JPH11265700A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH11265700A
JPH11265700A JP10067992A JP6799298A JPH11265700A JP H11265700 A JPH11265700 A JP H11265700A JP 10067992 A JP10067992 A JP 10067992A JP 6799298 A JP6799298 A JP 6799298A JP H11265700 A JPH11265700 A JP H11265700A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
secondary battery
generating element
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10067992A
Other languages
Japanese (ja)
Other versions
JP4248044B2 (en
Inventor
Keiichi Ito
桂一 伊藤
Norihiko Ootsuji
凖彦 大辻
Zensaku Yasutake
善作 安武
Hisanori Yamaguchi
尚範 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP06799298A priority Critical patent/JP4248044B2/en
Publication of JPH11265700A publication Critical patent/JPH11265700A/en
Application granted granted Critical
Publication of JP4248044B2 publication Critical patent/JP4248044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of surely preventing the occurrence of a leak of electrolyte to improve the reliability of the battery, and also surely operating a current interrupting mechanism to improve the safety of the battery. SOLUTION: This nonaqueous electrolyte secondary battery has a bottomed cylindrical facing can 5 containing a generating element 4 consisting of positive and negative electrodes 1, 2 wound through a separator 3 and an electrolyte and a sealing body 6 for sealing the opening part of the facing can 5 and having a current cutoff valve 8 for interrupting the contact between the generating element 4 and a positive electrode gap 7 to stop the further charging when the pressure inside the battery increased. In this battery, excessive electrolyte is housed in the facing can 5, and a liquid absorptive insulator 15 for absorbing the electrolyte is arranged in hollow part 14 situated in the winding center of the generating element 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正負両極がセパレ
ータを介して巻回される発電要素と余剰の電解液とが収
納された有底筒状の外装缶と、この外装缶の開口部を封
口すると共に、電池内の圧力が上昇した際に上記発電要
素と電流取出端子との接触を絶って充電を中止させる電
流遮断機構を備えた封口体とを有する非水電解液二次電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bottomed cylindrical outer can containing a power generating element whose positive and negative electrodes are wound via a separator and an excess electrolyte, and an opening of the outer can. The present invention relates to a non-aqueous electrolyte secondary battery having a sealing body and a sealing body provided with a current interrupting mechanism for interrupting charging by cutting off the contact between the power generating element and a current extraction terminal when the pressure in the battery increases.

【0002】[0002]

【従来の技術】近年、携帯電話等の電子機器には非水電
解液二次電池が用いられるようになってきたが、この場
合、過充電時における電池の安全性を確保する必要があ
る。そこで、特開平2−112151号公報に示される
ように、満充電状態から所定値以上の電気量が充電され
た際に、電池内の圧力上昇を利用して発電要素と電流取
出端子との接触を絶って、それ以上の充電を中止させる
電流遮断機構を備えたものが提案されている。しかしな
がら、上記構造の電池では、必ずしも電流遮断機構が確
実に作動しない場合がある。
2. Description of the Related Art In recent years, non-aqueous electrolyte secondary batteries have been used for electronic devices such as mobile phones. In this case, it is necessary to ensure the safety of the batteries during overcharge. Therefore, as shown in Japanese Patent Application Laid-Open No. 2-112151, when an amount of electricity equal to or more than a predetermined value is charged from a fully charged state, the contact between the power generation element and the current extraction terminal is made use of the pressure increase in the battery. There has been proposed a device provided with a current cut-off mechanism for stopping the further charging. However, in the battery having the above structure, the current cutoff mechanism may not always operate reliably.

【0003】そこで、特開平4−328278号公報に
示されるように、正極に炭酸塩を添加し、所定の電気量
が充電された際に炭酸ガスを発生させ、或いは、電解液
中に添加剤を添加し、所定の電気量が充電された際にガ
スを発生させ、これにより上記電流遮断機構を確実に作
動させる電池が提案されている。
Therefore, as disclosed in JP-A-4-328278, a carbonate is added to the positive electrode to generate carbon dioxide gas when a predetermined amount of electricity is charged, or the additive is added to the electrolyte. Has been proposed to generate gas when a predetermined amount of electricity is charged, thereby reliably operating the current cutoff mechanism.

