JPH11283664A - Solid-electrolyte battery - Google Patents

Solid-electrolyte battery

Info

Publication number
JPH11283664A
JPH11283664A JP10082136A JP8213698A JPH11283664A JP H11283664 A JPH11283664 A JP H11283664A JP 10082136 A JP10082136 A JP 10082136A JP 8213698 A JP8213698 A JP 8213698A JP H11283664 A JPH11283664 A JP H11283664A
Authority
JP
Japan
Prior art keywords
solid electrolyte
battery
intermediate layer
active material
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10082136A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kitahara
暢之 北原
Hiroshi Maruyama
博 丸山
Toshihiko Kamimura
俊彦 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10082136A priority Critical patent/JPH11283664A/en
Publication of JPH11283664A publication Critical patent/JPH11283664A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a solid-electrolyte battery of high energy density, whose battery characteristics such as rate characteristic and preservability are enhanced, so that it is particularly excellent in charge and discharge cycle characteristic as a secondary battery. SOLUTION: This solid-electrolyte battery 1 is basically constructed of a pair of positive and negative electrodes 2, 3 with a solid electrolyte 4 intervening therebetween and at least one intermediate layer 5, 6 placed between the solid electrode 4 and at least either of the electrodes 2, 3, the intermediate layer having a composition of a solid electrolyte comprising 5-95 wt.% active materials and 5-95 wt.% solid electrolyte. In this case, at least either of the intermediate layer 5, 6 consists of three layers and is made up of 30 to 70 wt.% active materials and 30 to 70 wt.% solid electrolyte; the active materials forming the intermediate layer are preferably LiCoO2 for the positive electrode and one kind selected from TiO2 and V2 O5 for the negative electrode, and the solid electrolyte is preferably Li3 PO4 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電極間に介在させ
る電解質として固体状の電解質を用いた電池に関し、特
に、リチウムイオンを吸蔵及び放出することが可能な電
極用活物質を用いた、よりサイクル特性に優れた二次電
池として最適な固体電解質電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery using a solid electrolyte as an electrolyte interposed between electrodes, and more particularly to a battery using an electrode active material capable of inserting and extracting lithium ions. The present invention relates to a solid electrolyte battery optimal as a secondary battery having excellent cycle characteristics.

【0002】[0002]

【従来の技術】従来より、各種電池の電解質としては、
一般に、水系あるいは非水系の電解液が使用されていた
が、近年、ビデオ撮影装置やノートパソコン、携帯電話
等の携帯用情報端末機器に代表される各種電子応用機器
の薄型かつ軽量小型化の要求に伴い、前述のような液状
の電解質に代えて、正負一対の電極間に高分子材料で構
成された固体状の電解質を用いた固体電解質電池が注目
されている。
2. Description of the Related Art Conventionally, as an electrolyte for various batteries,
In general, aqueous or non-aqueous electrolytes have been used. In recent years, there has been a demand for thinner, lighter, and smaller electronic devices such as video photographing devices, notebook computers, and portable information terminals such as mobile phones. Accordingly, a solid electrolyte battery using a solid electrolyte composed of a polymer material between a pair of positive and negative electrodes instead of the liquid electrolyte as described above has been receiving attention.

【0003】かかる固体電解質電池は、電解質が液状で
ないため、電池の発火等の安全性に関与する主要な問題
点である漏液の心配がなく、腐食性も小さいという優れ
た特徴を有するものであった。
[0003] Such a solid electrolyte battery has excellent characteristics that the electrolyte is not in a liquid state, so that there is no fear of liquid leakage, which is a major problem relating to the safety such as ignition of the battery, and the corrosiveness is small. there were.

【0004】しかしながら、このような高分子材料から
成る固体電解質を、例えば、二次電池の電解質として用
いた場合には、該高分子材料のイオン伝導性が低く、大
電流を取り出せず、又、充放電におけるレート特性やサ
イクル特性、保存特性等の電池性能が悪いという問題が
あった。
However, when such a solid electrolyte made of a polymer material is used, for example, as an electrolyte for a secondary battery, the ionic conductivity of the polymer material is low, so that a large current cannot be taken out. There is a problem that the battery performance such as rate characteristics, cycle characteristics, and storage characteristics in charge and discharge is poor.

【0005】そこで、前記諸問題を解決するために、前
記高分子材料から成る固体電解質中に金属酸化物を微量
添加して該高分子材料の重合を促進させ安定化させた
り、あるいは活物質の表面を改質したりすることや、図
5に示すように正負一対の電極20、21の一方の電極
20を、蒸着技術等により薄膜化した活物質22と固体
電解質23を積層することにより形成し、電極20、2
1と固体電解質24の分極抵抗を小さくすること等、各
種提案がなされている(特開平9−97616号公報、
特開昭61−263060号公報参照)。
In order to solve the above-mentioned problems, a small amount of a metal oxide is added to a solid electrolyte composed of the polymer material to promote and stabilize the polymerization of the polymer material, or to improve the stability of the active material. The surface is modified, or as shown in FIG. 5, one of the pair of positive and negative electrodes 20, 21 is formed by laminating an active material 22 and a solid electrolyte 23, which are thinned by a vapor deposition technique or the like. And electrodes 20, 2
Various proposals have been made, such as reducing the polarization resistance of the solid electrolyte 1 and the solid electrolyte 24 (Japanese Patent Application Laid-Open No. 9-97616,
See JP-A-61-263060).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記提
案では、金属酸化物を微量添加して高分子材料を安定化
させたり、活物質の表面を改質したりしてイオン伝導性
を付与させても、従来の液状の電解質に比べてイオン伝
導度が数段低く不十分であり、更に、前記正負一対の電
極のいずれかを、薄膜化した活物質と固体電解質を積層
して形成した場合には、積層することにより生じる界面
の存在によりその内部抵抗が高くなり、得られる電流密
度が十分ではなく、しかも、充放電サイクルの履歴によ
りマクロな界面でのイオンのトラップから充放電可能な
容量の短期間の低下というサイクル特性の劣化を引き起
こす等の課題があった。
However, in the above proposal, a small amount of a metal oxide is added to stabilize a polymer material, or the surface of an active material is modified to impart ionic conductivity. Also, the ionic conductivity is several steps lower than the conventional liquid electrolyte and insufficient, and further, when one of the pair of positive and negative electrodes is formed by laminating a thinned active material and a solid electrolyte. However, the internal resistance increases due to the presence of the interface caused by stacking, the obtained current density is not sufficient, and the capacity that can be charged and discharged from the ion trap at the macro interface by the history of the charge and discharge cycle. There were problems such as deterioration of cycle characteristics such as short-term deterioration.

