JP2005310577A - Coin type secondary battery - Google Patents

Coin type secondary battery Download PDF

Info

Publication number
JP2005310577A
JP2005310577A JP2004126639A JP2004126639A JP2005310577A JP 2005310577 A JP2005310577 A JP 2005310577A JP 2004126639 A JP2004126639 A JP 2004126639A JP 2004126639 A JP2004126639 A JP 2004126639A JP 2005310577 A JP2005310577 A JP 2005310577A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
electrode plate
electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004126639A
Other languages
Japanese (ja)
Inventor
Kanji Kawakami
幹児 川上
Makoto Nakanishi
眞 中西
Koshi Takamura
侯志 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004126639A priority Critical patent/JP2005310577A/en
Publication of JP2005310577A publication Critical patent/JP2005310577A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coin type secondary battery which comprises an electrode group adopting a laminate structure, suppresses the occurrence of a minute short circuit at the final stage of charge and discharge, exhibits high reliability even in a use for a long period of time, is superior in charge and discharge cycle characteristics, and also superior in reliability. <P>SOLUTION: The coin type secondary battery comprises an electrode group in which a plurality of positive electrode plates and negative electrode plates are laminated alternately through a separator, and the electrode group is housed together with an non-aqueous electrolytic solution in a battery container which is caulked and sealed by a shallow bottomed case serving also as a positive electrode terminal and a sealing case serving as a negative electrode terminal through an insulating gasket. The electrode group is structured by locating the negative electrode plate at the lamination lower end and the lamination upper end. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高負荷放電特性の改善を目的として巻回構造を採用した電極群を備え、扁平形の電池ケース内に収容したコイン形二次電池に関する。   The present invention relates to a coin-type secondary battery that includes an electrode group adopting a winding structure for the purpose of improving high-load discharge characteristics and is housed in a flat battery case.

ボタン形電池、偏平形電池とも称されるコイン形電池は小型薄型であるため、その特徴を生かして腕時計や補聴器など小型化が要求される場合や、ICカードなどのように薄型化が要求される場合に広く用いられている。また、扁平形状とされた電池容器の周縁をカシメ封口することで、容器内部を確実に密封口できることから電池の生産性を高めると同時に高い信頼性を有することから膨大な生産規模を有している。   Coin-type batteries, also called button-type batteries and flat-type batteries, are small and thin, so if you need to make them smaller, such as wristwatches or hearing aids, or thin like IC cards. Widely used in In addition, by crimping the periphery of the flat battery container, the inside of the container can be securely sealed so that the battery productivity is increased and at the same time it has high reliability and has a huge production scale. Yes.

コイン形電池の内部構造は、正極ペレットと負極ペレットとを1:1で対面させたものである。この構造では正極と負極とが対極する反応面積が小さいこと等の要因により連続での放電電流はせいぜい10mA程度であり、負荷電流が小さな機器にしか適用できない問題点を有していた。放電電流を高めるためには、正極極板と負極極板との対極面積を増加させる必要がある。有底筒状の電池ケースに収容した円筒形電池や角形電池では、複数枚の正極極板と負極極板とをセパレータを介して積層した積層構造や、帯状の正極極板と負極極板との間にセパレータを配して渦巻き状に巻回した巻回構造を採用することで、反応面積の増大を図る構造が広く用いられている。   The internal structure of the coin-type battery is such that a positive electrode pellet and a negative electrode pellet face each other at 1: 1. In this structure, the continuous discharge current is at most about 10 mA due to factors such as a small reaction area between the positive electrode and the negative electrode, and there is a problem that it can be applied only to a device with a small load current. In order to increase the discharge current, it is necessary to increase the counter electrode area between the positive electrode plate and the negative electrode plate. In a cylindrical battery or a square battery housed in a bottomed cylindrical battery case, a laminated structure in which a plurality of positive electrode plates and negative electrode plates are stacked via a separator, or a belt-like positive electrode plate and negative electrode plate A structure for increasing the reaction area is widely used by adopting a winding structure in which a separator is wound between the two in a spiral shape.

このような技術的背景において、本発明者らは上記問題点を解決するために巻回構造の電極群を扁平形状の電池容器に収容することでコイン形電池の放電特性を改善することを提案している(特許文献1)。このコイン形電池は積層部位と連結片が交互に形成された帯状の極板を作製し、これら極板を巻回した構造の電極群を構成しており、大電流での放電特性を向上させた電池とされる。また、偏平形状の電池容器を採用することで電池の厚みを小さくでき、従来の角形電池に比べて電池の薄型化も実現するものである。さらに、カシメ封口を採用することで電池の生産性を高めると同時に高い信頼性も実現するものである。
国際公開第02/013305号パンフレット
In such a technical background, the present inventors propose to improve the discharge characteristics of a coin-type battery by accommodating a wound electrode group in a flat battery container in order to solve the above problems. (Patent Document 1). This coin-type battery is made of a strip-shaped electrode plate in which laminated parts and connecting pieces are alternately formed, and constitutes an electrode group having a structure in which these electrode plates are wound to improve the discharge characteristics at a large current. Battery. In addition, by adopting a flat battery container, the thickness of the battery can be reduced, and the battery can be made thinner than the conventional rectangular battery. In addition, the use of a caulking seal increases battery productivity and at the same time realizes high reliability.
International Publication No. 02/013305 Pamphlet

本発明者らは、特許文献1にて提案したコイン形電池の量産化に向けた検討を行った。例えば正極としてリチウム遷移金属酸化物を、負極に炭素材料を用いたコイン形非水電解液二次電池を作製した場合、充放電を繰り返したサイクル末期に微小短絡を生じ易い事実を確認した。さらに本発明者らが前記微小短絡の発生メカニズムを鋭意検証した結果、微小短絡が充電時に正極から放出されたリチウムの析出に起因することを確認した。このリチウム析出は最も有底ケース側に配置される負極表面上で顕著に生じており、析出したリチウムと有底ケース、及び析出部位に対面する正極との間において微小短絡を発生している。そしてリチウム析出の発生作用について詳細な検討を実施した結果、以下のような知見を得た。すなわち、電極群の有底ケースに対面する近傍部分では正極容量が負極容量を上回っており、充電時に負極側に吸蔵しきれない過剰なリチウムイオンが析出したものである。とりわけ扁平形状の電池容器を採用したコイン形電池では電池容器の内容積が小さく、電解液量が僅少となることから、リチウムイオンの移動が阻害される傾向が顕著であり、リチウム析出を生じやすい状況となってしまう。また本発明者らは他の電極材料を用いた非水電解液二次電池においても同様のリチウム析出を確認しており、このリチウム析出が扁平形状の電池容器に電極群を収容した構成による特有の問題点であることを見いだ
した。
The present inventors have studied for mass production of the coin-type battery proposed in Patent Document 1. For example, when a coin-type non-aqueous electrolyte secondary battery using a lithium transition metal oxide as a positive electrode and a carbon material as a negative electrode was produced, it was confirmed that a micro short circuit is likely to occur at the end of a cycle where charge and discharge are repeated. Furthermore, as a result of earnest verification of the mechanism of occurrence of the micro short circuit by the present inventors, it was confirmed that the micro short circuit was caused by precipitation of lithium released from the positive electrode during charging. This lithium deposition occurs remarkably on the negative electrode surface arranged on the most bottomed case side, and a micro short circuit occurs between the deposited lithium and the bottomed case and the positive electrode facing the deposition site. And as a result of carrying out the detailed examination about the generation | occurrence | production effect | action of lithium precipitation, the following knowledge was acquired. That is, the positive electrode capacity exceeds the negative electrode capacity in the vicinity of the electrode group facing the bottomed case, and excessive lithium ions that cannot be occluded on the negative electrode side during charging are deposited. In particular, in a coin-type battery that employs a flat battery container, the battery volume is small and the amount of electrolyte is small, so the tendency to inhibit lithium ion migration is prominent and lithium precipitation is likely to occur. It becomes a situation. The present inventors have also confirmed the same lithium deposition in nonaqueous electrolyte secondary batteries using other electrode materials, and this lithium deposition is peculiar to the configuration in which the electrode group is housed in a flat battery container. I found out that this is a problem.

