JP2005166387A - Battery can and nonaqueous electrolyte battery - Google Patents

Battery can and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2005166387A
JP2005166387A JP2003402509A JP2003402509A JP2005166387A JP 2005166387 A JP2005166387 A JP 2005166387A JP 2003402509 A JP2003402509 A JP 2003402509A JP 2003402509 A JP2003402509 A JP 2003402509A JP 2005166387 A JP2005166387 A JP 2005166387A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
negative electrode
aluminum
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003402509A
Other languages
Japanese (ja)
Inventor
Keiichiro Uenae
圭一郎 植苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2003402509A priority Critical patent/JP2005166387A/en
Publication of JP2005166387A publication Critical patent/JP2005166387A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery having high reliability prevented from the progress of a leakage of electrolyte liquid in the case of using aluminum as a can material of a positive electrode can. <P>SOLUTION: On the coin-shaped flat nonaqueous electrolyte battery formed by housing a positive electrode and a negative electrode in the battery can formed by jointing the positive electrode can and a negative electrode can through an insulation gasket, in which the electrolyte liquid is injected; the positive electrode can is made of aluminum or laminated metal having an inner layer made of aluminum, and a part of the surface of the aluminum is oxidized; an anodic oxidation is applied on the part of the aluminum surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、正極缶にAlまたは内層がAlである積層金属を用いた電池缶と、これに電池要素を収容した非水電解液電池に関する。
The present invention relates to a battery can using a laminated metal whose Al or inner layer is Al for a positive electrode can, and a non-aqueous electrolyte battery containing a battery element therein.

現在、携帯機器の電源としては、主としてリチウムイオン二次電池が使用されている。この理由として、ニッカド二次電池やMH二次電池に代表される従来電池に比べ、軽量化が可能となったことや、高電圧化できたことが挙げられる。

現行のリチウムイオン二次電池では、LiCoO2 などの金属酸化物を正極に、黒鉛を負極に、それぞれ用いており、充放電時の各電位は通常Liに対して3.5〜4.2V、0〜1.0Vの範囲にある。これにより、各極の電位差で表される電池電圧は最大4.2Vとなり、平均放電電圧は3.7V程度となるため、ニッカド二次電池やMH二次電池に比べて、高電圧となり、高い電力が得られる。
Currently, lithium ion secondary batteries are mainly used as power sources for portable devices. This is because the weight can be reduced and the voltage can be increased as compared with the conventional batteries represented by the nickel-cadmium secondary battery and the MH secondary battery.

In the current lithium ion secondary battery, a metal oxide such as LiCoO 2 is used as a positive electrode and graphite is used as a negative electrode, and each potential during charging / discharging is usually 3.5 to 4.2 V with respect to Li, It is in the range of 0 to 1.0V. As a result, the battery voltage represented by the potential difference between the electrodes is 4.2 V at the maximum, and the average discharge voltage is about 3.7 V. Therefore, the battery voltage is higher than the NiCad secondary battery or the MH secondary battery, and is high. Electric power is obtained.

しかし、4V以上の電位においては、ほとんどの金属が酸化されるため、通常の金属を正極集電体や缶材に使用すると、充電時に酸化が進行して、導電性が低下し、電池性能が低下する。このため、耐酸化性のすぐれた金属として白金やAlが用いられるが、白金は非常に高価であるため、一般にはAlが用いられる。
However, since most metals are oxidized at a potential of 4 V or higher, if normal metals are used for the positive electrode current collector or can material, oxidation proceeds during charging, resulting in a decrease in conductivity and battery performance. descend. For this reason, platinum or Al is used as a metal having excellent oxidation resistance. However, since platinum is very expensive, Al is generally used.