【0007】又、一般に、電極上での充放電反応は、二
次電池の場合、電極用活物質と固体電解質のミクロな界
面が前記充放電反応の速度を律することになり、全固体
二次電池では、電極用活物質と固体電解質のミクロな界
面そのものが大きく接触している程、充放電の性能向上
に寄与すると考えられるが、前記提案では、界面におけ
るイオン伝導が速やかに行われないことから、製造工程
における電極積層が蒸着法等の煩雑なものであるにも係
わらず、得られる電流密度が小さいこと等、いずれもエ
ネルギー密度の高い二次電池としては、実用性に欠ける
という課題があった。
In general, in the case of a secondary battery, the charge / discharge reaction on the electrode is determined by the micro-interface between the active material for the electrode and the solid electrolyte, and the rate of the charge / discharge reaction is controlled. In a battery, it is thought that the larger the micro interface itself between the electrode active material and the solid electrolyte is, the more it contributes to the improvement of the charge / discharge performance.However, in the above proposal, the ion conduction at the interface is not performed promptly. Therefore, despite the fact that the electrode lamination in the manufacturing process is complicated such as a vapor deposition method, the obtained current density is small, and as a secondary battery having a high energy density, there is a problem of lack of practicality. there were.

【0008】[0008]

【発明の目的】本発明は、前記課題に鑑み成されたもの
で、その目的は、電池としてのレート特性や保存性等の
諸特性が向上した、特に二次電池として充放電サイクル
特性に優れたエネルギー密度の高い固体電解質電池を提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to improve various characteristics such as a rate characteristic and a storage property of a battery, and particularly to provide a secondary battery with excellent charge-discharge cycle characteristics. Another object of the present invention is to provide a solid electrolyte battery having a high energy density.

【0009】[0009]

【課題を解決するための手段】本発明者等は、前記課題
を解決するために鋭意検討した結果、固体電解質を二次
電池の電解質として用いた場合、大電流を取り出せない
要因は、電極と固体電解質の界面の分極抵抗にあり、イ
オン伝導性を左右する前記分極抵抗を小さくすべく種々
試みた結果、電極と固体電解質との間に活物質と該固体
電解質とから成る中間層を設けて活物質と固体電解質の
粒子サイズのミクロな界面を増加させる、即ち、電極間
のリチウムイオンのイオン伝導を粒子レベルにおいて電
気化学的、物理的に補助することにより、前記分極抵抗
を小さくできることを知見し、本発明に至った。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, when a solid electrolyte is used as an electrolyte of a secondary battery, the reason why a large current cannot be taken out is that the electrodes and In the polarization resistance at the interface of the solid electrolyte, as a result of various attempts to reduce the polarization resistance that affects ionic conductivity, an intermediate layer comprising an active material and the solid electrolyte is provided between the electrode and the solid electrolyte. It has been found that the polarization resistance can be reduced by increasing the microscopic interface of the particle size of the active material and the solid electrolyte, that is, by electrochemically and physically assisting the ion conduction of lithium ions between the electrodes at the particle level. Thus, the present invention has been achieved.

【0010】即ち、本発明の固体電解質電池は、正負一
対の電極間に固体電解質を介在させ、該固体電解質と少
なくとも一方の電極との間に、5〜95重量%の活物質
と5〜95重量%の固体電解質とから成る少なくとも一
層の中間層を配設したことを特徴とするものである。
That is, in the solid electrolyte battery of the present invention, a solid electrolyte is interposed between a pair of positive and negative electrodes, and between the solid electrolyte and at least one electrode, 5 to 95% by weight of an active material and 5 to 95% by weight. At least one intermediate layer composed of a solid electrolyte of about 10% by weight is provided.

【0011】特に、前記中間層は、三層から成るもの
が、更に30〜70重量%の活物質と30〜70重量%
の固体電解質とから成るものが、又、前記中間層を形成
する活物質は、正極側ではLiCoO2 から成り、負極
側ではTiO2 、V2 5 のいずれか一種から成るもの
が、更に、前記固体電解質は、Liイオン伝導体である
Li3 PO4 がより望ましいものである。
In particular, the intermediate layer is composed of three layers, and further comprises 30 to 70% by weight of the active material and 30 to 70% by weight.
The active material forming the intermediate layer is made of LiCoO 2 on the positive electrode side, and one made of TiO 2 or V 2 O 5 on the negative electrode side. The solid electrolyte is more preferably Li 3 PO 4 which is a Li ion conductor.

【0012】[0012]

【作用】本発明の固体電解質電池によれば、電極と固体
電解質との間に特定割合の活物質と固体電解質から成る
中間層を配設したことから、活物質と固体電解質の粒子
サイズでのミクロな界面が増加して電極と固体電解質の
界面の分極抵抗が低下し、しかも、電極間には、固体電
解質のみの薄い絶縁層を有することから、電極の短絡が
防止でき、電極間距離を極めて狭くすることが可能とな
る。
According to the solid electrolyte battery of the present invention, since the intermediate layer composed of the specific ratio of the active material and the solid electrolyte is provided between the electrode and the solid electrolyte, the particle size of the active material and the solid electrolyte is reduced. The microscopic interface increases and the polarization resistance at the interface between the electrode and the solid electrolyte decreases, and since a thin insulating layer consisting of only the solid electrolyte is provided between the electrodes, short-circuiting of the electrodes can be prevented and the distance between the electrodes can be reduced. It is possible to make it extremely narrow.

【0013】その結果、かかる二次電池の充放電に直接
関与しない固体電解質の量を最小限にまで抑制でき、電
池の容量を決定する電極用活物質の量を増加させて、活
物質と固体電解質との接触面積が増大し、界面の分極抵
抗が減少することから、電池の内部抵抗が小さくなり、
前記界面におけるイオン伝導が速やかに行われ、電池か
ら取り出せる電流は、大きなものが得られる。
As a result, the amount of the solid electrolyte that does not directly participate in the charging and discharging of the secondary battery can be suppressed to a minimum, and the amount of the electrode active material that determines the capacity of the battery can be increased. Since the contact area with the electrolyte increases and the polarization resistance at the interface decreases, the internal resistance of the battery decreases,
Ion conduction at the interface is performed quickly, and a large current can be obtained from the battery.

【0014】[0014]

【発明の実施の形態】以下、本発明の固体電解質電池を
図面に基づき詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a solid electrolyte battery according to the present invention will be described in detail with reference to the drawings.

【0015】図1は、本発明の固体電解質電池をコイン
型電池に適用した一例を示す断面図である。
FIG. 1 is a sectional view showing an example in which the solid electrolyte battery of the present invention is applied to a coin-type battery.