【0004】しかしながら、上記正極或いは電解液に添
加剤を添加する場合、当該添加剤は通常の充放電がなさ
れている限りは、電極の充放電反応に寄与しない場合が
多いため、上記構造の電池では、電池容量が低下し、更
には電池の諸特性が低下し、これらのことから、電池の
高性能化を図ることができないという課題を有してい
た。そこで、この問題を解決すべく、充放電を円滑に進
行させるのに必要な量よりも若干多めの電解液を外装缶
内に注入するような構造の電池が考えられる。このよう
な構成であれば、添加剤は不要となるので、電池容量が
低下するのを防止できると共に、電池内の空間体積を減
少させ、且つ、過充電時の発熱による電解液中の低沸点
成分の蒸発、高電圧での電解液の分解によるガス発生が
より円滑化するので、上記電流遮断機構を確実に作動さ
せることができる。しかしながら、上記構成の電池では
電解液の量が多くなり、電解液の漏れが発生し、電池の
信頼性が低下するという課題を有していた。
However, when an additive is added to the positive electrode or the electrolytic solution, the additive does not often contribute to the charge / discharge reaction of the electrode as long as normal charge / discharge is performed. Thus, there is a problem that the battery capacity is reduced, and further, various characteristics of the battery are reduced, and therefore, it is impossible to improve the performance of the battery. Therefore, in order to solve this problem, a battery having a structure in which a slightly larger amount of electrolyte is injected into the outer can than the amount required for smoothly progressing charge / discharge can be considered. With such a configuration, no additive is required, so that the battery capacity can be prevented from lowering, the space volume in the battery can be reduced, and the low boiling point in the electrolyte due to heat generation during overcharge. Since the gas generation due to the evaporation of the components and the decomposition of the electrolytic solution at a high voltage is further facilitated, the above-described current interruption mechanism can be reliably operated. However, the battery with the above configuration has a problem that the amount of the electrolyte increases, the electrolyte leaks, and the reliability of the battery decreases.

【0005】[0005]

【発明が解決しようとする課題】本発明は、以上の事情
に鑑みなされたものであって、電解液の漏れが発生する
のを確実に防止して電池の信頼性を向上させつつ、電流
遮断機構を確実に作動させて電池の安全性を向上させる
ことができる非水電解液二次電池の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is intended to prevent the occurrence of electrolyte leakage to improve the reliability of a battery and to cut off current. An object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of reliably operating a mechanism and improving battery safety.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、正負両極が
セパレータを介して巻回される発電要素と電解液とが収
納された有底筒状の外装缶と、この外装缶の開口部を封
口すると共に、電池内の圧力が上昇した際に上記発電要
素と電流取出端子との接触を絶ってそれ以上の充電を中
止させる電流遮断機構を備えた封口体とを有する非水電
解液二次電池において、上記外装缶内には余剰の電解液
が収納されると共に、上記発電要素の巻回中心にある中
空部には、上記電解液を吸収する吸液性絶縁体が配置さ
れていることを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, a power generating element in which both positive and negative electrodes are wound via a separator and an electrolyte are housed. The bottomed cylindrical outer can and the opening of the outer can are sealed, and when the pressure in the battery increases, the contact between the power generating element and the current extracting terminal is cut off to stop further charging. In a non-aqueous electrolyte secondary battery having a sealing body provided with a current interrupting mechanism, an excess electrolyte is stored in the outer can, and a hollow portion at the winding center of the power generation element includes: A liquid-absorbing insulator for absorbing the electrolytic solution is provided.

【0007】上記の如く、中空部に電解液を吸収する吸
液性絶縁体が配置されていれば、充放電を円滑に進行さ
せるのに必要な量よりも多くの電解液(余剰の電解液)
を外装缶内に収納している場合であっても、余剰の電解
液は吸液性絶縁体に吸収されるので、電解液が漏れるの
を防止できる。更に、余剰の電解液の存在により、過充
電時に発生するガスの量が多くなると共に、吸液性絶縁
体の存在により電池内の空間部分の体積が小さくなる。
したがって、電流遮断機構を確実に作動させることがで
きる。加えて、余剰の電解液の存在により、電池の発火
等の電池異常が発生せず、電池の安全性が向上すると共
に、電池のサイクル劣化も抑制される。
As described above, if the liquid-absorbing insulator that absorbs the electrolytic solution is disposed in the hollow portion, the amount of the electrolytic solution (excess electrolytic solution) is larger than that required for smoothly progressing charge and discharge. )
Even if is stored in the outer can, excess electrolyte is absorbed by the liquid-absorbing insulator, so that leakage of the electrolyte can be prevented. Furthermore, the amount of gas generated at the time of overcharging increases due to the presence of excess electrolyte, and the volume of the space in the battery decreases due to the presence of the liquid-absorbing insulator.
Therefore, the current cutoff mechanism can be reliably operated. In addition, due to the presence of the excess electrolyte, battery abnormality such as battery ignition does not occur, battery safety is improved, and battery cycle deterioration is suppressed.