現行のリチウムイオン二次電池において、円筒型電池や角型電池は、正極集電体や集電タブにAlを採用しており、最近の角型電池では、軽量化の問題も含めて、缶本体にAlを採用している(特許文献1参照)。また、円筒型や角型に比べて簡易な構造であるコイン型電池に代表される扁平型電池は、正極缶として、通常のSUS材にAlを積層した、いわゆるクラッド材が採用されている(特許文献2参照)。
特開平10−050272号公報 特開平05−174873号公報
In current lithium-ion secondary batteries, cylindrical batteries and prismatic batteries employ Al for the positive electrode current collector and current collector tab. Al is adopted for the main body (see Patent Document 1). In addition, a flat battery represented by a coin-type battery having a simpler structure than a cylindrical or square type employs a so-called clad material in which Al is laminated on a normal SUS material as a positive electrode can ( Patent Document 2).
JP-A-10-050272 JP 05-174873 A

しかし、コイン型電池に代表される扁平型電池のように、クラッド材を使用する場合、封口後にAlが外部雰囲気と接しているため、外部からの水の浸入により外部と電池内部との経路に存在するAlが電池内部の電解液と上記水の反応によって錯化され、ローカルセルが形成され、Alの腐食が生じるという現象が起こる。角型電池などでは、封口部はシーム溶接が一般的であるため、このような現象は起こらない。
However, when a clad material is used like a flat battery typified by a coin-type battery, Al is in contact with the external atmosphere after sealing, so water enters from the outside into the path between the outside and the inside of the battery. A phenomenon occurs in which Al present is complexed by the reaction of the electrolytic solution in the battery and the water to form a local cell, and corrosion of Al occurs. In a square battery or the like, such a phenomenon does not occur because seam welding is generally used for the sealing portion.

このように扁平型電池において、上記のようなAlの腐食が生じると、経路の広がりや電解液の外部への移動が促進され、漏液が進行することがわかった。とくに電池の信頼性試験項目である高温過湿条件において、顕著に進行する。

本発明は、このような事情に照らし、正極缶の缶材としてAlを使用することによって電解液の漏液が進行するのを抑制し、信頼性の高い非水電解液電池を提供すること、またこれに用いる電池缶を提供することを目的としている。
Thus, it was found that in the flat battery, when Al corrosion as described above occurs, the expansion of the path and the movement of the electrolyte solution are promoted, and the leakage proceeds. In particular, it progresses remarkably under high temperature and high humidity conditions which are battery reliability test items.

In light of such circumstances, the present invention suppresses the progress of electrolyte leakage by using Al as a can of a positive electrode can, and provides a highly reliable nonaqueous electrolyte battery, Moreover, it aims at providing the battery can used for this.

本発明者らは、上記の目的を達成するために、鋭意検討した結果、正極缶の缶材としてAlを使用する場合に、Al表面の一部、とくに正極缶と絶縁性ガスケットの界面部分を陽極酸化などにより酸化処理すると、上記部分でのAlの腐食が防がれて、漏液経路の広がりや電解液の外部への移動が阻止され、これにより耐漏液性が大きく向上して、信頼性の高い非水電解電池が得られることを知り、本発明を完成した。
As a result of intensive studies to achieve the above object, the present inventors have found that when Al is used as the can material of the positive electrode can, a part of the Al surface, particularly the interface portion between the positive electrode can and the insulating gasket, is used. Oxidation treatment such as by anodic oxidation prevents Al corrosion in the above part and prevents the expansion of the leakage path and the movement of the electrolyte to the outside, thereby greatly improving the leakage resistance and reliability. Knowing that a highly non-aqueous electrolytic battery can be obtained, the present invention has been completed.

すなわち、本発明は、正極缶と負極缶とが絶縁性ガスケットを介して接合される電池缶において、正極缶が、Alまたは内層がAlである積層金属で構成され、かつそのAl表面の一部が酸化されていることを特徴とする電池缶に係るものであり、とくに、Al表面の一部が陽極酸化されている上記構成の電池缶、コイン形などの扁平形である上記構成の電池缶を提供できるものである。

また、本発明は、正極缶と負極缶とが絶縁性ガスケットを介して接合された電池缶の内部に、正極および負極がセパレータを介して収容され、かつ非水電解液が注入されてなる非水電解液電池において、正極缶が、Alまたは内層がAlである積層金属で構成され、かつそのAl表面の一部が酸化されていることを特徴とする非水電解液電池に係るものであり、とくに、Al表面の一部が陽極酸化されている上記構成の非水電解液電池、コイン形などの扁平形である上記構成の非水電解液電池を提供できるものである。
That is, the present invention relates to a battery can in which a positive electrode can and a negative electrode can are joined via an insulating gasket, wherein the positive electrode can is composed of Al or a laminated metal whose inner layer is Al, and a part of the Al surface. In particular, the present invention relates to a battery can characterized by being oxidized, and in particular, a battery can having the above-described structure in which a part of the Al surface is anodized, and a battery can having the above-described structure having a flat shape such as a coin shape Can be provided.

The present invention also provides a non-aqueous electrolyte in which a positive electrode and a negative electrode are accommodated through a separator and a non-aqueous electrolyte is injected into a battery can in which a positive electrode can and a negative electrode can are joined via an insulating gasket. In a water electrolyte battery, the positive electrode can is composed of Al or a laminated metal whose inner layer is Al, and a part of the surface of the Al is oxidized. In particular, it is possible to provide a non-aqueous electrolyte battery having the above-described configuration in which a part of the Al surface is anodized and a non-aqueous electrolyte battery having the above-described configuration that is a flat shape such as a coin shape.

このように、本発明においては、正極缶をAlまたは内層がAlである積層金属で構成する場合に、そのAl表面の一部を酸化することにより、耐漏液性が向上して、信頼性の高い非水電解液電池とその電池缶を提供することができる。
Thus, in the present invention, when the positive electrode can is composed of Al or a laminated metal whose inner layer is Al, by leaking a part of the Al surface, leakage resistance is improved and reliability is improved. A high nonaqueous electrolyte battery and its battery can can be provided.

非水電解液電池において、一般に、漏液の経路となるのは電池内部と電池外部に通ずる正極缶または負極缶と絶縁性ガスケットの界面であり、とくに表面部材がAlで形成される正極缶とガスケットの界面がAlの腐食により高い確率でなりうる。

正極缶の表面に要求されるのは、既述のとおり、高電圧での耐酸化性と導電性を保持することであるが、一方で導電性については正極との集電をとる部分だけでよく、たとえば正極缶底部で正極と集電をとれれば、それ以外の部分はAlである必要がない。よって、絶縁性ガスケットと正極缶との界面部分ではAlを被覆すればよい。
In a non-aqueous electrolyte battery, in general, a leakage path is an interface between a positive electrode can or a negative electrode can and an insulating gasket that leads to the inside of the battery and the outside of the battery, and in particular, a positive electrode can whose surface member is formed of Al. The gasket interface can be more likely due to Al corrosion.

As described above, the surface of the positive electrode can is required to maintain oxidation resistance and conductivity at a high voltage. On the other hand, only the part that collects current with the positive electrode is required for conductivity. Well, for example, if current can be collected from the positive electrode at the bottom of the positive electrode can, the other portions need not be Al. Therefore, Al may be covered at the interface portion between the insulating gasket and the positive electrode can.

しかし、上記Alの被覆をシール剤などで行うと、このシール剤と正極缶または絶縁性ガスケットとの新たな界面部分が形成されるため、これが新たな漏液の経路となりうる。これに対して、本発明のようにAlそのものをあらかじめ酸化させると、このような新たな経路を発生させることなく、漏液を防止することができる。

本発明におけるAlの酸化方法には限定はなく、公知の方法を適宜使用できるが、その中でも、とくに陽極酸化を採用するのが望ましい。この方法によれば、酸化部分の厚みを比較的自由に制御でき、かつ安価に実施できる利点がある。
However, when the Al coating is performed with a sealant or the like, a new interface portion between the sealant and the positive electrode can or the insulating gasket is formed, and this can serve as a new leakage path. On the other hand, when Al itself is oxidized beforehand as in the present invention, leakage can be prevented without generating such a new path.