【0016】図において、1は一対の電極2、3と、固
体電解質4と、中間層5、6を基本構成とする固体電解
質電池であり、一対の電極2、3と固体電解質4との間
にそれぞれ中間層5、6が挟持され、電極2、3の外表
面にアルミニウム箔から成る集電体7を設けて主要部を
構成し、その外周を電池容器8と9が樹脂充填物10で
密封されてコイン型電池が形成されている。
In FIG. 1, reference numeral 1 denotes a solid electrolyte battery having a pair of electrodes 2 and 3, a solid electrolyte 4 and intermediate layers 5 and 6 as a basic structure. Each of the intermediate layers 5 and 6 is sandwiched therebetween, and a current collector 7 made of aluminum foil is provided on the outer surfaces of the electrodes 2 and 3 to constitute a main part. A sealed battery is formed.

【0017】本発明の固体電解質電池において、中間層
を形成する活物質としては、正極と固体電解質との間に
設けた中間層、即ち正極側においては、マンガン(M
n)、コバルト(Co)、ニッケル(Ni)、バナジウ
ム(V)、ニオブ(Nb)の少なくとも一種を含む金属
酸化物等が挙げられ、特に、リチウムイオンを供給及び
移動させることが可能な、例えば、LiCoO2 やLi
NiO2 、LiNi1/2Co1/2 2 、LiMn2 4
等が好適である。
In the solid electrolyte battery of the present invention, the active material forming the intermediate layer is manganese (Mn) on the intermediate layer provided between the positive electrode and the solid electrolyte, ie, on the positive electrode side.
n), a metal oxide containing at least one of cobalt (Co), nickel (Ni), vanadium (V), and niobium (Nb). In particular, lithium ions can be supplied and moved. , LiCoO 2 and Li
NiO 2 , LiNi 1/2 Co 1/2 O 2 , LiMn 2 O 4
Etc. are preferred.

【0018】又、他方の負極側においては、電気化学的
な酸化還元反応によりリチウムイオンを吸蔵及び放出さ
せることが可能な、金属リチウム(Li)あるいはリチ
ウム(Li)とアルミニウム(Al)、インジウム(I
n)、スズ(Sn)、鉛(Pb)、シリコン(Si)、
亜鉛(Zn)、カドミウム(Cd)、カルシウム(C
a)、バリウム(Ba)の少なくとも一種との合金、F
2 3 やTiO2 、Nb2 3 、V2 5 、WO3
の金属酸化物、天然黒鉛や人造黒鉛、無定形炭素等の炭
素材料が適用でき、望ましくはマンガン(Mn)やチタ
ン(Ti)、バナジウム(V)、ニオブ(Nb)の少な
くとも一種を含む金属酸化物が好適である。
On the other side of the negative electrode, metallic lithium (Li) or lithium (Li) and aluminum (Al), indium (metal) capable of inserting and extracting lithium ions by an electrochemical redox reaction. I
n), tin (Sn), lead (Pb), silicon (Si),
Zinc (Zn), Cadmium (Cd), Calcium (C
a) an alloy with at least one of barium (Ba),
Metal oxides such as e 2 O 3 , TiO 2 , Nb 2 O 3 , V 2 O 5 , and WO 3 , and carbon materials such as natural graphite, artificial graphite, and amorphous carbon can be used. A metal oxide containing at least one of titanium (Ti), vanadium (V), and niobium (Nb) is preferable.

【0019】又、前記中間層中の活物質の含有量が5重
量%未満、即ち、固体電解質の含有量が95重量%を越
える場合には、固体電解質の特性と同一になり、混合す
ることによる中間層としての効果が認められず、前記活
物質の含有量が95重量%を越える、即ち、固体電解質
の含有量が5重量%未満の場合には、中間層は活物質の
特性が支配的となり、いずれも界面の分極抵抗の低下に
は不適当である。
When the content of the active material in the intermediate layer is less than 5% by weight, that is, when the content of the solid electrolyte exceeds 95% by weight, the characteristics of the solid electrolyte become the same, and mixing is performed. When the content of the active material exceeds 95% by weight, that is, when the content of the solid electrolyte is less than 5% by weight, the characteristics of the active material dominate in the intermediate layer. All of them are unsuitable for lowering the polarization resistance at the interface.

【0020】とりわけ、前記電池特性の内、サイクル特
性を効果的に改善するという点に注目した場合には、前
記活物質の含有量が30〜70重量%、固体電解質の含
有量が30〜70重量%であることがより望ましい。
In particular, when attention is paid to the point of effectively improving the cycle characteristics among the battery characteristics, the content of the active material is 30 to 70% by weight, and the content of the solid electrolyte is 30 to 70%. It is more desirable that the content be% by weight.

【0021】一方、前記中間層を形成する固体電解質
は、リチウムイオンのイオン伝導性を有するものであれ
ば特に限定するものではないが、例えば、硫化リチウム
(LiS)や硫化リチウム(LiS)を含むイオン伝導
性ガラス、Li3 N−LiI化合物、Li3 PO4 、あ
るいはTiやV、Cr、Mn、Fe、Co、Ni等の遷
移金属を含むリチウム酸化物等が挙げられ、正極側及び
負極側の活物質との混合が均一、かつ良好なイオン伝導
性を確保するという点では、Li3 PO4 が最も望まし
い。
On the other hand, the solid electrolyte forming the intermediate layer is not particularly limited as long as it has ion conductivity of lithium ions, and includes, for example, lithium sulfide (LiS) and lithium sulfide (LiS). Ion conductive glass, Li 3 N—LiI compound, Li 3 PO 4 , or a lithium oxide containing a transition metal such as Ti, V, Cr, Mn, Fe, Co, Ni, and the like. Li 3 PO 4 is most desirable from the viewpoint that mixing with the active material is uniform and good ion conductivity is ensured.

【0022】次いで、前記活物質と固体電解質とから成
る中間層は、本発明の固体電解質電池の基本構成の一例
を示す図2のように、集電体7を有する前記一対の電極
2、3の内、片方の電極2と固体電解質4との間に中間
層5を設けても、本発明の固体電解質電池の基本構成の
他の例を示す図3のように、集電体7を有する両方の電
極2、3と固体電解質4との間にそれぞれ中間層5、6
として設けても良く、あるいは、かかる中間層を一層で
形成しても、二層以上で形成しても良いものである。
Next, as shown in FIG. 2 showing an example of the basic structure of the solid electrolyte battery of the present invention, the intermediate layer composed of the active material and the solid electrolyte is provided with the pair of electrodes 2 and 3 having the current collector 7. Among them, even if the intermediate layer 5 is provided between one of the electrodes 2 and the solid electrolyte 4, as shown in FIG. 3 showing another example of the basic configuration of the solid electrolyte battery of the present invention, the current collector 7 is provided. Intermediate layers 5, 6 between the electrodes 2, 3 and the solid electrolyte 4, respectively.
The intermediate layer may be formed as a single layer, or may be formed as two or more layers.