上記のようなリチウム析出に起因する微小短絡は充放電サイクルが繰り返された電池のサイクル使用末期において特に生じ易く、且つ急激な放電特性の悪化を生じることから電池の長期間信頼性を大きく低下させる要因となる。特に機器のメモリバックアップや小型携帯機器の主電源を主たる用途とするコイン形電池は、機器側より高い信頼性を要求されており、使用末期における放電特性の悪化は機器に極めて大きい影響を与える虞がある。   The micro short circuit due to lithium deposition as described above is particularly likely to occur at the end of cycle use of a battery in which a charge / discharge cycle is repeated, and causes a sharp deterioration in discharge characteristics, thus greatly reducing the long-term reliability of the battery. It becomes a factor. In particular, coin-type batteries mainly used for device memory backup and the main power source of small portable devices are required to have higher reliability than the device side, and deterioration of discharge characteristics at the end of use may have a significant impact on the device. There is.

一方、特許文献1に提案の構造を採用したコイン形電池では、帯状の正負極極板を巻回する工程が増えることから、従来のペレット上の極板を使用した電池に比較して生産性の低下を招いてしまう。さらに電池容量の増加、及び放電特性の向上を目的として極板の巻回回数を高めた電極群では、巻回回数が増えるに従い極板の巻ずれを生じやすく、積層面とこれを繋ぐ連結片の位置精度が低下する問題があった。そこで本発明者らは巻回工程時における巻ずれの発生を抑制するために、正負極の各極板間にセパレータを配した後、巻ずれを生じない様に確実に巻回する対応を行ってきた。しかし、巻回速度の低下は回避し難く、巻回回数が増やした電極群では上記生産性の更なる悪化を招いてしまう虞がある。そこで本発明者らは上記状況に鑑みて電池に要求される放電特性及び電池容量の特性と生産性との両面から検討を行い、複数の正負極板を積層した電極群を扁平形状の電池容器に収容する構造が好ましいケースも想定されるとの結論を得た。   On the other hand, in the coin-type battery adopting the structure proposed in Patent Document 1, the number of steps for winding the belt-like positive and negative electrode plates increases, so that the productivity is higher than that of the conventional battery using the electrode plate on the pellet. It will cause a decline. Furthermore, in the electrode group in which the number of windings of the electrode plate is increased for the purpose of increasing the battery capacity and improving the discharge characteristics, the electrode plate is liable to be displaced as the number of windings increases. There was a problem that the positional accuracy of the lowering. Therefore, in order to suppress the occurrence of winding misalignment during the winding process, the present inventors have taken measures to ensure that no winding misalignment occurs after placing a separator between the positive and negative electrode plates. I came. However, it is difficult to avoid a decrease in the winding speed, and there is a possibility that the productivity is further deteriorated in the electrode group in which the number of windings is increased. In view of the above situation, the present inventors have studied from both aspects of discharge characteristics and battery capacity characteristics and productivity required for the battery, and formed an electrode group in which a plurality of positive and negative electrode plates are laminated into a flat battery container. The conclusion that the case where the structure accommodated in the case is preferable is also assumed.

本発明は、複数の極板を交互に積層した電極群を扁平形状の電池容器に収容されたコイン形二次電池において、サイクル使用末期におけるリチウム析出を抑制することで信頼性を向上させたコイン形二次電池を提供することにある。   The present invention relates to a coin-type secondary battery in which an electrode group in which a plurality of electrode plates are alternately stacked is housed in a flat battery container, and a coin with improved reliability by suppressing lithium deposition at the end of cycle use A secondary battery is provided.

上記目的を達成するために本発明のコイン形二次電池は、複数の正極極板、負極極板がセパレータを介して交互に積層した電極群を備え、前記電極群を非水電解液と共にともに正極端子を兼ねる浅い有底ケースと負極端子を兼ねる封口ケースにより絶縁ガスケットを介してカシメ封口される電池容器に収容した構造を有しており、電極群がその積層下端部及び積層上端部に負極極板を位置させてなることを特徴とする。   In order to achieve the above object, a coin-type secondary battery of the present invention includes an electrode group in which a plurality of positive electrode plates and negative electrode plates are alternately stacked via separators, and the electrode group is used together with a non-aqueous electrolyte. It has a structure that is housed in a battery case that is caulked and sealed through an insulating gasket by a shallow bottom case that also serves as a positive electrode terminal and a sealing case that also serves as a negative electrode terminal. The electrode plate is positioned.

すなわち本発明に係るコイン形二次電池の電極群は、n枚の正極極板とn+1枚の負極極板がセパレータを介して交互に積み重ねられており、最も有底ケース側に位置する電極群の積層下端部に配置される極板、及び最も封口ケース側に配置される電極群の積層上端部に配置される極板に負極極板を用いたものであり、負極極板によって正極極板が挟み込む形態とされた電極群を構成している。そして、この電極群は非水電解液と共に正極端子を兼ねる浅い有底ケースと負極端子を兼ねる封口ケースとで絶縁ガスケットを介してカシメ封口してなる電池容器の内部に収容されるものである。   That is, the electrode group of the coin-type secondary battery according to the present invention has n positive electrode plates and n + 1 negative electrode plates alternately stacked via separators, and is the electrode group located on the most bottomed case side. The negative electrode plate is used for the electrode plate arranged at the lower end of the laminate and the electrode plate arranged at the upper end of the laminate of the electrode group arranged closest to the sealing case. The electrode group made into the form which inserts | pinches is comprised. And this electrode group is accommodated in the inside of the battery container formed by crimping with an insulating gasket by the shallow bottom case which also serves as a positive electrode terminal and the sealing case which also serves as a negative electrode terminal with a nonaqueous electrolyte.

