【請求項3】 前記正極の活物質がLi1+xMn2-x4
(0≦x≦0.2)またはLiMn2-yMey4(Me
=Ni、Cr、Cu、Zn、0<y≦0.6)から成
り、前記負極の活物質がLi4Ti512またはLi4
512から成ることを特徴とする請求項1または請求
項2に記載の固体電解質電池。
3. The positive electrode active material is Li 1 + x Mn 2-x O 4.
(0 ≦ x ≦ 0.2) or LiMn 2-y Me y O 4 (Me
= Ni, Cr, Cu, Zn, 0 <y ≦ 0.6), and the active material of the negative electrode is Li 4 Ti 5 O 12 or Li 4 M
3. The solid electrolyte battery according to claim 1, comprising n 5 O 12 .
JP27535499A 1999-09-28 1999-09-28 Solid electrolyte cell Pending JP2001093535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27535499A JP2001093535A (en) 1999-09-28 1999-09-28 Solid electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27535499A JP2001093535A (en) 1999-09-28 1999-09-28 Solid electrolyte cell

Publications (1)

Publication Number Publication Date
JP2001093535A true JP2001093535A (en) 2001-04-06

Family

ID=17554314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27535499A Pending JP2001093535A (en) 1999-09-28 1999-09-28 Solid electrolyte cell

Country Status (1)

Country Link
JP (1) JP2001093535A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064774A1 (en) * 2004-12-13 2006-06-22 Matsushita Electric Industrial Co., Ltd. Multilayer body containing active material layer and solid electrolyte layer, and all-solid lithium secondary battery using same
JP2007005279A (en) * 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
WO2007135790A1 (en) 2006-05-23 2007-11-29 Incorporated National University Iwate University Total solid rechargeable battery
JP2009245913A (en) * 2007-09-11 2009-10-22 Sumitomo Electric Ind Ltd Lithium battery
US20100003592A1 (en) * 2007-02-13 2010-01-07 Incorporated National University Iwate University All solid state secondary battery
WO2009120812A3 (en) * 2008-03-25 2010-01-07 A123 Systems, Inc. High energy high power electrodes and batteries
WO2012043566A1 (en) * 2010-09-28 2012-04-05 トヨタ自動車株式会社 Sintered body for use in battery, method for manufacturing sintered body for use in battery, and all-solid-state lithium battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005279A (en) * 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
WO2006064774A1 (en) * 2004-12-13 2006-06-22 Matsushita Electric Industrial Co., Ltd. Multilayer body containing active material layer and solid electrolyte layer, and all-solid lithium secondary battery using same
US8883347B2 (en) 2006-05-23 2014-11-11 Namics Corporation All solid state secondary battery
WO2007135790A1 (en) 2006-05-23 2007-11-29 Incorporated National University Iwate University Total solid rechargeable battery
EP2058892A1 (en) * 2006-05-23 2009-05-13 Inmotech Technology Corporation Total solid rechargeable battery
EP2058892A4 (en) * 2006-05-23 2011-11-30 Iomtechnology Corp Total solid rechargeable battery
US9263727B2 (en) 2006-05-23 2016-02-16 Namics Corporation All solid state secondary battery
US20100003592A1 (en) * 2007-02-13 2010-01-07 Incorporated National University Iwate University All solid state secondary battery
JP2009245913A (en) * 2007-09-11 2009-10-22 Sumitomo Electric Ind Ltd Lithium battery
WO2009120812A3 (en) * 2008-03-25 2010-01-07 A123 Systems, Inc. High energy high power electrodes and batteries
US9299966B2 (en) 2008-03-25 2016-03-29 A123 Systems Llc High energy high power electrodes and batteries
WO2012043566A1 (en) * 2010-09-28 2012-04-05 トヨタ自動車株式会社 Sintered body for use in battery, method for manufacturing sintered body for use in battery, and all-solid-state lithium battery
KR101463701B1 (en) * 2010-09-28 2014-11-19 도요타 지도샤(주) Sintered body for use in battery, method for manufacturing sintered body for use in battery, and all-solid-state lithium battery
JP5754442B2 (en) * 2010-09-28 2015-07-29 トヨタ自動車株式会社 Battery sintered body, method for producing battery sintered body, and all-solid lithium battery
JPWO2012043566A1 (en) * 2010-09-28 2014-02-24 トヨタ自動車株式会社 Battery sintered body, method for producing battery sintered body, and all-solid lithium battery
CN103119772A (en) * 2010-09-28 2013-05-22 丰田自动车株式会社 Sintered body for use in battery, method for manufacturing sintered body for use in battery, and all-solid-state lithium battery

Similar Documents

Publication Publication Date Title
US9005817B2 (en) Electrode for lithium battery comprising solid electrolyte nanoparticles and lithium battery
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
US20170358825A1 (en) Secondary battery composite electrolyte, secondary battery, and battery pack
JP2001126758A (en) Lithium battery
US20130273437A1 (en) All solid state battery
JPH11283664A (en) Solid-electrolyte battery
EP1445806B1 (en) Electric cell
EP2299532B1 (en) Electrode assembly and secondary battery including the same
JP2001185141A (en) Lithium battery
CN115347227A (en) All-solid-state battery
CN110235284A (en) The manufacturing method of all-solid-state battery electrode and the manufacturing method of all-solid-state battery
JP6070681B2 (en) Lithium battery electrode body and lithium battery
JP2001102056A (en) Lithium cell
JP2000331684A (en) Laminated solid secondary battery
KR101979040B1 (en) Lithium accumulator
JP4336007B2 (en) Lithium battery
JP2001068149A (en) All solid lithium secondary battery
JP2000251938A (en) Manufacture of all solid lithium battery
JP5132614B2 (en) Lithium battery
JP2000340255A (en) Lithium battery
JP2020126790A (en) All-solid type lithium secondary battery
JP2002042785A (en) Lithium battery
JP2001185165A (en) Lithium battery
JP2001093535A (en) Solid electrolyte cell
JP5132613B2 (en) Lithium battery