【0023】特に、イオン伝導性が速やかである界面の
構成を考慮すると、本発明の固体電解質電池の基本構成
の他の例を示す図4のように中間層5、6を、集電体7
を有する電極2、3側からそれぞれ固体電解質4側にか
けて、第1の中間層5a、6aと、第2の中間層5b、
6b及び第3の中間層5c、6cの三層で形成するもの
が最適である。
In particular, considering the configuration of the interface where the ionic conductivity is fast, the intermediate layers 5 and 6 are provided with a current collector 7 as shown in FIG. 4 showing another example of the basic configuration of the solid electrolyte battery of the present invention.
From the electrodes 2 and 3 having the first intermediate layer 5a and the second intermediate layer 5b to the solid electrolyte 4 side, respectively.
6b and the third intermediate layers 5c and 6c are optimally formed.

【0024】更に、前記中間層を構成する各層は、活物
質と固体電解質の組成が前記含有率を満足するものであ
れば、単一組成であるいは異なる組成で形成しても良い
が、イオン伝導性を考慮すると中間層の構成は、第1の
中間層5a、6a<第2の中間層5b、6b<第3の中
間層5c、6cの順に固体電解質の混合比率を変化させ
ることが望ましい。
Further, each layer constituting the intermediate layer may be formed of a single composition or a different composition as long as the composition of the active material and the solid electrolyte satisfies the above-mentioned contents. In consideration of the properties, it is desirable that the composition of the intermediate layer is such that the mixing ratio of the solid electrolyte is changed in the order of the first intermediate layer 5a, 6a <second intermediate layer 5b, 6b <third intermediate layer 5c, 6c.

【0025】従って、前記中間層を電極側から固体電解
質側へ、電極用活物質の含有量を漸減する、即ち固体電
解質を漸増する傾斜型の組成となるように一層で、ある
いは二層以上の多層構造のいずれで形成しても良いこと
はいうまでもない。
Therefore, the intermediate layer is formed from the electrode side to the solid electrolyte side in one layer or in two or more layers so that the content of the electrode active material is gradually reduced, that is, the solid electrolyte is gradually increased. It goes without saying that it may be formed in any of the multilayer structures.

【0026】尚、本発明の固体電解質電池において、移
動させるイオンの種類は、特に限定されないが、とりわ
けリチウムイオンに対して有効であり、リチウム(L
i)を含む固体電解質中のイオン伝導が、電極活物質か
らのイオン供給のバランスが取れていることにより速や
かに行われるものである。
In the solid electrolyte battery of the present invention, the type of ions to be transferred is not particularly limited, but is particularly effective for lithium ions, and lithium (L
The ion conduction in the solid electrolyte containing i) is promptly performed because the supply of ions from the electrode active material is balanced.

【0027】従って、前記電極活物質から、あるいは電
極活物質へ供給されるリチウム(Li)の電気化学的な
酸化還元反応の起こる反応面積をできる限り増大させる
必要があり、活物質と固体電解質の均一な混在形態を取
る中間層を電極と固体電解質との間に配設する、あるい
は活物質と固体電解質の混合比率を傾斜化配置させる形
態をとる中間層を配設することにより、活物質と固体電
解質の界面が明瞭に区切られている場合に比べ格段の反
応面積を得ることができるものである。
Therefore, it is necessary to increase as much as possible the reaction area where the electrochemical oxidation-reduction reaction of lithium (Li) supplied from or to the electrode active material takes place. By disposing an intermediate layer having a uniform mixed form between the electrode and the solid electrolyte, or by disposing an intermediate layer having a form in which the mixing ratio of the active material and the solid electrolyte is arranged to be inclined, the active material and the solid electrolyte can be disposed. A remarkable reaction area can be obtained as compared with the case where the interface of the solid electrolyte is clearly separated.

【0028】尚、本発明の固体電解質電池における一対
の電極を構成する材料としては、既に中間層の活物質と
して正極側及び負極側としてそれぞれ詳細に述べたよう
に、各種金属酸化物や天然黒鉛、人造黒鉛、無定形炭素
等の炭素材料等が適用可能である。
As a material constituting a pair of electrodes in the solid electrolyte battery of the present invention, various metal oxides and natural graphite have been described as the active materials of the intermediate layer as described in detail for the positive electrode side and the negative electrode side, respectively. And carbon materials such as artificial graphite and amorphous carbon.

【0029】しかしながら、正負の電極材料を形成する
活物質の構成は、選択した材料の充放電電位の差によっ
て決まる電池作動電圧をどこにとるかによって決まるも
のであり、必ずしも正極及び負極の活物質は固定される
ものではなく、どの活物質の組み合わせを選択するかに
より固体電解質電池の作動電圧は変化するものである。
However, the configuration of the active material forming the positive and negative electrode materials depends on where the battery operating voltage determined by the difference between the charging and discharging potentials of the selected materials is taken. Instead of being fixed, the operating voltage of the solid electrolyte battery changes depending on which combination of active materials is selected.

【0030】従って、負極材料としては組み合わせ方次
第では、正極の材料として挙げた候補の材料を負極材料
として選択することによっても電池を構成することは可
能である。
Therefore, depending on the combination of the negative electrode materials, it is possible to form a battery by selecting the candidate materials listed as the positive electrode material as the negative electrode material.

【0031】[0031]

【実施例】次に、本発明の固体電解質電池を以下に詳述
するようにして評価した。
Next, the solid electrolyte battery of the present invention was evaluated as described in detail below.

【0032】(実施例1)先ず、正極用の活物質として
80重量%のLiCoO2 に対して、導電性を付与する
ためのアセチレンブラックを11重量%、及び公知の有
機バインダーを9重量%混合し、該混合物に対して公知
の有機溶媒を同一重量比で添加して正極形成用ペースト
を調製した。
Example 1 First, 11% by weight of acetylene black for imparting conductivity and 9% by weight of a known organic binder were mixed with 80% by weight of LiCoO 2 as an active material for a positive electrode. Then, a known organic solvent was added to the mixture at the same weight ratio to prepare a positive electrode forming paste.

【0033】一方、負極用の活物質として90重量%の
TiO2 又はV2 5 に対してそれぞれ公知の有機バイ
ンダーを10重量%混合し、正極形成用ペーストと同様
にして負極形成用ペーストを調製した。
On the other hand, as a negative electrode active material, 90% by weight of TiO 2 or V 2 O 5 was mixed with 10% by weight of a known organic binder, and the negative electrode forming paste was mixed in the same manner as the positive electrode forming paste. Prepared.

【0034】次いで、集電板として厚さ20μmのアル
ミニウム箔を用い、該アルミニウム箔上にそれぞれ正極
形成用、負極形成用ペーストを塗布した後、ロール圧延
により正極用は80μmの厚さとなるように、又、負極
用は60μmの厚さとなるように調整した後、乾燥処理
して有機溶媒を揮散させて集電板を有する正負各電極を
作製した。
Next, an aluminum foil having a thickness of 20 μm is used as a current collector, and a paste for forming a positive electrode and a paste for forming a negative electrode are applied on the aluminum foil, and then roll-rolled to a thickness of 80 μm for the positive electrode. After adjusting the thickness for the negative electrode to 60 μm, the organic solvent was volatilized by drying treatment to produce positive and negative electrodes having a current collector.

【0035】一方、前記正極用の活物質であるLiCo
2 及び負極用の活物質であるTiO2 、V2 5 のい
ずれかと、固体電解質としてLi3 PO4 をそれぞれ表
1に示す混合割合で変更し、前記各電極形成用ペースト
調製と同様にして正極側及び負極側の中間層形成用ペー
ストをそれぞれ作製した。
On the other hand, LiCo, which is the active material for the positive electrode, is used.
O 2 and either of TiO 2 or V 2 O 5 as an active material for the negative electrode and Li 3 PO 4 as a solid electrolyte were changed at the mixing ratio shown in Table 1, respectively, and the same as in the preparation of each electrode forming paste. Thus, pastes for forming an intermediate layer on the positive electrode side and the negative electrode side were respectively produced.

【0036】[0036]

【表1】 [Table 1]

【0037】かくして得られた正極側及び負極側の中間
層形成用ペーストを、それぞれ前記正負各電極上に20
μmの厚さで塗布した後、乾燥処理して有機溶媒を揮散
させ、正負各電極上にそれぞれ中間層を被着形成した。
The pastes for forming the intermediate layers on the positive electrode side and the negative electrode side thus obtained are respectively applied on the positive and negative electrodes.
After coating with a thickness of μm, a drying treatment was performed to evaporate the organic solvent, and an intermediate layer was formed on each of the positive and negative electrodes.

【0038】他方、前記Li3 PO4 90重量%に対し
て10重量%の有機バインダーを添加し、該混合物と同
一重量比で公知の有機溶媒を加えて固体電解質形成用ペ
ーストを調製した。
On the other hand, a paste for forming a solid electrolyte was prepared by adding 10% by weight of an organic binder to 90% by weight of the Li 3 PO 4 and adding a known organic solvent in the same weight ratio as the mixture.

【0039】次いで、前記集電板を有する正負各電極に
被着形成した中間層上に、調製した固体電解質形成用ペ
ーストをそれぞれ20μmの厚さで塗布した後、乾燥処
理して有機溶媒を揮散させ、ロール圧延してから120
℃の温度で2時間、真空乾燥し、その後、ロールプレス
により貼り合わせて一体化して固体電解質電池の基本構
成を作製し、所定寸法に切り出して樹脂を絶縁封止に用
いた評価用のコイン型電池に組み上げた。
Next, the prepared solid electrolyte forming paste is applied to a thickness of 20 μm on the intermediate layer adhered to each of the positive and negative electrodes having the current collector plate, and then dried to evaporate the organic solvent. Rolled and rolled 120
A vacuum drying at a temperature of 2 ° C. for 2 hours, followed by bonding and integration by a roll press to produce a basic structure of a solid electrolyte battery, cutting out to a predetermined size, and using a resin for insulation sealing. Assembled into batteries.

【0040】尚、前記集電板を有する正負各電極に直
接、固体電解質形成用ペーストを塗布して基本構成を形
成し、同様にして作製したコイン型電池を比較例とし
た。
Incidentally, a solid electrolyte forming paste was directly applied to each of the positive and negative electrodes having the current collector plate to form a basic structure, and a coin-type battery produced in the same manner as a comparative example.

【0041】かくして得られた評価用のコイン型電池を
用いて、先ず、1〜4Vの電圧範囲において、毎秒0.
1mVの電圧掃引のスピードで、サイクリックボルタン
メトリーによる酸化還元反応の確認を行ったところ、本
発明の固体電解質電池に係る評価用のコイン型電池では
ピーク電流値を示すことから電池を構成していることが
確認できたが、前記比較例のコイン型電池ではピーク電
流値を示さず電池を構成していないことが確認できた。
Using the coin cell battery for evaluation thus obtained, first, the voltage of 0.1 to 4 V was applied in a voltage range of 1 to 4 V.
When the oxidation-reduction reaction was confirmed by cyclic voltammetry at a voltage sweep speed of 1 mV, the coin-type battery for evaluation according to the solid electrolyte battery of the present invention exhibited a peak current value, and thus constituted a battery. However, it was confirmed that the coin-type battery of the comparative example did not show a peak current value and did not constitute a battery.

【0042】次いで、充放電装置により、充電条件とし
て500μAの電流で前記評価用のコイン型電池に2.
5Vまで充電を行い、電圧が2.5Vに到達後、充電を
停止して5分間保持し、その後、0.5Vの電圧まで5
00μAの放電電流で放電し、次に再度、2.0Vまで
充電し、該電圧に到達後、充電を停止して5分間保持す
る充放電サイクル試験を行い、一定サイクル毎に放電電
気量を求めて二次電池としての電池性能の評価を行っ
た。
Next, a charge / discharge device was applied to the coin-type battery for evaluation at a current of 500 μA as a charging condition.
After the voltage reaches 2.5 V, the charging is stopped and held for 5 minutes.
The battery was discharged with a discharge current of 00 μA, then charged again to 2.0 V, and after reaching the voltage, a charge / discharge cycle test was performed in which charging was stopped and held for 5 minutes, and the amount of discharged electricity was determined every fixed cycle. To evaluate the battery performance as a secondary battery.

【0043】[0043]

【表2】 [Table 2]

【0044】以上の結果、比較例の試料番号16では、
充放電を示さず、本発明の請求範囲外である試料番号
1、9、10、15では、20回の充放電サイクルで放
電電気量が3mAh以下にまで落ちており、サイクル特
性の劣化が著しいのに対して、本発明では、いずれも同
じ充放電サイクルで放電電気量が初期値に対して50%
以上を保持しており、サイクル特性に優れていることが
分かる。
As a result, in the sample No. 16 of the comparative example,
In Sample Nos. 1, 9, 10, and 15, which show no charge / discharge and fall outside the scope of the present invention, the amount of discharge electricity dropped to 3 mAh or less in 20 charge / discharge cycles, and the cycle characteristics were significantly deteriorated. On the other hand, in the present invention, the discharge electric quantity is 50% of the initial value in the same charge and discharge cycle.
It can be seen that the above is maintained and the cycle characteristics are excellent.