尚、本発明の詳細な説明を含む本明細書の記載において、コイン形二次電池とは半殻状の有底ケースを組合せ、ガスケットを介してカシメ封口した扁平形状の電池容器を用い、充放電可能な正負極の組合せからなる電極群を収容した二次電池を意味しており、前記ケースの底面形状が円形、楕円形、矩形の何れであっても良い。   In the description of the present specification including the detailed description of the present invention, a coin-type secondary battery is combined with a half-shell bottomed case, and a flat battery container sealed by caulking through a gasket is used. This means a secondary battery containing an electrode group comprising a combination of positive and negative electrodes capable of discharging, and the bottom shape of the case may be circular, elliptical, or rectangular.

本発明の構成によれば、何れの正極極板もその両面が負極極板に対向した状態となり、特に正極端子を兼ねる有底ケースと負極極板との間に正極極板が存在しない状態となる。このため、充放電サイクルを繰り返した電池のサイクル寿命末期であっても、正極ケースと負極極板との間に活物質の析出を生ずることがなく、前記析出に起因する微小短絡の発生を大幅に抑制し、電池の信頼性を大きく高めることになる。   According to the configuration of the present invention, any positive electrode plate is in a state where both surfaces thereof face the negative electrode plate, and in particular, there is no positive electrode plate between the bottomed case that also serves as the positive electrode terminal and the negative electrode plate. Become. For this reason, active material does not precipitate between the positive electrode case and the negative electrode plate even at the end of the cycle life of the battery with repeated charge / discharge cycles, and the occurrence of minute short-circuiting due to the precipitation is greatly increased. Therefore, the reliability of the battery is greatly increased.

さらに本発明のコイン形電池において正極極板、負極極板は各々の端部から導出された正極金属リード、負極金属リードを備えており、前記の各金属リードは、正負極で同一方向に引き出され、且つ互いに接続されているものである。この構成によれば、正負極の各極板から引き出された金属リードを接続することで正負極の各複数の極板相互での電気的接続がなされるものである。さらにこれら接続された正負極の各金属リードに正負極の各接続片を介して、若しくはこれら金属リードを直接にて正負極の端子を兼ねる有底ケース、封口ケースに接続することで、電極群と電池容器との接続がなされるものである。これらの正負極の各金属リードは互いに逆方向に引き出すことにより、金属リード間の物理的な距離を確保でき、金属リード同士の接触を確実に防止できる。   Further, in the coin-type battery of the present invention, the positive electrode plate and the negative electrode plate are provided with a positive electrode metal lead and a negative electrode metal lead led out from each end, and each of the metal leads is drawn out in the same direction as the positive electrode and the negative electrode. Are connected to each other. According to this configuration, by connecting the metal leads drawn out from the positive and negative electrode plates, electrical connection is made between the positive and negative electrode plates. Furthermore, by connecting each of these positive and negative metal leads to each of the positive and negative electrode connecting pieces, or directly connecting these metal leads to a bottomed case and a sealing case that also serve as positive and negative electrode terminals, an electrode group Are connected to the battery case. By pulling out the metal leads of these positive and negative electrodes in directions opposite to each other, a physical distance between the metal leads can be secured, and contact between the metal leads can be reliably prevented.

また、正負極の各金属リードと電池容器とを接続する各接続片、若しくは正負極の各金属リードは、金属リードの引き出し方向に対して逆向きに折り返した状態で電池容器に収容される。この構成であれば、電極群から引き出された形態となるリード、若しくは接続片を電池容器に溶接により接続でき、電気的接続が確実になされることから電池の信頼性を大きく高めるものである。尚、好ましくは電極群から引き出される金属リードに代えて、正負極の金属リードで代用する構成が好ましい。具体的には正負極各々において一つの金属リード(以下、接続用金属リード)を他の金属リードに長く設定し、この接続用金属リードに他の金属リードを接続し、さらに接続用金属リードの端部を電池容器に接続することで電極群と電池容器との電気的接続を行うものである。この構成によれば、前記の接続片を必要とせず、電極群の構成を簡素化できるものである。   Further, each connecting piece for connecting each metal lead of the positive and negative electrodes and the battery container, or each metal lead of the positive and negative electrodes is housed in the battery container in a state of being folded back in the direction opposite to the drawing direction of the metal leads. If it is this structure, the lead | read | reed or connection piece used as the form pulled out from the electrode group can be connected to a battery container by welding, and since electrical connection is made | formed reliably, the reliability of a battery is improved greatly. In addition, it is preferable to replace the metal leads drawn from the electrode group with positive and negative metal leads. Specifically, in each of the positive and negative electrodes, one metal lead (hereinafter referred to as a “connecting metal lead”) is set long to the other metal lead, the other metal lead is connected to this connecting metal lead, and the connecting metal lead The electrode group and the battery container are electrically connected by connecting the end part to the battery container. According to this configuration, the connection piece is not required, and the configuration of the electrode group can be simplified.

さらに本発明のコイン形電池において負極極板は、電極材料が金属箔芯材の両面に塗着されてなる両面塗着極板と電極材料が金属箔芯材の一面のみに塗着され、他面で金属箔芯材が露呈してなる片面塗着極板との2種類の極板を備えており、前記片面塗着極板は電極群の積層上端部、積層下端部に位置され、金属箔芯材の露出する他面を封口ケース、有底ケースに対向させて配置するものである。   Further, in the coin-type battery of the present invention, the negative electrode plate has a double-sided electrode plate in which the electrode material is applied to both surfaces of the metal foil core material, and the electrode material is applied only to one surface of the metal foil core material. It has two types of electrode plates, a single-side coated electrode plate formed by exposing a metal foil core material on the surface, and the single-side coated electrode plate is positioned at the upper end of the stack of electrodes, and the lower end of the stack. The other surface where the foil core material is exposed is arranged to face the sealing case and the bottomed case.

この片面塗着極板を形成し、電極群の積層上端部、及び下端部に配置することによって、電極材料の塗着部位を最適化することで電極群の体積に占める放電反応への寄与率が高い活物質の割合を増やすことができ、電極群の単位体積当たりの放電容量を増加させるものである。   By forming this single-side coated electrode plate and placing it on the upper and lower ends of the electrode group, the contribution rate to the discharge reaction occupying the volume of the electrode group by optimizing the electrode material coating site The ratio of the active material having a high value can be increased, and the discharge capacity per unit volume of the electrode group is increased.

またさらに本発明のコイン形電池は電極群と正極端子を兼ねる有底ケースとの間に絶縁シートを配置したものである。この構成によれば、電極群の積層下端部に配置される負極極板と正極端子を兼ねる有底ケースとの絶縁を確実にするものであり、電極群の外周面を被覆する絶縁部材、例えばセパレータによる電極群の外装被覆に破損を生じても、負極極板と有底ケースとの絶縁を確実に保持できる。この構成は、各種の安全機構、例えば封口板における遮断機構やPTC素子が事実上配置できないコイン形二次電池では、電池の信頼性を高める重要な要素となる。   Furthermore, the coin-type battery of the present invention has an insulating sheet disposed between the electrode group and a bottomed case that also serves as a positive electrode terminal. According to this configuration, the insulation between the negative electrode plate disposed at the lower end of the stacked electrode group and the bottomed case that also serves as the positive electrode terminal is ensured, and an insulating member that covers the outer peripheral surface of the electrode group, for example, Even if the outer covering of the electrode group by the separator is damaged, the insulation between the negative electrode plate and the bottomed case can be reliably maintained. This configuration is an important factor for enhancing the reliability of various safety mechanisms, for example, a coin-type secondary battery in which a blocking mechanism in a sealing plate and a PTC element cannot be practically arranged.