The method for oxidizing Al in the present invention is not limited, and known methods can be used as appropriate. Among them, it is particularly desirable to employ anodization. According to this method, there is an advantage that the thickness of the oxidized portion can be controlled relatively freely and can be implemented at low cost.

このように、本発明は、正極缶がAlまたは内層がAlである積層金属で構成された電池缶において、正極缶のAl表面の一部、たとえば絶縁性ガスケットと接する部分のみを酸化することにより、これに電池要素を装填して非水電解液電池を作製したときに、これを高電圧でかつ加湿雰囲気に保存しても漏液経路の新たな発生のない、また漏液の進行のない、耐漏液性にすぐれた信頼性の高い上記電池が得られるものである。
As described above, the present invention can oxidize only a part of the Al surface of the positive electrode can, for example, a portion in contact with the insulating gasket, in the battery can composed of Al or the laminated metal whose inner layer is Al. When a non-aqueous electrolyte battery is manufactured by loading a battery element into this, even if it is stored in a humidified atmosphere at a high voltage, there is no new generation of a leakage path, and there is no progression of leakage Thus, the above-mentioned battery having excellent liquid leakage resistance and high reliability can be obtained.

本発明の電池缶には、正極缶が上記した構成をとる限り、この正極缶と負極缶とが絶縁性ガスケットを介して接合される形式の種々の電池缶が包含される。また、電池缶の形状についてもとくに限定はないが、一般に、コイン形などの扁平形である電池缶が、本発明の効果を奏するうえで、とくに望ましいものである。さらに、負極缶や絶縁性ガスケットの構成については、従来と同じでよく、とくに限定はない。
The battery can of the present invention includes various types of battery cans in which the positive electrode can and the negative electrode can are joined via an insulating gasket as long as the positive electrode can has the above-described configuration. Further, the shape of the battery can is not particularly limited, but generally a battery can having a flat shape such as a coin shape is particularly desirable in order to achieve the effects of the present invention. Further, the configuration of the negative electrode can and the insulating gasket may be the same as the conventional one, and is not particularly limited.

また、本発明の非水電解液電池には、正極缶が上記構成をとる電池缶の内部に、正極および負極がセパレータを介して収容され、かつ非水電解液が注入され、正極缶と負極缶とが絶縁性ガスケットを介して接合される形式の種々の電池が包含される。中でも、コイン形などの扁平形の非水電解液電池が望ましい。正極、負極、セパレータおよび非水電解液などの電池要素の構成については、従来と同じでよく、とくに限定はない。
Further, in the nonaqueous electrolyte battery of the present invention, the positive electrode can and the negative electrode are accommodated through the separator, and the positive electrode can and the negative electrode are injected into the battery can having the above configuration. Various batteries of the type in which the can is joined via an insulating gasket are included. Among these, a flat non-aqueous electrolyte battery such as a coin type is desirable. About the structure of battery elements, such as a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte, it may be the same as the past, and there is no limitation in particular.

以下に、本発明のコイン形の非水電解液電池とこれに用いる電池缶について、「実施例1」を記載し、これと「比較例1」と対比して、より具体的に説明する。ただし、本発明は、以下の実施例にのみ限定されるものではない。
Hereinafter, the coin-type nonaqueous electrolyte battery of the present invention and the battery can used therefor will be described in more detail by describing “Example 1” and comparing it with “Comparative Example 1”. However, the present invention is not limited only to the following examples.

正極活物質としてのLiCoO2 と、導電助剤としてのカーボンブラックを、重量比で83:10となるように混合し、あらかじめバインダであるPVDF(ポリフッ化ビニリデン)を全合剤の重量比が7重量%になるように溶解させたNMP(N−メチル−2−ピロリドン)溶液に混合し、撹拌して、塗料を調製した。

この塗料を一旦乾燥させ、溶剤を除去したのち、乳鉢で粉砕し、加圧成型して、厚さが0.9mmの正極ペレットを作製した。
LiCoO 2 as a positive electrode active material and carbon black as a conductive additive are mixed so that the weight ratio is 83:10, and PVDF (polyvinylidene fluoride) as a binder is mixed in advance so that the weight ratio of the total mixture is 7 A paint was prepared by mixing in an NMP (N-methyl-2-pyrrolidone) solution dissolved to a weight percent and stirring.

This paint was once dried to remove the solvent, and then pulverized in a mortar and pressure-molded to produce a positive electrode pellet having a thickness of 0.9 mm.

また、負極活物質としてMCMB(メソカーボンマイクロビーズ)を3,000℃で黒鉛化処理したものと、あらかじめPVDFを全合剤の重量比が8重量%となるように溶解させたNMP溶液とを混合し、撹拌して、塗料を調製した。

この塗料を一旦乾燥させ、溶剤を除去したのち、乳鉢で粉砕し、加圧成型して、厚さが0.7mmの負極ペレットを作製した。
In addition, MCMB (mesocarbon microbeads) graphitized at 3,000 ° C. as a negative electrode active material and an NMP solution in which PVDF was dissolved in advance so that the weight ratio of the total mixture was 8% by weight. The paint was prepared by mixing and stirring.

This paint was once dried to remove the solvent, and then pulverized in a mortar and pressure-molded to prepare a negative electrode pellet having a thickness of 0.7 mm.

厚さが0.25mmのSUS304と厚さが0.05mmのAlとの積層金属からなるクラッド材をAl層を内側にして缶状に成型し、缶底を除く部分を陽極として、硫酸中で電気分解させ、Al表面の0.02mmの厚さのみ陽極酸化して、正極缶とした。この正極缶とSUS304で作製した負極缶とが、絶縁性ガスケット(ポリプロピレン製パッキング)を介して、接合される形式の電池缶とした。
A clad material made of a laminated metal of SUS304 having a thickness of 0.25 mm and Al having a thickness of 0.05 mm is formed into a can shape with the Al layer inside, and the portion excluding the can bottom is used as an anode in sulfuric acid. Electrolysis was performed, and only the thickness of 0.02 mm on the Al surface was anodized to obtain a positive electrode can. The positive electrode can and the negative electrode can made of SUS304 were joined to each other through an insulating gasket (polypropylene packing).

前記の正極ペレットおよび負極ペレットを、上記の正極缶および負極缶にそれぞれカーボンペースト導電接着剤により固定するとともに、両者間にポリプロピレン製セパレータを介して缶内に装填し、さらにEC(エチレンカーボネート):DMC(ジメチルカーボネート)との重量比1:3の混合溶媒にLiPF6 を1モル/リットルの割合で溶解させた非水電解液を注入し、正負両極缶に絶縁性ガスケット(ポリプロピレン製パッキング)を介して封口し、非水電解液電池を作製した。
The positive electrode pellet and the negative electrode pellet are fixed to the positive electrode can and the negative electrode can, respectively, with a carbon paste conductive adhesive, and loaded into the can via a polypropylene separator therebetween, and EC (ethylene carbonate): A non-aqueous electrolyte solution in which LiPF 6 was dissolved at a ratio of 1 mol / liter was poured into a mixed solvent with a weight ratio of 1: 3 with DMC (dimethyl carbonate), and an insulating gasket (polypropylene packing) was placed on the positive and negative bipolar cans. And a non-aqueous electrolyte battery was produced.

比較例1
正極缶におけるAlの陽極酸化を省いた以外は、すべて実施例1と同様にして、非水電解液電池を作製した。
Comparative Example 1
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the anodic oxidation of Al in the positive electrode can was omitted.

上記の実施例1および比較例1の両電池につき、その作製後4.2Vまで充電を行い、60℃,25%RHおよび60℃,90%RHの条件下で貯蔵し、漏液の有無を調べた。各条件共30個の電池を貯蔵し、50日,100日,150日,200日での漏液した電池の個数を求めた。結果は、表1に示されるとおりであった。
Both batteries of Example 1 and Comparative Example 1 were charged to 4.2 V after fabrication and stored under conditions of 60 ° C., 25% RH and 60 ° C., 90% RH. Examined. 30 batteries were stored under each condition, and the number of leaked batteries at 50 days, 100 days, 150 days, and 200 days was determined. The results were as shown in Table 1.

表1
┌────┬─────────┬───────────────────┐
│ │ │ 漏液個数 (個/30個) │
│ │ 貯蔵条件 ├────┬────┬────┬────┤
│ │ │ 50日│100日│150日│200日│
├────┼─────────┼────┼────┼────┼────┤
│ │60℃,25%RH│ 0 │ 0 │ 0 │ 0 │
│実施例1├─────────┼────┼────┼────┼────┤
│ │60℃,90%RH│ 0 │ 0 │ 0 │ 0 │
├────┼─────────┼────┼────┼────┼────┤
│ │60℃,25%RH│ 0 │ 0 │ 1 │ 2 │
│比較例1├─────────┼────┼────┼────┼────┤
│ │60℃,90%RH│ 23 │ 28 │ 30 │ 30 │
└────┴─────────┴────┴────┴────┴────┘
Table 1
┌────┬─────────┬───────────────────┐
│ │ │ Number of leaked liquids (pieces / 30 pieces) │
│ │ Storage conditions ├────┬────┬────┬────┤
│ │ │ 50 days │100 days │150 days │200 days │
├────┼─────────┼────┼────┼────┼────┤
│ │60 ℃, 25% RH │ 0 │ 0 │ 0 │ 0 │
│Example 1 ├─────────┼────┼────┼────┼────┤
│ │60 ℃, 90% RH │ 0 │ 0 │ 0 │ 0 │
├────┼─────────┼────┼────┼────┼────┤
│ │60 ℃, 25% RH │ 0 │ 0 │ 1 │ 2 │
│Comparative Example 1 ├─────────┼────┼────┼────┼────┤
│ │60 ℃, 90% RH │ 23 │ 28 │ 30 │ 30 │
└────┴─────────┴────┴────┴────┴────┘

上記表1の結果から明らかなように、本発明の構成を採用した実施例1の非水電解液電池は、60℃,90%RHで200日保存しても、電池の漏液は全くみられなかった。これに対し、本発明の構成を採用しなかった比較例1の非水電解液電池は、60℃,25%RHで保存しても150日後で漏液がみられるようになり、60℃,90%RHで保存すると、50日後でも多数個の漏液が認められた。
As is clear from the results of Table 1 above, the nonaqueous electrolyte battery of Example 1 that employs the configuration of the present invention shows no battery leakage even when stored at 60 ° C. and 90% RH for 200 days. I couldn't. On the other hand, the non-aqueous electrolyte battery of Comparative Example 1 that did not employ the configuration of the present invention began to leak after 150 days even when stored at 60 ° C. and 25% RH. When stored at 90% RH, multiple leaks were observed even after 50 days.

Claims (6)

正極缶と負極缶とが絶縁性ガスケットを介して接合される電池缶において、正極缶が、Alまたは内層がAlである積層金属で構成され、かつそのAl表面の一部が酸化されていることを特徴とする電池缶。
In a battery can in which a positive electrode can and a negative electrode can are joined via an insulating gasket, the positive electrode can is made of Al or a laminated metal whose inner layer is Al, and a part of the Al surface is oxidized. A battery can characterized by.
Al表面の一部が陽極酸化されている請求項1に記載の電池缶。
The battery can according to claim 1, wherein a part of the Al surface is anodized.
コイン形などの扁平形である請求項1または2に記載の電池缶。
The battery can according to claim 1 or 2, wherein the battery can has a flat shape such as a coin shape.
正極缶と負極缶とが絶縁性ガスケットを介して接合された電池缶の内部に、正極および負極がセパレータを介して収容され、かつ非水電解液が注入されてなる非水電解液電池において、正極缶が、Alまたは内層がAlである積層金属で構成され、かつそのAl表面の一部が酸化されていることを特徴とする非水電解液電池。
In a non-aqueous electrolyte battery in which a positive electrode and a negative electrode are accommodated via a separator and a non-aqueous electrolyte is injected into a battery can in which a positive electrode can and a negative electrode can are joined via an insulating gasket. A non-aqueous electrolyte battery characterized in that the positive electrode can is made of Al or a laminated metal whose inner layer is Al, and a part of the Al surface is oxidized.
Al表面の一部が陽極酸化されている請求項4に記載の非水電解液電池。
The nonaqueous electrolyte battery according to claim 4, wherein a part of the Al surface is anodized.
コイン形などの扁平形である請求項4または5に記載の非水電解液電池。

The non-aqueous electrolyte battery according to claim 4 or 5, which is a flat shape such as a coin shape.

JP2003402509A 2003-12-02 2003-12-02 Battery can and nonaqueous electrolyte battery Withdrawn JP2005166387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402509A JP2005166387A (en) 2003-12-02 2003-12-02 Battery can and nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402509A JP2005166387A (en) 2003-12-02 2003-12-02 Battery can and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2005166387A true JP2005166387A (en) 2005-06-23

Family

ID=34726055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402509A Withdrawn JP2005166387A (en) 2003-12-02 2003-12-02 Battery can and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2005166387A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212206A (en) * 2009-03-12 2010-09-24 Hitachi Maxell Ltd Flat secondary battery
EP2338187A2 (en) * 2008-10-07 2011-06-29 Johnson Controls Saft Advanced Power Solutions LLC Electrochemical cell having an electrically-insulated housing
JP2014235912A (en) * 2013-06-03 2014-12-15 住友電気工業株式会社 Sodium molten salt battery and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2338187A2 (en) * 2008-10-07 2011-06-29 Johnson Controls Saft Advanced Power Solutions LLC Electrochemical cell having an electrically-insulated housing
EP2338187A4 (en) * 2008-10-07 2013-10-23 Johnson Controls Saft Advanced Electrochemical cell having an electrically-insulated housing
JP2010212206A (en) * 2009-03-12 2010-09-24 Hitachi Maxell Ltd Flat secondary battery
JP2014235912A (en) * 2013-06-03 2014-12-15 住友電気工業株式会社 Sodium molten salt battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7368203B2 (en) Nonaqueous electrolyte secondary cell
US8497041B2 (en) Electrochemical cell including electrolyte containing bis(oxalate)borate salt
KR100439448B1 (en) Aqueous electrolyte and a lithium secondary battery using the same
JP2008507111A (en) Non-aqueous electrochemical cell
US10505219B2 (en) Artificial SEI transplantation
KR20190082741A (en) Method of forming secondary battery
JP2010033949A (en) Battery
JP2010129332A (en) Nonaqueous electrolyte secondary battery
JP2008243660A (en) Nonaqueous electrolyte secondary battery
JP2002198092A (en) Phosphate additive for non-aqueous electrolyte cell capable of recharging
CA3133860A1 (en) A solid-liquid battery comprising a lithium negative electrode and electrolyte solutions
JP3821434B2 (en) Battery electrode group and non-aqueous electrolyte secondary battery using the same
JP2008537632A (en) Non-aqueous electrochemical cell
US7422827B2 (en) Nonaqueous electrolyte
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JP4187653B2 (en) Nonaqueous electrolyte secondary battery
JP2003323916A (en) Nonaqueous electrolyte secondary battery
CN106711495A (en) Electrolyte for lithium battery
JP2005166387A (en) Battery can and nonaqueous electrolyte battery
JP2009302019A (en) Sealed battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH07230825A (en) Nonaqueous electrolyte battery
JP4661145B2 (en) Manufacturing method of lithium ion secondary battery
JP6731152B2 (en) Method for manufacturing non-aqueous electrolyte secondary battery
JP2004127547A (en) Heat-resistant lithium battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206