【0045】(実施例2)集電板を有する正負各電極
に、正極側の活物質としてLiCoO2 を、負極側の活
物質としてTiO2 を、固体電解質としてLi3 PO4
をそれぞれ混合して被着形成する中間層を、表3に示す
ように二層以上、積層して形成する以外は、実施例1と
同様にして基本構成を形成した。
Example 2 LiCoO 2 as the active material on the positive electrode side, TiO 2 as the active material on the negative electrode side, and Li 3 PO 4 as the solid electrolyte were applied to the positive and negative electrodes having a current collector plate.
, And a basic structure was formed in the same manner as in Example 1, except that two or more intermediate layers were formed by lamination as shown in Table 3 to form an intermediate layer.

【0046】[0046]

【表3】 [Table 3]

【0047】かくして得られた評価用のコイン型電池を
実施例1と同様に評価した。尚、比較例は実施例1と同
一である。
The coin battery for evaluation thus obtained was evaluated in the same manner as in Example 1. The comparative example is the same as the first embodiment.

【0048】[0048]

【表4】 [Table 4]

【0049】以上の結果、本発明の請求範囲外である試
料番号1、6、7、12、13、19では、いずれも2
0回の充放電サイクルで放電電気量が中間層の層数のい
かんにかかわらず、2mAhにまで落ちており、サイク
ル特性の劣化が著しいのに対して、とりわけ中間層を3
層構造とした本発明の試料番号8乃至11では、20回
の充放電サイクルでの放電電気量が初期値に対して50
%以上を保持しており、サイクル特性に優れていること
が分かる。
As a result, Sample Nos. 1, 6, 7, 12, 13, and 19, which are out of the scope of the present invention, were all 2
In 0 charge / discharge cycles, the amount of discharge electricity dropped to 2 mAh regardless of the number of intermediate layers, and the cycle characteristics were significantly deteriorated.
In Sample Nos. 8 to 11 of the present invention having a layer structure, the amount of discharge electricity in 20 charge / discharge cycles was 50% of the initial value.
%, Which indicates that the cycle characteristics are excellent.

【0050】尚、本発明は前記実施例に限定されるもの
ではなく、本発明の要旨を逸脱しない範囲であれば種々
変更可能である。
The present invention is not limited to the above embodiment, but can be variously modified without departing from the gist of the present invention.

【0051】[0051]

【発明の効果】叙上の如く、本発明の固体電解質電池
は、電極と固体電解質との間に特定割合の活物質と固体
電解質から成る中間層を配設したことから、従来の二次
電池のような電解液の漏液がなく、電池の暴走反応によ
る不安全性が解消され、形状加工性の自由度が高い等の
二次電池としての安全性・性能面での優位性を有するこ
とは勿論、電極と固体電解質の界面の分極抵抗が低下
し、しかも、電極の短絡が防止できて電極間距離を極め
て狭くすることが可能となり、軽量小型化が実現でき、
更に、かかる二次電池の充放電に直接関与しない固体電
解質の量を最小限にまで抑制でき、電池の容量を決定す
る電極用活物質の量を増加させて、界面の分極抵抗が減
少することから、電池の内部抵抗が小さくなり、前記界
面におけるイオン伝導が速やかに行われ、電池から取り
出せる電流は、はるかに大きなものが得られ、充放電特
性が優れ、かつサイクル性能においても劣化が極めて少
ない二次電池が得られ、その産業上の利用価値が極めて
高いものである。
As described above, the solid electrolyte battery of the present invention has a conventional secondary battery because an intermediate layer comprising a specific ratio of an active material and a solid electrolyte is disposed between an electrode and a solid electrolyte. It has superiority in terms of safety and performance as a secondary battery, such as no electrolyte leakage as described above, eliminating unsafety due to battery runaway reaction, and having a high degree of freedom in shape processing. Of course, the polarization resistance at the interface between the electrode and the solid electrolyte is reduced, and furthermore, the short circuit between the electrodes can be prevented, and the distance between the electrodes can be extremely reduced, so that the weight and size can be reduced.
Furthermore, the amount of the solid electrolyte that is not directly involved in the charging and discharging of such a secondary battery can be suppressed to a minimum, the amount of the electrode active material that determines the capacity of the battery is increased, and the polarization resistance at the interface is reduced. Therefore, the internal resistance of the battery is reduced, the ionic conduction at the interface is rapidly performed, the current that can be taken out of the battery is much larger, the charge / discharge characteristics are excellent, and the deterioration in cycle performance is extremely small. A secondary battery is obtained, and its industrial utility value is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体電解質電池をコイン型電池に適用
した一実施例を示す断面図である。
FIG. 1 is a cross-sectional view showing one embodiment in which a solid electrolyte battery of the present invention is applied to a coin-type battery.

【図2】本発明の固体電解質電池の基本構成の一例を示
す断面図である。
FIG. 2 is a cross-sectional view illustrating an example of a basic configuration of a solid electrolyte battery of the present invention.

【図3】本発明の固体電解質電池の基本構成の他の例を
示す断面図である。
FIG. 3 is a sectional view showing another example of the basic configuration of the solid electrolyte battery of the present invention.

【図4】本発明の固体電解質電池の基本構成の他の例を
示す断面図である。
FIG. 4 is a sectional view showing another example of the basic configuration of the solid electrolyte battery of the present invention.

【図5】従来の固体電解質電池の基本構成を示す断面図
である。
FIG. 5 is a cross-sectional view showing a basic configuration of a conventional solid electrolyte battery.

【符号の説明】[Explanation of symbols]

1 固体電解質電池 2、3 電極 4 固体電解質 5、6 中間層 5a、6a 第1の中間層 5b、6b 第2の中間層 5c、6c 第3の中間層 DESCRIPTION OF SYMBOLS 1 Solid electrolyte battery 2, 3 electrode 4 Solid electrolyte 5, 6 Intermediate layer 5a, 6a First intermediate layer 5b, 6b Second intermediate layer 5c, 6c Third intermediate layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 4/58 H01M 4/58 4/62 4/62 Z 6/18 6/18 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 4/58 H01M 4/58 4/62 4/62 Z 6/18 6/18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一対の電極間に固体電解質を介在して成る
固体電解質電池であって、少なくとも一方の電極と固体
電解質との間に、5〜95重量%の活物質と5〜95重
量%の固体電解質とから成る一層以上の中間層を配設し
たことを特徴とする固体電解質電池。
1. A solid electrolyte battery having a solid electrolyte interposed between a pair of electrodes, wherein between at least one electrode and the solid electrolyte, 5 to 95% by weight of an active material and 5 to 95% by weight A solid electrolyte battery comprising at least one intermediate layer comprising: a solid electrolyte;
【請求項2】前記中間層が、三層より成ることを特徴と
する請求項1に記載の固体電解質電池。
2. The solid electrolyte battery according to claim 1, wherein said intermediate layer comprises three layers.
【請求項3】前記中間層が、30〜70重量%の活物質
と30〜70重量%の固体電解質とから成ることを特徴
とする請求項1又は請求項2のいずれかに記載の固体電
解質電池。
3. The solid electrolyte according to claim 1, wherein the intermediate layer comprises 30 to 70% by weight of the active material and 30 to 70% by weight of the solid electrolyte. battery.
【請求項4】前記中間層を形成する活物質が、正極側で
はLiCoO2 から成り、負極側ではTiO2 、V2
5 のいずれか一種から成ることを特徴とする請求項1乃
至請求項3のいずれかに記載の固体電解質電池。
4. The active material forming the intermediate layer is made of LiCoO 2 on the positive electrode side, and TiO 2 , V 2 O on the negative electrode side.
The solid electrolyte battery according to any one of claims 1 to 3, characterized in that it consists of any one of the 5.
【請求項5】前記固体電解質が、Li3 PO4 から成る
ことを特徴とする請求項1乃至請求項4のいずれかに記
載の固体電解質電池。
5. The solid electrolyte battery according to claim 1, wherein said solid electrolyte is made of Li 3 PO 4 .
JP10082136A 1998-03-27 1998-03-27 Solid-electrolyte battery Pending JPH11283664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10082136A JPH11283664A (en) 1998-03-27 1998-03-27 Solid-electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10082136A JPH11283664A (en) 1998-03-27 1998-03-27 Solid-electrolyte battery

Publications (1)

Publication Number Publication Date
JPH11283664A true JPH11283664A (en) 1999-10-15

Family

ID=13766013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10082136A Pending JPH11283664A (en) 1998-03-27 1998-03-27 Solid-electrolyte battery

Country Status (1)

Country Link
JP (1) JPH11283664A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103193A (en) * 2006-10-19 2008-05-01 Idemitsu Kosan Co Ltd Sulfide-based solid electrolyte for cathode composite material and its manufacturing method
JP2010205739A (en) * 2010-05-17 2010-09-16 Kyocera Corp Lithium battery
JP2010245024A (en) * 2009-03-16 2010-10-28 Toyota Motor Corp All solid-state secondary battery
JP2012069248A (en) * 2010-09-21 2012-04-05 Hitachi Zosen Corp Manufacturing method for all-solid battery
JP2012104270A (en) * 2010-11-08 2012-05-31 Toyota Motor Corp All-solid state battery
WO2012157047A1 (en) * 2011-05-13 2012-11-22 トヨタ自動車株式会社 All-solid-state secondary battery
WO2012176808A1 (en) * 2011-06-20 2012-12-27 株式会社豊田中央研究所 Fully solid lithium secondary cell and method for producing same
WO2013011871A1 (en) * 2011-07-20 2013-01-24 トヨタ自動車株式会社 All solid-state battery and manufacturing method therefor
JP2013073907A (en) * 2011-09-29 2013-04-22 Toyota Motor Corp Method for manufacturing electrode mixture
WO2014030525A1 (en) * 2012-08-21 2014-02-27 株式会社 村田製作所 All-solid-state battery
JP2015002080A (en) * 2013-06-14 2015-01-05 出光興産株式会社 Method for manufacturing all solid state battery
US8986895B2 (en) 2009-02-04 2015-03-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
CN105280884A (en) * 2014-05-26 2016-01-27 现代自动车株式会社 Method for manufacturing all solid electrode having solid electrolyte concentration gradient
KR20160011588A (en) * 2014-07-22 2016-02-01 주식회사 이엠따블유에너지 Silicon secondary battery
US9531036B2 (en) 2013-08-23 2016-12-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type ion conducting oxide, complex, lithium secondary battery, manufacturing method of garnet-type ion conducting oxide and manufacturing method of complex
JP2017529662A (en) * 2014-08-28 2017-10-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Electrochemical device stack including an interlayer for reducing interfacial resistance and overvoltage
JP2018502416A (en) * 2014-10-28 2018-01-25 ユニバーシティー オブ メリーランド,カレッジ パーク Interfacial layer of solid battery and method for producing
CN108039463A (en) * 2017-11-27 2018-05-15 北京化工大学 A kind of solid state battery of the preparation and application of solid electrolyte/electrode composite material material
DE102017219794A1 (en) * 2017-11-08 2019-05-09 Robert Bosch Gmbh Electrode unit for a battery cell and battery cell
WO2020184340A1 (en) * 2019-03-12 2020-09-17 三菱瓦斯化学株式会社 Method for producing all-solid-state battery
CN111699583A (en) * 2018-03-29 2020-09-22 Tdk株式会社 All-solid-state secondary battery
JP2020161467A (en) * 2019-03-20 2020-10-01 株式会社東芝 Electrode, secondary battery, battery pack, and vehicle
WO2021090774A1 (en) * 2019-11-07 2021-05-14 Tdk株式会社 All-solid-state battery
WO2021149460A1 (en) * 2020-01-24 2021-07-29 Tdk株式会社 Lithium ion secondary battery
CN113690499A (en) * 2021-07-30 2021-11-23 东莞凯德新能源有限公司 Composite positive plate and lithium ion battery comprising same
CN113690498A (en) * 2021-07-30 2021-11-23 东莞凯德新能源有限公司 Composite negative plate and lithium ion battery comprising same
JP2022513939A (en) * 2018-12-19 2022-02-09 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー All-solid-state battery and its manufacturing method
US11430985B2 (en) 2019-03-20 2022-08-30 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
US11569527B2 (en) 2019-03-26 2023-01-31 University Of Maryland, College Park Lithium battery
US11888149B2 (en) 2013-03-21 2024-01-30 University Of Maryland Solid state battery system usable at high temperatures and methods of use and manufacture thereof
US11939224B2 (en) 2018-02-15 2024-03-26 University Of Maryland, College Park Ordered porous solid electrolyte structures, electrochemical devices with same, methods of making same

