JP2001068160A - Flat nonaqueous electrolyte secondary battery - Google Patents

Flat nonaqueous electrolyte secondary battery

Info

Publication number
JP2001068160A
JP2001068160A JP24096499A JP24096499A JP2001068160A JP 2001068160 A JP2001068160 A JP 2001068160A JP 24096499 A JP24096499 A JP 24096499A JP 24096499 A JP24096499 A JP 24096499A JP 2001068160 A JP2001068160 A JP 2001068160A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode
positive electrode
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24096499A
Other languages
Japanese (ja)
Other versions
JP4453882B2 (en
Inventor
Masami Suzuki
正美 鈴木
Munehito Hayami
宗人 早見
Kazuo Udagawa
和男 宇田川
Masaki Shikoda
将貴 志子田
Kiyoto Yoda
清人 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP24096499A priority Critical patent/JP4453882B2/en
Priority to TW089116426A priority patent/TW504854B/en
Priority to US09/641,267 priority patent/US6521373B1/en
Priority to EP00117368.1A priority patent/EP1079454B1/en
Priority to KR1020000049510A priority patent/KR100559363B1/en
Priority to CNB001262041A priority patent/CN1180504C/en
Publication of JP2001068160A publication Critical patent/JP2001068160A/en
Priority to HK01106014A priority patent/HK1035605A1/en
Priority to US10/318,177 priority patent/US7378186B2/en
Priority to US11/176,400 priority patent/US7566515B2/en
Application granted granted Critical
Publication of JP4453882B2 publication Critical patent/JP4453882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flat nonaqueous electrolyte secondary battery with excellent high rate discharging characteristics. SOLUTION: This secondary battery has a metal negative electrode case 5 also acting as a negative electrode terminal and a metal positive electrode case 2 also acting as a positive electrode terminal fit through an insulating gasket 6, and sealing structure formed by crimping the positive electrode case or the negative electrode case, and contains a power generating element formed by facing the positive electrode and the negative electrode through a separator 3 and a nonaqueous electrolyte. The facing area of the positive and negative electrodes is made larger than the opening area of the insulating gasket. Thereby, such an advantage that the battery size is small and productivity is high is kept, and at the same time, high rate discharge capacity is substantially increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は扁平形非水電解質二
次電池に係り、特に、重負荷放電特性の向上した扁平形
非水電解質二次電池に関する。
The present invention relates to a flat non-aqueous electrolyte secondary battery, and more particularly to a flat non-aqueous electrolyte secondary battery having improved heavy load discharge characteristics.

【0002】[0002]

【従来の技術】正極作用物質にMnO2 やV2 5 など
の金属酸化物、あるいはフッ化黒鉛などの無機化合物、
あるいはポリアニリンやポリアセン構造体などの有機化
合物を用い、負極に金属リチウム、あるいはリチウム合
金、あるいはポリアセン構造体などの有機化合物、ある
いはリチウムを吸蔵、放出可能な炭素質材料、あるいは
チタン酸リチウムやリチウム含有珪素酸化物のような酸
化物を用い、電解質にプロピレンカーボネート、エチレ
ンカーボネート、ブチレンカーボネート、ジエチルカー
ボネート、ジメチルカーボネート、メチルエチルカーボ
ネート、ジメトキシエタン、γ−ブチルラクトンなどの
非水溶媒にLiClO4 、LiPF6 、LiBF4 、L
iCF3 SO3 、LiN(CF3 SO2 2 、LiN
(C2 5 SO2 2 などの支持塩を溶解した非水電解
質を用いたコイン形やボタン形などの電池総高に対して
電池最外径が長い扁平形非水電解質二次電池は既に商品
化されており、放電電流が数〜数十μA程度の軽負荷で
放電が行われるSRAMやRTCのバックアップ用電源
や電池交換不要腕時計の主電源といった用途に適用され
ている。
2. Description of the Related Art Metal oxides such as MnO 2 and V 2 O 5 or inorganic compounds such as fluorinated graphite are used as positive electrode active substances.
Alternatively, an organic compound such as polyaniline or a polyacene structure is used, and a metal lithium or an organic compound such as a lithium alloy or a polyacene structure, or a carbonaceous material capable of absorbing and releasing lithium, or containing lithium titanate or lithium is used as a negative electrode. Using an oxide such as silicon oxide, the electrolyte is propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyl lactone in a non-aqueous solvent such as LiClO 4 , LiPF 6 , LiBF 4 , L
iCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN
A flat non-aqueous electrolyte secondary battery using a non-aqueous electrolyte in which a supporting salt such as (C 2 F 5 SO 2 ) 2 is dissolved and the outermost diameter of the battery is long relative to the total battery height such as a coin shape or a button shape is It has already been commercialized, and is applied to applications such as a backup power supply for SRAMs and RTCs, and a main power supply for wristwatches that do not require battery replacement, in which discharge is performed with a light load having a discharge current of several to several tens of μA.

【0003】これらのコイン形やボタン形などの扁平形
非水電解質二次電池は、一般に図2に示したような構造
を有する。すなわち、負極端子を兼ねる金属製の負極ケ
ース5と、正極端子を兼ねる金属製の正極ケース1が、
絶縁ガスケット6を介し嵌合され、さらに正極ケース1
が加締め加工により加締められた封口構造を有し、その
内部に絶縁ガスケット6の開口径より一回り直径が小さ
いタブレット状の正極2及び負極4をそれぞれ1枚ずつ
非水電解質を含浸させた単層または多層のセパレータ3
を介し、対向配置された構成をなしている。
[0003] These flat non-aqueous electrolyte secondary batteries such as coin type and button type generally have a structure as shown in FIG. That is, the metal negative electrode case 5 also serving as the negative electrode terminal and the metal positive electrode case 1 also serving as the positive electrode terminal are:
The positive electrode case 1 is fitted through the insulating gasket 6.
Has a sealing structure which is swaged by swaging, and a tablet-shaped positive electrode 2 and a negative electrode 4 each having a diameter slightly smaller than the opening diameter of the insulating gasket 6 are impregnated therein with a non-aqueous electrolyte. Single or multilayer separator 3
, And are arranged to face each other.

【0004】上述したコイン形やボタン形などの扁平形
非水電解質二次電池は製造が簡便であり、量産性に優
れ、長期信頼性や安全性に優れるという長所を持ってい
る。また、構造が簡便であることから、これらの電池の
最大の特徴として小型化が可能であることが挙げられ
る。
[0004] The flat nonaqueous electrolyte secondary batteries such as the coin type and button type described above have advantages in that they are easy to manufacture, are excellent in mass productivity, and are excellent in long-term reliability and safety. In addition, since the structure is simple, the biggest feature of these batteries is that they can be miniaturized.

【0005】一方、携帯電話やPDAなどの小型情報端
末を中心に使用機器の小型化が加速されており、これに
伴い主電源である二次電池についても小形化を図ること
が必須とされている。従来、これらの電源には正極作用
物質にコバルト酸リチウムなどのリチウム含有酸化物、
負極に炭素質材料を用いたリチウムイオン二次電池や、
正極作用物質にオキシ水酸化ニッケル、負極作用物質に
水素吸蔵合金を用いたニッケル水素二次電池などのアル
カリ二次電池が使用されてきたが、これらの電池は金属
箔または金属ネットからなる集電体に作用物質層を塗布
または充填し電極を形成後、電極中心部にタブ端子を溶
接した後、捲回、または積層して電極群とし、さらに電
極群の中心部から取り出したタブ端子を複雑に曲げ加工
を行い、安全素子や封口ピン、電池缶などに溶接して電
池を製作していた。
On the other hand, the miniaturization of devices used has been accelerated, especially for small information terminals such as mobile phones and PDAs, and accordingly, it is essential to reduce the size of secondary batteries as main power supplies. I have. Conventionally, these power sources include lithium-containing oxides such as lithium cobalt oxide as the positive electrode active substance,
Lithium ion secondary battery using carbonaceous material for negative electrode,
Alkaline secondary batteries such as nickel-metal hydride secondary batteries using nickel oxyhydroxide as the positive electrode active material and a hydrogen storage alloy as the negative electrode active material have been used. After applying or filling an active substance layer on the body to form an electrode, welding the tab terminal to the center of the electrode, winding or laminating it to form an electrode group, and further complicating the tab terminal taken out from the center of the electrode group The battery was fabricated by bending it into a safety element, a sealing pin, and a battery can.

【0006】上述したようにこれらの電池は、複雑な製
造工程を経て製作されるため作業性が劣り、また部品の
小型化も困難であり、さらに、タブ端子のショート防止
に電池内に空間を設けたり、安全素子などの多数の部品
を電池内に組込む必要があり、電池の小型化に際しても
現状ではほぼ限界に達していた。
As described above, these batteries are manufactured through a complicated manufacturing process, so that workability is inferior, miniaturization of parts is difficult, and furthermore, space in the batteries is required to prevent short-circuiting of the tab terminals. It is necessary to provide a large number of components such as a safety element and the like in the battery, and the size of the battery has almost reached the limit at present.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明者らは
電池の小型化に際し円筒形や角形のリチウムイオン二次
電池やニッケル水素二次電池の小型化ではなく、前段に
述べた扁平形非水電解質二次電池の高出力を図ることを
試みた。まず、本発明者らは、正極作用物質に高容量で
高電位なコバルト酸リチウムを、負極作用物質に高容量
で電圧平坦性の良好な黒鉛化した炭素質材料をそれぞれ
使用し、従来の扁平形非水電解質二次電池の製造及び構
造に従い、正極及び負極をガスケットより一回り小さい
タブレット状に成形加工し、電池を作製した。
In view of the above, the inventors of the present invention did not reduce the size of a cylindrical or prismatic lithium ion secondary battery or nickel-metal hydride secondary battery, but reduced the size of the flat non-rechargeable battery described above. An attempt was made to increase the output of the water electrolyte secondary battery. First, the present inventors used a high-capacity, high-potential lithium cobalt oxide as the positive electrode active substance, and a graphitized carbonaceous material with a high capacity and good voltage flatness as the negative electrode active substance, respectively. In accordance with the manufacture and structure of the non-aqueous electrolyte secondary battery, the positive electrode and the negative electrode were formed into tablets slightly smaller than the gasket to produce a battery.

【0008】しかしながら、このように作製された電池
は従来の扁平形非水電解質二次電池に比べ優れた特性は
得られたものの、小型携帯機器の主電源として要求され
る大電流で放電した場合の特性に対しては遥かに不十分
であり、小型携帯機器の主電源としては到底満足できる
レベルではなかった。
[0008] However, although the battery manufactured in this manner has excellent characteristics as compared with the conventional flat non-aqueous electrolyte secondary battery, the battery produced when discharged at a large current required as a main power source of a small portable device. The characteristics of the portable power supply are far from satisfactory, and the main power supply for small portable devices was not at a level that was completely satisfactory.

【0009】小型の扁平形非水電解質二次電池の重負荷
放電特性を如何にして従来にないレベルまで引き上げる
かが本発明の課題であり、重負荷放電特性が格段に優れ
た扁平形非水電解質二次電池を提供することが本発明の
目的である。
[0009] It is an object of the present invention to raise the heavy load discharge characteristics of a small flat non-aqueous electrolyte secondary battery to an unprecedented level, and it is an object of the present invention to provide a flat non-aqueous electrolyte excellent in heavy load discharge characteristics. It is an object of the present invention to provide an electrolyte secondary battery.

【0010】[0010]

【課題を解決するための手段】本発明者らは前述の扁平
形非水電解質二次電池の重負荷放電特性の向上に関し鋭
意研究を重ねた結果、従来の扁平形非水電解質二次電池
に比べ電極面積を格段に大きくすることで重負荷放電特
性が飛躍的に向上することを見出した。
Means for Solving the Problems The present inventors have conducted intensive studies on the improvement of the heavy load discharge characteristics of the above-mentioned flat non-aqueous electrolyte secondary battery, and as a result, the conventional flat non-aqueous electrolyte secondary battery has It has been found that the heavy-load discharge characteristics are dramatically improved by making the electrode area much larger than that.

【0011】すなわち、負極端子を兼ねる金属製の負極
ケースと、正極端子を兼ねる金属製の正極ケースが、絶
縁ガスケットを介し嵌合され、さらに前記正極ケースま
たは負極ケースが加締め加工により加締められた封口構
造を有し、その内部に少なくとも正極と負極がセパレー
タを介し対向配置している電極群を含む発電要素と、非
水電解質を内包した扁平形非水電解質二次電池におい
て、前記電極群内の正負極対向面積が前記絶縁ガスケッ
トの開口面積よりも大きくすることで重負荷放電特性が
著しく優れた扁平形非水電解質二次電池を提供できるこ
とを見出した。
That is, a metal negative electrode case also serving as a negative electrode terminal and a metal positive electrode case also serving as a positive electrode terminal are fitted via an insulating gasket, and the positive electrode case or the negative electrode case is caulked by caulking. A power generating element including an electrode group in which at least a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween, and a flat non-aqueous electrolyte secondary battery including a non-aqueous electrolyte therein, wherein the electrode group It has been found that a flat nonaqueous electrolyte secondary battery having remarkably excellent heavy-load discharge characteristics can be provided by making the area of the positive and negative electrodes facing each other larger than the opening area of the insulating gasket.

【0012】重負荷放電特性を向上させるためには電極
面積を増大させることが有効であると推察されるが、従
来の扁平形非水電解質二次電池ではタブレット状の正極
及び負極をそれぞれ1枚ずつ絶縁ガスケットに内接する
形で電池内に収容していたため、正負極がセパレータを
介し対向する対向面積はどうしても絶縁ガスケットの開
口面積より一回りほど小さくせざる得なかった。ガスケ
ットを肉薄にするなどして多少の電極面積の拡大を図る
ことは可能であるが、ガスケットの開口面積を上回るよ
うな対向面積を持つ電極を電池内に収納することは理論
的に不可能であった。
It is presumed that it is effective to increase the electrode area in order to improve the heavy load discharge characteristics. However, in the case of the conventional flat nonaqueous electrolyte secondary battery, one tablet-shaped positive electrode and one tablet-shaped negative electrode are used. Since the battery was housed in the battery in such a manner as to be inscribed in the insulating gasket at a time, the facing area where the positive and negative electrodes faced each other with the separator interposed therebetween was inevitably smaller than the opening area of the insulating gasket. Although it is possible to slightly increase the electrode area by reducing the thickness of the gasket, it is theoretically impossible to store an electrode with an opposing area that exceeds the opening area of the gasket in the battery. there were.

【0013】そこで、本発明者らは従来技術からの大胆
な発想の転換を図り、コイン形やボタン形などの非常に
小さな扁平形電池の電池ケース内に電極を多層配置する
ことで、電極群内の正負極対向面積の総和が絶縁ガスケ
ットの開口面積より大きな電極群を収納することを可能
にした。つまり、円筒形や角形などの容積の大きな二次
電池では数十層を有する電極を収納している例がある
が、これらの電池は前述のように構造が複雑であり、そ
のままの電池の電池構造をコイン形やボタン形などの小
型の扁平形非水電解質二次電池に適用することは困難で
あった。また、たとえ適用したとしても小型であること
や生産性に優れるといった扁平形非水電解質二次電池の
利点を維持することは不可能であるため、コイン形やボ
タン形などの小型の扁平形非水電解質二次電池に絶縁ガ
スケットの開口面積よりも大きな正負極の対向面積を有
する電極群を収納しようという取組みは過去にされなか
った。
The inventors of the present invention have made a dramatic change from the conventional art and have placed the electrodes in a multi-layered battery case of a very small flat battery such as a coin or a button to form an electrode group. It is possible to accommodate an electrode group in which the total area of the positive and negative electrodes facing each other is larger than the opening area of the insulating gasket. In other words, a secondary battery having a large capacity such as a cylinder or a prism has an example in which an electrode having several tens of layers is housed, but these batteries have a complicated structure as described above, and the It has been difficult to apply the structure to a small flat non-aqueous electrolyte secondary battery such as a coin type or a button type. Also, even if it is applied, it is impossible to maintain the advantages of a flat non-aqueous electrolyte secondary battery such as small size and excellent productivity. No effort has been made in the past to store an electrode group having a positive and negative electrode facing area larger than the opening area of the insulating gasket in the water electrolyte secondary battery.

【0014】以下、如何にして本発明者らが本発明の扁
平形非水電解質二次電池を実現したかを説明する。ま
ず、正負極対向面積がガスケットの開口面積より大きな
電極を扁平形非水電解質二次電池内に収納する形態につ
いては種々の形態が考えられるが、その中で扁平形電池
の扁平面に対し水平方向に正負極対向部を持つように電
極を積層した電極群として収納するのが好ましいことが
分かった。なぜなら、優れた重負荷放電特性を得るため
には、電極面積を極力大きくとることと、部品点数を極
力減らし、小さな電池内のスペースを有効に活用し、電
極群と放電に必要な量の非水電解質を電池内に収納する
必要があり、上記したような扁平面に対し水平方向に正
負極対向部を持つように電極を積層した電極群とするよ
うな収納方法、例えば正極と負極がセパレータを介し対
向している正負極対向面が少なくとも3面有する電極群
とするような収納方法とすることでこれらを実現できる
ことが分かった。また、この収納方法によると電極を除
く電池の組立方法が従来のタブレット状電極を用いた扁
平形電池の製造方法に近く、従来の生産設備の一部流用
が可能である上、生産性やコストといった実用面におい
ても優れており量産する上でも好ましい。
Hereinafter, how the present inventors have realized the flat nonaqueous electrolyte secondary battery of the present invention will be described. First, various forms can be considered for storing an electrode having a positive / negative electrode facing area larger than the opening area of a gasket in a flat nonaqueous electrolyte secondary battery. It was found that it is preferable to house the electrodes as an electrode group in which the electrodes are stacked so as to have the positive and negative electrode facing portions in the directions. Because, in order to obtain excellent heavy load discharge characteristics, the electrode area should be as large as possible, the number of parts should be reduced as much as possible, the space in the small battery should be used effectively, and the electrode group and the amount required for discharge should be reduced. It is necessary to store the water electrolyte in the battery, and such a storage method as an electrode group in which electrodes are stacked so as to have the positive and negative electrode facing portions in the horizontal direction with respect to the flat surface as described above, for example, the positive electrode and the negative electrode are separators It has been found that these can be realized by adopting a housing method in which an electrode group having at least three positive / negative opposing surfaces opposing each other through an electrode. Also, according to this storage method, the method of assembling the battery excluding the electrodes is similar to the method of manufacturing a flat battery using the conventional tablet-shaped electrodes, and a part of the conventional production equipment can be diverted, and the productivity and cost are reduced. It is also excellent in practical use and is preferable in mass production.

【0015】次に、実際に電極群を作製、収納する方法
については、電極の一部に通電部を設けた正極板並びに
負極板を用意し、セパレータを介し正極板及び負極板を
積層する際にセパレータの一方向から正極板の通電部が
露出し、その対極方向から負極板の通電部が露出する形
で積層した後、正極は正極同士、負極は負極同士おのお
のの通電部を溶接などの方法により電気的に接続し電極
群を形成し、電池内に収納する方法が好ましい。正極と
負極の通電部を対極に配置することでコイン形やボタン
形などの小さな扁平形非水電解質二次電池においても、
正負極通電部の接触による内部ショートを防止できる。
Next, a method of actually preparing and storing an electrode group is as follows. A positive electrode plate and a negative electrode plate provided with a current-carrying part in a part of the electrodes are prepared, and the positive electrode plate and the negative electrode plate are laminated via a separator. After the current-carrying portions of the positive electrode plate are exposed from one direction of the separator and the current-carrying portions of the negative electrode plate are exposed from the opposite electrode direction, the positive electrode is connected to the positive electrode, and the negative electrode is connected to the negative electrode. A method is preferred in which the electrodes are electrically connected by a method to form an electrode group and housed in a battery. By arranging the current-carrying parts of the positive and negative electrodes on the opposite electrode, even in a small flat non-aqueous electrolyte secondary battery such as a coin type or button type,
Internal short-circuit due to contact between the positive and negative electrode conducting parts can be prevented.

【0016】次に、電極群と外部端子を兼ねる電池金属
ケースとの接続方法について説明する。前述したよう
に、円筒形や角形などの比較的大きなリチウムイオン二
次電池では電極群の中心部や巻き芯部にタブ端子を溶接
してそれを曲げ加工して安全素子や封口ピンに溶接し集
電を行っている。しかしながら、曲げ工程は工程自体が
複雑なため生産性に劣る上、内部ショートを防止するた
め電池内に空間を持たせたり、電極群との間に絶縁板を
挿入する必要があった。また、タブ端子を電極に溶接し
ている部分に応力が加わるとセパレータを突き破った
り、電極の変形が起こるため絶縁テープで保護したり、
巻き芯部に空間を設ける必要があり、電池の内容積を有
効に使用することはできなかった。そのため、電池の内
容積が小さなコイン形やボタン形の扁平形非水電解質二
次電池ではこれらの集電方法は適用できず、新たな集電
方法を考案する必要があった。
Next, a description will be given of a method of connecting the electrode group to a battery metal case which also serves as an external terminal. As described above, in the case of a relatively large lithium ion secondary battery such as a cylinder or prism, a tab terminal is welded to the center or the core of the electrode group, and then bent and welded to the safety element or sealing pin. We are collecting electricity. However, the bending process itself is inferior in productivity due to the complexity of the process itself, and it is necessary to provide a space in the battery or to insert an insulating plate between the battery and the electrode group in order to prevent an internal short circuit. Also, when stress is applied to the part where the tab terminal is welded to the electrode, the separator breaks through, or the electrode is deformed, so it is protected with insulating tape,
It was necessary to provide a space in the winding core, and the internal volume of the battery could not be used effectively. For this reason, these current collecting methods cannot be applied to a coin-shaped or button-shaped flat non-aqueous electrolyte secondary battery having a small internal volume of the battery, and a new current collecting method has to be devised.

【0017】そこで、本発明者らは電極群において扁平
形電池の扁平面に水平な方向の一端に導電性を有する正
極構成材を露出させ、対極の他端に導電性を有する負極
構成材を露出させた形状を持つ電極群を作製し、おのお
のの電極構成材を正極及び負極の電池ケースに接触させ
ることにより、電極群と電池ケースの集電を確保するこ
とを見出した。この方法によれば、電極群と電池ケース
間に無駄な空間や絶縁板を設ける必要もなく、放電容量
を増やすことができる。また、電池ケースや電極とタブ
端子がショートを起こすこともなく、安全性や信頼性も
優れている。
Therefore, the present inventors exposed a conductive positive electrode constituent material at one end in the direction parallel to the flat surface of the flat battery in the electrode group, and provided a conductive negative electrode constituent material at the other end of the counter electrode. The present inventors have found that an electrode group having an exposed shape is produced, and that each of the electrode components is brought into contact with the positive and negative electrode battery cases to ensure current collection between the electrode group and the battery case. According to this method, it is not necessary to provide a useless space or an insulating plate between the electrode group and the battery case, and the discharge capacity can be increased. In addition, there is no short circuit between the battery case or the electrode and the tab terminal, and the safety and reliability are excellent.

【0018】また、本発明のような封口構造を持つ扁平
形電池では電池ケースの加締め加工により、負極ケース
と正極ケースの扁平面に対し垂直方向に応力が加わって
おり、本集電方法によると電極群の平面方向に均一な加
圧力が加わり、充放電を円滑に行うことができる。な
お、電極群の電極構成材露出部と電極ケースの接触は直
接、接していてもよいし、金属箔や金属ネット、金属粉
末、炭素フィラー、導電性塗料などを介し電気的に間接
的に接していてもよい。
In a flat battery having a sealed structure as in the present invention, stress is applied in a direction perpendicular to the flat surfaces of the negative electrode case and the positive electrode case by caulking of the battery case. And a uniform pressing force is applied in the plane direction of the electrode group, and charging and discharging can be performed smoothly. In addition, the contact between the electrode component exposed portion of the electrode group and the electrode case may be in direct contact, or may be indirectly electrically in contact via a metal foil, a metal net, a metal powder, a carbon filler, a conductive paint, or the like. May be.

【0019】次に、電極については正負極とも従来の顆
粒合剤の成形方式や金属ネットや発泡ニッケルなどの金
属基板に合剤を充填する方法を用いてもよいが、肉薄電
極の作製が行い易いという点で金属箔にスラリー状の合
剤を塗布、乾燥したものがよく、さらにそれを圧延した
ものを用いることもできる。上記のような金属箔に作用
物質を含む合剤層を塗工した電極を用いる場合は、電極
群の内部に用いる電極は金属箔の両面に作用物質層を形
成したものを用いるのが、容積効率の上から好ましく、
電極群の両端の電池ケースに接触する電極構成材露出部
については作用物質層でも構わないが、接触抵抗を低減
させるために電極構成材のうち、特に金属箔を露出させ
るのが好ましい。これに関してはこの部分に限り片面に
のみ作用物質層を形成した電極を用いてもよいし、一旦
両面に作用物質層を形成した後、片面のみ作用物質層を
除去してもよい。
Next, as for the electrodes, for the positive and negative electrodes, a conventional method of molding a granular mixture or a method of filling the mixture into a metal substrate such as a metal net or foamed nickel may be used. From the viewpoint of ease, a slurry mixture is preferably applied to a metal foil and dried, and a rolled product can also be used. When using an electrode in which a mixture layer containing an active substance is applied to a metal foil as described above, the electrode used inside the electrode group is formed by forming an active substance layer on both sides of the metal foil. Preferred from the point of efficiency,
Although the active material layer may be used for the exposed portions of the electrode members that come into contact with the battery case at both ends of the electrode group, it is preferable to expose the metal foil among the electrode components in order to reduce the contact resistance. In this regard, an electrode having an active substance layer formed only on one side may be used only for this portion, or an active substance layer may be formed on both sides, and then the active substance layer may be removed only on one side.

【0020】一方、本発明電池は電極を含めた電池の構
造に主点をおいたものであり、正極作用物質については
限定されるものではなく、MnO2 、V2 5 、Nb2
5、LiTi2 4 、Li4 Ti5 12、LiFe2
4 、LiMn2 4 、Li4 Mn5 12、Li0.33
nO2 、コバルト酸リチウム、ニッケル酸リチウム、マ
ンガン酸リチウムなどの金属酸化物、あるいはフッ化黒
鉛、FeS2 などの無機化合物、あるいはポリアニリン
やポリアセン構造体などの有機化合物などあらゆるもの
が適用可能である。ただし、この中で作動電位が高く、
サイクル特性に優れるという点でコバルト酸リチウム、
ニッケル酸リチウム、マンガン酸リチウムやそれらの混
合物やそれらの元素の一部を他の金属元素で置換したリ
チウム含有酸化物がより好ましく、長期間に亘り使用さ
れることもある扁平形非水電解質二次電池においては高
容量で電解液や水分との反応性が低く化学的に安定であ
るという点でコバルト酸リチウムがさらに好ましい。
On the other hand, the battery of the present invention mainly focuses on the structure of the battery including the electrodes, and there is no limitation on the positive electrode active substance, and MnO 2 , V 2 O 5 , Nb 2
O 5 , LiTi 2 O 4 , Li 4 Ti 5 O 12 , LiFe 2
O 4 , LiMn 2 O 4 , Li 4 Mn 5 O 12 , Li 0.33 M
Metal oxides such as nO 2 , lithium cobaltate, lithium nickelate and lithium manganate, or inorganic compounds such as graphite fluoride and FeS 2 , or organic compounds such as polyaniline and polyacene structures are all applicable. . However, the operating potential is high in this,
Lithium cobalt oxide in that it has excellent cycle characteristics,
Lithium nickel oxide, lithium manganate, a mixture thereof, and a lithium-containing oxide in which a part of these elements are substituted with another metal element are more preferable, and the flat nonaqueous electrolyte which may be used for a long time is more preferable. In a secondary battery, lithium cobalt oxide is more preferable because it has a high capacity, has low reactivity with an electrolytic solution or moisture, and is chemically stable.

【0021】また、本発明電池の負極作用物質について
は限定されるものではなく、金属リチウム、あるいはL
i−Al、Li−In、Li−Sn、Li−Si、Li
−Ge、Li−Bi、Li−Pbなどのリチウム合金、
あるいはポリアセン構造体などの有機化合物、あるいは
リチウムを吸蔵、放出可能な炭素質材料、あるいはNb
2 5 、LiTi2 4 、Li4 Ti5 12やLi含有
珪素酸化物やLi含有錫酸化物のような酸化物、Li3
Nのような窒化物などあらゆるものが適用可能である
が、サイクル特性に優れ、作動電位が低く、高容量であ
るという点でLiを吸蔵、放出可能な炭素質材料が好ま
しく、特に放電末期においても電池作動電圧の低下が少
ないという点で天然黒鉛や人造黒鉛、膨張黒鉛、メソフ
ェーズピッチ焼成体、メソフェーズピッチ繊維焼成体な
どのd002 の面間隔が0.338nm以下の黒鉛構造が
発達した炭素質材料がより好ましい。
The negative electrode active material of the battery of the present invention is not limited, and may be metallic lithium or L.
i-Al, Li-In, Li-Sn, Li-Si, Li
Lithium alloys such as -Ge, Li-Bi, Li-Pb,
Alternatively, an organic compound such as a polyacene structure, or a carbonaceous material capable of occluding and releasing lithium, or Nb
Oxides such as 2 O 5 , LiTi 2 O 4 , Li 4 Ti 5 O 12 , Li-containing silicon oxide and Li-containing tin oxide, Li 3
Any material such as a nitride such as N can be applied, but a carbonaceous material capable of occluding and releasing Li is preferable in terms of excellent cycle characteristics, low operating potential, and high capacity. natural graphite and artificial graphite in that also decreases the cell operating voltage is low, the expanded graphite, mesophase pitch fired, carbonaceous spacing of d 002, such as mesophase pitch fibers fired body is less graphite structure 0.338nm developed Materials are more preferred.

【0022】なお、上記した本発明電池では主としてコ
イン形やボタン形などの電池総高に対して電池最外径が
長い扁平形電池について説明したが、本発明電池はこれ
のみに限定するものではなく、小判形や角形などの特殊
形状を有する扁平形電池にも本発明と同様に適用でき
る。
In the above-described battery of the present invention, a flat battery having a long outermost diameter with respect to the total battery height, such as a coin shape or a button shape, has been described. However, the battery of the present invention is not limited thereto. Instead, the present invention can be applied to a flat battery having a special shape such as an oval shape or a rectangular shape, similarly to the present invention.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施例及び比較例
について詳細に説明する。 (実施例1)本発明の実施例1の電池の製造方法を図1
の断面図を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention and comparative examples will be described in detail. (Embodiment 1) A method of manufacturing a battery according to Embodiment 1 of the present invention is shown in FIG.
This will be described with reference to the sectional view of FIG.

【0024】まず、LiCoO2 100重量部に対し、
導電剤としてアセチレンブラック5重量部と黒鉛粉末5
重量部を加え、結着剤としてポリフッ化ビニリデン5重
量部を加え、N−メチルピロリドンで希釈、混合し、ス
ラリー状の正極合剤を得た。次に、この正極合剤を、正
極集電体2aである厚さ0.02mmのアルミ箔の片面
にドクターブレード法により塗工、乾燥を行い、アルミ
箔表面に正極作用物質含有層2bを形成した。以後、作
用物質含有層の塗膜厚さが0.39mmとなるまで塗
工、乾燥を繰り返し、片面塗工正極を作製した。次に、
この片面塗工正極と同様の方法によりアルミ箔の両面に
正極作用物質含有層の塗膜厚さが片面当たり0.39m
mとなるように両面塗工し正極を作製した。
First, with respect to 100 parts by weight of LiCoO 2 ,
5 parts by weight of acetylene black and graphite powder 5 as conductive agents
Then, 5 parts by weight of polyvinylidene fluoride was added as a binder, and the mixture was diluted and mixed with N-methylpyrrolidone to obtain a slurry-like positive electrode mixture. Next, this positive electrode mixture is applied to one side of a 0.02 mm thick aluminum foil as the positive electrode current collector 2a by a doctor blade method and dried to form a positive electrode active substance containing layer 2b on the aluminum foil surface. did. Thereafter, coating and drying were repeated until the coating thickness of the active substance-containing layer reached 0.39 mm, to produce a single-side coated positive electrode. next,
The coating thickness of the positive electrode active substance-containing layer was 0.39 m per side on both sides of the aluminum foil in the same manner as for the single-side coated positive electrode.
m to form a positive electrode.

【0025】次に、黒鉛化メソフェーズピッチ炭素繊維
粉末100重量部に結着剤としてスチレンブタジエンゴ
ム(SBR)とカルボキシメチルセルロース(CMC)
をそれぞれ2.5重量部添加し、イオン交換水で希釈、
混合してスラリー状の負極合剤を得た。この負極合剤を
負極集電体4aである厚さ0.02mmの銅箔に作用物
質含有層4bの厚さが0.39mmとなるように正極の
場合と同様に塗工、乾燥を繰り返し実施し、片面塗工負
極を作製した。次に、この片面塗工負極と同様の方法に
より銅箔の両面に負極作用物質含有層の塗膜厚さが片面
当たり0.39mmとなるように両面塗工負極を作製し
た。
Next, styrene-butadiene rubber (SBR) and carboxymethylcellulose (CMC) were used as binders in 100 parts by weight of the graphitized mesophase pitch carbon fiber powder.
Are added by 2.5 parts by weight, and diluted with ion-exchanged water.
The mixture was mixed to obtain a slurry-like negative electrode mixture. This negative electrode mixture is repeatedly applied and dried on a 0.02 mm-thick copper foil as the negative electrode current collector 4 a in the same manner as in the case of the positive electrode such that the thickness of the active substance-containing layer 4 b is 0.39 mm. Then, a single-sided coated negative electrode was produced. Next, a double-sided coated negative electrode was prepared in the same manner as the single-sided coated negative electrode such that the coating thickness of the negative electrode active substance-containing layer was 0.39 mm per side on both surfaces of the copper foil.

【0026】これらの電極を幅13mm、長さ13mm
の正方形の一辺に幅6mm、長さ2mmの張り出し部が
付いた形状に切り出し、次にこの張り出し部に形成され
た作用物質含有層をこそげ落とし、アルミまたは銅層を
むき出しとして通電層とし、幅13mm、長さ13mm
の作用物質含有層が形成された両面及び片面塗工の正極
板及び負極板を作製した。
These electrodes are 13 mm wide and 13 mm long.
Cut out into a shape with a 6 mm wide and 2 mm long overhang on one side of the square, then peel off the active substance-containing layer formed on this overhang, and expose the aluminum or copper layer as an energized layer. 13mm, length 13mm
A double-sided and single-sided coated positive electrode plate and negative electrode plate on which the active substance-containing layer was formed were prepared.

【0027】次に、片面塗工正極板の正極作用物質含有
層形成部に厚さ25μmのポリエチレン微多孔膜からな
るセパレータ3を介し両面塗工負極板を通電部が先の正
極板と対極する位置に設置し、さらに、セパレータ3を
介し、両面塗工正極板を通電部が先の正極板と同方向に
向くように設置し、さらにセパレータ3を介し、このセ
パレータ面に負極作用物質含有層4bが接するように片
面塗工負極板の通電部が先の負極板と同方向に向くよう
に設置し、正極通電部及び負極通電部をそれぞれ溶接
し、電極群を作製した。
Then, the current-carrying part of the double-sided coated negative electrode plate is opposed to the previous positive electrode plate via a separator 3 made of a 25 μm-thick microporous polyethylene film at the portion where the positive electrode active material-containing layer of the single-side coated positive electrode plate is formed. Position, and further, a separator coated with a double-sided coated positive electrode plate is disposed so that the current-carrying part faces in the same direction as the previous positive electrode plate. The current-carrying part of the one-side coated negative electrode plate was placed so as to be in contact with the previous negative electrode plate so that 4b was in contact with the negative electrode plate.

【0028】作製した電極群を85℃で12h乾燥した
後、開口径が20mmであり、開口面積が3.14cm2
である絶縁ガスケット6を一体化した負極金属ケース5
の内底面に電極群の片面塗工負極板の未塗工側(すなわ
ち、負極集電体4a)が接するように配置し、エチレン
カーボネートとメチルエチルカーボネートを体積比1:
1の割合で混合した溶媒に支持塩としてLiPF6 を1
mol/lの割合で溶解せしめた非水電解質を注液し、
さらに電極群の片面塗工正極板の未塗工側(すなわち正
極集電体2a)に接するようにステンレス製の正極ケー
ス1を嵌合し、上下反転後、正極ケースに加締め加工を
実施し、封口して厚さ3mm、直径φ24.5mmの実
施例1の扁平形非水電解質二次電池を作製した。この電
池のセパレータを介した正負極対向面の面数は計3面で
あり、正負極の対向面積の総和は5.1cm2 である。
After the produced electrode group was dried at 85 ° C. for 12 hours, the opening diameter was 20 mm and the opening area was 3.14 cm 2.
Negative electrode metal case 5 with integrated insulating gasket 6
The uncoated side of the one-side coated negative electrode plate of the electrode group (that is, the negative electrode current collector 4a) is arranged so as to be in contact with the inner bottom surface of the electrode group, and ethylene carbonate and methyl ethyl carbonate are mixed at a volume ratio of 1:
LiPF 6 was added as a supporting salt to a solvent mixed at a ratio of 1
Inject a non-aqueous electrolyte dissolved at a rate of mol / l,
Further, the positive electrode case 1 made of stainless steel was fitted so as to be in contact with the uncoated side (that is, the positive electrode current collector 2a) of the single-side coated positive electrode plate of the electrode group, and after turning upside down, caulking was performed on the positive electrode case. Then, the flat nonaqueous electrolyte secondary battery of Example 1 having a thickness of 3 mm and a diameter of φ24.5 mm was sealed. The number of the positive and negative electrode facing surfaces via the separator of this battery was three in total, and the total area of the positive and negative electrode facing surfaces was 5.1 cm 2 .

【0029】(実施例2)電極群内の正極及び負極の片
面当たりの作用物質含有層の塗膜厚さがそれぞれ0.2
2mmであり、かつ電極群中間部の両面塗工正極及び両
面塗工負極の積層枚数がそれぞれ2枚であること以外は
実施例1と同様に電池を作製した。この電池のセパレー
タを介した正負極対向面の面数は計5面であり、正負極
の対向面積の総和は8.5cm2 である。
Example 2 The coating thickness of the active substance-containing layer per one side of the positive electrode and the negative electrode in the electrode group was 0.2
A battery was produced in the same manner as in Example 1, except that the number of layers of the double-sided coated positive electrode and the double-sided coated negative electrode in the middle of the electrode group was 2 mm, respectively. The total number of the positive and negative electrode facing surfaces via the separator of this battery was five, and the total area of the positive and negative electrode facing surfaces was 8.5 cm 2 .

【0030】(実施例3)電極群内の正極及び負極の片
面当たりの作用物質含有層の塗膜厚さがそれぞれ0.1
5mmであり、かつ電極群中間部の両面塗工正極及び両
面塗工負極の積層枚数がそれぞれ3枚であること以外は
実施例1と同様に電池を作製した。この電池のセパレー
タを介した正負極対向面の面数は計7面であり、正負極
の対向面積の総和は11.8cm2 である。
Example 3 The coating thickness of the active substance-containing layer per one side of the positive electrode and the negative electrode in the electrode group was 0.1, respectively.
A battery was produced in the same manner as in Example 1, except that the number of laminated layers of the double-sided coated positive electrode and the double-sided coated negative electrode in the middle of the electrode group was 3 mm, respectively. The total number of the positive and negative electrode facing surfaces via the separator of this battery was seven, and the total area of the positive and negative electrode facing surfaces was 11.8 cm 2 .

【0031】(実施例4)電極群内の正極及び負極の片
面当たりの作用物質含有層の塗膜厚さがそれぞれ0.1
1mmであり、かつ電極群中間部の両面塗工正極及び両
面塗工負極の積層枚数がそれぞれ4枚であること以外は
実施例1と同様に電池を作製した。この電池のセパレー
タを介した正負極対向面の面数は計9面であり、正負極
の対向面積の総和は15.2cm2 である。
Example 4 The coating thickness of the active substance-containing layer per one side of the positive electrode and the negative electrode in the electrode group was 0.1, respectively.
A battery was produced in the same manner as in Example 1, except that the number of layers of the double-sided coated positive electrode and the double-sided coated negative electrode in the middle of the electrode group was 4 mm, respectively. The number of the positive and negative electrode facing surfaces via the separator of this battery was nine in total, and the total area of the positive and negative electrode facing surfaces was 15.2 cm 2 .

【0032】(比較例1)LiCoO2 100重量部に
対し導電剤としてアセチレンブラック5重量部と黒鉛粉
末5重量部を加え、結着剤としてポリ4フッ化エチレン
5重量部を加え、混合後、粉砕し、顆粒状の正極合剤を
得た。次にこの正極顆粒合剤を、直径19mm、厚さ
1.15mmに加圧成形を行い、正極タブレットとし
た。
Comparative Example 1 5 parts by weight of acetylene black and 5 parts by weight of graphite powder were added as conductive agents to 100 parts by weight of LiCoO 2, and 5 parts by weight of polytetrafluoroethylene were added as a binder. The mixture was pulverized to obtain a granular positive electrode mixture. Next, this positive electrode granule mixture was subjected to pressure molding to a diameter of 19 mm and a thickness of 1.15 mm to obtain a positive electrode tablet.

【0033】次に黒鉛化メソフェーズピッチ炭素繊維粉
末100重量部に結着剤としてスチレンブタジエンゴム
(SBR)とカルボキシメチルセルロース(CMC)を
それぞれ2.5重量部を添加、混合、乾燥後、さらに粉
砕し顆粒状の負極合剤を得た。この負極顆粒合剤を、直
径19mm、厚さ1.15mmに加圧成形し、負極タブ
レットとした。
Next, 2.5 parts by weight of styrene-butadiene rubber (SBR) and carboxymethylcellulose (CMC) were added as binders to 100 parts by weight of the graphitized mesophase pitch carbon fiber powder, mixed, dried, and further pulverized. A granular negative electrode mixture was obtained. This negative electrode granule mixture was pressure-formed to a diameter of 19 mm and a thickness of 1.15 mm to obtain a negative electrode tablet.

【0034】次に、これらの正負極タブレットを85℃
で12h乾燥した後、開口面積3.14cm2 の絶縁ガ
スケットを一体化した負極ケースに負極タブレット、ポ
リプロピレンからなる厚さ0.2mmのポリプロピレン
不織布、正極タブレットの順に配置し、エチレンカーボ
ネートとメチルエチルカーボネートを体積比1:1の割
合で混合した溶媒に支持塩としてLiPF6 を1mol
/lの割合で溶解せしめた非水電解質を注液し、さらに
ステンレス製の正極ケースを嵌合し、上下反転後、正極
ケースに加締め加工を実施し、厚さ3mm、直径φ2
4.5mmの比較例1の扁平形非水電解質二次電池を作
製した。この電池のセパレータを介した正負極対向面の
面数は1面であり、正負極の対向面積の総和は2.8c
2 である。
Next, these positive and negative electrode tablets were heated at 85 ° C.
After drying for 12 hours, a negative electrode tablet, a 0.2 mm thick polypropylene non-woven fabric made of polypropylene, and a positive electrode tablet are placed in this order on a negative electrode case in which an insulating gasket having an opening area of 3.14 cm 2 is integrated, and ethylene carbonate and methyl ethyl carbonate are placed. 1 mol of LiPF 6 as a supporting salt in a solvent obtained by mixing at a volume ratio of 1: 1
/ L of a non-aqueous electrolyte dissolved at a rate of 1 / l, further fitted with a stainless steel positive electrode case, and turned upside down. Then, the positive electrode case was crimped to a thickness of 3 mm and a diameter of φ2.
A 4.5 mm flat nonaqueous electrolyte secondary battery of Comparative Example 1 was produced. The number of the positive and negative electrode facing surfaces via the separator of this battery was one, and the total area of the positive and negative electrode facing surfaces was 2.8 c.
m 2 .

【0035】(比較例2)電極群内の正極及び負極が片
面塗工電極のみであり、作用物質含有層の塗膜厚さがそ
れぞれ1.24mmであること以外は実施例1と同様に
電池を作製した。この電池のセパレータを介した正負極
対向面の面数は計1面であり、正負極の対向面積の総和
は1.7cm2 である。
Comparative Example 2 A battery was prepared in the same manner as in Example 1 except that the positive electrode and the negative electrode in the electrode group were only single-sided coated electrodes, and the thickness of the active substance-containing layer was 1.24 mm. Was prepared. The number of positive and negative electrode facing surfaces via the separator of this battery was one in total, and the total area of the positive and negative electrode facing surfaces was 1.7 cm 2 .

【0036】以上の通り作製した本実施例及び比較例の
電池について、4.2V、3mAの定電流定電圧で48
h初充電を実施した。その後、30mAの定電流で3.
0Vまで放電を実施し重負荷放電容量を求めた。その結
果を表1に示す。
With respect to the batteries of the present example and the comparative example manufactured as described above, a constant current and a constant voltage of 4.2 V and 3 mA were used.
h The first charge was performed. Then, at a constant current of 30 mA, 3.
Discharge was performed to 0 V, and a heavy load discharge capacity was determined. Table 1 shows the results.

【0037】[0037]

【表1】 [Table 1]

【0038】表1より明らかであるが、本実施例の各電
池は比較例1の従来の顆粒合剤成形法により作製したタ
ブレット状の電極を用いた正負極の対向面積がガスケッ
トの開口面積よりも小さい電池や比較例2の正負極の対
向面が1面しかなく、対向面積が小さい電池に比べ、著
しく重負荷放電時の放電容量が大きい。
As is clear from Table 1, in each battery of this example, the facing area of the positive and negative electrodes using the tablet-shaped electrode prepared by the conventional granule mixture molding method of Comparative Example 1 was larger than the opening area of the gasket. Also, the battery having only a small opposing surface of the positive and negative electrodes of Comparative Example 2 and the battery having a small opposing area has a remarkably large discharge capacity at heavy load discharge.

【0039】なお、本発明の実施例では、非水電解質に
非水溶媒を用いた扁平形非水溶媒二次電池を用いて説明
したが、非水電解質にポリマー電解質を用いたポリマー
二次電池や固体電解質を用いた固体電解質二次電池につ
いても当然適用可能であり、樹脂製セパレータの代わり
にポリマー薄膜や固体電解質膜を用いることも可能であ
る。また、電池形状については正極ケースの加締め加工
により封口するコイン形非水電解質をもとに説明した
が、正負極電極を入れ替え、負極ケースの加締め加工に
より封口することも可能である。さらに、電池形状につ
いても真円である必要はなく小判形や角形などの特殊形
状を有する扁平形非水電解質二次電池においても適用可
能である。
In the embodiments of the present invention, a flat non-aqueous solvent secondary battery using a non-aqueous solvent as a non-aqueous electrolyte has been described. However, a polymer secondary battery using a polymer electrolyte as a non-aqueous electrolyte has been described. Of course, the present invention is also applicable to a solid electrolyte secondary battery using a solid electrolyte and a polymer thin film or a solid electrolyte membrane can be used instead of a resin separator. Although the shape of the battery has been described based on the coin-shaped non-aqueous electrolyte sealed by crimping of the positive electrode case, it is also possible to replace the positive and negative electrodes and seal by crimping of the negative electrode case. Further, the shape of the battery does not need to be a perfect circle, and the present invention can be applied to a flat nonaqueous electrolyte secondary battery having a special shape such as an oval shape or a square shape.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
扁平形電池の持つ電池サイズが小さく、かつ生産性に優
れるという利点を維持したまま、重負荷放電時の放電容
量が従来の電池に対し格段に大きくすることができるの
で、工業的価値の優れた扁平形非水電解質二次電池を提
供することができる。
As described above, according to the present invention,
The flat battery has a small battery size, and while maintaining the advantages of excellent productivity, the discharge capacity during heavy load discharge can be significantly larger than that of conventional batteries. A flat nonaqueous electrolyte secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の電池の断面図。FIG. 1 is a sectional view of a battery according to an embodiment of the present invention.

【図2】比較例1の電池の断面図。FIG. 2 is a cross-sectional view of a battery of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1…正極ケース、2…正極、2a…正極集電体、2b…
正極作用物質含有層、3…セパレータ、4…負極、4a
…負極集電体、4b…負極作用物質含有層、5…負極ケ
ース、6…絶縁ガスケット。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode case, 2 ... Positive electrode, 2a ... Positive electrode collector, 2b ...
Positive electrode active substance containing layer, 3 ... separator, 4 ... negative electrode, 4a
... negative electrode current collector, 4b ... negative electrode active material containing layer, 5 ... negative electrode case, 6 ... insulating gasket.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇田川 和男 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 (72)発明者 志子田 将貴 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 (72)発明者 依田 清人 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AK01 AK02 AK03 AK05 AK07 AK16 AL01 AL02 AL03 AL06 AL07 AL12 BJ02 BJ03 BJ12 CJ02 CJ05 CJ08 CJ22 DJ02 DJ03 DJ04 DJ05 DJ07 HJ07 HJ13  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kazuo Udagawa 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Corporation (72) Inventor Masaki Shikoda 3-4-1-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation (72) Inventor Kiyoto Yoda 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation F-term (reference) 5H029 AJ03 AJ05 AK01 AK02 AK03 AK05 AK07 AK16 AL01 AL02 AL03 AL06 AL07 AL12 BJ02 BJ03 BJ12 CJ02 CJ05 CJ08 CJ22 DJ02 DJ03 DJ04 DJ05 DJ07 HJ07 HJ13

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 負極端子を兼ねる金属製の負極ケース
と、正極端子を兼ねる金属製の正極ケースが、絶縁ガス
ケットを介し嵌合され、さらに前記正極ケースまたは負
極ケースが加締め加工により加締められた封口構造を有
し、その内部に少なくとも正極と負極がセパレータを介
し対向配置している電極群を含む発電要素と、非水電解
質を内包した扁平形非水電解質二次電池において、前記
電極群内の正負極対向面積が前記絶縁ガスケットの開口
面積よりも大きいことを特徴とする扁平形非水電解質二
次電池。
1. A metal negative electrode case also serving as a negative electrode terminal and a metal positive electrode case also serving as a positive electrode terminal are fitted via an insulating gasket, and the positive electrode case or the negative electrode case is caulked by caulking. A power generating element including an electrode group in which at least a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween, and a flat non-aqueous electrolyte secondary battery including a non-aqueous electrolyte therein, wherein the electrode group A flat non-aqueous electrolyte secondary battery, wherein the positive and negative electrode facing areas are larger than the opening area of the insulating gasket.
【請求項2】 正極と負極がセパレータを介し対向して
いる正負極対向面が少なくとも3面有する電極群が当該
電池内に収納された請求項1記載の扁平形非水電解質二
次電池。
2. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein an electrode group having at least three positive and negative electrode facing surfaces in which a positive electrode and a negative electrode face each other with a separator interposed therebetween is housed in the battery.
【請求項3】 正極及び負極がセパレータを介し多層積
層され、正極は正極同士、負極は負極同士で、それぞれ
電気的に接続された形で電極群が形成され当該電池内に
収納された請求項1記載の扁平形非水電解質二次電池。
3. A positive electrode and a negative electrode are laminated in a multilayer with a separator interposed therebetween, and the positive electrode is connected to the positive electrode and the negative electrode is connected to the negative electrode. 2. The flat nonaqueous electrolyte secondary battery according to 1.
【請求項4】 電極の一部に通電部を設けた正極板及び
負極板と、セパレータを介し正極板及び負極板を積層す
る際に前記セパレータの一方向から正極板の通電部が露
出し、その対極方向から負極板の通電部が露出する形で
積層され、正極は正極同士、負極は負極同士それぞれの
通電部を電気的に接続し電極群を形成し、かつ正極と負
極の通電部が対極に位置するように配置された請求項1
記載の扁平形非水電解質二次電池。
4. A positive electrode plate and a negative electrode plate provided with a current-carrying part in a part of an electrode, and a current-carrying part of the positive electrode plate is exposed from one direction of the separator when the positive electrode plate and the negative electrode plate are laminated with a separator interposed therebetween. The current-carrying portion of the negative electrode plate is laminated so that the current-carrying portion of the negative electrode plate is exposed from the counter electrode direction. The positive electrode is electrically connected to each of the current-carrying portions of the positive electrode and the negative electrode of the negative electrode to form an electrode group. 2. The device according to claim 1, wherein the device is disposed at the opposite pole.
The flat nonaqueous electrolyte secondary battery according to the above.
【請求項5】 少なくとも正極、セパレータ、負極を含
む電極群から、扁平形電池の扁平面に水平な方向の一方
の外面に導電性を有する正極構成材を露出させ、その正
極構成材を直接、あるいは電気的に正極ケースに接続
し、かつ電極群の扁平形電池の扁平面に水平な方向のも
う一方の外面に導電性を有する負極構成材を露出させ、
その負極構成材を直接、あるいは電気的に負極ケースに
接続した請求項1記載の扁平形非水電解質二次電池。
5. A positive electrode component having conductivity is exposed from at least one positive electrode, a separator, and an electrode group including a negative electrode on one outer surface in a direction horizontal to a flat surface of a flat battery, and the positive electrode component is directly Or electrically connected to the positive electrode case, and expose the negative electrode component having conductivity on the other outer surface in the direction parallel to the flat surface of the flat battery of the electrode group,
The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode component is directly or electrically connected to the negative electrode case.
【請求項6】 正極は少なくとも正極作用物質を含有し
たスラリー状の正極合剤を金属箔に塗布、乾燥した電極
である請求項1記載の扁平形非水電解質二次電池。
6. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode is an electrode obtained by applying a slurry-type positive electrode mixture containing at least a positive electrode active substance to a metal foil and drying the mixture.
【請求項7】 負極は少なくとも負極作用物質を含有し
たスラリー状の負極合剤を金属箔に塗布、乾燥した電極
である請求項1記載の扁平形非水電解質二次電池。
7. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is an electrode obtained by applying a slurry of a negative electrode mixture containing at least a negative electrode active substance to a metal foil and drying the mixture.
【請求項8】 正極及び負極は金属箔の両面に作用物質
含有層を形成し、かつ金属ケースと直接、あるいは電気
的に接触される面には作用物質層があらかじめ塗られて
いないか、あるいは塗布後に除去された構造を有する請
求項1記載の扁平形非水電解質二次電池。
8. The positive electrode and the negative electrode have active substance-containing layers formed on both surfaces of a metal foil, and the active substance layer is not previously coated on a surface directly or electrically contacted with a metal case, or 2. The flat nonaqueous electrolyte secondary battery according to claim 1, having a structure removed after coating.
【請求項9】 正極作用物質はリチウム含有酸化物であ
る請求項1記載の扁平形非水電解質二次電池。
9. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active substance is a lithium-containing oxide.
【請求項10】 正極作用物質はコバルト酸リチウムで
ある請求項9記載の扁平形非水電解質二次電池。
10. The flat non-aqueous electrolyte secondary battery according to claim 9, wherein the positive electrode active substance is lithium cobalt oxide.
【請求項11】 負極作用物質は炭素質材料である請求
項1記載の扁平形非水電解質二次電池。
11. The flat non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active substance is a carbonaceous material.
【請求項12】 負極作用物質はd002 面の面間隔が
0.338nm以下の炭素質材料である請求項1記載の
扁平形非水電解質二次電池。
12. anode agents flat-shaped non-aqueous electrolyte secondary battery according to claim 1, wherein spacing of d 002 plane is a carbon material of less 0.338 nm.
JP24096499A 1999-08-27 1999-08-27 Flat non-aqueous electrolyte secondary battery Expired - Lifetime JP4453882B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP24096499A JP4453882B2 (en) 1999-08-27 1999-08-27 Flat non-aqueous electrolyte secondary battery
TW089116426A TW504854B (en) 1999-08-27 2000-08-15 Flat non-aqueous electrolyte secondary cell
US09/641,267 US6521373B1 (en) 1999-08-27 2000-08-17 Flat non-aqueous electrolyte secondary cell
EP00117368.1A EP1079454B1 (en) 1999-08-27 2000-08-23 Flat non-aqueous electrolyte secondary cell
KR1020000049510A KR100559363B1 (en) 1999-08-27 2000-08-25 Flat non-aqueous electrolyte secondary cell
CNB001262041A CN1180504C (en) 1999-08-27 2000-08-25 Flat nonaqueous electrolyte secondary cell
HK01106014A HK1035605A1 (en) 1999-08-27 2001-08-27 Flat non-aqueous electrolyte secondary cell.
US10/318,177 US7378186B2 (en) 1999-08-27 2002-12-13 Flat non-aqueous electrolyte secondary cell
US11/176,400 US7566515B2 (en) 1999-08-27 2005-07-08 Flat non-aqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24096499A JP4453882B2 (en) 1999-08-27 1999-08-27 Flat non-aqueous electrolyte secondary battery

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2009234721A Division JP5072122B2 (en) 2009-10-09 2009-10-09 Flat non-aqueous electrolyte secondary battery
JP2009234722A Division JP5072123B2 (en) 2009-10-09 2009-10-09 Flat non-aqueous electrolyte secondary battery
JP2010000402A Division JP2010103124A (en) 2010-01-05 2010-01-05 Flat nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2001068160A true JP2001068160A (en) 2001-03-16
JP4453882B2 JP4453882B2 (en) 2010-04-21

Family

ID=17067284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24096499A Expired - Lifetime JP4453882B2 (en) 1999-08-27 1999-08-27 Flat non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4453882B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289260A (en) * 2001-03-28 2002-10-04 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2002298803A (en) * 2001-03-30 2002-10-11 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2003017132A (en) * 2001-07-02 2003-01-17 Kansai Research Institute Coin-shaped nonaqueous secondary cell
JP2010212206A (en) * 2009-03-12 2010-09-24 Hitachi Maxell Ltd Flat secondary battery
JP2011009118A (en) * 2009-06-26 2011-01-13 Hitachi Maxell Ltd Coin type secondary battery
JP2011129451A (en) * 2009-12-21 2011-06-30 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2011141997A (en) * 2010-01-07 2011-07-21 Hitachi Maxell Ltd Flat-type nonaqueous secondary battery
JP2011141996A (en) * 2010-01-07 2011-07-21 Hitachi Maxell Ltd Flat-type nonaqueous secondary battery
JP2012014886A (en) * 2010-06-30 2012-01-19 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2013531872A (en) * 2010-07-05 2013-08-08 リ−テック・バッテリー・ゲーエムベーハー Galvanicel
JP2016225307A (en) * 2016-07-22 2016-12-28 日立マクセル株式会社 Flat battery
JP7462476B2 (en) 2020-06-01 2024-04-05 本田技研工業株式会社 Secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289260A (en) * 2001-03-28 2002-10-04 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2002298803A (en) * 2001-03-30 2002-10-11 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2003017132A (en) * 2001-07-02 2003-01-17 Kansai Research Institute Coin-shaped nonaqueous secondary cell
JP2010212206A (en) * 2009-03-12 2010-09-24 Hitachi Maxell Ltd Flat secondary battery
JP2011009118A (en) * 2009-06-26 2011-01-13 Hitachi Maxell Ltd Coin type secondary battery
JP2011129451A (en) * 2009-12-21 2011-06-30 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2011141997A (en) * 2010-01-07 2011-07-21 Hitachi Maxell Ltd Flat-type nonaqueous secondary battery
JP2011141996A (en) * 2010-01-07 2011-07-21 Hitachi Maxell Ltd Flat-type nonaqueous secondary battery
JP2012014886A (en) * 2010-06-30 2012-01-19 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2013531872A (en) * 2010-07-05 2013-08-08 リ−テック・バッテリー・ゲーエムベーハー Galvanicel
JP2016225307A (en) * 2016-07-22 2016-12-28 日立マクセル株式会社 Flat battery
JP7462476B2 (en) 2020-06-01 2024-04-05 本田技研工業株式会社 Secondary battery

Also Published As

Publication number Publication date
JP4453882B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
US7566515B2 (en) Flat non-aqueous electrolyte secondary cell
JP4752574B2 (en) Negative electrode and secondary battery
JP2007294111A (en) Compact battery
JPH09259929A (en) Lithium secondary cell
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JP3033563B2 (en) Non-aqueous electrolyte secondary battery
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JPH11144762A (en) Spiral lithium ion battery electrode and spiral lithium ion battery using the same
JPH10241735A (en) Lithium ion battery
JP2002289260A (en) Flat nonaqueous electrolyte secondary battery
JP4901017B2 (en) Flat nonaqueous electrolyte secondary battery with lead terminals
JP2001143763A (en) Flat non-aqueous electrolyte secondary battery
JPH113698A (en) Lithium ion secondary battery
JPH1167276A (en) Nonaqueous electrolyte secondary battery
JP5072122B2 (en) Flat non-aqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JP4827112B2 (en) Flat non-aqueous electrolyte secondary battery
JP4565530B2 (en) Flat non-aqueous electrolyte secondary battery
JP2000294202A (en) Thin battery
JPH10247522A (en) Nonaqueous electrolyte secondary battery
JP2002289259A (en) Flat nonaqueous electrolyte secondary battery
JP2010103124A (en) Flat nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090618

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term