以上の説明の通り本発明によれば、コイン形電池における活物質の析出に起因する微小短絡の発生を抑制し、長期に亘って充放電特性を維持することで電池のサイクル特性を大幅な向上を可能とし、さらに電池の信頼性を向上させたコイン形電池が得られるものである。   As described above, according to the present invention, the cycle characteristics of the battery are greatly improved by suppressing the occurrence of minute short-circuits due to the precipitation of the active material in the coin-type battery and maintaining the charge / discharge characteristics over a long period of time. Thus, a coin-type battery with improved battery reliability can be obtained.

以下、添付図面を参照して本発明の実施形態について説明し、本発明の理解に供する。尚、以下に示す実施形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.

本実施形態に係るコイン形電池は、リチウムイオン二次電池として構成した例を示すもので、第1の実施形態に係るコイン形電池Aは、図1に断面図として示すように、浅い有底円筒状(半殻状)の電池缶2(有底ケース)と、この電池缶2にガスケット3を介して、その開口部を封口板4(封口ケース)によって封口する電池容器内に積層構造の電極群1を収容して、コイン形の外観を呈する電池に構成されている。   The coin-type battery according to the present embodiment shows an example configured as a lithium ion secondary battery, and the coin-type battery A according to the first embodiment has a shallow bottom as shown in a sectional view in FIG. A cylindrical (half-shell) battery can 2 (bottomed case) and a battery container 2 having a laminated structure in which the opening is sealed by a sealing plate 4 (sealing case) via a gasket 3. A battery that accommodates the electrode group 1 and has a coin-shaped appearance is configured.

前記電極群1は、図2に平面図として示すように、電池缶2と封口板4によって形成される円形の空間内に、無駄な空間の形成が少ない略円形の平面形状に形成される。従って、電池体積あたりの放電容量が大きい体積エネルギー密度のよい電池に構成することができる。この電極群1は、図3(a)に示す正極極板5と、図3(b)に示す負極極板6とを、図1に示すようにセパレータ7を介して交互に積層することにより形成される。図1において、正極極板5は負極極板6に挟み込まれた形態となっており、封口板4側に位置する電極群1の積層上端部と、電池缶2側に位置する電極群1の積層下端部には負極極板6が配置されている。また、正負極の極板を積層して形成された電極群1は各電極から導出された金属リード(図示せず)により電池缶2、封口板4に接続される。   As shown in a plan view in FIG. 2, the electrode group 1 is formed in a substantially circular plane shape with little useless space in a circular space formed by the battery can 2 and the sealing plate 4. Therefore, a battery having a large volumetric energy density with a large discharge capacity per battery volume can be formed. The electrode group 1 is formed by alternately stacking positive electrode plates 5 shown in FIG. 3A and negative electrode plates 6 shown in FIG. 3B through separators 7 as shown in FIG. It is formed. In FIG. 1, the positive electrode plate 5 is sandwiched between the negative electrode plates 6, and the upper end portion of the electrode group 1 located on the sealing plate 4 side and the electrode group 1 located on the battery can 2 side. A negative electrode plate 6 is disposed at the lower end of the stack. The electrode group 1 formed by laminating positive and negative electrode plates is connected to the battery can 2 and the sealing plate 4 by metal leads (not shown) derived from the respective electrodes.

上記のような電極群1を構成する正極極板5は、アルミニウム箔によって形成された集電体の両面に正極材料を塗着させ、図3(a)に示すように、幅方向に円弧を形成した正極極板面5a、及び極板面から延出されたアルミニウム箔からなる正極金属リード5bを有している。また、負極極板6は、銅箔によって形成された集電体に負極材料を塗着させ、図3(b)に示すように、幅方向に円弧を形成した負極極板面6a、及び極板面から延出された銅箔からなる負極金属リード6bを有している。   The positive electrode plate 5 constituting the electrode group 1 is coated with a positive electrode material on both surfaces of a current collector formed of aluminum foil, and an arc is formed in the width direction as shown in FIG. It has a positive electrode plate surface 5a formed and a positive electrode metal lead 5b made of an aluminum foil extended from the electrode plate surface. Further, the negative electrode plate 6 is formed by applying a negative electrode material to a current collector formed of a copper foil, and, as shown in FIG. It has the negative electrode metal lead 6b which consists of copper foil extended from the plate surface.

尚、図3に示すように負極極板6と正極極板5における極板面の幅はWb>Waとし、極板面の長さはLb>Laとしている。このように負極極板6の幅、長さを正極極板5よりも大きく形成しておくことにより、正極極板5aと負極極板面6aとの対向位置に位置ずれが生じたときにも正極極板が確実に負極極板に対向する構成としている。   As shown in FIG. 3, the width of the electrode plate surfaces of the negative electrode plate 6 and the positive electrode plate 5 is Wb> Wa, and the length of the electrode plate surface is Lb> La. Thus, by forming the width and length of the negative electrode plate 6 larger than that of the positive electrode plate 5, even when a positional deviation occurs between the opposing positions of the positive electrode plate 5a and the negative electrode plate surface 6a. The positive electrode plate surely faces the negative electrode plate.

この正極極板5と負極極板6とは、図4に模式図として示すように、正極極板面5aと負極極板面6aとがセパレータ7を介して対面して積層される。また、正極金属リード5bは図3上において左方向に、負極金属リード6bは右方向に引き出されている。これら金属リードは電極群の側面を臨む位置で溶接にて一体化されており、後述する方法にて電池容器に接続されるものである。   The positive electrode plate 5 and the negative electrode plate 6 are laminated such that the positive electrode plate surface 5 a and the negative electrode plate surface 6 a face each other with a separator 7 as shown in a schematic diagram in FIG. 4. Further, the positive metal lead 5b is drawn leftward in FIG. 3, and the negative metal lead 6b is drawn rightward. These metal leads are integrated by welding at a position facing the side surface of the electrode group, and are connected to the battery container by a method described later.

また、図3(b)において負極極板の一面を未塗着の状態とすることで片面塗着極板を形成しても良い。この片面塗着極板を電極群1の積層上端部、及び積層下端部に配置し、未塗着部分が電極群1の外周側になる様に配置することで、電池容器の内面に対向する電極群1の主面が負極集電体を露呈した状態とすることができる。この状態では、正極極板5に対向しておらず、起電反応への寄与が小さい負極の領域を未塗着とすることで、体積効率の向上を図ることで体積当たりの容量を増加させるものである。   Moreover, you may form a single-sided coated electrode plate by making one surface of a negative electrode plate uncoated in FIG.3 (b). This single-side coated electrode plate is disposed at the upper end of the stack of the electrode group 1 and the lower end of the stack, and the uncoated portion is disposed on the outer peripheral side of the electrode group 1 so as to face the inner surface of the battery container. The main surface of the electrode group 1 can be in a state where the negative electrode current collector is exposed. In this state, the negative electrode region that does not face the positive electrode plate 5 and contributes little to the electromotive reaction is uncoated, thereby increasing the volumetric efficiency by improving the volume efficiency. Is.