【0008】また、請求項2記載の発明は、請求項1記
載の発明において、上記電解液の液量が、電池の理論容
量1mAh当たり0.0035cm3 以上0.005c
3以下であることを特徴とする。電解液の液量を、こ
のような範囲に規制するのは、以下に示す理由による。
即ち、電解液の液量が、電池の理論容量1mAh当たり
0.0035cm3 未満であると、電解液が枯渇するた
めに放電容量が低下すると共に、過充電による発火等が
生じる一方、電解液の液量が、電池の理論容量1mAh
当たり0.005cm3 を超えると、吸液性絶縁体に吸
収されない電解液が電池内に存在することとなり、この
結果電解液が漏れるという理由による。
According to a second aspect of the present invention, in the first aspect of the present invention, the amount of the electrolyte is 0.0035 cm 3 or more and 0.005 c per mAh of the theoretical capacity of the battery.
characterized in that m 3 or less. The amount of the electrolytic solution is regulated within such a range for the following reason.
That is, when the amount of the electrolytic solution is less than 0.0035 cm 3 per 1 mAh of the theoretical capacity of the battery, the discharge capacity is reduced due to the exhaustion of the electrolytic solution, and ignition or the like due to overcharging occurs. The liquid volume is 1 mAh, the theoretical capacity of the battery.
If it exceeds 0.005 cm 3 per cell, an electrolyte that is not absorbed by the liquid-absorbing insulator will be present in the battery, and as a result, the electrolyte will leak.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態を、図1〜図
3に基づいて、以下に説明する。図1は本発明に係る非
水電解液二次電池の分解斜視図、図2は電池の電流遮断
機構の拡大断面図、図3は電池の電流遮断機構が作動し
た際の拡大断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is an exploded perspective view of a non-aqueous electrolyte secondary battery according to the present invention, FIG. 2 is an enlarged cross-sectional view of a battery current interrupting mechanism, and FIG. 3 is an enlarged cross-sectional view of the battery when the current interrupting mechanism operates. .

【0010】図1に示すように、本発明の非水電解液二
次電池は、有底円筒状の外装缶5を有しており、この外
装缶5は表面にニッケルメッキされた鉄から成る。上記
外装缶5内には、アルミニウムから成る芯体にLiCo
2 を主体とする活物質層が形成された正極1と、銅か
ら成る芯体に黒鉛を主体とする活物質層が形成された負
極2と、これら両電極1・2を離間するセパレータ3と
から成る渦巻き状の発電要素4が収納されている。ま
た、上記外装缶5内には、エチレンカーボネート(E
C)とジメチルカーボネート(DMC)とが体積比で
4:6の割合で混合された混合溶媒に、LiPF6 が1
M(モル/リットル)の割合で溶解された電解液が注入
されている。更に、上記外装缶5の開口部に封口体6を
かしめて電池が封口される。
As shown in FIG. 1, the nonaqueous electrolyte secondary battery of the present invention has a bottomed cylindrical outer can 5, which is made of nickel-plated iron. . In the outer can 5, a core body made of aluminum is coated with LiCo.
A positive electrode 1 on which an active material layer mainly composed of O 2 is formed; a negative electrode 2 on which an active material layer mainly composed of graphite is formed on a core made of copper; and a separator 3 which separates these electrodes 1 and 2 Are stored. In addition, ethylene carbonate (E
In C) and dimethyl carbonate and (DMC) is a volume ratio of 4: 6 to mixed mixed solvent at a ratio of, LiPF 6 is 1
An electrolyte dissolved at a rate of M (mol / liter) is injected. Furthermore, the battery is sealed by caulking the sealing body 6 into the opening of the outer can 5.

【0011】ここで、上記封口体6は、図2に示すよう
に、正極端子兼用の正極キャップ7を有しており、この
正極キャップ7には、略半円球状を成す電流遮断弁8が
電気的に接続されている。この電流遮断弁8は、通常状
態では、正極集電タブ10と電気的に接続された薄板9
と溶接されている一方、過充電時等の異常時に電池内部
の圧力が所定値(10〜20kgf/cm2 )以上にな
った場合には、図3に示すように、薄板9と不接触状態
となって、充電が中止される。尚、上記封口体6には絶
縁パッキング11が設けられている。
Here, as shown in FIG. 2, the sealing body 6 has a positive electrode cap 7 also serving as a positive electrode terminal, and a current cutoff valve 8 having a substantially semi-spherical shape is provided on the positive electrode cap 7. It is electrically connected. In a normal state, the current cutoff valve 8 is a thin plate 9 electrically connected to the positive electrode current collecting tab 10.
On the other hand, when the pressure inside the battery becomes a predetermined value (10 to 20 kgf / cm 2 ) or more at the time of abnormality such as overcharging, as shown in FIG. As a result, charging is stopped. The sealing body 6 is provided with an insulating packing 11.

【0012】また、前記発電要素4の中空部14には、
ポリエチレン繊維を円柱状に成形した吸液性絶縁体15
が配置されており、この吸液性絶縁体15は余剰の電解
液を吸収するような構成である。更に、前記外装缶5に
は、負極2と電気的に接続された負極集電タブ13が接
続され、且つ前記発電要素4の上下両端部近傍には、絶
縁板16・17が配置されている。
In the hollow part 14 of the power generating element 4,
Absorbent insulator 15 made of polyethylene fiber in a cylindrical shape
Are arranged, and the liquid-absorbing insulator 15 is configured to absorb excess electrolytic solution. Further, a negative electrode current collecting tab 13 electrically connected to the negative electrode 2 is connected to the outer can 5, and insulating plates 16 and 17 are disposed near upper and lower ends of the power generating element 4. .

【0013】ここで、上記構造の非水電解質電池を、以
下のようにして作製した。先ず、正極活物質としてのL
iCoO2 を90重量%と、導電剤としてのカーボンブ
ラックを5重量%と、結着剤としてのポリフッ化ビニリ
デンを5重量%と、溶剤としてのN−メチル−2−ピロ
リドン(NMP)溶液とを混合してスラリーを調製した
後、正極集電タブ10の溶接部位を除き、上記スラリー
を正極集電体としてのアルミニウム箔(厚さ:20μ
m)の両面に塗布した。その後、溶剤を乾燥し、ローラ
ーで所定の厚みにまで圧縮した後、所定の幅及び長さに
なるように切断し、更にアルミニウム製の正極集電タブ
10(幅:3mm)を溶接した。
Here, the non-aqueous electrolyte battery having the above structure was manufactured as follows. First, L as a positive electrode active material
90% by weight of iCoO 2 , 5% by weight of carbon black as a conductive agent, 5% by weight of polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone (NMP) solution as a solvent After mixing to prepare a slurry, the above-mentioned slurry was removed from an aluminum foil (thickness: 20 μm) as a positive electrode current collector, except for a welding portion of the positive electrode current collector tab 10.
m). Thereafter, the solvent was dried, compressed to a predetermined thickness by a roller, cut into a predetermined width and length, and then a positive electrode current collector tab 10 (width: 3 mm) made of aluminum was welded.

【0014】これと並行して、負極活物質としての黒鉛
粉末を95重量%と、結着剤としてのポリフッ化ビニリ
デンを5重量%と、溶剤としてのNMP溶液とを混合し
てスラリーを調製した後、負極集電タブ13の溶接部位
を除き、上記スラリーを負極集電体としての銅箔(厚
さ:16μm)の両面に塗布した。その後、溶剤を乾燥
し、ローラーで所定の厚みにまで圧縮した後、所定の幅
及び長さになるように切断し、更にニッケル製の負極集
電タブ13(幅:3mm)を溶接した。
At the same time, a slurry was prepared by mixing 95% by weight of graphite powder as a negative electrode active material, 5% by weight of polyvinylidene fluoride as a binder, and an NMP solution as a solvent. Thereafter, the above-mentioned slurry was applied to both surfaces of a copper foil (thickness: 16 μm) as a negative electrode current collector, except for a welding portion of the negative electrode current collector tab 13. Thereafter, the solvent was dried, compressed to a predetermined thickness by a roller, cut into a predetermined width and length, and a nickel negative electrode current collecting tab 13 (width: 3 mm) was welded.

【0015】次に、上記正極1と負極2とをポリエチレ
ン製微多孔膜から成るセパレータ3(厚み:25μm)
を介して巻回して発電要素4を作製した後、この発電要
素4を絶縁板16と共に外装缶5内に挿入し、更に負極
集電タブ13を外装缶5の缶底に溶接した。その後、正
極集電タブ10を、電流遮断機構を備えた封口板6の薄
板9に溶接すると共に、発電要素4の中空部14に吸液
性絶縁体15を挿入する。しかる後、ECとDMCとが
体積比で4:6の割合で混合された混合溶媒に、LiP
6 が1M(モル/リットル)の割合で溶解された電解
液を、電池の理論容量1mAhあたり0.0035cm
3 となるように外装缶5内に注入した後、封口板6にて
封口することにより、円筒形の電池(直径:18mm、
高さ65mmで、理論容量が1400mAh)を作製し
た。
Next, the positive electrode 1 and the negative electrode 2 are separated by a separator 3 (thickness: 25 μm) made of a microporous polyethylene film.
Then, the power generating element 4 was fabricated by inserting the power generating element 4 together with the insulating plate 16 into the outer can 5, and the negative electrode current collecting tab 13 was welded to the bottom of the outer can 5. Thereafter, the positive electrode current collecting tab 10 is welded to the thin plate 9 of the sealing plate 6 provided with a current interrupting mechanism, and the liquid-absorbing insulator 15 is inserted into the hollow portion 14 of the power generation element 4. Thereafter, LiP was added to a mixed solvent in which EC and DMC were mixed at a volume ratio of 4: 6.
An electrolyte in which F 6 is dissolved at a rate of 1 M (mol / liter) is applied at a rate of 0.0035 cm per 1 mAh of theoretical battery capacity.
3 and then sealed with a sealing plate 6 to form a cylindrical battery (diameter: 18 mm,
A height of 65 mm and a theoretical capacity of 1400 mAh) were produced.

【0016】尚、上記実施の形態では、正極集電タブ1
0と電気的に接続された薄板9を介して電流遮断弁8が
設けられているが、このような構造に限定するものでは
なく、例えば正極集電タブ10と電流遮断弁8とを直接
溶接するような構造であっても良い。この場合は、過充
電時等の異常時に電池内部の圧力が所定値(10〜20
kgf/cm2 )以上になった場合には、正極集電タブ
10と電流遮断弁8との溶接部が外れて電流遮断機構が
働くことになる。
In the above embodiment, the positive electrode current collecting tab 1
Although the current cutoff valve 8 is provided through the thin plate 9 electrically connected to the positive electrode 0, the present invention is not limited to such a structure. For example, the positive current collecting tab 10 and the current cutoff valve 8 are directly welded. Such a structure may be adopted. In this case, the pressure inside the battery is increased to a predetermined value (10 to 20) at the time of abnormality such as overcharging.
When the pressure exceeds kgf / cm 2 ), the welded portion between the positive electrode current collecting tab 10 and the current cutoff valve 8 is disengaged and the current cutoff mechanism operates.

【0017】また、吸液性絶縁体15としては、ポリエ
チレン繊維を円柱状に成形したものに限定されるもので
はなく、例えばポリプロピレン繊維等のポリオレフィン
系樹脂繊維を円柱状に成形したもの、ポリエチレンやポ
リプロピレン樹脂不織布等のポリオレフィン系樹脂不織
布を円柱状に巻回成形したもの、電解液を吸収してゲル
状となる高分子吸収体、或いはセラミックス多孔体を円
柱状に加工したもの等を用いることが可能である。加え
て、正極材料としては上記LiCoO2 の他、例えば、
LiNiO2 、LiMn2 4 或いはこれらの複合体等
が好適に用いられ、また負極材料としては上記炭素材料
の他、リチウム金属、リチウム合金、或いは金属酸化物
(スズ酸化物等)等が好適に用いられる。
Further, the liquid-absorbing insulator 15 is not limited to a polyethylene fiber formed into a cylindrical shape, but may be, for example, a polyolefin resin fiber such as a polypropylene fiber formed into a cylindrical shape, polyethylene, or the like. Polyolefin resin non-woven fabric such as polypropylene resin non-woven fabric formed by winding into a cylindrical shape, a polymer absorber that absorbs an electrolytic solution and becomes a gel, or a ceramic porous body processed into a cylindrical shape can be used. It is possible. In addition, as the cathode material, in addition to the above LiCoO 2 , for example,
LiNiO 2 , LiMn 2 O 4 or a composite thereof is preferably used. As the negative electrode material, in addition to the above-mentioned carbon materials, lithium metal, lithium alloys, metal oxides (tin oxides and the like) are preferably used. Used.

【0018】更に、電解液の溶媒としては上記のものに
限らず、プロピレンカーボネート、エチレンカーボネー
ト、ビニレンカーボネート、γ−ブチロラクトンなどの
比較的比誘電率が高い溶液と、ジエチルカーボネート、
ジメチルカーボネート、メチルエチルカーボネート、テ
トラヒドロフラン、1,2−ジメトキシエタン、1,3
−ジオキソラン、2−メトキシテトラヒドロフラン、ジ
エチルエーテル等の低粘度低沸点溶媒とを適度な比率で
混合した溶媒を用いることができる。また、電解液の電
解質としては、上記LiPF6 の他、LiAsF6 、L
iClO4 、LiBF4 、LiCF3 SO3 等を用いる
ことができる。
Further, the solvent of the electrolytic solution is not limited to the above-mentioned ones. A solution having a relatively high relative dielectric constant such as propylene carbonate, ethylene carbonate, vinylene carbonate, γ-butyrolactone, and diethyl carbonate,
Dimethyl carbonate, methyl ethyl carbonate, tetrahydrofuran, 1,2-dimethoxyethane, 1,3
A solvent in which low-viscosity low-boiling solvents such as -dioxolan, 2-methoxytetrahydrofuran, and diethyl ether are mixed at an appropriate ratio can be used. As the electrolyte of the electrolytic solution, in addition to the above-mentioned LiPF 6 , LiAsF 6 , L
iClO 4 , LiBF 4 , LiCF 3 SO 3 and the like can be used.

【0019】[0019]

【実施例】〔実施例1〕実施例1としては、上記発明の
実施の形態に示す方法と同様の方法にて作製した電池を
用いた。このようにして作製した電池を、以下、本発明
電池A1と称する。 〔実施例2〕電解液量を、電池の理論容量1mAhあた
り0.0040cm3 となるようにして電池を作製する
他は、上記実施例1と同様にして電池を作製した。この
ようにして作製した電池を、以下、本発明電池A2と称
する。
[Example 1] In Example 1, a battery manufactured by the same method as that described in the embodiment of the present invention was used. The battery fabricated in this manner is hereinafter referred to as Battery A1 of the invention. Example 2 A battery was manufactured in the same manner as in Example 1 except that the amount of the electrolyte was adjusted to be 0.0040 cm 3 per 1 mAh of the theoretical capacity of the battery. The battery fabricated in this manner is hereinafter referred to as Battery A2 of the invention.

【0020】〔実施例3〕電解液量を、電池の理論容量
1mAhあたり0.0050cm3 となるようにして電
池を作製する他は、上記実施例1と同様にして電池を作
製した。このようにして作製した電池を、以下、本発明
電池A3と称する。 〔実施例4〕電解液量を、電池の理論容量1mAhあた
り0.0055cm3 となるようにして電池を作製する
他は、上記実施例1と同様にして電池を作製した。この
ようにして作製した電池を、以下、本発明電池A4と称
する。
Example 3 A battery was manufactured in the same manner as in Example 1 except that the amount of the electrolyte was adjusted to 0.0050 cm 3 per 1 mAh of the theoretical capacity of the battery. The battery fabricated in this manner is hereinafter referred to as Battery A3 of the invention. Example 4 A battery was manufactured in the same manner as in Example 1 except that the amount of the electrolyte was adjusted to 0.0055 cm 3 per 1 mAh of the theoretical capacity of the battery. The battery fabricated in this manner is hereinafter referred to as Battery A4 of the invention.

【0021】〔比較例1〜3〕発電要素の中空部に吸液
性絶縁体を配置しない他は、それぞれ上記実施例1〜3
と同様にして電池を作製した。このようにして作製した
電池を、以下それぞれ、比較電池X1〜X3と称する。 〔比較例4〕電解液量を、電池の理論容量1mAhあた
り0.0030cm3 となるようにして電池を作製する
他は、上記実施例1と同様にして電池を作製した。この
ようにして作製した電池を、以下、比較電池X4と称す
る。
[Comparative Examples 1 to 3] Examples 1 to 3 except that no liquid-absorbing insulator was disposed in the hollow portion of the power generating element.
In the same manner as in the above, a battery was produced. The batteries fabricated in this manner are hereinafter referred to as comparative batteries X1 to X3, respectively. Comparative Example 4 A battery was fabricated in the same manner as in Example 1 except that the amount of the electrolytic solution was 0.0030 cm 3 per 1 mAh of the theoretical capacity of the battery. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X4.

【0022】〔比較例5〕発電要素の中空部に吸液性絶
縁体を配置しない他は、上記比較例4と同様にして電池
を作製した。このようにして作製した電池を、以下、比
較電池X5と称する。 〔比較例6〕発電要素の中空部に吸液性絶縁体を配置し
ない他は、上記実施例4と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池X6と
称する。
Comparative Example 5 A battery was manufactured in the same manner as in Comparative Example 4 except that no liquid-absorbing insulator was disposed in the hollow portion of the power generating element. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X5. Comparative Example 6 A battery was manufactured in the same manner as in Example 4 except that no liquid-absorbing insulator was disposed in the hollow portion of the power generating element.
The battery fabricated in this manner is hereinafter referred to as Comparative Battery X6.

【0023】〔実験1〕上記本発明電池A1〜A4及び
比較電池X1〜X6について、過充電試験を行ったの
で、その結果を下記表1に示す。尚、実験条件は270
0mAの定電流で連続充電するという条件であり、また
試料数は各電池5個ずつである。
[Experiment 1] Overcharging tests were performed on the batteries A1 to A4 of the present invention and the comparative batteries X1 to X6, and the results are shown in Table 1 below. The experimental condition was 270.
The condition is that the battery is continuously charged with a constant current of 0 mA, and the number of samples is 5 for each battery.

【0024】[0024]

【表1】 [Table 1]

【0025】上記表1から明らかなように、本発明電池
A1〜A4及び比較電池X1〜X3及び比較電池X6で
は、全く電池の異常が発生していないのに対して、比較
電池X4及び比較電池X5では、電解液量が少ないこと
に起因して、電池の異常が発生することが認められる。
As apparent from Table 1 above, in the batteries A1 to A4 of the present invention, the comparative batteries X1 to X3 and the comparative battery X6, no abnormality occurred in the batteries. In X5, it is recognized that an abnormality of the battery occurs due to a small amount of the electrolyte.

【0026】〔実験2〕上記本発明電池A1〜A4及び
比較電池X1〜X6について、落下試験を行ったので、
その結果を上記表1に併せて示す。尚、実験条件は1m
の高さからPタイル上に電池を100回ずつ落下させる
という条件であり、また試料数は各電池50個ずつであ
る。
[Experiment 2] Drop tests were performed on the batteries A1 to A4 of the present invention and the comparative batteries X1 to X6.
The results are shown in Table 1 above. The experimental conditions were 1 m
And the number of samples is 50 for each battery.

【0027】上記表1から明らかなように、本発明電池
A1〜A3では、全く電解液の漏液が認められないのに
対して、比較電池X1〜X3及び比較電池X6(上記実
験1で電池の異常が発生しない比較電池)では、過剰の
電解液を吸収する吸液性絶縁体が存在しないことに起因
して、電解液の漏液が認められる。但し、電解液量が多
すぎる本発明電池A4では、電解液の漏液が認められ
る。
As is clear from Table 1 above, in the batteries A1 to A3 of the present invention, no leakage of the electrolyte was observed, whereas the batteries of Comparative Examples X1 to X3 and Comparative Battery X6 (the batteries of Experiment 1 described above were used). In the case of a comparative battery in which no abnormality occurs, the electrolyte leaks due to the absence of the liquid-absorbing insulator that absorbs the excess electrolyte. However, in the battery A4 of the present invention in which the amount of the electrolyte is too large, leakage of the electrolyte is observed.

【0028】〔実験3〕上記本発明電池A1〜A4及び
比較電池X1〜X6について、サイクル試験を行ったの
で、その結果を図4に示す。尚、充放電条件は、以下の
とうりである。 充電条件:1350mAの定電流で電池電圧が4.1V
になるまで充電し、その後4.1Vで定電圧充電し、電
流値が27mAに低下した時点で充電を終了する。その
後、10分休止する。 放電条件:1350mAの定電流で電池電圧が2.75
Vになるまで放電し、その後、10分休止する。
[Experiment 3] A cycle test was performed on the batteries A1 to A4 of the present invention and the comparative batteries X1 to X6, and the results are shown in FIG. The charging and discharging conditions are as follows. Charging conditions: Battery voltage of 4.1 V at constant current of 1350 mA
, And then charge at a constant voltage of 4.1 V. When the current value drops to 27 mA, the charging is completed. Then rest for 10 minutes. Discharge conditions: 1.75 mA constant current and battery voltage of 2.75
Discharge to V, then rest for 10 minutes.

【0029】図4から明らかなように、本発明電池A1
〜A4及び比較電池X1〜X3及び比較電池X6では、
良好なサイクル特性を示しているのに対して、比較電池
X4及び比較電池X5では、電解液量が少ないことに起
因して、放電容量の低下が大きくサイクル劣化している
ことが認められる。
As is clear from FIG. 4, the battery A1 of the present invention
A4 and comparative batteries X1 to X3 and comparative battery X6,
While good cycle characteristics are shown, in Comparative Battery X4 and Comparative Battery X5, it is recognized that the decrease in discharge capacity is large and the cycle is deteriorated due to the small amount of electrolyte.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
余剰の電解液は吸液性絶縁体に吸収されるので、電解液
が漏れるのを防止できる。また、余剰の電解液の存在に
より、過充電時に発生するガスの量が多くなると共に、
吸液性絶縁体の存在により電池内の空間部分の体積が小
さくなるので、電流遮断機構を確実に作動させることが
できる。加えて、余剰の電解液の存在により、電池の発
火等の電池異常が発生せず、電池の安全性が向上すると
共に、電池のサイクル劣化も抑制されるといった優れた
効果を奏する。
As described above, according to the present invention,
Excess electrolyte is absorbed by the absorbent insulator, so that leakage of the electrolyte can be prevented. In addition, due to the presence of excess electrolyte, the amount of gas generated during overcharge increases,
Since the volume of the space in the battery is reduced by the presence of the liquid-absorbing insulator, the current cutoff mechanism can be reliably operated. In addition, due to the presence of the excess electrolyte, there is no battery abnormality such as ignition of the battery, so that the battery is improved in safety and the cycle deterioration of the battery is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水電解液二次電池の分解斜視図
である。
FIG. 1 is an exploded perspective view of a non-aqueous electrolyte secondary battery according to the present invention.

【図2】電池の電流遮断機構の拡大断面図である。FIG. 2 is an enlarged sectional view of a current interrupting mechanism of a battery.

【図3】電池の電流遮断機構が作動した際の拡大断面図
である。
FIG. 3 is an enlarged cross-sectional view when a current cutoff mechanism of a battery is operated.

【図4】本発明電池A1〜A4及び比較電池X1〜X6
のサイクル特性を示すグラフである。
FIG. 4 shows batteries A1 to A4 of the present invention and comparative batteries X1 to X6.
5 is a graph showing cycle characteristics of the present invention.

【符号の説明】[Explanation of symbols]

1:正極 2:負極 3:セパレータ 4:発電要素 5:外装缶 8:電流遮断弁 15:吸液性絶縁体 1: Positive electrode 2: Negative electrode 3: Separator 4: Power generation element 5: Outer can 8: Current cutoff valve 15: Liquid absorbing insulator

フロントページの続き (72)発明者 山口 尚範 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Continuation of front page (72) Inventor Naoyama Yamaguchi 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正負両極がセパレータを介して巻回され
る発電要素と電解液とが収納された有底筒状の外装缶
と、この外装缶の開口部を封口すると共に、電池内の圧
力が上昇した際に上記発電要素と電流取出端子との接触
を絶ってそれ以上の充電を中止させる電流遮断機構を備
えた封口体とを有する非水電解液二次電池において、 上記外装缶内には余剰の電解液が収納されると共に、上
記発電要素の巻回中心にある中空部には、上記電解液を
吸収する吸液性絶縁体が配置されていることを特徴とす
る非水電解液二次電池。
1. A bottomed cylindrical outer can containing an electric power generating element and an electrolytic solution in which both positive and negative electrodes are wound via a separator, an opening of the outer can is sealed, and pressure inside the battery is reduced. In the non-aqueous electrolyte secondary battery having a sealing body provided with a current cutoff mechanism that cuts off the contact between the power generation element and the current extraction terminal when the power generation element rises and stops further charging, Is a non-aqueous electrolyte characterized in that an excess electrolyte is stored and a liquid-absorbing insulator that absorbs the electrolyte is disposed in a hollow portion at the winding center of the power generation element. Rechargeable battery.
【請求項2】 上記電解液の液量が、電池の理論容量1
mAh当たり0.0035cm3 以上0.005cm3
以下である、請求項1記載の非水電解液二次電池。
2. The battery according to claim 1, wherein the amount of the electrolyte is the theoretical capacity of the battery.
mAh per 0.0035cm 3 more than 0.005cm 3
The non-aqueous electrolyte secondary battery according to claim 1, wherein:
JP06799298A 1998-03-18 1998-03-18 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4248044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06799298A JP4248044B2 (en) 1998-03-18 1998-03-18 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06799298A JP4248044B2 (en) 1998-03-18 1998-03-18 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH11265700A true JPH11265700A (en) 1999-09-28
JP4248044B2 JP4248044B2 (en) 2009-04-02

Family

ID=13360982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06799298A Expired - Fee Related JP4248044B2 (en) 1998-03-18 1998-03-18 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4248044B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449758B1 (en) * 2002-03-21 2004-09-22 삼성에스디아이 주식회사 Lithium battery with improved safety
JP2008071730A (en) * 2006-08-14 2008-03-27 Sony Corp Nonaqueous electrolyte secondary battery
JP2010086968A (en) * 2008-10-02 2010-04-15 Samsung Sdi Co Ltd Secondary battery and method for forming the same
WO2011070816A1 (en) * 2009-12-11 2011-06-16 栗田工業株式会社 Nonaqueous electrolyte secondary battery material, and nonaqueous electrolyte secondary battery using same
JP2012216413A (en) * 2011-03-31 2012-11-08 Gs Yuasa Corp Secondary battery system
CN104103853A (en) * 2013-04-08 2014-10-15 三星Sdi株式会社 Rechargeable battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449758B1 (en) * 2002-03-21 2004-09-22 삼성에스디아이 주식회사 Lithium battery with improved safety
JP2008071730A (en) * 2006-08-14 2008-03-27 Sony Corp Nonaqueous electrolyte secondary battery
JP2010086968A (en) * 2008-10-02 2010-04-15 Samsung Sdi Co Ltd Secondary battery and method for forming the same
US8993138B2 (en) 2008-10-02 2015-03-31 Samsung Sdi Co., Ltd. Rechargeable battery
WO2011070816A1 (en) * 2009-12-11 2011-06-16 栗田工業株式会社 Nonaqueous electrolyte secondary battery material, and nonaqueous electrolyte secondary battery using same
JP2012216413A (en) * 2011-03-31 2012-11-08 Gs Yuasa Corp Secondary battery system
CN104103853A (en) * 2013-04-08 2014-10-15 三星Sdi株式会社 Rechargeable battery

Also Published As

Publication number Publication date
JP4248044B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US10985400B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
KR100331209B1 (en) Non-aqueous Electrolyte Secondary Battery
JP4236308B2 (en) Lithium ion battery
JP2000058116A (en) Nonaqueous battery electrolyte and secondary battery using the same
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JPH11283588A (en) Sealed battery
JP2000058115A (en) Nonaqueous battery electrolyte and secondary battery using the same
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JP2003092148A (en) Nonaqueous secondary battery
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP4798729B2 (en) Lithium ion secondary battery
JP3988901B2 (en) Organic electrolyte secondary battery
JP2000164206A (en) Nonaqueous electrolyte secondary battery for assembled battery
JP2005302382A (en) Nonaqueous electrolyte secondary battery pack
JP2000058112A (en) Nonaqueous battery electrolyte and secondary battery using the same
JP4248044B2 (en) Non-aqueous electrolyte secondary battery
JP2005071640A (en) Flat nonaqueous electrolyte secondary battery
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JP2010521054A (en) Lithium secondary battery
JP4420484B2 (en) Sealed battery
JP2000277063A (en) Sealed battery
JP2005209395A (en) Nonaqueous electrolytic solution secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP3643693B2 (en) Manufacturing method of sealed battery
KR100659860B1 (en) Electrode for a rechargeable battery and the battery employing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees