JP4661145B2 - Manufacturing method of lithium ion secondary battery - Google Patents

Manufacturing method of lithium ion secondary battery Download PDF

Info

Publication number
JP4661145B2
JP4661145B2 JP2004271105A JP2004271105A JP4661145B2 JP 4661145 B2 JP4661145 B2 JP 4661145B2 JP 2004271105 A JP2004271105 A JP 2004271105A JP 2004271105 A JP2004271105 A JP 2004271105A JP 4661145 B2 JP4661145 B2 JP 4661145B2
Authority
JP
Japan
Prior art keywords
battery
charge
ion secondary
lithium ion
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004271105A
Other languages
Japanese (ja)
Other versions
JP2006086060A (en
Inventor
敬士 横山
博 松野
康博 斉藤
祐之 村井
雅哉 菅藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004271105A priority Critical patent/JP4661145B2/en
Publication of JP2006086060A publication Critical patent/JP2006086060A/en
Application granted granted Critical
Publication of JP4661145B2 publication Critical patent/JP4661145B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、電池の製造法に関し、特にリチウムイオン二次電池組立後の充電条件に関する。 The present invention relates to a battery manufacturing method, and more particularly, to a charging condition after assembling a lithium ion secondary battery.

近年、携帯電話、携帯情報端末等の携帯電子機器の性能は、搭載される半導体素子、電子回路だけでなく、充放電可能な二次電池の性能に大きく依存しており、搭載される二次電池の容量アップと共に、軽量・コンパクト化も同時に実現することが望まれている。これらの要望に応える二次電池として、ニッケル・カドミウム蓄電池の約2倍のエネルギー密度を有するニッケル・水素蓄電池が開発され、次いで、これを上回るリチウムイオン二次電池が開発され、使用機器の用途に応じて使い分けされている。   In recent years, the performance of portable electronic devices such as mobile phones and personal digital assistants largely depends on the performance of not only the semiconductor elements and electronic circuits that are mounted, but also the chargeable / dischargeable secondary batteries. In addition to increasing battery capacity, it is desirable to achieve light weight and compactness at the same time. As a secondary battery that meets these demands, a nickel-hydrogen storage battery with an energy density approximately twice that of a nickel-cadmium storage battery was developed, and then a lithium-ion secondary battery that exceeded this level was developed for use in equipment. It is properly used according to the situation.

これらの電池は、主に正極板と負極板とをセパレータを介して巻回した極板群を電池缶に収容し、電解液を注液し、かしめ封口やレーザー封口することによって作製されている
These batteries are manufactured by mainly storing a plate group in which a positive electrode plate and a negative electrode plate are wound through a separator, in a battery can, injecting an electrolyte, and caulking or laser sealing. .

例えば、リチウムイオン二次電池は電池の組立後、電池性能を安定させる等の目的から、充電・放電のサイクルを何度か繰り返す工程がある。電池の初回の充電条件として、例えば、負極の電位が0.3Vになるまでは、充電電流を0.2ItA以下とするような低レート充電し、その後電池容量の100%まで充電する方法が提案されている(例えば、特許文献1参照)。
特開2002−208440号公報
For example, a lithium ion secondary battery has a process of repeating a charge / discharge cycle several times for the purpose of stabilizing the battery performance after the battery is assembled. As the initial charging condition of the battery, for example, a method of charging at a low rate such that the charging current is 0.2 ItA or less until the potential of the negative electrode becomes 0.3 V and then charging to 100% of the battery capacity is proposed. (For example, refer to Patent Document 1).
JP 2002-208440 A

しかしながら、前記従来のリチウムイオン二次電池は、電池容量に対して100%充電しているため、鉄等の金属異物が正極に混入していた場合、正極中の金属異物が正極の電位によって溶出して、それがセパレータを介して負極上で析出する。セパレータ中に金属の導通パスが出来ると、正負極間に微小短絡を起こす現象が発生し、電池の電圧不良が発生するという欠点があった。   However, since the conventional lithium ion secondary battery is charged 100% with respect to the battery capacity, when metal foreign matter such as iron is mixed in the positive electrode, the metal foreign matter in the positive electrode is eluted by the potential of the positive electrode. Then, it is deposited on the negative electrode through the separator. When a metal conduction path is formed in the separator, there is a drawback that a phenomenon of causing a short circuit between the positive and negative electrodes occurs, resulting in a voltage failure of the battery.