さらに前記セパレータ7は微多孔性ポリエチレンフィルムを正負極の極板形状に打ち抜いたものである。具体的には負極極板6の幅、長さ寸法を各々一辺とする矩形状に予め打ち抜きを行い、正極極板5及び負極極板6と共に積層した後、不要部分を切り落とすことにより、円盤状の電極群1が形成される。さらにセパレータ7は電極群1の外周も被覆することで、金属リードと極板が直接接触するのを防止している。さらに好ましくは図4において電極群1の積層下端部に位置する負極極板6と正極金属リード5bとの間に樹脂材料を配置することで、負極極板6と正極電位を有する正極金属リード5bの絶縁性を高めることで、万が一正極金属リード5bにバリ等の突起が生じても確実に絶縁し、電池の信
頼性を大きく高めるものである。
Further, the separator 7 is obtained by punching a microporous polyethylene film into positive and negative electrode plates. Specifically, the negative electrode plate 6 is previously punched into a rectangular shape having a width and a length dimension on each side, laminated together with the positive electrode plate 5 and the negative electrode plate 6, and then cut off unnecessary portions, thereby forming a disk shape. Electrode group 1 is formed. Further, the separator 7 also covers the outer periphery of the electrode group 1 to prevent the metal lead and the electrode plate from coming into direct contact. More preferably, by disposing a resin material between the negative electrode plate 6 and the positive electrode metal lead 5b located at the lower end of the stack of the electrode group 1 in FIG. 4, the negative electrode plate 6 and the positive electrode metal lead 5b having a positive electrode potential. By increasing the insulation, it is possible to reliably insulate even if protrusions such as burrs occur on the positive electrode metal lead 5b, thereby greatly increasing the reliability of the battery.

正極極板5と負極極板6から各々延出された各金属リードを一体化するためには、各金属リードの長さについて一体化を溶接を行う箇所から離れた極板ほど長くする必要がある。具体的には正極極板5は上部に積層される極板ほど金属リード長が大きく、負極極板6は下部に積層される極板ほど金属リード長が大きくなる。これらの金属リードは電極群1の周面を臨む位置で溶接により一体化されており、一体化された各々の金属リードは接続片を介して電池缶2、封口板4に接続される。またさらに前記接続片に代えて一つの極板から延出された接続用金属リードにより電池缶2、封口板4に接続する構成としても良い。この構成は、図4に示すように最上端に位置する負極極板6から延出された負極接続用金属リード6cに他の負極極板6から延出された負極金属リード6bを接続すると共に、負極接続用金属リード6cにて負極端子を兼ねる封口板4に直接接続している。一方、正極については最も下端よりに位置する正極極板5から延出された正極接続用金属リード5cに他の正極極板5から延出された正極金属リード5bを接続すると共に、正極接続用金属リード5cにて正極端子を兼ねる電池缶2に直接接続している。そしてこれら直接接続の方法は以下の通りである。   In order to integrate each metal lead extended from each of the positive electrode plate 5 and the negative electrode plate 6, the length of each metal lead needs to be longer as the electrode plate is farther from the place where welding is performed. is there. Specifically, the positive electrode plate 5 has a larger metal lead length as the electrode plate is laminated on the upper portion, and the negative electrode plate 6 has a larger metal lead length as the electrode plate is laminated on the lower portion. These metal leads are integrated by welding at a position facing the peripheral surface of the electrode group 1, and each integrated metal lead is connected to the battery can 2 and the sealing plate 4 through a connection piece. Furthermore, it is good also as a structure connected to the battery can 2 and the sealing board 4 with the metal lead for connection extended from one electrode plate instead of the said connection piece. In this configuration, as shown in FIG. 4, the negative electrode metal lead 6b extended from the other negative electrode plate 6 is connected to the negative electrode connecting metal lead 6c extended from the negative electrode plate 6 located at the uppermost end. The negative electrode connecting metal lead 6c is directly connected to the sealing plate 4 serving also as the negative electrode terminal. On the other hand, for the positive electrode, the positive electrode metal lead 5b extended from the other positive electrode plate 5 is connected to the positive electrode connection metal lead 5c extended from the positive electrode plate 5 located at the lowest end, and for positive electrode connection. The metal lead 5c is directly connected to the battery can 2 that also serves as a positive electrode terminal. These direct connection methods are as follows.

図4に示す構成を有する電極群1は、正極接続用金属リード5cの先端部が電池缶2の内面に溶接され、負極接続用金属リード6cの先端部が封口板4の内面に溶接される。正極接続用金属リード5cは、コバルト酸リチウム等を正極活物質として用いる場合に正極集電体としてアルミニウム箔が適用されることからアルミニウムを電池缶2に溶接することになる。しかし、電池缶2は一般にステンレス製であることからアルミニウムをステンレスに溶接することは容易でない。そこで、本実施形態における電池缶2は、内面側がアルミニウム、外面側がステンレスのクラッド材によって形成される。この電池缶2の構成により正極接続用金属リード5cはアルミニウム同士での溶接となり、超音波溶接を適用することによってアルミニウム箔の溶接を確実なものとしている。一方、負極接続用金属リード6cは負極集電体として銅箔が適用されていることから、このリード6cをステンレス製の封口板4に抵抗溶接により接合できる。   In the electrode group 1 having the configuration shown in FIG. 4, the tip of the positive electrode connecting metal lead 5 c is welded to the inner surface of the battery can 2, and the tip of the negative electrode connecting metal lead 6 c is welded to the inner surface of the sealing plate 4. . The metal lead 5c for positive electrode connection welds aluminum to the battery can 2 since an aluminum foil is applied as a positive electrode current collector when lithium cobaltate or the like is used as a positive electrode active material. However, since the battery can 2 is generally made of stainless steel, it is not easy to weld aluminum to stainless steel. Therefore, the battery can 2 in the present embodiment is formed of a clad material whose inner surface side is aluminum and whose outer surface side is stainless steel. With the configuration of the battery can 2, the positive electrode connecting metal lead 5 c is welded between aluminum, and ultrasonic welding is applied to ensure the welding of the aluminum foil. On the other hand, since the copper lead is applied to the negative electrode connecting metal lead 6c as the negative electrode current collector, the lead 6c can be joined to the stainless sealing plate 4 by resistance welding.

上記の構成を有する電極群1は負極接続用金属リード6cを封口板4に、正極接続用金属リード5cを電池缶2に各々溶接した後、これらリードを折り畳むようにして電極群1を電池缶2内に収容される。そして、電解液を注入して電池缶2の開口部にガスケット3を介して封口板4で封口することでコイン形電池を形成されるものであり、電池缶2は正極端子、封口板4は負極端子となるようにガスケット3で絶縁して構成される。   In the electrode group 1 having the above-described configuration, the negative electrode connecting metal lead 6 c is welded to the sealing plate 4, and the positive electrode connecting metal lead 5 c is welded to the battery can 2. 2 is accommodated. A coin-shaped battery is formed by injecting an electrolyte solution and sealing the opening of the battery can 2 with a sealing plate 4 via a gasket 3. The battery can 2 has a positive terminal and the sealing plate 4 has Insulated with gasket 3 so as to be a negative electrode terminal.

次に、本実施形態で説明したコイン形の外観形状を呈する電池A、そして比較例として正極極板5及び負極極板6を同一枚数とし、これら極板を交互に積層した電極群を備えた比較電池Bについて、比較検証した実施例を以下に示す。ここで、電池A及び比較電池Bの構成は直径30mm、厚さ3.2mmのコイン形電池に形成した場合での比較である。   Next, the battery A having the coin-shaped appearance described in the present embodiment, and the positive electrode plate 5 and the negative electrode plate 6 as the same number as a comparative example, and an electrode group in which these electrode plates are alternately stacked are provided. The comparative example of the comparative battery B is shown below. Here, the configuration of the battery A and the comparative battery B is a comparison in the case of forming a coin-type battery having a diameter of 30 mm and a thickness of 3.2 mm.

(1)電池Aの作製
電池Aにおいて正極極板5は、次のように作製した。すなわち、厚さ20μmのアルミニウム箔の両面に、ポリフッ化ビニリデン3重量部をN−メチルピロリドン38重量部に溶解し、これに活物質としてLiCoO2 50重量部、導電剤として黒鉛9重量部を加えて不活性雰囲気下で混合分散した正極電極材料を均等な厚さに大気中で塗布し、120℃で1時間乾燥させた後、180μmの厚さになるように圧延処理した正極極板材から、図3(a)に示した形状に打ち抜き加工した。
(1) Production of Battery A In Battery A, the positive electrode plate 5 was produced as follows. That is, 3 parts by weight of polyvinylidene fluoride was dissolved in 38 parts by weight of N-methylpyrrolidone on both sides of an aluminum foil having a thickness of 20 μm, and 50 parts by weight of LiCoO 2 as an active material and 9 parts by weight of graphite as a conductive agent were added thereto. The positive electrode material mixed and dispersed under an inert atmosphere was applied to the uniform thickness in the air, dried at 120 ° C. for 1 hour, and then rolled to a thickness of 180 μm. It was punched into the shape shown in FIG.

負極極板6は、厚さ15μmの銅箔の両面に、ポリフッ化ビニリデン3重量部をN−メ
チルピロリドン38重量部に溶解し、これにコークスの2500℃焼成品59重量部を加えて不活性雰囲気下で混合分散した負極電極材料を均等な厚さに大気中で塗布し、120℃で1時間乾燥させた後、165μmの厚さになるように圧延処理した負極極板材から、図3(b)に示した形状に打ち抜き加工した。
The negative electrode plate 6 is inert by dissolving 3 parts by weight of polyvinylidene fluoride in 38 parts by weight of N-methylpyrrolidone on both sides of a copper foil having a thickness of 15 μm, and adding 59 parts by weight of a 2500 ° C. baked product of coke. The negative electrode material mixed and dispersed in the atmosphere was applied to the uniform thickness in the air, dried at 120 ° C. for 1 hour, and then rolled to a thickness of 165 μm. Punched into the shape shown in b).

上記構成になる正極極板5と負極極板6とを、厚さ25μmの微多孔性ポリエチレンフィルムを介して図4のように積層し、厚さが約2.4mmの電極群1に形成し、正極金属リード5bの先端部を電池缶2の内面に超音波溶接し、負極金属リード6bの先端部を封口板4の内面に抵抗溶接した。この電極群1を電池缶2内に収容し、LiPF6/EC−EMC電解液を400μl注液して、電池缶2の開口部にガスケット3を介して封口板4により封口した。 The positive electrode plate 5 and the negative electrode plate 6 having the above-described configuration are laminated as shown in FIG. 4 through a microporous polyethylene film having a thickness of 25 μm to form an electrode group 1 having a thickness of about 2.4 mm. The tip of the positive electrode metal lead 5 b was ultrasonically welded to the inner surface of the battery can 2, and the tip of the negative electrode metal lead 6 b was resistance welded to the inner surface of the sealing plate 4. This electrode group 1 was accommodated in a battery can 2, 400 μl of LiPF 6 / EC-EMC electrolyte was injected, and the opening of the battery can 2 was sealed with a sealing plate 4 via a gasket 3.

(2)比較電池Bの作製
比較電池Bでは、正極極板5、負極極板6について同一の電池Aと同一の正負電極材料を使用した。正極極板5は、厚さ20μmのアルミニウム箔の両面に正極電極材料を均等な厚さに大気中で塗布し、120℃で1時間乾燥させた後、135μmの厚さになるように圧延処理した極板材料から、図3(a)に示した形状に打ち抜き加工した。一方、負極極板6は電池Aと同一のものを使用した。比較電池Bでは正負極の積層枚数を同一としており、比較電池Bでは各6枚を使用した。そして正極極板5と負極極板6とを、厚さ25μmの微多孔性ポリエチレンフィルムを介して交互に積層しており、上端に負極極板6を、下端に正極極板5を配置した電極群1に形成した。他の構成は、すなわち金属リード等の接続方法は電池Aと同一としており、電極群1を電池缶2内に収容し、電解液を400μl注液して、電池缶2の開口部にガスケット3を介して封口板4により封口した。
(2) Production of Comparative Battery B In the comparative battery B, the same positive and negative electrode materials as the same battery A were used for the positive electrode plate 5 and the negative electrode plate 6. The positive electrode plate 5 is applied to both surfaces of an aluminum foil having a thickness of 20 μm with a positive electrode material having an even thickness in the air, dried at 120 ° C. for 1 hour, and then rolled to a thickness of 135 μm. The electrode plate material was punched into the shape shown in FIG. On the other hand, the same negative electrode plate 6 as that of the battery A was used. In Comparative Battery B, the number of positive and negative electrodes stacked was the same, and in Comparative Battery B, 6 sheets were used each. The positive electrode plate 5 and the negative electrode plate 6 are alternately laminated through a microporous polyethylene film having a thickness of 25 μm, and the negative electrode plate 6 is disposed at the upper end and the positive electrode plate 5 is disposed at the lower end. Formed in Group 1. The other structure, that is, the connection method of the metal lead or the like is the same as that of the battery A, the electrode group 1 is accommodated in the battery can 2, 400 μl of the electrolytic solution is injected, and the gasket 3 Was sealed with a sealing plate 4.

(3)電池評価
上記電池A、及び比較電池Bについて、充放電サイクルを繰り返した後、電池を分解し、負極極板上あるいはセパレータ上におけるリチウム金属の析出状況を確認した。
(3) Battery evaluation About the said battery A and the comparison battery B, after repeating a charging / discharging cycle, the battery was decomposed | disassembled and the deposition condition of the lithium metal on the negative electrode plate or the separator was confirmed.

上記の充放電サイクル条件としては、各電池ともに4.2V〜3.0Vの間で、放電電流25mA、充電電流10mAの定電流により、充放電を500回繰り返した。本発明に係る電池Aは、何れも負極極板あるいはセパレータ上にリチウム金属の析出は認められなかったが、比較電池Bでは最下端に位置する正極極板とこの極板に対向する負極極板とに挟まれるセパレータ上にリチウム金属が析出しており、これら極板の間にて微小短絡を生じていた。   As said charging / discharging cycle conditions, charging / discharging was repeated 500 times by 4.2 to 3.0V with the constant current of discharge current 25mA and charge current 10mA in each battery. In all of the batteries A according to the present invention, no lithium metal was deposited on the negative electrode plate or the separator. However, in the comparative battery B, the positive electrode plate located at the lowermost end and the negative electrode plate facing this electrode plate Lithium metal was deposited on the separator sandwiched between the electrodes, and a short circuit occurred between these plates.

また本発明者らは、本実施例と同様の構成にて他の電極材料を用いたコイン形電池を作製し、充放電サイクルによる影響を検証した。その結果、いずれの電極材料を用いたコイン形電池でも正極と負極の積層面が同数の極板を用いた場合、負極表面上に活物質の析出が確認され、微小短絡も生じていた。しかし、本発明に係る構成では微小短絡、及びその原因となる活物質の析出を生じておらず、本発明による効果が確認された。   In addition, the present inventors fabricated coin-type batteries using other electrode materials with the same configuration as in this example, and verified the influence of the charge / discharge cycle. As a result, in any coin-type battery using any of the electrode materials, when the same number of electrode plates were used for the positive electrode and the negative electrode, it was confirmed that the active material was deposited on the negative electrode surface, and a micro short circuit occurred. However, in the configuration according to the present invention, no short-circuit and no active material causing the short-circuit occurred, and the effect of the present invention was confirmed.

以上の説明の通り本発明によれば、積層構造を採用した電極群を有するコイン形二次電池において、負極表面上における活物質の析出を抑え、この析出に起因する微小短絡の発生を抑制することで、充放電サイクルが繰り返される長期間の使用であっても安全性、充放電サイクル特性、充放電特性、信頼性を維持することが可能となる。このため、携帯機器等の小型化、薄型化、軽量化が要求される用途に加え、メモリバックアップ用途等の高い信頼性が要求される用途の電源として利用することができ、その工業的価値は大なるものである。   As described above, according to the present invention, in a coin-type secondary battery having an electrode group adopting a laminated structure, the deposition of an active material on the negative electrode surface is suppressed, and the occurrence of a micro short circuit due to this deposition is suppressed. Thus, safety, charge / discharge cycle characteristics, charge / discharge characteristics, and reliability can be maintained even during long-term use in which charge / discharge cycles are repeated. For this reason, it can be used as a power source for applications that require high reliability such as memory backup applications in addition to applications that require miniaturization, thinning, and weight reduction of portable devices. It ’s great.

本発明のコイン形電池の断面構成を示す模式図The schematic diagram which shows the cross-sectional structure of the coin-type battery of this invention 同電池の内部平面構成を示す模式図Schematic diagram showing the internal plan configuration of the battery (a)同電池の正極極板の構成を示す模式図(b)同電池の負極極板の構成を示す模式図(A) Schematic diagram showing the configuration of the positive electrode plate of the battery (b) Schematic diagram showing the configuration of the negative electrode plate of the battery 同電池の電極群の構成を示す模式図Schematic diagram showing the configuration of the electrode group of the battery

符号の説明Explanation of symbols

1 電極群
2 電池缶
3 ガスケット
4 封口板
5 正極極板
6 負極極板
7 セパレータ
1 Electrode Group 2 Battery Can 3 Gasket 4 Sealing Plate 5 Positive Electrode Plate 6 Negative Electrode Plate 7 Separator

Claims (4)

複数の正極極板、負極極板がセパレータを介して交互に積層した電極群を備え、前記電極群を非水電解液と共にともに正極端子を兼ねる浅い有底ケースと負極端子を兼ねる封口ケースにより絶縁ガスケットを介してカシメ封口される電池容器に収容してなるコイン形二次電池であって
前記電極群がその積層下端部及び積層上端部に負極極板を位置させてなることを特徴とするコイン形二次電池。
Provided with an electrode group in which a plurality of positive electrode plates and negative electrode plates are alternately stacked via separators, the electrode group together with a non-aqueous electrolyte is insulated by a shallow bottom case that also serves as a positive electrode terminal and a sealing case that also serves as a negative electrode terminal A coin-type secondary battery housed in a battery container that is caulked and sealed through a gasket, wherein the electrode group has a negative electrode plate positioned at the lower end and the upper end of the stack. Type secondary battery.
正極極板、負極極板は各々の端部から導出された正極金属リード、負極金属リードを備えており、前記の各金属リードは、正負極で同一方向に引き出され、且つ互いに接続されてなる請求項1記載のコイン形二次電池。 Each of the positive electrode plate and the negative electrode plate includes a positive electrode metal lead and a negative electrode metal lead led out from each end, and the metal leads are drawn out in the same direction by the positive and negative electrodes and connected to each other. The coin-type secondary battery according to claim 1. 負極極板は、電極材料が金属箔芯材の両面に塗着されてなる両面塗着極板と電極材料が金属箔芯材の一面のみに塗着され、他面で金属箔芯材が露呈してなる片面塗着極板との2種類の極板を有しており、前記片面塗着極板は電極群の積層上端部、積層下端部に位置させ、金属箔芯材の露出する他面を封口ケース、有底ケースに対向させて配置される請求項1記載のコイン形二次電池。 The negative electrode plate is a double-sided coated electrode plate in which the electrode material is applied to both sides of the metal foil core material and the electrode material is applied to only one surface of the metal foil core material, and the metal foil core material is exposed on the other surface. The single-side coated electrode plate is positioned at the upper end of the electrode group and the lower end of the layer, and the metal foil core material is exposed. The coin-type secondary battery according to claim 1, wherein the coin-type secondary battery is disposed so that the surface faces the sealing case and the bottomed case. 電極群と正極端子を兼ねる有底ケースとの間に絶縁シートを配置した請求項1記載のコイン形二次電池。

The coin-type secondary battery according to claim 1, wherein an insulating sheet is disposed between the electrode group and a bottomed case that also serves as a positive electrode terminal.

JP2004126639A 2004-04-22 2004-04-22 Coin type secondary battery Pending JP2005310577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126639A JP2005310577A (en) 2004-04-22 2004-04-22 Coin type secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126639A JP2005310577A (en) 2004-04-22 2004-04-22 Coin type secondary battery

Publications (1)

Publication Number Publication Date
JP2005310577A true JP2005310577A (en) 2005-11-04

Family

ID=35439101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126639A Pending JP2005310577A (en) 2004-04-22 2004-04-22 Coin type secondary battery

Country Status (1)

Country Link
JP (1) JP2005310577A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066040A (en) * 2006-09-05 2008-03-21 Sony Corp Battery and its manufacturing method
JP2010073474A (en) * 2008-09-18 2010-04-02 Hitachi Maxell Ltd Flat battery
JP2010212206A (en) * 2009-03-12 2010-09-24 Hitachi Maxell Ltd Flat secondary battery
JP2011129451A (en) * 2009-12-21 2011-06-30 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2011187265A (en) * 2010-03-08 2011-09-22 Hitachi Maxell Energy Ltd Flat-shaped nonaqueous secondary battery and its manufacturing method
JP2011187266A (en) * 2010-03-08 2011-09-22 Hitachi Maxell Energy Ltd Flat nonaqueous secondary battery
JP2012104319A (en) * 2010-11-09 2012-05-31 Hitachi Maxell Energy Ltd Flat nonaqueous secondary battery
JP2012104318A (en) * 2010-11-09 2012-05-31 Hitachi Maxell Energy Ltd Flat nonaqueous secondary battery
JP2014120441A (en) * 2012-12-19 2014-06-30 Gs Yuasa Corp Electrode plate, laminated electrode group, battery and cylindrical battery
JP2016054029A (en) * 2014-09-03 2016-04-14 日立マクセル株式会社 Flat nonaqueous secondary battery
JP2019536254A (en) * 2016-12-30 2019-12-12 チョンチン ブイディーエル エレクトロニクス カンパニー,リミテッド Button battery and manufacturing method thereof
CN111354913A (en) * 2020-04-24 2020-06-30 福建南平延平区南孚新能源科技有限公司 Button battery pole shell and electrode lug traceless welding method, welding structure and product
CN112490543A (en) * 2020-12-03 2021-03-12 惠州市恒泰科技股份有限公司 Battery and preparation process thereof
US11201367B2 (en) 2008-09-18 2021-12-14 Maxell Holdings, Ltd. Flat battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132935A (en) * 2001-08-10 2003-05-09 Matsushita Electric Ind Co Ltd Coin-shaped cell and its manufacturing method
JP2003142161A (en) * 2001-11-05 2003-05-16 Toshiba Battery Co Ltd Flat non-aqueous electrolyte secondary battery
JP2003157902A (en) * 2001-11-20 2003-05-30 Matsushita Electric Ind Co Ltd Flat cell
JP2003297427A (en) * 2002-03-29 2003-10-17 Mitsubishi Materials Corp Lithium ion polymer secondary battery and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132935A (en) * 2001-08-10 2003-05-09 Matsushita Electric Ind Co Ltd Coin-shaped cell and its manufacturing method
JP2003142161A (en) * 2001-11-05 2003-05-16 Toshiba Battery Co Ltd Flat non-aqueous electrolyte secondary battery
JP2003157902A (en) * 2001-11-20 2003-05-30 Matsushita Electric Ind Co Ltd Flat cell
JP2003297427A (en) * 2002-03-29 2003-10-17 Mitsubishi Materials Corp Lithium ion polymer secondary battery and method of manufacturing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066040A (en) * 2006-09-05 2008-03-21 Sony Corp Battery and its manufacturing method
US11201367B2 (en) 2008-09-18 2021-12-14 Maxell Holdings, Ltd. Flat battery
JP2010073474A (en) * 2008-09-18 2010-04-02 Hitachi Maxell Ltd Flat battery
JP2010212206A (en) * 2009-03-12 2010-09-24 Hitachi Maxell Ltd Flat secondary battery
JP2011129451A (en) * 2009-12-21 2011-06-30 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2011187265A (en) * 2010-03-08 2011-09-22 Hitachi Maxell Energy Ltd Flat-shaped nonaqueous secondary battery and its manufacturing method
JP2011187266A (en) * 2010-03-08 2011-09-22 Hitachi Maxell Energy Ltd Flat nonaqueous secondary battery
JP2012104319A (en) * 2010-11-09 2012-05-31 Hitachi Maxell Energy Ltd Flat nonaqueous secondary battery
JP2012104318A (en) * 2010-11-09 2012-05-31 Hitachi Maxell Energy Ltd Flat nonaqueous secondary battery
JP2014120441A (en) * 2012-12-19 2014-06-30 Gs Yuasa Corp Electrode plate, laminated electrode group, battery and cylindrical battery
JP2016054029A (en) * 2014-09-03 2016-04-14 日立マクセル株式会社 Flat nonaqueous secondary battery
JP2019536254A (en) * 2016-12-30 2019-12-12 チョンチン ブイディーエル エレクトロニクス カンパニー,リミテッド Button battery and manufacturing method thereof
US11165088B2 (en) 2016-12-30 2021-11-02 Chongqing Vdl Electronics Co., Ltd. Button battery and manufacturing method therefor
CN111354913A (en) * 2020-04-24 2020-06-30 福建南平延平区南孚新能源科技有限公司 Button battery pole shell and electrode lug traceless welding method, welding structure and product
CN111354913B (en) * 2020-04-24 2023-10-20 福建南平延平区南孚新能源科技有限公司 Button cell electrode shell and electrode lug traceless welding method, welding structure and product
CN112490543A (en) * 2020-12-03 2021-03-12 惠州市恒泰科技股份有限公司 Battery and preparation process thereof

Similar Documents

Publication Publication Date Title
JP4020781B2 (en) Coin battery
KR101379957B1 (en) A Stepwise Electrode Assembly, and a Battery Cell, Battery Pack and Device Comprising the Same
JP4892893B2 (en) Bipolar battery
JP4280741B2 (en) Lithium secondary battery
JP4075034B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP4720384B2 (en) Bipolar battery
KR20130132230A (en) A stepwise electrode assembly, and battery cell, battery pack and device comprising the same
JP2013243062A (en) Battery
JP5396801B2 (en) battery
JP6060599B2 (en) Assembled battery
JP2012212506A (en) Laminate type battery
KR20060059716A (en) Lithium secondary battery
CN109891640B (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2005310577A (en) Coin type secondary battery
JP2016502742A (en) Electrode assembly including round corners
JP2005310578A (en) Coin type secondary battery
US9935299B2 (en) Coin cell and method for producing such coin cell
WO2014050114A1 (en) Non-aqueous electrolyte secondary battery
JPH06181069A (en) Nonaqueous electrolyte secondary battery
JP2011187241A (en) Nonaqueous electrolyte secondary battery
WO2013047515A1 (en) Non-aqueous electrolyte secondary battery
JP2011129446A (en) Laminated type battery
JP5125438B2 (en) Lithium ion secondary battery and battery pack using the same
KR101515672B1 (en) Electrode assembly including anode and cathod electrode more than 2 and electrochemical device using the same
KR101787636B1 (en) Battery cell and device comprising thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907