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103193A (en) * 2006-10-19 2008-05-01 Idemitsu Kosan Co Ltd Sulfide-based solid electrolyte for cathode composite material and its manufacturing method
US8986895B2 (en) 2009-02-04 2015-03-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
JP2010245024A (en) * 2009-03-16 2010-10-28 Toyota Motor Corp All solid-state secondary battery
JP2010205739A (en) * 2010-05-17 2010-09-16 Kyocera Corp Lithium battery
JP2012069248A (en) * 2010-09-21 2012-04-05 Hitachi Zosen Corp Manufacturing method for all-solid battery
JP2012104270A (en) * 2010-11-08 2012-05-31 Toyota Motor Corp All-solid state battery
US9246161B2 (en) 2010-11-08 2016-01-26 Toyota Jidosha Kabushiki Kaisha All-solid battery
WO2012157047A1 (en) * 2011-05-13 2012-11-22 トヨタ自動車株式会社 All-solid-state secondary battery
WO2012176808A1 (en) * 2011-06-20 2012-12-27 株式会社豊田中央研究所 Fully solid lithium secondary cell and method for producing same
US10530015B2 (en) 2011-06-20 2020-01-07 Kabushiki Kaisha Toyota Chuo Kenkyusho All-solid-state lithium secondary battery and method for producing the same
JPWO2012176808A1 (en) * 2011-06-20 2015-02-23 株式会社豊田中央研究所 All-solid-state lithium secondary battery and manufacturing method thereof
JP2013026003A (en) * 2011-07-20 2013-02-04 Toyota Motor Corp All-solid battery, and method of manufacturing the same
WO2013011871A1 (en) * 2011-07-20 2013-01-24 トヨタ自動車株式会社 All solid-state battery and manufacturing method therefor
JP2013073907A (en) * 2011-09-29 2013-04-22 Toyota Motor Corp Method for manufacturing electrode mixture
WO2014030525A1 (en) * 2012-08-21 2014-02-27 株式会社 村田製作所 All-solid-state battery
JP5850163B2 (en) * 2012-08-21 2016-02-03 株式会社村田製作所 All solid battery
US11888149B2 (en) 2013-03-21 2024-01-30 University Of Maryland Solid state battery system usable at high temperatures and methods of use and manufacture thereof
JP2015002080A (en) * 2013-06-14 2015-01-05 出光興産株式会社 Method for manufacturing all solid state battery
US9531036B2 (en) 2013-08-23 2016-12-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type ion conducting oxide, complex, lithium secondary battery, manufacturing method of garnet-type ion conducting oxide and manufacturing method of complex
CN105280884A (en) * 2014-05-26 2016-01-27 现代自动车株式会社 Method for manufacturing all solid electrode having solid electrolyte concentration gradient
US9742038B2 (en) 2014-05-26 2017-08-22 Hyundai Motor Company Method for manufacturing all solid electrode having solid electrolyte concentration gradient
JP2017526151A (en) * 2014-07-22 2017-09-07 リクリッス カンパニー リミテッド Silicon secondary battery
KR20160011588A (en) * 2014-07-22 2016-02-01 주식회사 이엠따블유에너지 Silicon secondary battery
JP2017529662A (en) * 2014-08-28 2017-10-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Electrochemical device stack including an interlayer for reducing interfacial resistance and overvoltage
US10971761B2 (en) 2014-10-28 2021-04-06 University Of Maryland, College Park Interfacial layers for solid-state batteries and methods of making same
JP2018502416A (en) * 2014-10-28 2018-01-25 ユニバーシティー オブ メリーランド,カレッジ パーク Interfacial layer of solid battery and method for producing
DE102017219794A1 (en) * 2017-11-08 2019-05-09 Robert Bosch Gmbh Electrode unit for a battery cell and battery cell
CN108039463A (en) * 2017-11-27 2018-05-15 北京化工大学 A kind of solid state battery of the preparation and application of solid electrolyte/electrode composite material material
US11939224B2 (en) 2018-02-15 2024-03-26 University Of Maryland, College Park Ordered porous solid electrolyte structures, electrochemical devices with same, methods of making same
CN111699583A (en) * 2018-03-29 2020-09-22 Tdk株式会社 All-solid-state secondary battery
CN111699583B (en) * 2018-03-29 2023-10-27 Tdk株式会社 All-solid secondary battery
JP2022513939A (en) * 2018-12-19 2022-02-09 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー All-solid-state battery and its manufacturing method
US20220069279A1 (en) * 2018-12-19 2022-03-03 Research Institute Of Industrial Science & Technology All-solid-state battery and manufacturing method therefor
WO2020184340A1 (en) * 2019-03-12 2020-09-17 三菱瓦斯化学株式会社 Method for producing all-solid-state battery
US11430985B2 (en) 2019-03-20 2022-08-30 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
JP2020161467A (en) * 2019-03-20 2020-10-01 株式会社東芝 Electrode, secondary battery, battery pack, and vehicle
US11569527B2 (en) 2019-03-26 2023-01-31 University Of Maryland, College Park Lithium battery
CN114616697A (en) * 2019-11-07 2022-06-10 Tdk株式会社 All-solid-state battery
WO2021090774A1 (en) * 2019-11-07 2021-05-14 Tdk株式会社 All-solid-state battery
WO2021149460A1 (en) * 2020-01-24 2021-07-29 Tdk株式会社 Lithium ion secondary battery
CN113690498A (en) * 2021-07-30 2021-11-23 东莞凯德新能源有限公司 Composite negative plate and lithium ion battery comprising same
CN113690499A (en) * 2021-07-30 2021-11-23 东莞凯德新能源有限公司 Composite positive plate and lithium ion battery comprising same

Similar Documents

Publication Publication Date Title
JPH11283664A (en) Solid-electrolyte battery
US9214697B2 (en) Lithium secondary battery
JP3736045B2 (en) All solid lithium battery
JP4352475B2 (en) Solid electrolyte secondary battery
JP6394743B2 (en) Separator and battery
CN100466363C (en) Secondary battery
US20010053480A1 (en) Positive electrode material and secondary battery using the same
US20180309163A1 (en) Bipolar all solid-state battery
JP2003242964A (en) Non-aqueous electrolyte secondary battery
JP2000164252A (en) Solid electrolyte battery
JP2003123767A (en) Collector, electrode, and battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JP2002042785A (en) Lithium battery
JP4845245B2 (en) Lithium battery
US20230061385A1 (en) Battery
JP2005347222A (en) Electrolyte liquid and battery
JP4849291B2 (en) Secondary battery
JP2012074403A (en) Secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JPH06275268A (en) Nonaqueous electrolyte secondary battery
JP2010205739A (en) Lithium battery
JP2001015125A (en) Lithium battery
JP3432922B2 (en) Solid electrolyte secondary battery
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
JP3076887B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same