リチウムイオン二次電池に通常よく用いられる正極活物質であるLiCoOは、初回の充電で電位が上昇し、通常の充電時、リチウム電極基準において4.0V以上の電位を示し、正極板上に鉄等の金属異物が存在すると、それが金属イオンとなって電解液中に溶解する。また一般的な負極活物質であるグラファイトは初回の充電で電位が下降し、通常の充電時にリチウム電極基準において0.5V以下の電位を示し、正極で溶出した金属イオンはセパレータを介して負極上に析出する。その際、正極と負極が金属異物によって導通し、電池の電圧不良が発生する。 LiCoO 2 , which is a positive electrode active material commonly used in lithium ion secondary batteries, has a potential that rises during the initial charge, and shows a potential of 4.0 V or higher with respect to the lithium electrode during normal charge. If a metal foreign matter such as iron is present, it becomes a metal ion and dissolves in the electrolytic solution. In addition, the potential of graphite, which is a general negative electrode active material, drops in potential at the first charge, shows a potential of 0.5 V or less with respect to the lithium electrode during normal charge, and the metal ions eluted at the positive electrode pass through the separator on the negative electrode. It precipitates in. At that time, the positive electrode and the negative electrode are electrically connected to each other by the metal foreign matter, and a voltage failure of the battery occurs.

そこで本発明は、このような従来の課題を解決するものであり、電池の電圧不良が少ないリチウムイオン二次電池の製造法を提供するものである。 Therefore, the present invention solves such a conventional problem and provides a method for producing a lithium ion secondary battery with few battery voltage defects.

前記従来の課題を解決するために、本発明のリチウムイオン二次電池の製造法は、リチウムイオン二次電池の初回の充電時に電池を正立状態で電池容量の5%〜50%に達するまで定電流で充電した後、電池を正立状態で1時間以上7日以内の保管時間を設けるものである。 In order to solve the above-described conventional problems, the method of manufacturing a lithium ion secondary battery according to the present invention is performed until the battery reaches 5% to 50% in the upright state when the lithium ion secondary battery is charged for the first time. After charging with a constant current , the battery is kept upright for a storage time of 1 hour to 7 days.

本発明のリチウムイオン二次電池の製造法を用いることによって、正極板内に鉄等の金属異物が混入した場合、初回の充電で正極から溶出した金属イオンは非水電解液中に均一に拡散される。このため初回の充電後に充電した際には、負極上に局所的な金属の析出が防止でき、セパレータを介した正負極間の微小短絡を抑制することができる。 By using the method for manufacturing a lithium ion secondary battery of the present invention, when metal foreign matter such as iron is mixed in the positive electrode plate, the metal ions eluted from the positive electrode in the first charge are uniformly diffused in the non-aqueous electrolyte. Is done. For this reason, when charged after the first charge, local metal deposition on the negative electrode can be prevented, and a minute short circuit between the positive and negative electrodes via the separator can be suppressed.

本発明によると、正極板内に鉄等の金属異物が混入したとしても、セパレータを介した正負極間の微小短絡を防止することができ、電圧不良における歩留まりを向上することができる。   According to the present invention, even if a metal foreign matter such as iron is mixed in the positive electrode plate, a minute short circuit between the positive and negative electrodes through the separator can be prevented, and the yield in voltage failure can be improved.

本発明のリチウムイオン二次電池の製造法は、初回の充電時に、電池容量の5%〜50%充電して、1時間以上7日以内の保管時間を設けることを特徴とした二次電池の製造法である。 The method for producing a lithium ion secondary battery according to the present invention is characterized in that at the first charging, the battery capacity is charged 5% to 50% and a storage time of 1 hour to 7 days is provided. It is a manufacturing method.

このような条件とすることにより、正極の電位を金属の溶出が促進する電位以上(3.
5V)にすることができ、正極で溶出した金属イオンは電解液中に均一に拡散される。そのため負極上で析出する際も拡散された状態となる。初回以後の充電した際にも同様で負極上において局所的な金属の析出が防止でき、セパレータを介した正極と負極間の微小短絡を抑制することができる。
By setting such a condition, the potential of the positive electrode is equal to or higher than the potential at which metal elution is promoted (3.
5V), and the metal ions eluted from the positive electrode are uniformly diffused in the electrolyte. Therefore, it is in a diffused state when it is deposited on the negative electrode. Similarly, when the battery is charged after the first time, local deposition of metal on the negative electrode can be prevented, and a minute short circuit between the positive electrode and the negative electrode via the separator can be suppressed.

初回の充電時に、電池容量の5%〜50%充電が最も効果がある理由は、実際の電池においては渦巻状の極板上で電位ムラが生じること、及び極板上に絶縁性を有する被膜が生成される等により、前記充電深度が実電池の電池構成上において適切条件となるからである。   The reason why charging of 5% to 50% of the battery capacity is most effective at the time of the first charge is that in an actual battery, potential unevenness occurs on the spiral electrode plate, and the insulating film on the electrode plate This is because the charging depth becomes an appropriate condition on the battery configuration of the actual battery.

初回充電後の保管時間は正極上の金属異物の溶出、拡散に時間がかかるため少なくとも1時間以上設けることが望ましい。保管時間の上限に関しては、正極での金属の溶出、拡散が完了する時間を考慮し、実際の生産性の面からも上限を7日以内と定めた。   The storage time after the first charge is preferably set to at least one hour because it takes time to elute and diffuse the metallic foreign matter on the positive electrode. Regarding the upper limit of the storage time, the upper limit was set within 7 days from the standpoint of actual productivity in consideration of the time required for metal elution and diffusion at the positive electrode to be completed.

本発明の好ましい実施の形態において、初回の充電時に電池を正立状態で充電するものである。   In a preferred embodiment of the present invention, the battery is charged in an upright state at the first charge.

本発明のさらに好ましい実施の形態において、初回の充電後、電池を正立状態で保管するものである。   In a further preferred embodiment of the present invention, the battery is stored in an upright state after the first charge.

電池を正立状態で充電、保管することで更に効果が得られる理由は、正極板と負極板とをセパレータを介して渦巻状に巻回した極板群においては、金属析出・拡散が重力の作用により、セパレータに対して貫通しない方向に作用するためと推測している。   The reason why the effect can be obtained by charging and storing the battery in an upright state is that, in the electrode plate group in which the positive electrode plate and the negative electrode plate are wound in a spiral shape via a separator, metal deposition / diffusion is caused by gravity. It is presumed that the action acts in a direction not penetrating the separator.

また、金属異物の溶出、拡散は、電池温度にも影響があるため、環境温度は高温の方が良く、環境温度は20℃〜80℃が好ましく、さらに好ましくは20℃〜60℃、最も好ましくは25℃〜35℃である。   Moreover, since elution and diffusion of metallic foreign matter also affect the battery temperature, it is better that the environmental temperature is high, and the environmental temperature is preferably 20 ° C to 80 ° C, more preferably 20 ° C to 60 ° C, and most preferably. Is 25 ° C to 35 ° C.

本発明のさらに好ましい実施の形態において、負極の電位が0.3Vになるまでは、充電電流を0.2C以下の低レートで充電することが好ましい。その後、電池容量の5%〜50%になるまでは、充電電流を0.2ItA以下の低レートで充電しても、0.2ItAを超える電流で充電しても良い。   In a further preferred embodiment of the present invention, it is preferable to charge at a low rate of 0.2 C or less until the potential of the negative electrode becomes 0.3V. Thereafter, until the battery capacity reaches 5% to 50%, the charging current may be charged at a low rate of 0.2 ItA or less, or may be charged at a current exceeding 0.2 ItA.

こうすることにより、低レートで充電することにより、正極から溶出した金属異物の金属イオンが電位勾配により拡散し、負極上に局所的な析出を防止することができ、さらに電池の電圧不良を低減することができるようになる。   In this way, by charging at a low rate, the metal ions of the metal foreign matter eluted from the positive electrode diffuse due to the potential gradient, and can prevent local precipitation on the negative electrode, further reducing battery voltage failure. Will be able to.

よって、この二次電池の製造法は電池の微小短絡による電圧不良を低減させることが可能となる。   Therefore, this secondary battery manufacturing method can reduce voltage failure due to a minute short circuit of the battery.

以下に、二次電池の一実施例として、円筒形リチウムイオン二次電池について説明する。   A cylindrical lithium ion secondary battery will be described below as an example of the secondary battery.

図1に、本発明の一実施例である円筒形リチウムイオン二次電池の縦断面概略図を示す。   FIG. 1 is a schematic vertical sectional view of a cylindrical lithium ion secondary battery which is an embodiment of the present invention.

帯状のアルミニウム箔集電体(図示せず)に正極合剤(図示せず)が塗着された正極板1と、帯状の銅箔集電体(図示せず)に負極合剤(図示せず)が塗着された負極板3と、正極板1間に厚み25μmの微多孔ポリエチレンフィルム製のセパレータ5を配して渦巻
き状に巻かれた極板群が、非水電解液とともに上端部が開口している有底筒形の電池缶8内に収納されている。電池缶8の上端開口部を、ポリプロピレン製の絶縁パッキング9を介して電池蓋10の外周にかしめつけることにより、電池缶8は密閉されている。アルミニウム箔集電体(図示せず)に溶接されたアルミニウム製の正極リード2は、電池蓋10に溶接により接続されている。銅箔集電体(図示せず)に溶接されたニッケル製の負極リード4は、電池缶8に溶接により接続されている。極板群の上部には、電池蓋10と絶縁するために上部絶縁リング6が配置されている。極板群の下部には、電池缶8と絶縁するために下部絶縁リング7が配置されている。
A positive electrode plate 1 in which a positive electrode mixture (not shown) is coated on a strip-shaped aluminum foil current collector (not shown), and a negative electrode mixture (not shown) on a strip-shaped copper foil current collector (not shown). The electrode plate group wound in a spiral shape with a separator 5 made of a microporous polyethylene film having a thickness of 25 μm disposed between the positive electrode plate 1 and the positive electrode plate 1 together with the non-aqueous electrolyte Is housed in a bottomed cylindrical battery can 8 that is open. The battery can 8 is hermetically sealed by caulking the upper end opening of the battery can 8 to the outer periphery of the battery lid 10 via an insulating packing 9 made of polypropylene. An aluminum positive electrode lead 2 welded to an aluminum foil current collector (not shown) is connected to the battery lid 10 by welding. A nickel negative electrode lead 4 welded to a copper foil current collector (not shown) is connected to a battery can 8 by welding. An upper insulating ring 6 is disposed above the electrode plate group to insulate it from the battery lid 10. A lower insulating ring 7 is disposed below the electrode plate group to insulate it from the battery can 8.

(実施例1)
正極活物質としてコバルト酸リチウム(以下、LiCoOと略す)を用いた正極板1と、負極活物質としてリチウムを吸蔵、放出可能な鱗片状黒鉛のコークスを用いた負極板3とを、微多孔性ポリエチレン樹脂の両側に微多孔性ポリプロピレン樹脂からなる三層セパレータ5を介して絶縁した状態で渦巻状に巻回した極板群を上端部が開口している有底筒形の電池缶8に収納し、非水電解液を所定量注入した後、電池缶8と封口板10とをかしめ封口した。
Example 1
A positive electrode plate 1 using lithium cobaltate (hereinafter abbreviated as LiCoO 2 ) as a positive electrode active material and a negative electrode plate 3 using scaly graphite coke capable of occluding and releasing lithium as a negative electrode active material are microporous. A bottomed cylindrical battery can 8 having an open upper end is formed by spirally winding an electrode plate group insulated on both sides of a porous polyethylene resin via a three-layer separator 5 made of a microporous polypropylene resin. After storing and injecting a predetermined amount of nonaqueous electrolyte, the battery can 8 and the sealing plate 10 were caulked and sealed.

非水電解液として、非水溶媒にエチレンカーボネート(以下、ECと略す)とジエチルカーボネート(以下、DECと略す)とを体積比で50:50で混合し、溶質に六フッ化燐酸リチウム(以下、LiPFと略す)を濃度1.0mol/Lになるように溶解した。 As a non-aqueous electrolyte, ethylene carbonate (hereinafter abbreviated as EC) and diethyl carbonate (hereinafter abbreviated as DEC) are mixed at a volume ratio of 50:50 in a non-aqueous solvent, and lithium hexafluorophosphate (hereinafter, referred to as solute) is mixed. And abbreviated as LiPF 6 ) to a concentration of 1.0 mol / L.

直径18.0mm、総高65.0mmのサイズで電池容量2000mAhの円筒形リチウムイオン二次電池を作製した。   A cylindrical lithium ion secondary battery having a diameter of 18.0 mm and a total height of 65.0 mm and a battery capacity of 2000 mAh was produced.

このようにして得られた円筒形リチウムイオン二次電池を、非水電解液注液後23±3℃雰囲気下で12時間放置後、充放電設備端子に円筒形リチウムイオン二次電池の電池蓋側を上とする正立状態で10万個セットし、30±5℃雰囲気にて充電深度が電池容量の5%に達するまで電池容量の0.1ItA(200mA)の定電流で初回の充電を実施し、23±3℃雰囲気にて電池を正立状態で1時間放置した。次に、電池の特性と信頼性を確保する目的で2回目の充放電を実施し、45±3℃の環境下で3日間保管した後に電圧検査を行った。 Thus the cylindrical lithium ion secondary battery obtained non-aqueous electrolyte Note 23 ± 3 ° C. 12 hours after standing in an atmosphere after the liquid, the charging and discharging facility cylindrical battery of lithium ion secondary batteries to terminals Set 100,000 in an upright state with the lid side up and charge for the first time with a constant current of 0.1 ItA (200 mA) of battery capacity until the depth of charge reaches 5% of the battery capacity in an atmosphere of 30 ± 5 ° C The battery was left standing in an upright state in an atmosphere of 23 ± 3 ° C. for 1 hour. Next, for the purpose of ensuring the characteristics and reliability of the battery, a second charge / discharge was carried out, and a voltage test was performed after storage for 3 days in an environment of 45 ± 3 ° C.

(実施例2)
初回の充電深度が20%に達するまで電池容量の0.5ItA(1000mA)の定電流で充電を実施し、2回目の充放電まで7日間保管したこと以外は、実施例1と同様な方法により電池を作製し、電圧検査を行った。
(Example 2)
The battery was charged at a constant current of 0.5 ItA (1000 mA) until the first charge depth reached 20%, and was stored for 7 days until the second charge / discharge. A battery was fabricated and voltage inspection was performed.

(実施例3)
初回の充電深度が35%に達するまで電池容量の0.2ItA(400mA)の定電流で充電を実施し、2回目の充放電まで3日間保管したこと以外は、実施例1と同様な方法により電池を作製し、電圧検査を行った。
(Example 3)
The battery was charged at a constant current of 0.2 ItA (400 mA) until the first charge depth reached 35%, and was stored for 3 days until the second charge / discharge. A battery was fabricated and voltage inspection was performed.

(実施例4)
初回の充電深度が50%に達するまで電池容量の1.0ItA(2000mA)の定電流で充電を実施し、2回目の充放電まで1時間保管したこと以外は、実施例1と同様な方法により電池を作製し、電圧検査を行った。
Example 4
The battery was charged at a constant current of 1.0 ItA (2000 mA) until the first charge depth reached 50%, and was stored for 1 hour until the second charge / discharge. A battery was fabricated and voltage inspection was performed.

参考例1
電池を横方向に倒した状態で初回充電端子にセットし、その状態で初回の充電を実施後
、同状態で電池を保管したこと以外は、実施例4と同様な方法により電池を作製し、電圧検査を行った。
( Reference Example 1 )
The battery was prepared in the same manner as in Example 4 except that the battery was set in the initial charge terminal in the state of being tilted in the horizontal direction, and after the initial charge was performed in that state, the battery was stored in the same state. A voltage test was performed.

参考例2
電池を横方向に倒した状態で初回充電端子にセットし、その状態で初回の充電を実施後、同状態で電池を保管したこと以外は、実施例2と同様な方法により電池を作製し、電圧検査を行った。
( Reference Example 2 )
The battery was prepared in the same manner as in Example 2 except that the battery was set in the initial charge terminal in the horizontal direction and the battery was stored in the same state after the initial charge in that state. A voltage test was performed.

参考例3
電池を横方向に倒した状態で初回充電端子にセットし、その状態で初回の充電を実施後、電池を正立状態で電池を保管したこと以外は、参考例1と同様な方法により電池を作製し、電圧検査を行った。
( Reference Example 3 )
Set the battery in the initial charge terminal in the state that the battery is tilted sideways, perform the initial charge in that state, and then store the battery in an upright state using the same method as in Reference Example 1. Fabricated and voltage tested.

参考例4
電池を正立状態で初回充電端子にセットし、その状態で初回の充電を実施後、電池を横方向に倒した状態で電池を保管したこと以外は、参考例1と同様な方法により電池を作製し、電圧検査を行った。
( Reference Example 4 )
The battery is set in the same manner as in Reference Example 1 except that the battery is set in the first charging terminal in an upright state, and after the first charging in that state, the battery is stored in a state where the battery is tilted sideways. Fabricated and voltage tested.

(比較例1)
初回の充電深度が3%に達するまで定電流で充電を実施したこと以外は、実施例1と同様な方法により電池を作製し、電圧検査を行った。
(Comparative Example 1)
A battery was produced by the same method as in Example 1 except that charging was performed at a constant current until the initial charge depth reached 3%, and a voltage test was performed.

(比較例2)
初回の充電深度が5%に達するまで定電流を実施し、2回目の充放電まで30分間保管したこと以外は、実施例1と同様な方法により電池を作製し、電圧検査を行った。
(Comparative Example 2)
A battery was produced by the same method as in Example 1 except that constant current was applied until the initial charge depth reached 5% and storage was performed for 30 minutes until the second charge / discharge.

(比較例3)
初回の充電深度が50%に達するまで定電流を実施し、2回目の充放電まで30分間保管したこと以外は、実施例4と同様な方法により電池を作製し、電圧検査を行った。
(Comparative Example 3)
A battery was produced in the same manner as in Example 4 except that constant current was applied until the initial charge depth reached 50%, and the battery was stored for 30 minutes until the second charge / discharge, and a voltage test was performed.

(比較例4)
初回の充電深度が55%に達するまで定電流で充電を実施したこと以外は、実施例2と同様な方法により電池を作製し、電圧検査を行った。
(Comparative Example 4)
A battery was produced by the same method as in Example 2 except that charging was performed with a constant current until the initial charge depth reached 55%, and a voltage test was performed.

このようにして得られた電圧検査の結果を電圧不良率として表1に示す。   The results of the voltage inspection thus obtained are shown in Table 1 as the voltage defect rate.

表1の結果から、実施例1〜4及び参考例1〜4は、比較例1〜4に比べ、電圧不良率が低かった。 From the results of Table 1, Examples 1 to 4 and Reference Examples 1 to 4 had a lower voltage defect rate than Comparative Examples 1 to 4.

正極に混入した鉄を主体とする金属異物は、初回の充電により正極電位がリチウム電極基準で約3.50V以上であることから溶解が促進されていると考えられる。一方、負極上では初回充電の進行とともに金属が析出する電位(約1.50V)以下に徐々に低下していくと考えられる。理想的な正・負極上の電位は、正極上の金属異物が溶解し非水電解液中で金属イオンが拡散される電位であり、負極上は溶解した金属イオンが析出しない電位である。負極上の電位が金属イオンの析出が進行する電位より高ければ、混入金属は正極上で溶解後負極上で局所的に集中して析出することなく金属イオンが拡散した状態で析出する。その結果、セパレータを介して正・負極間の導通パスが出来上がらず、電池の電圧不良には至らない。しかしながら、現実においては、このような理想的な正負極の電位操作を行うことは難しく、特にセパレータを介して両極板間を渦巻状に巻回して構成した極板においては正・負極板とも各々極板上で電位ムラが生じるため、初回充電深度と保管時間、保管条件が電圧不良に密接に関係する。よって、適切な初回充電深度と保管時間、保管条件をコントロールすることで電圧不良を低減できることがわかった。   It is considered that dissolution of metal foreign matters mainly composed of iron mixed into the positive electrode is promoted because the positive electrode potential is about 3.50 V or more based on the lithium electrode by the first charge. On the other hand, on the negative electrode, it is considered that the voltage gradually decreases to a potential (about 1.50 V) at which the metal is deposited as the initial charge proceeds. The ideal potential on the positive and negative electrodes is a potential at which metal foreign matters on the positive electrode are dissolved and metal ions are diffused in the nonaqueous electrolytic solution, and the dissolved metal ions are not deposited on the negative electrode. If the potential on the negative electrode is higher than the potential at which the deposition of metal ions proceeds, the mixed metal precipitates in a state where the metal ions are diffused without being concentrated locally on the negative electrode after being dissolved on the positive electrode. As a result, a conduction path between the positive electrode and the negative electrode is not formed via the separator, and the battery voltage does not fail. However, in reality, it is difficult to perform such an ideal positive / negative electrode potential operation. In particular, in the electrode plate configured by spirally winding between the two electrode plates via the separator, both the positive and negative electrode plates are respectively provided. Since potential unevenness occurs on the electrode plate, the initial charge depth, storage time, and storage conditions are closely related to voltage failure. Therefore, it was found that voltage defects can be reduced by controlling appropriate initial charge depth, storage time, and storage conditions.

実施例1〜4及び参考例1〜4は、初回充電深度が5%〜50%であり、初回充電後の保管時間が1時間〜7日であることが、正極上で溶解した金属イオンが負極上で局所的に析出することなく、電解液中で金属イオンが拡散した状態で析出する条件であると推測できるため、電圧降下不良が低くなっていると推測できる。なお、保管時間を7日とした理由は、実際の製造運用上7日以上は保管スペース等の問題があり効率的でないため最大7日とした。 In Examples 1 to 4 and Reference Examples 1 to 4 , the initial charge depth is 5% to 50%, and the storage time after the initial charge is 1 hour to 7 days. Since it can be presumed that the metal ions are diffused in the electrolyte without locally precipitating on the negative electrode, it can be presumed that the voltage drop defect is low. The reason for setting the storage time to 7 days was set to a maximum of 7 days because it is not efficient due to problems such as storage space for 7 days or more in actual manufacturing operation.

参考例1〜4の電圧不良が、実施例1〜4と比較してわずかに高くなった理由は、初回充電時及び初回充電後の電池保管状態の両方が横方向またはどちらか一方が横方向、つまり円筒形電池が倒れた状態であるため正極中に混入した金属異物および負極上で析出した金属の拡散が不充分であり、セパレータを介して局所的に析出したためと推測できる。このことから、電池を正立状態で、初回充電時および初回充電後の電池保管することがより
好ましいことがわかった。
The reason why the voltage failure in Reference Examples 1 to 4 was slightly higher than that in Examples 1 to 4 was that the battery storage state during the first charge and after the first charge was either in the horizontal direction or either one was in the horizontal direction. That is, since the cylindrical battery is in a collapsed state, it can be presumed that the metal foreign matter mixed in the positive electrode and the metal deposited on the negative electrode are insufficiently diffused and locally deposited through the separator. From this, it was found that it is more preferable to store the battery in the upright state at the time of the first charge and after the first charge.

比較例1の電圧不良率が高くなった理由は、実電池において初回充電深度3%では正極上での金属異物の溶解が実施例と比較した場合不充分であったためと推測できる。   The reason why the voltage defect rate of Comparative Example 1 was high can be presumed to be that when the initial charge depth was 3% in an actual battery, the dissolution of metal foreign matter on the positive electrode was insufficient when compared with the Example.

比較例2と3の電圧不良率が高くなった理由は、初回充電後の保管時間が30分と短く、金属イオンの拡散時間が不充分であったためと推測できる。   It can be presumed that the reason why the voltage failure rate of Comparative Examples 2 and 3 was high was that the storage time after the first charge was as short as 30 minutes and the diffusion time of metal ions was insufficient.

以上の結果から、二次電池を製造する方法において、初回の充電時に、電池容量の5〜50%充電して、1時間以上7日間以内の保管時間を設け、初回充電時及び/または初回充電後の電池保管状態を正立状態とすることにより、電池の電圧不良率を低減でき、さらに初回充電時及び初回充電後の電池保管状態を正立状態とすることにより、電池の電圧不良率をさらに低減できることがわかった。   From the above results, in the method of manufacturing the secondary battery, 5 to 50% of the battery capacity is charged at the time of the first charge, and a storage time of 1 hour to 7 days is provided, and at the time of the first charge and / or the first charge. The battery voltage failure rate can be reduced by setting the battery storage state later in the upright state, and the battery voltage failure rate can be reduced by setting the battery storage state in the upright state at the time of initial charge and after the first charge. It was found that it can be further reduced.

なお、本発明において、リチウムと可逆的に反応する正極材料としてLiCoOを用いた場合について説明したが、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO,LiMn)等の含リチウム複合酸化物を用いても同様の効果が得られた。 In the present invention, the case where LiCoO 2 is used as a positive electrode material that reacts reversibly with lithium has been described. However, the inclusion of lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 , LiMn 2 O 4 ), etc. Similar effects were obtained even when lithium composite oxide was used.

また、本発明において、リチウムと可逆的に反応する負極材料として、コークスを用いた場合について説明したが、黒鉛系,非晶質系等の炭素材料を用いても同様の効果が得られた。   In the present invention, the case where coke is used as the negative electrode material reversibly reacting with lithium has been described. However, the same effect was obtained even when a carbon material such as graphite or amorphous was used.

本発明において、円筒形リチウムイオン二次電池を用いた場合について説明したが、角形など電池形状が異なっても、正負極板をセパレータを介して渦巻状に巻回して構成した極板群であれば同様の効果が得られた。   In the present invention, the case where a cylindrical lithium ion secondary battery is used has been described. However, even if the battery shape is different, such as a rectangular shape, the electrode plate group may be configured by winding positive and negative plates spirally through a separator. The same effect was obtained.

本発明において、溶質としてLiPFを用いた場合について説明したが、他のリチウム塩として、例えば、過塩素酸リチウム(LiClO)、四フッ化ホウ酸リチウム(LiBF)等でも同様の効果が得られた。 In the present invention, the case where LiPF 6 is used as the solute has been described, but the same effect can be obtained with other lithium salts such as lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), and the like. Obtained.

本発明において、電解質濃度を1.0mol/Lとした場合について説明したが、溶質濃度を0.5〜2.0mol/Lのものを用いても同様の効果が得られた。   In the present invention, the case where the electrolyte concentration is 1.0 mol / L has been described, but the same effect was obtained even when the solute concentration was 0.5 to 2.0 mol / L.

本発明において、電解液としてECとDECの混合溶媒を用いた場合について説明したが、他の非水溶媒として、例えば、プロピレンカーボネートなどの環状エステル、テトラヒドロフランなどの環状エーテル、ジメトキシエタンなどの鎖状エーテル、プロピオン酸メチルなどの鎖状エステルなどを用いたり、これら多元系混合溶媒を用いても同様の効果が得られた。   In the present invention, the case where a mixed solvent of EC and DEC is used as the electrolytic solution has been described. As other non-aqueous solvents, for example, cyclic esters such as propylene carbonate, cyclic ethers such as tetrahydrofuran, and chain structures such as dimethoxyethane Similar effects were obtained even when chain esters such as ether and methyl propionate were used, or when these multicomponent mixed solvents were used.

本発明の実施例における円筒形電池の構成を示す断面概略図Schematic sectional view showing the configuration of a cylindrical battery in an embodiment of the present invention.

1 正極板
2 正極リード
3 負極板
4 負極リード
5 セパレータ
6 上部絶縁リング
7 下部絶縁リング
8 電池缶
9 絶縁パッキング
10 電池蓋
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Positive electrode lead 3 Negative electrode plate 4 Negative electrode lead 5 Separator 6 Upper insulating ring 7 Lower insulating ring 8 Battery can 9 Insulating packing 10 Battery lid

Claims (2)

正負極板間にセパレータを介し巻回して構成したリチウムイオン二次電池の製造法において、初回の充電時に電池を正立状態で電池容量の5%〜50%に達するまで定電流で充電した後、電池を正立状態で1時間以上7日以内の保管時間を設けるリチウムイオン二次電池の製造法。 In a method of manufacturing a lithium ion secondary battery that is configured by winding a separator between positive and negative plates, after charging the battery at a constant current until reaching 5% to 50% of the battery capacity in the upright state at the first charge. A method for producing a lithium ion secondary battery in which the battery is kept in an upright state and provided with a storage time of 1 hour to 7 days. 前記初回の充電時の環境温度を25℃〜35℃とする請求項1記載のリチウムイオン二次電池の製造法。The method for producing a lithium ion secondary battery according to claim 1, wherein the environmental temperature at the first charge is 25 ° C. to 35 ° C. 3.
JP2004271105A 2004-09-17 2004-09-17 Manufacturing method of lithium ion secondary battery Expired - Fee Related JP4661145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004271105A JP4661145B2 (en) 2004-09-17 2004-09-17 Manufacturing method of lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004271105A JP4661145B2 (en) 2004-09-17 2004-09-17 Manufacturing method of lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2006086060A JP2006086060A (en) 2006-03-30
JP4661145B2 true JP4661145B2 (en) 2011-03-30

Family

ID=36164365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004271105A Expired - Fee Related JP4661145B2 (en) 2004-09-17 2004-09-17 Manufacturing method of lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4661145B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5348139B2 (en) * 2010-03-08 2013-11-20 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery processing apparatus and manufacturing method
JP5616248B2 (en) * 2011-02-01 2014-10-29 日立オートモティブシステムズ株式会社 Secondary battery and manufacturing method thereof
WO2013035202A1 (en) * 2011-09-09 2013-03-14 トヨタ自動車株式会社 Secondary cell inspecting method
JP5644960B2 (en) * 2011-10-24 2014-12-24 日産自動車株式会社 Secondary battery inspection method
EP2816657B1 (en) 2012-02-16 2017-08-16 Toyota Jidosha Kabushiki Kaisha Method for manufacturing secondary cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645003A (en) * 1992-06-09 1994-02-18 Furukawa Battery Co Ltd:The Manufacture of sealed storage battery by using hydrogen storage electrode and hydrogen storage alloy for this electrode
JPH06349524A (en) * 1993-06-12 1994-12-22 Haibaru:Kk Secondary battery
JPH10289733A (en) * 1997-02-14 1998-10-27 Fuji Film Selltec Kk Nonaqueous secondary battery and manufacture therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645003A (en) * 1992-06-09 1994-02-18 Furukawa Battery Co Ltd:The Manufacture of sealed storage battery by using hydrogen storage electrode and hydrogen storage alloy for this electrode
JPH06349524A (en) * 1993-06-12 1994-12-22 Haibaru:Kk Secondary battery
JPH10289733A (en) * 1997-02-14 1998-10-27 Fuji Film Selltec Kk Nonaqueous secondary battery and manufacture therefor

Also Published As

Publication number Publication date
JP2006086060A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
KR20070040404A (en) Secondary battery with terminal for surface mounting
US20230083371A1 (en) Secondary battery
JP2000077061A (en) Lithium ion battery
JP2001185213A (en) Nonaqueous electrolyte battery and manufacturing method therefor
JP2004303597A (en) Lithium secondary battery and manufacturing method of the same
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JP4661145B2 (en) Manufacturing method of lithium ion secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
CN111183542B (en) Nonaqueous electrolyte secondary battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JP2006318839A (en) Nonaqueous secondary battery
JP2003100278A (en) Nonaqueous electrolyte secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JP2003109662A (en) Method of manufacturing secondary battery
US11171366B2 (en) Method for controlling non-aqueous electrolyte secondary battery
JP2017182993A (en) Method for manufacturing lithium ion secondary battery
JPH07142089A (en) Lithium ion battery
JP2730641B2 (en) Lithium secondary battery
JPH11265700A (en) Nonaqueous electrolyte secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP2001297762A (en) Secondary cell with nonaqueous electrolyte
JPH09171825A (en) Secondary battery having nonaqueous solvent
JP2002324584A (en) Flat nonaqueous electrolyte secondary battery with lead terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071012

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150114

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees