JP2010212206A - Flat secondary battery - Google Patents

Flat secondary battery Download PDF

Info

Publication number
JP2010212206A
JP2010212206A JP2009060004A JP2009060004A JP2010212206A JP 2010212206 A JP2010212206 A JP 2010212206A JP 2009060004 A JP2009060004 A JP 2009060004A JP 2009060004 A JP2009060004 A JP 2009060004A JP 2010212206 A JP2010212206 A JP 2010212206A
Authority
JP
Japan
Prior art keywords
positive electrode
sealing
negative electrode
current collector
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009060004A
Other languages
Japanese (ja)
Inventor
Toku Takai
徳 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2009060004A priority Critical patent/JP2010212206A/en
Publication of JP2010212206A publication Critical patent/JP2010212206A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat secondary battery in which filling work of liquid or the like can be carried out efficiently and welding reliability at the ultrasonic welding part of a can (positive electrode can) on the positive electrode terminal side and a positive electrode lead can be secured, and furthermore, corrosion at the edge portion of the positive electrode can hardly occurs, while installation work of an insulting tape can be dispensed with. <P>SOLUTION: A positive electrode lead of aluminum foil integrated with each of positive electrode current collectors is led out from those of an electrode body to the side direction of the electrode body, and tip parts of these are welded to the inner face of a sealing can, and a negative electrode current collector is arranged at the end face on the opposing side to the inner face of an outer package can in the lamination direction of the electrode body, and is electrically connected to the inner face of the outer package can, thereby the sealing can is placed on the positive electrode side and the outer package can is placed on the negative electrode side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、扁平形の電池容器内に積層型の電極体と非水電解液(以下、単に「電解液」ともいう。)とを収容した扁平形二次電池に関し、リチイムイオン二次電池などに適用されるものである。   The present invention relates to a flat secondary battery in which a laminated electrode body and a nonaqueous electrolytic solution (hereinafter also simply referred to as “electrolytic solution”) are accommodated in a flat battery container. Applicable.

この種の扁平形二次電池として、例えば特許文献1に記載されたようなコイン形二次電池が知られている。これは、外装缶(同文献1では電池缶)の開口部にガスケットを介して封口缶(封口板)を装着して当該開口部の周縁部を外側から内方に締め付けることによりカシメ封口される電池容器内に、積層構造の電極体(電極群)および非水電解液を収容して、コイン形の外観を呈する電池としたものである。この電池における積層構造の電極体は、アルミニウム箔によって形成された正極集電体の両面にコバルト酸リチウム等の正極材料を塗着させてなる正極と、銅箔によって形成された負極集電体にコークス焼成品等の負極材料を塗着させてなる負極とを、セパレータを介して交互に積層した構成で、正極集電体から延出されたアルミニウム箔からなる正極リードが外装缶に、負極集電体から延出された銅箔からなる負極リードが封口缶に、それぞれ電気的に接続される。   As this type of flat secondary battery, for example, a coin-type secondary battery as described in Patent Document 1 is known. This is caulked and sealed by attaching a sealing can (sealing plate) to the opening of an outer can (battery can in the same document 1) via a gasket and tightening the peripheral edge of the opening from the outside to the inside. In the battery container, a laminated electrode body (electrode group) and a non-aqueous electrolyte are accommodated to form a battery having a coin-shaped appearance. The electrode body of the laminated structure in this battery is composed of a positive electrode obtained by coating a positive electrode material such as lithium cobaltate on both surfaces of a positive electrode current collector formed of an aluminum foil, and a negative electrode current collector formed of a copper foil. A negative electrode formed by coating a negative electrode material such as a coke baked product with a separator alternately stacked, and a positive electrode lead made of an aluminum foil extended from the positive electrode current collector is attached to the outer can. Negative electrode leads made of copper foil extending from the electric body are electrically connected to the sealing cans.

特開2005−310577号公報(第5〜7頁、図1〜4)Japanese Patent Laying-Open No. 2005-310577 (pages 5-7, FIGS. 1-4)

上記のコイン形二次電池においては、正極集電体から延出された正極リードを正極端子側となる外装缶に電気的に接続するために(つまり集電のために)、当該外装缶の内面に正極リードを超音波溶接している。これは、外装缶にアルミニウム箔製の正極リードを接触させるだけでは接触部における電気抵抗が溶接の場合よりも大きく集電効率が悪いからである。ところが、このように外装缶を正極側、つまり正極端子側となる缶(正極缶)とし、これに電極体における正極集電体から延出された正極リードを溶接する電池構造の場合、電池組立作業の注液工程(電池容器を構成する缶内に電解液を注入する工程)において次のような問題が生じる。   In the coin-type secondary battery described above, in order to electrically connect the positive electrode lead extended from the positive electrode current collector to the outer can on the positive electrode terminal side (that is, for current collection), The positive electrode lead is ultrasonically welded to the inner surface. This is because the electrical resistance at the contact portion is larger than the case of welding and the current collection efficiency is poor only by bringing the positive electrode lead made of aluminum foil into contact with the outer can. However, in the case of a battery structure in which the outer can is used as the positive electrode side, that is, the positive electrode terminal side (positive electrode can), and the positive electrode lead extended from the positive electrode current collector of the electrode body is welded to the outer can. The following problems occur in the liquid injection process (step of injecting the electrolyte into the can constituting the battery container).

すなわち、上記のような外装缶と封口缶とからなる電池容器内に電解液を注入する場合、一般的には、外装缶の開口部を上向きにしてこれに電解液を注入する方法と、封口缶の開口部を上向きにしてこれに電解液を注入する方法とが考えられるが、電極体の正極リードを外装缶に溶接してしまうと、通常は外装缶内に電極体を収容したうえで電解液を注入する方法、つまりは前者の方法を採らざるを得なくなる。このため、電解液の注入後において封口缶を外装缶の開口部内に嵌める際に外装缶内の電解液が外部に溢れ出てしまい、その分電解液が無駄になるだけでなく、そのような無駄をなるべく生じさせないように注意を払いながら作業を行なう必要があることから作業効率の低下を来すという問題が生じる。なお、外装缶の内面に電極体を何らかの方法で仮止めし、電解液を注入した封口缶に当該外装缶を被せて電極体を封口缶内に収めることも考えられるが、その場合でも電解液の入った封口缶内に電極体を収めることとなるため当該電極体による排除容積分だけ外部に電解液が溢れ出ることは避けられない。   That is, when injecting an electrolytic solution into a battery container composed of an outer can and a sealing can as described above, in general, a method of injecting an electrolytic solution into an opening of the outer can and facing upward, and a sealing It can be considered that the opening of the can faces upward and the electrolytic solution is injected into this. However, if the positive electrode lead of the electrode body is welded to the outer can, the electrode body is usually accommodated in the outer can. The method of injecting the electrolytic solution, that is, the former method must be taken. For this reason, when the sealing can is fitted into the opening of the outer can after the injection of the electrolytic solution, the electrolytic solution in the outer can overflows to the outside. Since it is necessary to work while paying attention so as not to generate waste as much as possible, there arises a problem that the work efficiency is lowered. It is also conceivable that the electrode body is temporarily fixed to the inner surface of the outer can by some method, and the outer can is covered with the sealing can into which the electrolytic solution has been injected. Therefore, it is inevitable that the electrolytic solution overflows to the outside by the volume excluded by the electrode body.

また、先の特許文献1に記載されたコイン形二次電池では、正極集電体から延出されたアルミニウム箔製の正極リードを外装缶の内面に超音波溶接するが、その場合、アルミニウムとは異なるステンレス鋼等の異種金属で外装缶が構成されていると、アルミニウムとステンレス鋼等の異種金属との接合となって超音波溶接が容易でなく溶接不良が生じやすくなる。このため、上記のコイン形二次電池では、内面側がアルミニウムで外面側がステンレス鋼のクラッド材で構成した外装缶を使用し、この外装缶の内面アルミニウム部分にアルミニウム箔製の正極リードを超音波溶接することを行なっている。   In the coin-type secondary battery described in Patent Document 1, the positive electrode lead made of aluminum foil extended from the positive electrode current collector is ultrasonically welded to the inner surface of the outer can. If the outer can is made of different types of metals such as stainless steel, joining of aluminum and different types of metals such as stainless steel makes ultrasonic welding not easy and poor welding tends to occur. For this reason, the above coin-type secondary battery uses an outer can made of a clad made of aluminum on the inner surface and stainless steel on the outer surface, and an aluminum foil positive electrode lead is ultrasonically welded to the inner surface aluminum portion of the outer can. Doing what to do.

ところが、上記のような内面側がアルミニウムで外面側がステンレス鋼のクラッド材からなる外装缶を使用した場合、電池容器として組み立てた状態で外装缶の周縁部の端部(エッジ部)において内面側のアルミウニム部分と外面側のステンレス鋼部分とが外部に露出するか、あるいは水滴等の浸入を受けやすい部位に位置することとなる。このような外装缶のエッジ部に水滴等が付着すると、いわゆるローカルセルが形成されることとなってアルミニウム部分が腐食しやすくなり、さらに腐食が進んだ場合には当該腐食部分から電解液が漏出するおそれがある。   However, when using an outer can made of a clad material whose inner surface is made of aluminum and the outer surface is made of stainless steel as described above, an aluminum unim on the inner surface is formed at the edge (edge portion) of the peripheral portion of the outer can in the assembled state as a battery container. The portion and the stainless steel portion on the outer surface side are exposed to the outside, or are located at a site that is susceptible to intrusion of water droplets or the like. If water droplets or the like adhere to the edge portion of such an outer can, a so-called local cell is formed, and the aluminum portion is easily corroded. When the corrosion further progresses, the electrolyte leaks from the corroded portion. There is a risk.

ところで、上記のような積層型の電極体を備えた扁平形二次電池においては、電極体を構成している各段(各層)の負極どうしを電気的に接続するために、先に述べた正極リードの導出方向とは反対の方向に各負極集電体からこれと一体の負極リードを導出させて、これらを電極体の側方で溶接して一体化している。このような負極リードの導出部分が、正極端子側となる缶(上記のコイン形二次電池では電池缶)の内面に接触すると短絡を生じることから、これを防止すべく負極リードの導出部分を絶縁テープで覆う等の対策が必要となる。しかし、この種の絶縁テープの装着作業を個々の電池ごとに行なっていたのでは作業効率が悪く、全体として生産性を高めるためには前記絶縁テープ等の装着作業を不要化するのが望ましい。   By the way, in the flat type secondary battery having the laminated electrode body as described above, in order to electrically connect the negative electrodes of the respective stages (each layer) constituting the electrode body, it has been described above. A negative electrode lead integrated with the negative electrode current collector is led out from each negative electrode current collector in a direction opposite to the direction in which the positive electrode lead is led out, and these are integrated by welding on the side of the electrode body. When such a lead-out portion of the negative electrode lead comes into contact with the inner surface of the can on the positive electrode terminal side (battery can in the above-mentioned coin-type secondary battery), a short circuit occurs. It is necessary to take measures such as covering with insulating tape. However, if this type of insulating tape is attached to each battery, the work efficiency is low, and it is desirable to eliminate the need for attaching the insulating tape or the like in order to increase productivity as a whole.

本発明は、積層型の電極体を備えた扁平形二次電池における上記のような問題に対処するもので、電池組立工程において電池容器を構成する缶内に電解液を注入する際に電解液が外部に溢れ出ることがないか、あったとしても僅かな量で済み、しかも注液作業やその後の外装缶と封口缶との組み付け作業も比較的行ないやすい構造の扁平形二次電池を実現することを第1の目的とする。この第1の目的を達成したうえで、本発明は、正極端子側となる缶(正極缶)と正極リードとの超音波溶接部における溶接信頼性を確保できると同時に正極缶のエッジ部における腐食の生じにくい扁平形二次電池を実現することを第2の目的とする。これらの目的を達成したうえで、本発明は、上述したような絶縁テープの装着作業を不要化できる扁平形二次電池を実現することを第3の目的とする。   The present invention addresses the above-described problems in a flat secondary battery having a laminated electrode body, and the electrolyte solution is injected when the electrolyte solution is injected into the can constituting the battery container in the battery assembly process. A flat secondary battery with a structure that is easy to carry out liquid injection work and subsequent assembly work between the outer can and the sealing can. This is the first purpose. In addition to achieving the first object, the present invention can ensure welding reliability in the ultrasonic welded portion between the positive electrode terminal can (positive electrode can) and the positive electrode lead, and at the same time, corrosion at the edge of the positive electrode can. It is a second object to realize a flat secondary battery that is less likely to cause the problem. A third object of the present invention is to realize a flat secondary battery that can eliminate the above-described work of attaching an insulating tape after achieving these objects.

上記の目的を達成するため、本発明は、外装缶の開口部にガスケットを介して封口缶を装着(封口缶の開口縁にガスケットを介して外装缶を被せることにより結果的に外装缶の開口部にガスケットを介して封口缶を装着した状態となる場合を含む)して当該開口部の周縁部を外側から締め付けることによりカシメ封口された電池容器を有し、電池容器内には、アルミニウム箔で構成された正極集電体の両面に正極活物質層を形成してなる正極と負極集電体に負極活物質層を形成してなる負極とをセパレータを介して交互に複数段積層してなる積層型の電極体と、非水電解液とが収容された扁平形二次電池において、次のように構成したことを特徴とする。   In order to achieve the above object, the present invention attaches a sealing can to the opening of the outer can via a gasket (the outer can can be opened as a result of covering the opening edge of the sealing can via the gasket). Including a case in which a sealing can is attached to a part via a gasket) and tightening the peripheral edge of the opening from the outside to have a caulking-sealed battery container, and the battery container includes an aluminum foil A positive electrode in which a positive electrode active material layer is formed on both sides of a positive electrode current collector composed of a negative electrode and a negative electrode in which a negative electrode current collector is formed with a negative electrode active material layer are alternately stacked in multiple stages via a separator. A flat-type secondary battery in which a laminated electrode body and a non-aqueous electrolyte are accommodated is configured as follows.

すなわち、各正極集電体からはこれと一体のアルミニウム箔製の正極リードを電極体の側方に向けて導出し、それらの先端部を封口缶の内面に溶接する。あるいは各正極集電体からはこれと一体のアルミニウム箔製の正極リードを電極体の側方に向けて導出し、そのうちの特定の正極リードにその他の正極リードを溶接したうえで当該特定の正極リードの先端部を封口缶の内面に溶接する。そして、電極体の積層方向において外装缶の内面と対向する側の端面には負極集電体を配置して、当該外装缶の内面に電気的に接続する。こうして、電池容器を構成する封口缶が正極側(正極缶)で外装缶が負極側(負極缶)となる構成、言い換えれば封口缶が正極端子を兼ね、外装缶が負極端子を兼ねる構成とする。   That is, from each positive electrode current collector, a positive electrode lead made of an aluminum foil integral with the positive electrode current collector is led out to the side of the electrode body, and the tip portion thereof is welded to the inner surface of the sealing can. Alternatively, from each positive electrode current collector, an aluminum foil positive electrode lead integrated with the positive electrode lead is directed toward the side of the electrode body, and the other positive electrode lead is welded to the specific positive electrode lead, and then the specific positive electrode The tip of the lead is welded to the inner surface of the sealed can. Then, a negative electrode current collector is disposed on the end surface facing the inner surface of the outer can in the stacking direction of the electrode bodies, and is electrically connected to the inner surface of the outer can. In this way, the sealing can constituting the battery container is the positive electrode side (positive electrode can) and the outer can is the negative electrode side (negative electrode can), in other words, the sealing can serves also as the positive electrode terminal, and the outer can serves as the negative electrode terminal. .

具体的には、上記の封口缶を、内面側がアルミニウムで外面側がステンレス鋼などの他種金属で構成されたクラッド材で形成し、このうちの内面側のアルミニウム部分に前記正極リードまたは特定の正極リードの先端部を超音波溶接した構成とする。この場合、封口缶の内面側のアルミニウム部分の表面には陽極酸化処理(いわゆるアルマイト処理)を施して絶縁性の酸化皮膜を形成しておくのが望ましい。このときの絶縁性の酸化皮膜の厚さは、封口缶と負極側の構成部材(例えば負極から導出される負極リード)とが接触した場合の短絡を防止できる範囲として、50μm以上、100μm以下とするのが好ましい。   Specifically, the sealing can is formed of a clad material made of other metal such as aluminum on the inner surface side and stainless steel on the outer surface side, and the positive electrode lead or the specific positive electrode is formed on the aluminum portion on the inner surface side. The lead tip is ultrasonically welded. In this case, it is desirable to form an insulating oxide film on the surface of the aluminum portion on the inner surface side of the sealing can by anodizing (so-called alumite treatment). The thickness of the insulating oxide film at this time is 50 μm or more and 100 μm or less as a range in which a short circuit can be prevented when the sealing can and the negative electrode side component (for example, the negative electrode lead derived from the negative electrode) are in contact with each other. It is preferable to do this.

なお、上述の「外装缶の開口部にガスケットを介して封口缶を装着」することについては、結果としてそのような装着状態となればよい。つまり、「外装缶の開口部にガスケットを介して封口缶を装着して」には、封口缶の開口部の周縁部分にガスケットを取り付け、その上から外装缶を被せることにより前記のような装着状態とする場合も含まれるし、封口缶の開口部の周縁部分にガスケットを取り付け、このガスケット付きの封口缶の開口部側を、開口部を下向きにした外装缶内に嵌め込むことにより前記のような装着状態とする場合も含まれる。   In addition, about the above-mentioned "attaching a sealing can to the opening part of an exterior can via a gasket", what is necessary is just to become such an attachment state as a result. In other words, “attach the sealing can through the gasket to the opening of the outer can” attaches the gasket to the peripheral portion of the opening of the sealing can, and covers the outer can from the mounting as described above The gasket is attached to the peripheral portion of the opening of the sealed can, and the opening side of the sealed can with the gasket is fitted into the outer can with the opening facing downward. The case where such a wearing state is set is also included.

本発明の扁平形二次電池においては、外装缶の開口部にガスケットを介して装着される封口缶に前記各正極リードの先端部または特定の正極リードの先端部が超音波溶接されて当該封口缶が正極側、つまり正極端子を兼ねる正極缶とされているので、電池容器内に非水電解液を注入する注液工程では、封口缶(この封口缶の周縁部には前もってガスケットを装着しておく)の開口部を上向きにしてその内部に電極体を収容した状態で当該封口缶内に電解液を容易に注入することができる。   In the flat secondary battery of the present invention, the tip of each positive electrode lead or the tip of a specific positive electrode lead is ultrasonically welded to a sealing can attached to the opening of the outer can via a gasket. Since the can is the positive electrode side, that is, the positive electrode can also serving as the positive electrode terminal, a sealing can (a gasket is attached in advance to the peripheral portion of the sealing can in the liquid injection step of injecting the non-aqueous electrolyte into the battery container. The electrolytic solution can be easily injected into the sealing can in a state where the opening is placed upward and the electrode body is accommodated therein.

そして、注液後においては、内部に電極体が収容され且つ電解液が満たされた封口缶に外装缶をその開口部を下向きにした状態で被せ、あるいは下向きにした外装缶の開口部内にその下方側から開口部を上向きにした封口缶のガスケット装着済みの周縁部を嵌め込むことで、封口缶から電解液を全く或いは殆ど溢れ出させることなく、しかも比較的容易に当該封口缶と外装缶とを所定の状態(次工程におけるカシメ封口可能な状態)に組み付けることができる。すなわち、電解液を満たした外装缶の開口部内に封口缶を嵌め込んだ場合や、電極体を仮止め等した外装缶を電解液を満たした封口缶に被せて組み付けた場合のように、電解液を満たした一方の缶に他方の缶の周縁部が入りこむことによって当該一方の缶から電解液が少なからず溢れ出るといった事態を生じさせることなく、外装缶と封口缶とを所定の状態(次工程におけるカシメ封口可能な状態)に効率良く組み付けることができる。なお、このようにして所定の状態に組み付けられた外装缶および封口缶は、外装缶の周縁部がその外側から内方に締め付けられることでカシメ封口される。   Then, after the injection, the sealing can filled with the electrode body and filled with the electrolyte is covered with the outer can with the opening facing downward, or the opening of the outer can with the facing downward is placed in the opening. By fitting the peripheral edge of the sealing can with the opening facing upward from the lower side, the sealing can and the outer can can be relatively easily made without causing any or almost overflowing of the electrolyte from the sealing can. Can be assembled in a predetermined state (a state in which caulking can be sealed in the next step). That is, when the sealing can is fitted in the opening of the outer can filled with the electrolytic solution, or when the outer can with the electrode body temporarily fixed is put on the sealing can filled with the electrolytic solution and assembled. The outer can and the sealed can are kept in a predetermined state (next) without causing a situation in which the electrolyte of the other can overflows due to the peripheral portion of the other can entering one can filled with the liquid. It is possible to efficiently assemble it in a caulking sealable state in the process. In addition, the outer can and the sealing can assembled in a predetermined state in this manner are caulked and sealed by tightening the peripheral edge of the outer can from the outside to the inside.

こうして、本発明の扁平形二次電池によれば、注液工程における電解液の溢れ出しを回避もしくは僅かな量に抑えることができ、しかも注液作業やその後の外装缶と封口缶との組み付け作業を容易に行なうことができる。したがって、注液工程における電解液の溢れ出しによるロスを低減できるだけでなく、作業効率を向上させることができる。   Thus, according to the flat secondary battery of the present invention, the overflow of the electrolyte in the liquid injection process can be avoided or suppressed to a small amount, and the liquid injection operation and the subsequent assembly of the outer can and the sealing can can be performed. Work can be done easily. Therefore, not only can the loss due to the overflow of the electrolyte in the liquid injection process be reduced, but the working efficiency can be improved.

また、上記の扁平形二次電池において、正極缶である封口缶を、内面側がアルミニウムで外面側がステンレス鋼などの他種金属で構成されたクラッド材で形成し、このうちの内面側のアルミニウム部分に前記正極リードまたは特定の正極リードの先端部を超音波溶接した構成とした場合には、封口缶の内面アルミニウム部分とアルミニウム箔製の正極リードとの超音波溶接はアルミニウムどうしの溶接となる。このため、例えば一般に使用されているようなステンレス鋼製の封口缶の内面にアルミニウム箔製の正極リードを超音波溶接する場合のような溶接不良は生じにくい。   Further, in the above-described flat secondary battery, the sealing can which is a positive electrode can is formed of a clad material made of other metal such as aluminum on the inner surface side and stainless steel on the outer surface side, and the aluminum portion on the inner surface side of the clad material When the tip of the positive electrode lead or the specific positive electrode lead is ultrasonically welded, the ultrasonic welding of the inner surface aluminum portion of the sealing can and the positive electrode lead made of aluminum foil is a welding of aluminum. For this reason, for example, the welding defect like the case where the positive electrode lead made of aluminum foil is ultrasonically welded to the inner surface of a stainless steel sealing can which is generally used is unlikely to occur.

しかも、上記のように正極缶としての封口缶と負極缶としての外装缶とを組み付けて電池とした状態においては、封口缶の周縁部は、外装缶の周縁部の内側に位置し、かつ、これらの間に介装されたガスケットによってそのエッジ部分が被覆されて気密・液密状態が保たれるようにシールされるので、外部の水滴等や大気が封口缶のエッジ部分に触れることを防止できる。したがって、この場合、内面側がアルミニウムで外面側がステンレス鋼などの他種金属で構成されたクラッド材により正極缶としての封口缶が形成されているにもかかわらず、そのエッジ部におけるローカルセルの形成を防止でき、ひいてはそのようなローカルセルの形成に伴なう腐食の発生や進行を防止ないし抑制できる。   Moreover, in the state where the sealing can as the positive electrode can and the outer can as the negative electrode can are assembled into a battery as described above, the peripheral portion of the sealing can is located inside the peripheral portion of the outer can, and The edge part is covered with a gasket interposed between them and sealed so as to maintain an airtight and liquid tight state, so that external water droplets and the atmosphere do not touch the edge part of the sealing can. it can. Therefore, in this case, even though a sealing can as a positive electrode can is formed by a clad material in which the inner surface side is made of aluminum and the outer surface side is made of other kinds of metal such as stainless steel, local cells are formed at the edge portion. As a result, the occurrence and progression of corrosion accompanying the formation of such local cells can be prevented or suppressed.

こうして、本発明において、正極缶である封口缶を、内面側がアルミニウムで外面側がステンレス鋼などの他種金属で構成されたクラッド材で形成し、このうちの内面側のアルミニウム部分に前記正極リードまたは特定の正極リードの先端部を超音波溶接した構成とした場合には、正極端子側となる缶(正極缶)と正極リードとの超音波溶接部における溶接信頼性を確保できると同時に正極缶のエッジ部分における腐食の生じにくい扁平形二次電池を実現することができる。   Thus, in the present invention, the sealing can which is a positive electrode can is formed of a clad material having an inner surface side made of aluminum and an outer surface side made of another metal such as stainless steel, and the positive electrode lead or When the tip of a specific positive electrode lead is ultrasonically welded, the welding reliability of the ultrasonic weld between the positive electrode terminal can (positive electrode can) and the positive electrode lead can be ensured, and at the same time, the positive electrode can It is possible to realize a flat secondary battery in which corrosion at the edge portion is less likely to occur.

さらに、上記の扁平形二次電池において、正極缶となる封口缶の内面側のアルミニウム部分の表面に陽極酸化処理(いわゆるアルマイト処理)を施して電気絶縁性の酸化皮膜を形成しておくと、負極リード等の負極側の構成部材が封口缶(正極缶)の内面に接触しても、当該内面に形成された電気絶縁性の酸化皮膜の存在によって短絡を防止することができる。したがって、この種の短絡を防止するために電池組立時に個々の電池ごとに負極リード等を絶縁テープで覆う等の作業を行なわなくて済む。一方、前記封口缶の内面アルミニウム部分に対する陽極酸化処理は、電池として組み立てられる前の単独の封口缶の段階で或いは封口缶に形成される前の板状ワークの段階で、流れ作業的に連続して又は多数個まとめて行なうことができるので、上記のような絶縁テープの装着作業に比べると遥かに作業効率が良い。   Furthermore, in the above-described flat secondary battery, when an anodizing treatment (so-called anodized treatment) is performed on the surface of the aluminum portion on the inner surface side of the sealing can serving as a positive electrode can, an electrically insulating oxide film is formed. Even if the negative electrode side component such as the negative electrode lead contacts the inner surface of the sealing can (positive electrode can), the short circuit can be prevented by the presence of the electrically insulating oxide film formed on the inner surface. Therefore, in order to prevent this type of short circuit, it is not necessary to perform an operation such as covering the negative electrode lead or the like with an insulating tape for each battery during battery assembly. On the other hand, the anodizing treatment on the inner surface aluminum portion of the sealing can is continuously performed in the flow operation at the stage of a single sealing can before being assembled as a battery or at the stage of a plate-like work before being formed on the sealing can. Or a large number of them can be performed together, so that the work efficiency is far better than the above-described work of attaching the insulating tape.

なお、絶縁性の酸化皮膜の厚さは50μm以上であれば、封口缶と負極側の構成部材(例えば負極から導出される負極リード)とが接触した場合の短絡を防止できる。   In addition, if the thickness of the insulating oxide film is 50 μm or more, it is possible to prevent a short circuit when a sealing can and a constituent member on the negative electrode side (for example, a negative electrode lead led out from the negative electrode) contact each other.

本発明の第1実施例に係る扁平形電池の全体構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the flat battery which concerns on 1st Example of this invention. 本発明の第1実施例に係る扁平形電池において正極リードの溶接部の周辺を拡大して示す縦断面図である。FIG. 3 is an enlarged longitudinal sectional view showing a periphery of a welded portion of a positive electrode lead in the flat battery according to the first embodiment of the present invention. 本発明の第1実施例に係る扁平形電池の組み立て前の状態を示す分解図である。It is an exploded view which shows the state before the assembly of the flat battery which concerns on 1st Example of this invention. 本発明の第2実施例に係る扁平形電池の組み立て前の状態を示す分解図である。It is an exploded view which shows the state before the assembly of the flat battery which concerns on 2nd Example of this invention. 本発明の変形例に係る扁平形電池の一部のみを示す縦断面図である。It is a longitudinal cross-sectional view which shows only a part of flat battery which concerns on the modification of this invention.

(第1実施例) 図1〜図3に、本発明をコイン型のリチウムイオン電池に適用した第1実施例に係る扁平形二次電池を示す。この扁平形二次電池1は、図1および図2に示すように、電池容器2内に積層型の電極体3と非水電解液(図示せず)とを収容した構成である。 First Embodiment FIGS. 1 to 3 show a flat secondary battery according to a first embodiment in which the present invention is applied to a coin-type lithium ion battery. As shown in FIGS. 1 and 2, the flat secondary battery 1 has a configuration in which a laminated electrode body 3 and a non-aqueous electrolyte (not shown) are accommodated in a battery container 2.

電池容器2は、外装缶4の開口部にガスケット5を介して封口缶6を装着して当該外装缶4の開口部の周縁部をその外側から内側に締め付けることによりカシメ封口されている。すなわち、電池容器2は、周縁部4aを図1中の下向きに曲げた扁平丸皿形状の外装缶4と、周縁部6aを図1中の上向きに曲げた扁平丸皿形状の封口缶6とからなり、これら外装缶4と封口缶6とが、両者の周縁部4a・6a間に配置したガスケット5を介してカシメ封口された構成とされている。封口缶6の周縁部6aの最外周部分(図1において上側の部分)は、内外二重のはぜ折りに加工してあり、その端部(エッジ部)6bはガスケット5により完全にシールされて液密・気密状態となっている。外装缶4はステンレス鋼で構成されている。ガスケット5は、絶縁体である合成樹脂で形成されている。この例における扁平形電池1は、全高寸法が3.5mm、外径寸法が20mmである。   The battery container 2 is caulked and sealed by attaching a sealing can 6 to the opening of the outer can 4 via a gasket 5 and tightening the peripheral edge of the opening of the outer can 4 from the outside to the inside. That is, the battery container 2 includes a flat round dish-shaped outer can 4 whose peripheral edge 4a is bent downward in FIG. 1, and a flat round dish-shaped sealing can 6 whose peripheral edge 6a is bent upward in FIG. The outer can 4 and the sealing can 6 are configured to be caulked and sealed through a gasket 5 disposed between the peripheral portions 4a and 6a. The outermost peripheral portion (upper portion in FIG. 1) of the peripheral edge portion 6 a of the sealing can 6 is processed into an inner and outer double-folded fold, and its end (edge portion) 6 b is completely sealed by the gasket 5. Liquid-tight and air-tight. The outer can 4 is made of stainless steel. The gasket 5 is formed of a synthetic resin that is an insulator. The flat battery 1 in this example has an overall height of 3.5 mm and an outer diameter of 20 mm.

電極体3は、略円形の正極7と略円形の負極8とを袋状のセパレータ9を介して上下方向に交互に複数段積層した構成である。各セパレータ9は、絶縁性に優れたポリエチレン製の微多孔性薄膜で構成されており、リチウムイオンが透過可能とされている。なお、図示例では正極7および負極8の積層段数は簡略化のため3段しか描いていないが、実際には上述したサイズの扁平形電池において7〜10段程度の積層段数を採用する。ただし、このような段数に限られないことは勿論である。   The electrode body 3 has a configuration in which a plurality of substantially circular positive electrodes 7 and substantially circular negative electrodes 8 are alternately stacked in a vertical direction via a bag-shaped separator 9. Each separator 9 is made of a microporous thin film made of polyethylene having excellent insulating properties, and is capable of transmitting lithium ions. In the illustrated example, the number of stacked layers of the positive electrode 7 and the negative electrode 8 is shown only for the sake of simplicity, but in actuality, the number of stacked layers of about 7 to 10 is used in the flat battery of the size described above. However, it is needless to say that the number of stages is not limited to this.

電極体3の積層方向(積層面に対して直交する方向)における両端(図1中の上下両端)には負極8A・8Bがそれぞれ配置されている。この上下両端に位置する負極8A・8Bを除いて、負極8は、銅等の金属箔製の負極集電体81の両面に、黒鉛等の負極活物質を含有する負極活物質層82を設けた構成である。図1および図2の状態で電極体3の上端に位置する負極8Aにおいては、負極集電体81の下面側にのみ負極活物質層82が設けられ、反対側の上面が露出状態でこれと対向する外装缶4の内面4bに接触している。同じく、電極体3の下端に位置する負極8Bにおいては、負極集電体81の上面側にのみ負極活物質層82が設けられている。電極体3の下端に位置する負極8Bの負極集電体81と封口缶6の内底面6cとの間には、短絡防止用の絶縁シール10が配置されている。絶縁シール10は、ポリエチレンやポリプロピレン等からなる絶縁テープで構成される。   Negative electrodes 8A and 8B are respectively disposed at both ends (upper and lower ends in FIG. 1) of the electrode body 3 in the stacking direction (direction orthogonal to the stacking surface). Except for the negative electrodes 8A and 8B located at both upper and lower ends, the negative electrode 8 is provided with a negative electrode active material layer 82 containing a negative electrode active material such as graphite on both surfaces of a negative electrode current collector 81 made of a metal foil such as copper. It is a configuration. In the negative electrode 8A located at the upper end of the electrode body 3 in the state of FIGS. 1 and 2, the negative electrode active material layer 82 is provided only on the lower surface side of the negative electrode current collector 81, and the upper surface on the opposite side is exposed. It is in contact with the inner surface 4b of the facing outer can 4. Similarly, in the negative electrode 8 </ b> B located at the lower end of the electrode body 3, the negative electrode active material layer 82 is provided only on the upper surface side of the negative electrode current collector 81. Between the negative electrode current collector 81 of the negative electrode 8 </ b> B located at the lower end of the electrode body 3 and the inner bottom surface 6 c of the sealing can 6, an insulating seal 10 for preventing a short circuit is disposed. The insulating seal 10 is made of an insulating tape made of polyethylene or polypropylene.

各負極8・8A・8Bの負極集電体81からは、これと一体の負極リード81aが電極体3の一側方(図1中の右方)に向けて導出されている。これらの負極リード81aは、その先端部どうしが一まとめにされた状態で超音波溶接等で互いに接続されている。そして、この状態で、前述のように電極体3の上端に位置する負極8Aの負極集電体81が、これと対向する外装缶4の内面4bに接触していることにより、各負極8・8A・8Bが外装缶4と電気的に接続され、外装缶4が負極側、つまり負極端子を兼ねる缶(負極缶)となっている。   From the negative electrode current collector 81 of each of the negative electrodes 8, 8 A, and 8 B, a negative electrode lead 81 a integrated therewith is led out toward one side (right side in FIG. 1) of the electrode body 3. These negative electrode leads 81a are connected to each other by ultrasonic welding or the like in a state in which their tip portions are grouped together. In this state, as described above, the negative electrode current collector 81 of the negative electrode 8A located at the upper end of the electrode body 3 is in contact with the inner surface 4b of the outer can 4 facing the negative electrode 8A. 8A and 8B are electrically connected to the outer can 4, and the outer can 4 is a negative electrode side, that is, a can also serving as a negative electrode terminal (negative electrode can).

各正極7は、略円形の扁平袋状のセパレータ9内にそれぞれ収容されている。各正極7は、それぞれ、アルミニウム箔で構成された正極集電体71の両面に、コバルト酸リチウム等の正極活物質を含有する正極活物質層72を設けた構成である。各正極集電体71からはこれと一体のアルミニウム箔製の正極リード71aが電極体3の他側方(前記負極リード81aの導出方向とは反対側の図1・図2中の左方)に向けてそれぞれ導出されている。   Each positive electrode 7 is accommodated in a substantially circular flat bag-like separator 9. Each positive electrode 7 has a configuration in which a positive electrode active material layer 72 containing a positive electrode active material such as lithium cobaltate is provided on both surfaces of a positive electrode current collector 71 formed of an aluminum foil. From each positive electrode current collector 71, a positive electrode lead 71a made of an aluminum foil integrated with the positive electrode current collector 71 is located on the other side of the electrode body 3 (on the left side in FIGS. 1 and 2 opposite to the direction in which the negative electrode lead 81a is led out). It is derived for each.

そして、本発明の扁平形二次電池においては、これらの正極リード71aの導出側の端部つまり先端部が封口缶6の内底面6cに電気的に接続されていることにより、封口缶6が正極側、つまり正極端子を兼ねる缶(正極缶)とされている。さらに具体的に説明すると、この実施例における封口缶6は、内面側がアルミニウム6dで外面側がステンレス鋼6eのクラッド材で形成されている。このうちの内面側のアルミニウム6d部分の表面には陽極酸化処理(アルマイト処理)が施されていることにより電気絶縁性を有するアルミニウムの酸化皮膜(本実施例の場合、その膜厚tは約50μm。図3における部分拡大図参照)6fが形成されている。上述した各正極リード71aの先端部71bは重ねられた状態で封口缶6の内底面6c、つまり酸化皮膜6fの形成されたアルミニウム6d部分の表面に超音波溶接されており、これにより各正極7と封口缶6とが電気的に接続されて、封口缶6が従来の扁平形二次電池の場合とは逆の極性である正極側となった構成である。ここで、酸化被膜6fの存在により超音波溶接が困難な場合には、溶接される箇所の酸化被膜6fを他の箇所よりも薄く形成すればよい。   In the flat secondary battery of the present invention, the end on the lead-out side, that is, the front end of the positive electrode lead 71a is electrically connected to the inner bottom surface 6c of the sealing can 6, so that the sealing can 6 is The can is also used as the positive electrode side, that is, the positive electrode terminal (positive electrode can). More specifically, the sealing can 6 in this embodiment is formed of a clad material whose inner surface side is aluminum 6d and whose outer surface side is stainless steel 6e. Among these, the surface of the aluminum 6d portion on the inner surface side is subjected to anodizing treatment (alumite treatment), so that an aluminum oxide film having electrical insulation (in this embodiment, the film thickness t is about 50 μm). (See a partially enlarged view in FIG. 3) 6f is formed. The tip 71b of each positive electrode lead 71a described above is ultrasonically welded to the inner bottom surface 6c of the sealing can 6, that is, the surface of the aluminum 6d portion on which the oxide film 6f is formed. And the sealing can 6 are electrically connected to each other so that the sealing can 6 has a polarity opposite to that of the conventional flat secondary battery. Here, when ultrasonic welding is difficult due to the presence of the oxide film 6f, the oxide film 6f at the place to be welded may be formed thinner than the other parts.

上記の扁平形二次電池1の組み立て作業は、図3に示すように扁平丸皿形状の封口缶6を下側にして(言い換えると、封口缶6の開口部を上向きにして)、これに、(1)電極体3における正極リード71aの超音波溶接→(2)ガスケット5の装着→(3)非水電解液(図示せず)の注入→(4)外装缶4の組み付け→(5)カシメ封口という順序で行なう。具体的には、以下のようにして行なう。なお、上記(1)と(2)は順番を逆にしてもよいが、ここでは上記の順番で行なう場合について説明する。   As shown in FIG. 3, the flat secondary battery 1 is assembled with the flat round dish-shaped sealing can 6 facing down (in other words, with the opening of the sealing can 6 facing upward). (1) Ultrasonic welding of the positive electrode lead 71a in the electrode body 3 → (2) Mounting of the gasket 5 → (3) Injection of a non-aqueous electrolyte (not shown) → (4) Assembly of the outer can 4 → (5 ) Perform in the order of caulking. Specifically, this is performed as follows. Although the order of (1) and (2) may be reversed, here, the case where they are performed in the above order will be described.

まず、封口缶6の開口部を上にした状態で、その内底面6cに絶縁シール10を介して積層型の電極体3を仮止めする。この電極体3の仮止めは、例えば、絶縁シール10の両面に接着剤層をあらかじめ設けておき、電極体3の最外層に位置する負極8Bにおける負極集電体81と封口缶6の内底面6cとの間に当該絶縁シール10を介在させることによって行なうことができる。また、電極体3の各正極リード71aは、これらの先端部を重ねた状態で封口缶6の内底面6cにおける所定部分に超音波溶接により電気的に接続する。この場合、封口缶6の内面側はアルミニウム6dで構成され、各正極リード71aはアルミニウム箔で形成されているから、アルミニウムどうしの接合となって超音波溶接は比較的容易に行なえる。なお、封口缶6の内面アルミニウム部分6dの表面には陽極酸化処理による酸化皮膜6fが形成されているが、その膜厚tは約50μmとされている。   First, with the opening portion of the sealing can 6 facing up, the laminated electrode body 3 is temporarily fixed to the inner bottom surface 6 c via the insulating seal 10. The electrode body 3 is temporarily fixed by, for example, providing an adhesive layer on both surfaces of the insulating seal 10 in advance, and the negative electrode current collector 81 and the inner bottom surface of the sealing can 6 in the negative electrode 8B located on the outermost layer of the electrode body 3. It can be performed by interposing the insulating seal 10 between 6c. Further, each positive electrode lead 71a of the electrode body 3 is electrically connected to a predetermined portion of the inner bottom surface 6c of the sealing can 6 by ultrasonic welding in a state where these tip portions are overlapped. In this case, the inner surface side of the sealing can 6 is made of aluminum 6d, and each positive electrode lead 71a is made of aluminum foil. Therefore, ultrasonic welding can be performed relatively easily by joining aluminum. An oxide film 6f by anodization is formed on the surface of the inner surface aluminum portion 6d of the sealing can 6, and the film thickness t is about 50 μm.

次いで、封口缶6の周縁部6aにガスケット5を装着したうえで、封口缶6内に所定量の非水電解液を注入する。この注液完了後、ガスケット5の外側に、開口部を下向きにした外装缶4を嵌め込み、この外装缶4の周縁部4aを外側から内方に向けて締め付けてカシメ封口する。このときガスケット5が圧縮され、当該ガスケット5によって外装缶4と封口缶6との間が気密・液密状態にシールされる。こうして、外装缶4と封口缶6とがガスケット5を介在させた状態でカシメ封口されて、図1に示す本発明の扁平形二次電池1が得られる。なお、非水電解液としては、例えば、エチレンカーボネートとメチルエチルカーボネートとを混合した溶媒にLiPF6 を溶解させたものを使用することができる。 Next, after mounting the gasket 5 on the peripheral edge 6 a of the sealing can 6, a predetermined amount of nonaqueous electrolyte is injected into the sealing can 6. After this liquid injection is completed, the outer can 4 with the opening facing downward is fitted into the outer side of the gasket 5, and the peripheral edge 4 a of the outer can 4 is tightened from the outer side to the inner side to seal it with caulking. At this time, the gasket 5 is compressed, and the gap between the outer can 4 and the sealing can 6 is sealed in an airtight / liquidtight state by the gasket 5. Thus, the outer can 4 and the sealing can 6 are caulked and sealed with the gasket 5 interposed therebetween, and the flat secondary battery 1 of the present invention shown in FIG. 1 is obtained. As the non-aqueous electrolyte solution, for example, it can be used those obtained by dissolving LiPF 6 in a solvent mixture of ethylene carbonate and methyl ethyl carbonate.

本発明の扁平形二次電池1は上記のようにして組み立てられるが、その過程で、上述したように封口缶6内への非水電解液の注入作業、およびその後の外装缶4の組み付け作業が行なわれる。その場合、従来のように外装缶4に電極体3の正極リード71aが溶接されて当該外装缶4が正極缶とされていると、封口缶6に対してその上方から外装缶4を組み付けた際、あるいは外装缶4に対してその下側から封口缶6を組み付けた際に、電解液が入っている封口缶6内に電極体3を収めることとなるため、電極体3による排除容積分だけ封口缶6から電解液が溢れ出るという問題が生じる。   The flat secondary battery 1 of the present invention is assembled as described above, and in the process, as described above, the operation of injecting the non-aqueous electrolyte into the sealing can 6 and the subsequent assembly of the outer can 4 Is done. In that case, when the positive electrode lead 71a of the electrode body 3 is welded to the outer can 4 and the outer can 4 is a positive electrode can as in the past, the outer can 4 is assembled to the sealing can 6 from above. When the sealing can 6 is assembled to the outer can 4 from the lower side, the electrode body 3 is stored in the sealing can 6 containing the electrolytic solution. Only the problem that the electrolyte overflows from the sealed can 6 arises.

しかし、本発明の扁平形二次電池1においては、封口缶6の内底面6cに電極体3の正極リード71aが超音波溶接されて、封口缶6が正極端子を兼ねる正極缶とされている。したがって、上述したように封口缶6内に電極体3を収容し且つ電解液を注入した状態で、これに外装缶4をその開口部を下向きにした状態で被せ、あるいは下向きにした外装缶4の開口部内にその下方側から開口部を上向きにした封口缶6のガスケット装着済みの周縁部を嵌め込むことで、封口缶6から電解液を全く或いは殆ど溢れ出させることなく、しかも比較的容易に当該封口缶6と外装缶4とを所定の状態に組み付けることができる。こうして、本発明の扁平形二次電池1によれば、注液工程における電解液の溢れ出しを回避もしくは僅かな量に抑えることができ、しかも注液作業やその後の外装缶4と封口缶6との組み付け作業を容易に行なうことができる。すなわち、注液工程における電解液の溢れ出しによるロスを低減できるだけでなく、作業効率を向上させることができる。   However, in the flat secondary battery 1 of the present invention, the positive electrode lead 71a of the electrode body 3 is ultrasonically welded to the inner bottom surface 6c of the sealing can 6, and the sealing can 6 serves as a positive electrode can also serving as a positive electrode terminal. . Therefore, as described above, in the state where the electrode body 3 is accommodated in the sealing can 6 and the electrolytic solution is injected, the outer can 4 is covered with the opening portion facing downward, or the outer can 4 facing downward. By fitting the peripheral edge of the sealing can 6 with the opening facing upward from the lower side into the opening of the sealing can 6, there is little or no overflow of the electrolyte from the sealing can 6 and relatively easily The sealed can 6 and the outer can 4 can be assembled in a predetermined state. Thus, according to the flat secondary battery 1 of the present invention, the overflow of the electrolyte in the liquid injection process can be avoided or suppressed to a small amount, and the liquid injection work and the subsequent outer can 4 and the sealing can 6 can be performed. Can be easily assembled. That is, not only can the loss due to overflow of the electrolyte in the liquid injection process be reduced, but also the work efficiency can be improved.

また、このようにして電池として組み立てられた状態においては、図2に拡大して示したように、封口缶6の周縁部6aは、外装缶4によって覆われてその周縁部4aの内側に位置し、かつ、これらの間に介装されたガスケット5によってそのエッジ部6bが被覆されて気密・液密状態が保たれるようにシールされることとなるから、外部の水滴等や大気が封口缶6のエッジ部6bに接触することを防止できる。このため、本実施例の扁平形二次電池1においては、正極缶である封口缶6が、内面側がアルミニウム6dで外面側がステンレス鋼6eのクラッド材により形成されているにもかかわらず、そのエッジ部6bにおけるローカルセルの形成を回避でき、ひいてはそのようなローカルセルの形成に伴なう腐食の発生や進行を防止または抑制できる。   Moreover, in the state assembled as a battery in this way, as shown in an enlarged view in FIG. 2, the peripheral portion 6a of the sealing can 6 is covered with the outer can 4 and is positioned inside the peripheral portion 4a. In addition, since the edge portion 6b is covered by the gasket 5 interposed therebetween and sealed so as to maintain an airtight / liquid-tight state, external water droplets and the air are sealed. Contact with the edge portion 6b of the can 6 can be prevented. For this reason, in the flat secondary battery 1 of the present embodiment, the sealing can 6 that is a positive electrode can has an edge that is formed by a clad material of aluminum 6d on the inner surface side and stainless steel 6e on the outer surface side. The formation of local cells in the portion 6b can be avoided, and as a result, the occurrence and progression of corrosion associated with the formation of such local cells can be prevented or suppressed.

加えて、上記の扁平形二次電池1においては、正極缶となる封口缶6の内面側のアルミニウム6d部分の表面に陽極酸化処理(いわゆるアルマイト処理)による電気絶縁性の酸化皮膜6fが形成されているので、負極8から導出された負極リード81aの溶接結合部分等が封口缶(正極缶)6の内面に接触しても、前記電気絶縁性の酸化皮膜6fが存在していることによって短絡が生じなくなる。したがって、そのような短絡を防止するために電池組立時に個々の電池ごとに負極リード等を絶縁テープで覆う等の作業は不要となる。一方、上記のような陽極酸化処理は、電池として組み立てられる前の単独の封口缶6の段階で或いは封口缶6に形成される前の板状ワークの段階で、流れ作業的に連続して又は多数個まとめて行なうことができるから、上述した短絡を防止するための絶縁テープの装着作業等に比べると遥かに作業効率が良い。この場合、陽極酸化処理により形成した絶縁性の酸化皮膜6fの厚さは約50μmである。   In addition, in the flat secondary battery 1 described above, an electrically insulating oxide film 6f is formed on the surface of the aluminum 6d portion on the inner surface side of the sealing can 6 serving as a positive electrode can by anodizing treatment (so-called alumite treatment). Therefore, even if the weld joint portion of the negative electrode lead 81a led out from the negative electrode 8 contacts the inner surface of the sealing can (positive electrode can) 6, a short circuit is caused by the presence of the electrically insulating oxide film 6f. Will not occur. Accordingly, in order to prevent such a short circuit, an operation such as covering the negative electrode lead or the like with an insulating tape for each individual battery at the time of battery assembly becomes unnecessary. On the other hand, the anodic oxidation treatment as described above is performed continuously in the flow operation at the stage of the single sealed can 6 before being assembled as a battery or at the stage of the plate-like work before being formed on the sealed can 6 or Since a large number can be performed together, the working efficiency is far better than the above-described work of attaching the insulating tape for preventing the short circuit. In this case, the thickness of the insulating oxide film 6f formed by the anodizing process is about 50 μm.

(第2実施例) 上記の実施例では、図1や図2に示したように、各正極集電体71から導出した正極リード71aは、これらの先端部71bを重ねた状態で封口缶6内において電極体3の側方に位置する内底面6cに超音波溶接により接続したが、正極リード71aと封口缶6との接続構造は、このようなものに限らない。例えば、図4に示す第2実施例に係る扁平形二次電池のように、電極体3における各正極集電体71からこれと一体のアルミニウム箔製の正極リード71aを電極体3の側方に向けて導出し、そのうちの特定の正極リード(図4では正極集電体71としては最上部に位置する正極集電体から導出された正極リード71cで、その他の正極リード71aよりも長めに形成されているもの)にその他の正極リード71aを溶接したうえで、当該特定の正極リード71cの先端部71dを封口缶6の内底面6cの所定部分(図示例では絶縁シート10の下方に位置する中央部分)に超音波溶接する構造としてもよい。その他の構成は、第1実施例の場合と同様なので、対応する部分に同符号を付してその説明を省略する。 (Second Example) In the above example, as shown in FIG. 1 and FIG. 2, the positive electrode lead 71a led out from each positive electrode current collector 71 is sealed in the sealed can 6 in a state in which the tip parts 71b are overlapped. In the inside, the inner bottom surface 6c located on the side of the electrode body 3 is connected by ultrasonic welding, but the connection structure between the positive electrode lead 71a and the sealing can 6 is not limited to this. For example, like the flat secondary battery according to the second embodiment shown in FIG. 4, the positive electrode lead 71 a made of aluminum foil integrated with the positive electrode current collector 71 in the electrode body 3 is connected to the side of the electrode body 3. Of the positive electrode lead (a positive electrode lead 71c derived from the uppermost positive electrode current collector as the positive electrode current collector 71 in FIG. 4 and longer than the other positive electrode leads 71a). The other positive electrode lead 71a is welded to the formed one), and the tip 71d of the specific positive electrode lead 71c is positioned below a predetermined portion of the inner bottom surface 6c of the sealing can 6 (in the illustrated example, below the insulating sheet 10). It is good also as a structure which ultrasonically welds to the center part which carries out. Other configurations are the same as in the case of the first embodiment, so the corresponding parts are denoted by the same reference numerals and description thereof is omitted.

このような構成によれば、特定の正極リード71cにその他の正極リード71aを予め溶接しておくことで、電池組立時には当該特定の正極リード71cの先端部71dのみを封口缶6の内底面6cに超音波溶接すれば良いから、複数の正極リード71aを重ねて封口缶6の内底面6cに超音波溶接する場合(第1実施例の場合)に比べると溶接作業が容易になる。   According to such a configuration, by welding the other positive electrode lead 71a to the specific positive electrode lead 71c in advance, only the tip 71d of the specific positive electrode lead 71c is connected to the inner bottom surface 6c of the sealing can 6 at the time of battery assembly. Therefore, the welding operation is facilitated as compared with the case where the plurality of positive electrode leads 71a are superposed on the inner bottom surface 6c of the sealing can 6 and ultrasonically welded (in the case of the first embodiment).

(変形例) 上記の第1実施例では、図1および図2に示したように、上端に位置する負極8Aにおける負極集電体81がこれと対向する外装缶4の内面に直接接触する構造としたが、図5に示すように、上端に位置する負極8Aにおける負極集電体81とこれに対向する外装缶4の内面との間に導電性の圧縮バネ部材(図示例では平面視で十字状の皿バネ)20を圧縮状態で装着し、この圧縮バネ部材20を介して負極集電体81とこれに対向する外装缶4の内面4bとが電気的に接続される構造としてもよい。この場合、負極集電体81とこれに対向する外装缶4の内面4bとの間が多少変化しても圧縮バネ部材20がこれらに追随して伸長拡開方向に変形することにより、負極集電体81とこれに対向する外装缶4の内面4bとは常に電気的に接続された状態に維持されることとなる。 (Modification) In the first embodiment, as shown in FIGS. 1 and 2, the negative electrode current collector 81 of the negative electrode 8A located at the upper end directly contacts the inner surface of the outer can 4 facing the negative electrode current collector 81. However, as shown in FIG. 5, a conductive compression spring member (in the illustrated example in plan view) is provided between the negative electrode current collector 81 in the negative electrode 8A located at the upper end and the inner surface of the outer can 4 facing the negative electrode current collector 81. A cross-shaped disc spring) 20 may be mounted in a compressed state, and the negative electrode current collector 81 and the inner surface 4b of the outer can 4 opposed thereto may be electrically connected via the compression spring member 20. . In this case, even if there is a slight change between the negative electrode current collector 81 and the inner surface 4b of the outer can 4 opposed to the negative electrode current collector 81, the compression spring member 20 follows these and deforms in the expansion / expansion direction. The electric body 81 and the inner surface 4b of the outer can 4 opposed to the electric body 81 are always maintained in an electrically connected state.

1 扁平形二次電池
2 電池容器
3 積層型の電極体
4 外装缶
4a 外装缶の周縁部
5 ガスケット
6 封口缶
6d 封口缶の内面側のアルミニウム
6e 封口缶の外面側のステステンレス鋼
6f 電気絶縁性の酸化皮膜
7 正極
71 正極集電体
72 正極活物質層
71a 正極リード
71c 特定の正極リード
8 負極
81 負極集電体
82 負極活物質層
9 セパレータ
t 電気絶縁性の酸化皮膜の厚さ
DESCRIPTION OF SYMBOLS 1 Flat secondary battery 2 Battery container 3 Stacked type electrode body 4 Outer can 4a Peripheral part 5 of outer can 5 Gasket 6 Sealing can 6d Aluminum 6e on the inner surface side of the sealing can Oxide film 7 positive electrode 71 positive electrode current collector 72 positive electrode active material layer 71a positive electrode lead 71c specific positive electrode lead 8 negative electrode 81 negative electrode current collector 82 negative electrode active material layer 9 separator t thickness of electrically insulating oxide film

Claims (5)

外装缶の開口部にガスケットを介して封口缶を装着して当該開口部の周縁部を外側から締め付けることによりカシメ封口された電池容器を有し、
電池容器内には、アルミニウム箔で構成された正極集電体の両面に正極活物質層を形成してなる正極と負極集電体に負極活物質層を形成してなる負極とをセパレータを介して交互に複数段積層してなる積層型の電極体と、非水電解液とが収容された扁平形二次電池であって、
各正極集電体からはこれと一体のアルミニウム箔製の正極リードが電極体の側方に向けて導出されて、それらの先端部が封口缶の内面に溶接されている一方、
電極体の積層方向において外装缶の内面と対向する側の端面には負極集電体が配置されて当該外装缶の内面に電気的に接続されていることにより、
封口缶が正極側で外装缶が負極側とされていることを特徴とする扁平形二次電池。
It has a battery container that is caulked and sealed by attaching a sealing can to the opening of the outer can through a gasket and tightening the periphery of the opening from the outside,
In the battery container, a positive electrode in which a positive electrode active material layer is formed on both sides of a positive electrode current collector made of aluminum foil and a negative electrode in which a negative electrode current collector is formed with a negative electrode active material layer are interposed via a separator. A flat-type secondary battery in which a stacked electrode body formed by alternately stacking a plurality of layers and a nonaqueous electrolyte solution are housed,
From each positive electrode current collector, a positive electrode lead made of an aluminum foil integral with this is led out to the side of the electrode body, and their tips are welded to the inner surface of the sealing can,
The negative electrode current collector is disposed on the end surface on the side facing the inner surface of the outer can in the stacking direction of the electrode body, and is electrically connected to the inner surface of the outer can.
A flat secondary battery characterized in that the sealing can is on the positive electrode side and the outer can is on the negative electrode side.
外装缶の開口部にガスケットを介して封口缶を装着して当該開口部の周縁部を外側から締め付けることによりカシメ封口された電池容器を有し、
電池容器内には、アルミニウム箔で構成された正極集電体の両面に正極活物質層を形成してなる正極と負極集電体に負極活物質層を形成してなる負極とをセパレータを介して交互に複数段積層してなる積層型の電極体と、非水電解液とが収容された扁平形二次電池であって、
各正極集電体からはこれと一体のアルミニウム箔製の正極リードが電極体の側方に向けて導出され、そのうちの特定の正極リードにその他の正極リードが溶接されたうえで当該特定の正極リードの先端部が封口缶の内面に溶接されている一方、
電極体の積層方向において外装缶の内面と対向する側の端面には負極集電体が配置されて当該外装缶の内面に電気的に接続されていることにより、
封口缶が正極側で外装缶が負極側とされていることを特徴とする扁平形二次電池。
It has a battery container that is caulked and sealed by attaching a sealing can to the opening of the outer can through a gasket and tightening the periphery of the opening from the outside,
In the battery container, a positive electrode formed by forming a positive electrode active material layer on both sides of a positive electrode current collector made of aluminum foil and a negative electrode formed by forming a negative electrode active material layer on the negative electrode current collector are interposed via a separator. A flat-type secondary battery in which a stacked electrode body formed by alternately stacking a plurality of layers and a nonaqueous electrolyte solution are housed,
From each positive electrode current collector, a positive electrode lead made of an aluminum foil integral with the positive electrode lead is led out to the side of the electrode body, and the other positive electrode lead is welded to the specific positive electrode lead, and then the specific positive electrode While the tip of the lead is welded to the inner surface of the sealing can,
The negative electrode current collector is disposed on the end surface facing the inner surface of the outer can in the stacking direction of the electrode body, and is electrically connected to the inner surface of the outer can.
A flat secondary battery characterized in that the sealing can is on the positive electrode side and the outer can is on the negative electrode side.
封口缶は、内面側がアルミニウムで構成され且つ外面側が他種金属で構成されたクラッド材で形成されており、このうちの内面側のアルミニウム部分に正極リードの前記先端部が超音波溶接されている、請求項1または2記載の扁平形二次電池。   The sealing can is formed of a clad material whose inner surface is made of aluminum and whose outer surface is made of another kind of metal, and the tip portion of the positive electrode lead is ultrasonically welded to the aluminum portion of the inner surface. The flat secondary battery according to claim 1 or 2. 封口缶の内面側のアルミニウム部分の表面には陽極酸化処理が施されていることにより絶縁性の酸化皮膜が形成されている、請求項3記載の扁平形二次電池。   The flat secondary battery according to claim 3, wherein an insulating oxide film is formed on the surface of the aluminum portion on the inner surface side of the sealing can by anodizing. 絶縁性の酸化皮膜の厚さは50〜100μmである、請求項4記載の扁平形二次電池。   The flat secondary battery according to claim 4, wherein the insulating oxide film has a thickness of 50 to 100 μm.
JP2009060004A 2009-03-12 2009-03-12 Flat secondary battery Pending JP2010212206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060004A JP2010212206A (en) 2009-03-12 2009-03-12 Flat secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060004A JP2010212206A (en) 2009-03-12 2009-03-12 Flat secondary battery

Publications (1)

Publication Number Publication Date
JP2010212206A true JP2010212206A (en) 2010-09-24

Family

ID=42972145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060004A Pending JP2010212206A (en) 2009-03-12 2009-03-12 Flat secondary battery

Country Status (1)

Country Link
JP (1) JP2010212206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065344A1 (en) * 2009-11-27 2011-06-03 日立マクセル株式会社 Flat nonaqueous secondary battery
JP2013191451A (en) * 2012-03-14 2013-09-26 Hitachi Maxell Ltd Flat battery
WO2021070532A1 (en) 2019-10-10 2021-04-15 株式会社村田製作所 Secondary battery
CN114223077A (en) * 2021-03-31 2022-03-22 宁德新能源科技有限公司 Battery and electric equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0171867U (en) * 1987-10-31 1989-05-15
JP2001068160A (en) * 1999-08-27 2001-03-16 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2005166387A (en) * 2003-12-02 2005-06-23 Hitachi Maxell Ltd Battery can and nonaqueous electrolyte battery
JP2005310578A (en) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd Coin type secondary battery
JP2005310577A (en) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd Coin type secondary battery
US7108941B2 (en) * 2000-10-05 2006-09-19 Matsushita Electric Industrial Co., Ltd. Flat battery and production method therefor
JP2008071612A (en) * 2006-09-14 2008-03-27 Hitachi Maxell Ltd Flat nonaqueous electrolyte secondary battery
JP2009026655A (en) * 2007-07-20 2009-02-05 Hitachi Maxell Ltd Flat type battery
JP2009043423A (en) * 2007-08-06 2009-02-26 Hitachi Maxell Ltd Flat shape nonaqueous electrolytic liquid secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0171867U (en) * 1987-10-31 1989-05-15
JP2001068160A (en) * 1999-08-27 2001-03-16 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
US7108941B2 (en) * 2000-10-05 2006-09-19 Matsushita Electric Industrial Co., Ltd. Flat battery and production method therefor
JP2005166387A (en) * 2003-12-02 2005-06-23 Hitachi Maxell Ltd Battery can and nonaqueous electrolyte battery
JP2005310578A (en) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd Coin type secondary battery
JP2005310577A (en) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd Coin type secondary battery
JP2008071612A (en) * 2006-09-14 2008-03-27 Hitachi Maxell Ltd Flat nonaqueous electrolyte secondary battery
JP2009026655A (en) * 2007-07-20 2009-02-05 Hitachi Maxell Ltd Flat type battery
JP2009043423A (en) * 2007-08-06 2009-02-26 Hitachi Maxell Ltd Flat shape nonaqueous electrolytic liquid secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065344A1 (en) * 2009-11-27 2011-06-03 日立マクセル株式会社 Flat nonaqueous secondary battery
JP2013191451A (en) * 2012-03-14 2013-09-26 Hitachi Maxell Ltd Flat battery
WO2021070532A1 (en) 2019-10-10 2021-04-15 株式会社村田製作所 Secondary battery
CN114223077A (en) * 2021-03-31 2022-03-22 宁德新能源科技有限公司 Battery and electric equipment
WO2022205140A1 (en) * 2021-03-31 2022-10-06 宁德新能源科技有限公司 Battery and electric device

Similar Documents

Publication Publication Date Title
US7862925B2 (en) Secondary battery
JP6735445B2 (en) Wound battery
TWI466356B (en) Battery and its manufacturing method
KR101867374B1 (en) Battery cover with attached electrode terminal, method for producing battery cover with attached electrode terminal, and airtight battery
JP5520912B2 (en) Secondary battery
KR101146414B1 (en) Rechargeable battery
KR101222232B1 (en) Secondary battery
JP6679204B2 (en) Rechargeable battery
KR101222264B1 (en) Rechargeable battery
JP6550848B2 (en) Prismatic secondary battery
JP2010257945A (en) Secondary battery
JP2012174683A (en) Secondary battery
KR101136219B1 (en) Secondary battery and method for fabricating the same
JP5282070B2 (en) Secondary battery
JP2011192547A (en) Battery
JP2009289621A (en) Flat battery
KR101797338B1 (en) Secondary battery
JPWO2019194053A1 (en) Battery module
JP2013546136A (en) Pouch and pouch-type secondary battery
KR20110000517A (en) Coin type secondary battery
JP2018181622A (en) Multilayer type secondary battery
JP2004006226A (en) Battery
KR101230994B1 (en) Large-sized Battery
KR101222261B1 (en) Rechargeable battery
US9257686B2 (en) Secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140108