JP2000164206A - Nonaqueous electrolyte secondary battery for assembled battery - Google Patents

Nonaqueous electrolyte secondary battery for assembled battery

Info

Publication number
JP2000164206A
JP2000164206A JP10334158A JP33415898A JP2000164206A JP 2000164206 A JP2000164206 A JP 2000164206A JP 10334158 A JP10334158 A JP 10334158A JP 33415898 A JP33415898 A JP 33415898A JP 2000164206 A JP2000164206 A JP 2000164206A
Authority
JP
Japan
Prior art keywords
intermediate layer
positive electrode
electrolyte secondary
conductive intermediate
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10334158A
Other languages
Japanese (ja)
Inventor
Takayuki Nakajima
孝之 中島
Takahiro Yamamoto
高弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&T Battery Corp
AT Battery KK
Original Assignee
A&T Battery Corp
AT Battery KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&T Battery Corp, AT Battery KK filed Critical A&T Battery Corp
Priority to JP10334158A priority Critical patent/JP2000164206A/en
Publication of JP2000164206A publication Critical patent/JP2000164206A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance safety in overcharging and reliability of each unit cell by arranging a conductive intermediate which is converted into a high resistant body in overcharging between a current collector and an active material containing layer of a positive electrode used together with a negative electrode, a separator, and a nonaqueous electrolyte. SOLUTION: Specific resistance of a conductive intermediate layer arranged between a current collector made of aluminum foil or mesh and a lithium- transition metal composite oxide of a positive electrode is for example 1 >.cm or less in normal use, but is increased to 100 times or more in overcharging exceeding voltage in full charging. The conductive intermediate layer having the specified thickness is prepared by mixing a binder of 10 wt.% or more but less than 100 wt.% based on the weight of carbonaceous conductive particles such as carbon black having good thin film forming capability and suitable specific resistance and adhesion to the current collector is ensured. Connection of a PTC element to a positive electrode or a negative electrode is useful, and current is surely shut off by heat generation of the conductive intermediate layer converted into a high resistance body by overcharge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、組電池用非水電解
液二次電池に関する。
The present invention relates to a non-aqueous electrolyte secondary battery for an assembled battery.

【0002】[0002]

【従来の技術】近年、リチウムイオン二次電池に代表さ
れる非水電解液二次電池は、高エネルギー密度を有する
ことから、一体型ビデオカメラ、CDプレーヤー、MD
プレーヤー、パソコン、携帯情報データ端末機、携帯電
話等のコードレスの携帯型電子機器の電源として注目さ
れている。
2. Description of the Related Art In recent years, non-aqueous electrolyte secondary batteries typified by lithium ion secondary batteries have a high energy density.
It is receiving attention as a power source for cordless portable electronic devices such as players, personal computers, portable information data terminals, and mobile phones.

【0003】特に、非水電解液二次電池は電解液の電位
窓が広く取れ、単セルで高電圧を取り出すことができる
ため、小型、軽量の携帯電子機器の電源として需要が伸
びている。
[0003] In particular, a nonaqueous electrolyte secondary battery has a wide potential window for an electrolyte solution and can extract a high voltage with a single cell. Therefore, demand for a small and lightweight portable electronic device is growing.

【0004】前記非水電解液二次電池は、単セルの形態
で使用されるほかに直列および/または並列に接続した
組電池として使用されている。このような組電池は、高
電圧・高容量であるために、その充電器には高出力の電
源が通常使用されている。高出力の電源を有する充電器
で組電池を充電すると、過充電を生じ易くなる。
The non-aqueous electrolyte secondary battery is used not only in the form of a single cell but also as a battery pack connected in series and / or in parallel. Since such a battery pack has a high voltage and a high capacity, a high-output power supply is usually used for its charger. When the battery pack is charged by a charger having a high-output power supply, overcharging is likely to occur.

【0005】このようなことから、過充電時の安全性確
保のために電池内部に各種の保護素子が設けられてい
る。例えば、特開平2−112151号公報には過充電
時の内圧を利用して回路を遮断する、電流遮断弁を設け
ることが開示されている。特開平1−197963号公
報には、高温で抵抗増大する炭素含有樹脂膜を電池端子
と端子板の間に設け、過充電時の発熱を利用して端子間
の接触抵抗を増大させて電流を遮断することが開示され
ている。特開平9−320568号公報には、過充電時
の発熱を利用して電極と集電体とを剥離し、電流を遮断
することが開示されている。
[0005] For this reason, various protection elements are provided inside the battery to ensure safety during overcharge. For example, Japanese Patent Application Laid-Open No. 2-112151 discloses providing a current cutoff valve that cuts off a circuit by using internal pressure during overcharge. JP-A-1-197963 discloses that a carbon-containing resin film whose resistance increases at a high temperature is provided between a battery terminal and a terminal plate, and the current is cut off by increasing the contact resistance between the terminals by utilizing heat generated during overcharging. It is disclosed. Japanese Patent Application Laid-Open No. 9-320568 discloses that an electrode and a current collector are separated from each other by using heat generated during overcharging to cut off current.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、内圧を
利用して電流を遮断する素子では電池内部のスペースを
必要とするため、高容量化の妨げになる。
However, an element that interrupts current by using internal pressure requires a space inside the battery, which hinders an increase in capacity.

【0007】また、過充電時の発熱を利用して電流を遮
断する安全機構では、通電によるジュール発熱や過充電
時の電解液の分解反応熱などにより素子が高温になった
時点で電流遮断機構が動作するが、充電の電流値や電池
の内部抵抗によりジュール発熱が変動し、作動タイミン
グが不揃いになる。
In a safety mechanism for interrupting current by utilizing heat generated during overcharge, a current interrupt mechanism is used when the temperature of the element becomes high due to Joule heat generated by energization or heat of decomposition reaction of the electrolyte during overcharge. Operates, but the Joule heat fluctuates due to the charging current value and the internal resistance of the battery, and the operation timing becomes uneven.

【0008】特に、発熱を利用して電流を遮断する安全
機構を有する二次電池を使用して組電池を構成、例えば
3直、3パラの合計9個の二次電池を組み合わせた場
合、組電池の中心部に位置する電池ほど周囲の電池から
の発熱の影響を受けて温度が高くなる。このため、この
電池が優先的に安全機構が作動する。その結果、電流パ
スはこの電池と並列接続になる左右の電池を流れ、いず
れかが同様に安全機構が作動するという挙動が起こる。
つまり、単電池毎に安全機構の作動にばらつきを生じ、
漏液やガス噴出に至るケースが起こって信頼性の低下を
招く。
In particular, when a rechargeable battery is configured using a rechargeable battery having a safety mechanism for interrupting the current by utilizing heat generation, for example, when a total of nine rechargeable batteries of three, three and three are combined, The temperature of a battery located at the center of the battery becomes higher due to the influence of heat generated by the surrounding batteries. For this reason, this battery preferentially operates the safety mechanism. As a result, the current path flows through the left and right batteries that are connected in parallel with this battery, and a behavior occurs in which one of the safety mechanisms operates similarly.
In other words, the operation of the safety mechanism varies from cell to cell,
In some cases, leakage or gas ejection may occur, leading to a decrease in reliability.

【0009】本発明は、組電池としての使用において各
単電池の過充電時の安全性、信頼性を向上させることが
可能な組電池用非水電解液二次電池を提供しようとする
ものである。
An object of the present invention is to provide a non-aqueous electrolyte secondary battery for a battery pack that can improve the safety and reliability of each battery when overcharged when used as a battery pack. is there.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明に係わる組電池用非水電解液二次電池は、正
極、負極、セパレータおよび非水電解液を備えた組電池
用非水電解液二次電池であって、前記正極は、集電体と
活物質含有層の間に過充電時に高抵抗体に変化する導電
性中間層を配置した構造を有することを特徴とするもの
である。
According to the present invention, there is provided a non-aqueous electrolyte secondary battery for an assembled battery according to the present invention, comprising a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte. An electrolyte secondary battery, wherein the positive electrode has a structure in which a conductive intermediate layer that changes into a high-resistance body during overcharge is disposed between a current collector and an active material-containing layer. is there.

【0011】[0011]

【発明の実施の形態】以下、本発明に係わる組電池用非
水電解液二次電池を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a non-aqueous electrolyte secondary battery for an assembled battery according to the present invention will be described in detail.

【0012】この非水電解液二次電池は、正極、負極、
セパレータおよび非水電解液を備える。
This non-aqueous electrolyte secondary battery has a positive electrode, a negative electrode,
It includes a separator and a non-aqueous electrolyte.

【0013】次に、前記正極、負極、セパレータおよび
非水電解液を説明する。
Next, the positive electrode, the negative electrode, the separator and the non-aqueous electrolyte will be described.

【0014】1)正極 この正極は、集電体と活物質含有層の間に過充電時に高
抵抗体に変化する導電性中間層を配置した構造を有す
る。
1) Positive Electrode This positive electrode has a structure in which a conductive intermediate layer that changes into a high-resistance body during overcharge is disposed between the current collector and the active material-containing layer.

【0015】前記集電体としては、例えばアルミニウム
箔、アルミニウムメッシュ材等を挙げることができる。
Examples of the current collector include an aluminum foil and an aluminum mesh material.

【0016】前記活物質含有層は、例えば活物質と結着
剤とを含有する。前記活物質としては、例えばLiCo
2、LiNiO2、LiMn24、LiCo(1-x)Nix
2(xは0<x<1を示す)、LiCo(1-y)y
2(Mは、Co,Ni以外の金属で、例えばIn,Sn
等を示し、yは0<y<0.1を示す)等のリチウム−
遷移金属複合酸化物を挙げることができる。これらのリ
チウム−遷移金属複合酸化物は,2種以上の混合物で用
いることもできる。
The active material-containing layer contains, for example, an active material and a binder. Examples of the active material include LiCo.
O 2 , LiNiO 2 , LiMn 2 O 4 , LiCo (1-x) Ni x
O 2 (x denotes an 0 <x <1), LiCo (1-y) M y O
2 (M is a metal other than Co and Ni, for example, In, Sn
And y represents 0 <y <0.1).
A transition metal composite oxide can be given. These lithium-transition metal composite oxides can also be used in a mixture of two or more.

【0017】前記導電性中間層は、通常の充電状態およ
び放電状態では導電体であり、使用に際しての電流が制
限されないが、100%充電(満充電)を超えてさらに
充電を続けた場合、高抵抗体になる性質を有する。例え
ば、通常の電池使用状態では比抵抗が1Ω・cm以下の
導電性を示すが、過充電状態になると、その100倍以
上の比抵抗を示す。
The conductive intermediate layer is a conductor in a normal charged state and a discharged state, and the current at the time of use is not limited. However, when the charge is further continued beyond 100% charge (full charge), the conductive intermediate layer becomes high. It has the property of becoming a resistor. For example, in a normal battery use state, the specific resistance is 1 Ω · cm or less, but in an overcharged state, the specific resistance is 100 times or more.

【0018】前記導電性中間層は、例えば炭素質導電性
粒子と結着剤とを含有することが好ましい。
Preferably, the conductive intermediate layer contains, for example, carbonaceous conductive particles and a binder.

【0019】前記炭素質導電性粒子としては、例えばフ
ァーネスブラック、アセチレンブラック、ケッチェンブ
ラックなどのカーボンブラック類、粉末状黒鉛、粉末状
膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛
化炭素繊維粉砕物、等を挙げることができる。特に、カ
ーボンブラック類は薄膜成形性に優れ、かつ通常の使用
時における導電性が高く、さらに過充電時の抵抗増大機
能が優れているため好適である。
Examples of the carbonaceous conductive particles include carbon blacks such as furnace black, acetylene black, and Ketjen black; graphites such as powdered graphite and powdered expanded graphite; ground carbon fiber; and graphitized carbon fiber. Pulverized materials and the like can be mentioned. In particular, carbon blacks are suitable because they have excellent thin film moldability, high conductivity during normal use, and excellent resistance increasing function during overcharge.

【0020】前記炭素質導電性粒子の粒度は、特に限定
されないが、前記導電性中間層の薄膜化および過充電時
における前記導電性中間層の高抵抗体化の観点から0.
01〜10μm、より好ましくは0.04〜1μmの粒
度にすることが望ましい。
The particle size of the carbonaceous conductive particles is not particularly limited. However, from the viewpoint of reducing the thickness of the conductive intermediate layer and increasing the resistance of the conductive intermediate layer at the time of overcharging, it is preferable that the carbonaceous conductive particles have a particle size of 0.1.
It is desirable that the particle size is from 0.01 to 10 μm, more preferably from 0.04 to 1 μm.

【0021】前記結着剤としては、例えばフッ素系樹
脂、ポリオレフィン樹脂、スチレン系樹脂、アクリル系
樹脂のような熱可塑性エラストマー系樹脂、またはフッ
素ゴムのようなゴム系樹脂を用いることができる。具体
的には、ポリテトラフルオロエチレン、ポリフッ化ビニ
リデン、ポリフッ化ビニル、ポリエチレン、ポリアクリ
ロニトリル、ニトリルゴム、ポリブタジエン、ブチルゴ
ム、ポリスチレン、スチレン−ブタジエンゴム、水添ス
チレン−ブタジエンゴム、多硫化ゴム、ニトロセルロー
ス、シアノエチルセルロース、カルボキシメチルセルロ
ース等が挙げられる。これらの結着剤の中でエラストマ
ー、ゴム架橋体または極性基を導入した変成体は、前記
集電体と前記活物質層との密着性の向上および過充電時
の抵抗増大効果の向上の観点から好適である。
As the binder, for example, a thermoplastic elastomer resin such as a fluorine resin, a polyolefin resin, a styrene resin, and an acrylic resin, or a rubber resin such as a fluorine rubber can be used. Specifically, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polyethylene, polyacrylonitrile, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene-butadiene rubber, hydrogenated styrene-butadiene rubber, polysulfide rubber, nitrocellulose , Cyanoethylcellulose, carboxymethylcellulose and the like. Among these binders, an elastomer, a crosslinked rubber or a modified substance having a polar group introduced therein is useful for improving the adhesion between the current collector and the active material layer and the effect of increasing the resistance during overcharge. Is preferred.

【0022】前記導電性中間層は、前記結着剤が前記炭
素質導電性粒子に対して10重量%以上、100重量%
未満配合されることが好ましい。前記結着剤の配合量を
10重量%未満にすると、前記集電体に対する導電性中
間層の密着性が低下する恐れがある。一方、前記結着剤
の配合量が100重量%以上にすると導電性中間層の導
電性が損なわれ、比抵抗が1Ω・cm以上になり、常用
の正極の内部抵抗が高くなったり、過充電時の抵抗増大
効果も低減される。より好ましい前記炭素質導電性粒子
に対する前記結着剤の配合量は、20〜70重量%であ
る。
[0022] In the conductive intermediate layer, the binder may be 10% by weight or more and 100% by weight based on the carbonaceous conductive particles.
It is preferable that the amount is less than that. If the amount of the binder is less than 10% by weight, the adhesion of the conductive intermediate layer to the current collector may be reduced. On the other hand, when the blending amount of the binder is 100% by weight or more, the conductivity of the conductive intermediate layer is impaired, the specific resistance becomes 1 Ω · cm or more, the internal resistance of the common positive electrode increases, or the overcharge occurs. The effect of increasing the resistance at the time is also reduced. More preferably, the compounding amount of the binder to the carbonaceous conductive particles is 20 to 70% by weight.

【0023】前記導電性中間層は、0.1〜30μm、
より好ましくは0.5〜10μmの厚さを有することが
望ましい。前記導電性中間層の厚さを0.1μm未満に
すると、前記集電体と前記活物質層とが直接接合するバ
イバス部分が局所的に形成され、過充電時の導電性中間
層部分の抵抗増大による電流遮断効果が不十分になる恐
れがある。一方、前記導電性中間層の厚さが30μmを
超えると、正極に占める前記導電性中間層の割合が増大
し、活物質含有層の比率が相対的に低下して容量の低減
化を生じる恐れがある。
The conductive intermediate layer has a thickness of 0.1 to 30 μm,
More preferably, it has a thickness of 0.5 to 10 μm. When the thickness of the conductive intermediate layer is less than 0.1 μm, a bypass portion where the current collector and the active material layer are directly joined is locally formed, and the resistance of the conductive intermediate layer portion during overcharge is reduced. The current cutoff effect due to the increase may be insufficient. On the other hand, when the thickness of the conductive intermediate layer exceeds 30 μm, the ratio of the conductive intermediate layer in the positive electrode increases, and the ratio of the active material-containing layer relatively decreases, which may cause a reduction in capacity. There is.

【0024】前記導電性中間層は、前記集電体に対して
1〜30g/m2、より好ましくは1.5〜10g/m2
にすることが望ましい。
[0024] The conductive intermediate layer, 1 to 30 g / m 2 with respect to the current collector, more preferably 1.5~10g / m 2
Is desirable.

【0025】前述した正極は、例えば次のような方法に
より作製することができる。
The above-mentioned positive electrode can be manufactured, for example, by the following method.

【0026】まず、アルミニウム薄膜のような集電体に
炭素質導電性粒子と結着剤とを含む分散剤をグラビアロ
ールコータ、ブレードコータ、ロールコータ、バーコー
タ等により塗布し、乾燥して導電性中間層を形成する。
つづいて、前記導電性中間層上に活物質および結着剤を
含むペーストを塗布し、乾燥することにより活物質含有
層を形成して正極を作製する。このような導電性中間層
の形成工程においては、塗布、乾燥時に結着剤が表面に
集合する、いわゆる膜張りの生成を回避して結着剤と炭
素質導電性粒子が均一に分散させることが好ましい。
First, a current collector such as an aluminum thin film is coated with a dispersant containing carbonaceous conductive particles and a binder by a gravure roll coater, a blade coater, a roll coater, a bar coater or the like, and dried to form a conductive material. An intermediate layer is formed.
Subsequently, a paste containing an active material and a binder is applied on the conductive intermediate layer, and dried to form an active material-containing layer, thereby producing a positive electrode. In the step of forming such a conductive intermediate layer, the binder and the carbonaceous conductive particles are uniformly dispersed while avoiding the formation of a so-called film tension, in which the binder gathers on the surface during application and drying. Is preferred.

【0027】2)負極 この負極は、特に限定されないが、金属リチウム、リチ
ウム合金、または充放電時にリチウムイオンを可逆的に
吸蔵・放出、もしくはインターカレート・ディインターカ
レートするグラファイト、コークス、カーボン、ポリア
セン等の炭素質材料を含むペーストを銅箔のような集電
体に保持させたものを用いることができる。
2) Negative Electrode The negative electrode is not particularly limited, but may be graphite, coke, or carbon which reversibly occupies and releases lithium ions or intercalates / deintercalates lithium ions during charge / discharge. A paste obtained by holding a paste containing a carbonaceous material such as polyacene on a current collector such as a copper foil can be used.

【0028】3)非水電解液 この非水電解液は、電解質を非水溶媒で溶解した組成を
有する。
3) Non-aqueous electrolyte This non-aqueous electrolyte has a composition in which an electrolyte is dissolved in a non-aqueous solvent.

【0029】前記電解質は、特に制限されないが、前記
導電性中間層を過充電時に高抵抗体化させる観点から、
フッ素含有リチウム塩が好適である。このフッ素含有リ
チウム塩としては、例えば四フッ化ホウ酸リチウム、六
フッ化燐酸リチウム、六フッ化砒酸リチウム、トリフル
オロメタンスルホン酸リチウム、リチウムトリフルオロ
メタンスルファニルイミド等を用いることができる。
The electrolyte is not particularly limited, but from the viewpoint of increasing the resistance of the conductive intermediate layer during overcharging,
Fluorine-containing lithium salts are preferred. As the fluorine-containing lithium salt, for example, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium hexafluoroarsenate, lithium trifluoromethanesulfonate, lithium trifluoromethanesulfanylimide and the like can be used.

【0030】前記非水溶媒としては、特に制限されない
が、前記導電性中間層を過充電時に高抵抗体化させる観
点から、環状エステルを含有することが好ましい。この
環状炭酸エステルとしては、例えばエチレンカーボネー
ト、プロピレンカーボネート、ブチレンカーボネート、
ビニレンカーボネート、γ−ブチロラクトン、バレロラ
クトン、テトラヒドロフラン、2−メチルテトラヒドロ
フラン、3−ジオキソラン、スルホラン等を挙げること
ができる。特に、エチレンカーボネート、プロピレンカ
ーボネート、ブチレンカーボネート、ビニレンカーボネ
ート等の環状炭酸エステルが好適である。
The non-aqueous solvent is not particularly limited, but preferably contains a cyclic ester from the viewpoint of increasing the resistance of the conductive intermediate layer during overcharge. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate,
Vinylene carbonate, γ-butyrolactone, valerolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 3-dioxolan, sulfolane and the like can be mentioned. In particular, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate are preferred.

【0031】前記環状エステル類と併用される非水溶媒
としては、エーテル類、ケトン類、ニトリル類、アミド
類、スルホン系化合物、鎖状カーボネート類、鎖状エス
テル類、芳香族炭化水素類等から選ばれる1種または2
種以上の混合物を挙げることができる。これらのうちで
エーテル類、ケトン類、鎖状カーボネート類、鎖状エス
テル類が好ましい。
The non-aqueous solvents used in combination with the cyclic esters include ethers, ketones, nitriles, amides, sulfone compounds, chain carbonates, chain esters, aromatic hydrocarbons and the like. One or two selected
Mixtures of more than one species can be mentioned. Of these, ethers, ketones, chain carbonates, and chain esters are preferred.

【0032】前記環状炭酸エステル類と併用される非水
溶媒を具体的に例示すると、ジメトキシエタン、アニソ
ール、1,4−ジオキサン、4−メチル−2−ペンタノ
ン、シクロヘキサン、アセトニトリル、プロピオニトリ
ル、ブチロニトリル、ジメチルホルムアミド、ジメチル
スルホキシド、シメチルカーボネート、ジエチルカーボ
ネート、エチルメチルカーボネート、蟻酸メチル、蟻酸
エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロ
ピオン酸エチル等を挙げることができる。
Specific examples of the non-aqueous solvent used in combination with the cyclic carbonates include dimethoxyethane, anisole, 1,4-dioxane, 4-methyl-2-pentanone, cyclohexane, acetonitrile, propionitrile, and butyronitrile. Dimethylformamide, dimethylsulfoxide, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, ethyl propionate and the like.

【0033】前記セパレータとしては、ポリエチレン、
ポリプロレンのような合成樹脂からなる多孔性フィルム
が用いられる。
As the separator, polyethylene,
A porous film made of a synthetic resin such as polypropylene is used.

【0034】本発明に係わる非水電解液二次電池におい
て、PTC素子を前記正極もしくは負極に接続すること
を許容する。
In the non-aqueous electrolyte secondary battery according to the present invention, the connection of the PTC element to the positive electrode or the negative electrode is permitted.

【0035】次に、本発明に係わる非水電解液二次電
池、例えば角型リチウムイオン二次電池を図1を参照し
て説明する。
Next, a non-aqueous electrolyte secondary battery according to the present invention, for example, a prismatic lithium ion secondary battery will be described with reference to FIG.

【0036】金属からなる有底矩形筒状をなし、例えば
アルミニウムから作られる外装缶1は、例えば正極端子
を兼ね、底部内面に絶縁フィルム2が配置されている。
発電要素である電極体3は、前記外装缶1内に収納され
ている。なお、外装缶がステンレスまたは鉄からなる場
合には負極端子を兼ねる。前記電極体3は、負極4とセ
パレータ5と正極6とを前記正極6が最外周に位置する
ように渦巻状に捲回した後、扁平状にプレス成形するこ
とにより作製したものである。中心付近にリード取出穴
を有する例えば合成樹脂からなるスペーサ7は、前記外
装缶1内の前記電極体3上に配置されている。
An outer can 1 made of a metal and having a bottomed rectangular cylindrical shape and made of, for example, aluminum, also serves as a positive electrode terminal, for example, and has an insulating film 2 disposed on the inner surface of the bottom.
The electrode body 3 as a power generation element is housed in the outer can 1. When the outer can is made of stainless steel or iron, it also serves as the negative electrode terminal. The electrode body 3 is manufactured by spirally winding the negative electrode 4, the separator 5, and the positive electrode 6 such that the positive electrode 6 is located at the outermost periphery, and then press-molding the flat electrode into a flat shape. A spacer 7 made of, for example, a synthetic resin and having a lead extraction hole near the center is disposed on the electrode body 3 in the outer can 1.

【0037】金属製蓋体8は、前記外装缶1の上端開口
部に例えばレーザ溶接により気密に接合されている。前
記蓋体8の中心付近には、負極端子の取出し穴9が開口
されている。負極端子10は、前記蓋体8の穴9にガラ
ス製または樹脂製の絶縁材11を介してハーメティック
シールされている。前記負極端子10の下端面には、リ
ード12が接続され、かつこのリード12の他端は前記
電極体3の負極4に接続されている。
The metal lid 8 is hermetically joined to the upper end opening of the outer can 1 by, for example, laser welding. In the vicinity of the center of the lid 8, a hole 9 for taking out a negative electrode terminal is opened. The negative electrode terminal 10 is hermetically sealed in the hole 9 of the lid 8 via an insulating material 11 made of glass or resin. A lead 12 is connected to the lower end surface of the negative electrode terminal 10, and the other end of the lead 12 is connected to the negative electrode 4 of the electrode body 3.

【0038】上部側絶縁紙13は、前記蓋体8の外表面
全体に被覆されている。スリット14を有する下部側絶
縁紙15は、前記外装缶1の底面に配置されている。二
つ折りされたPTC素子(Positive Temperature Coe
fficient)16は、一方の面が前記外装缶1の底面と前
記下部側絶縁紙15の間に介装され、かつ他方の面が前
記スリット14を通して前記絶縁紙15の外側に延出さ
れている。外装チューブ17は、前記外装缶1の側面か
ら上下面の絶縁紙13、15の周辺まで延出するように
配置され、前記上部側絶縁紙13および下部側絶縁紙1
5を前記外装缶1に固定している。このような外装チュ
ーブ17の配置により、外部に延出された前記PTC素
子16の他方の面が前記下部側絶縁紙15の底面に向け
て折り曲げられる。
The upper insulating paper 13 covers the entire outer surface of the lid 8. The lower insulating paper 15 having the slit 14 is disposed on the bottom surface of the outer can 1. PTC element (Positive Temperature Coe)
fficient) 16 has one surface interposed between the bottom surface of the outer can 1 and the lower insulating paper 15, and the other surface extending outside the insulating paper 15 through the slit 14. . The outer tube 17 is disposed so as to extend from the side surface of the outer can 1 to the periphery of the insulating papers 13 and 15 on the upper and lower surfaces, and the upper insulating paper 13 and the lower insulating paper 1 are arranged.
5 is fixed to the outer can 1. Due to such an arrangement of the outer tube 17, the other surface of the PTC element 16 extended to the outside is bent toward the bottom surface of the lower insulating paper 15.

【0039】以上説明した本発明に係わる組電池用非水
電解二次電池は、正極、負極、セパレータおよび非水電
解液を備え、前記正極が集電体と活物質含有層の間に過
充電時に高抵抗体に変化する導電性中間層を配置した構
造を有し、過充電時に安定した電流遮断を行なうことが
できる。
The above-described nonaqueous electrolytic secondary battery for a battery pack according to the present invention includes a positive electrode, a negative electrode, a separator, and a nonaqueous electrolytic solution, and the positive electrode is overcharged between the current collector and the active material-containing layer. It has a structure in which a conductive intermediate layer that sometimes changes to a high-resistance body is provided, so that stable current interruption can be performed at the time of overcharge.

【0040】すなわち、負極と充放電時に可逆性を有す
るリチウム−遷移金属複合酸化物を活物質として含む正
極を備えた二次電池は、100%充電した時の電圧、つ
まり満充電時の電圧が4V以上で、高いエネルギー密度
を有する。高エネルギー密度の二次電池を複数組み合わ
せて組電池を構成すると、過充電時に多量のエネルギー
が蓄積されるため、過充電時により確実に、より信頼性
の高い電流遮断機能を示すことが要求される。
That is, a secondary battery provided with a negative electrode and a positive electrode containing a lithium-transition metal composite oxide having reversibility during charge and discharge as an active material has a voltage of 100% charge, that is, a voltage of full charge. It has a high energy density at 4 V or more. When a battery pack is constructed by combining a plurality of secondary batteries with high energy density, a large amount of energy is accumulated at the time of overcharging, so it is required to exhibit a more reliable current interruption function more reliably at the time of overcharging. You.

【0041】本発明によれば、過充電時に高抵抗体にな
る導電性中間層を集電体と活物質含有層の間に配置した
正極を用いることによって、電圧上昇による前記導電性
中間層が高抵抗体に変化して電流の低減、遮断させるこ
とができる。このような導電性中間層が過充電時に高抵
抗体になるのは、高酸化状態になると前記導電性中間層
自体が電気化学的な酸化反応を起こして抵抗が著しく増
大するものと推定される。その結果、満充電時の電圧が
4V以上になる高エネルギー密度の電池を組電池として
使用した場合、発熱に対して電流遮断がなされる安全機
構を取り付けた従来の電池のように一部の電池が局所的
に電流遮断されることなく、全ての電池を安定して電流
遮断することが可能になる。したがって、漏液やガス噴
出に至るのを防止した、安全かつ高信頼性の組電池用非
水電解二次電池を提供できる。
According to the present invention, by using a positive electrode in which a conductive intermediate layer that becomes a high-resistance element at the time of overcharge is disposed between the current collector and the active material-containing layer, the conductive intermediate layer due to a voltage increase can be formed. The current can be reduced and cut off by changing to a high-resistance body. The reason why such a conductive intermediate layer becomes a high-resistance body during overcharge is presumed to be that when the conductive intermediate layer enters a highly oxidized state, the conductive intermediate layer itself causes an electrochemical oxidation reaction and the resistance is significantly increased. . As a result, when a high-energy-density battery whose full-charge voltage is 4 V or more is used as an assembled battery, some batteries, such as a conventional battery equipped with a safety mechanism that cuts off current against heat generation, are used. Current can be stably cut off for all batteries without being locally cut off. Therefore, it is possible to provide a safe and highly reliable non-aqueous electrolytic secondary battery for an assembled battery in which leakage or gas ejection is prevented.

【0042】また、PTC素子を前記正極もしくは負極
に接続することによって過充電時に前記正極の導電性中
間層が高抵抗体になると、発熱を生じるため、この熱作
用により前記PTC素子がより確実に作動する。その結
果、前記導電性中間層を有する正極を用いたのみに比べ
て電流遮断をより確実に行なうことができると共に、前
記導電性中間層の高抵抗体化に追従して迅速に電流遮断
を行なうことが可能になる。
When the PTC element is connected to the positive electrode or the negative electrode, and the conductive intermediate layer of the positive electrode becomes a high-resistance body during overcharge, heat is generated. Operate. As a result, the current interruption can be more reliably performed as compared with the case where only the positive electrode having the conductive intermediate layer is used, and the current interruption can be quickly performed following the increase in the resistance of the conductive intermediate layer. It becomes possible.

【0043】[0043]

【実施例】以下、本発明の実施例を前述した図1に示す
よう角型密閉電池を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to a rectangular sealed battery as shown in FIG.

【0044】(実施例1) <正極の作製>まず、下記表1に示す結着剤をトルエン
・キシレン混合溶媒に7〜10重量%の濃度に溶解した
溶液に炭素質導電性粒子を所定量添加し、これらの混合
物をボールミルにより一昼夜攪拌、混合して9種の塗工
液を調製した。つづいて、これらの塗工液を厚さ20μ
m、幅570mmのAl箔の両面にグラビアコートによ
り塗布、乾燥して下記表1に示す塗布量、厚さの導電性
中間層を形成した。
(Example 1) <Preparation of Positive Electrode> First, a predetermined amount of carbonaceous conductive particles was added to a solution in which a binder shown in Table 1 below was dissolved in a mixed solvent of toluene and xylene at a concentration of 7 to 10% by weight. The mixture was added, and the mixture was stirred and mixed with a ball mill all day and night to prepare nine types of coating liquids. Then, apply these coating liquids to a thickness of 20μ.
m, a 570 mm wide Al foil was coated on both sides by gravure coating and dried to form a conductive intermediate layer having the coating amount and thickness shown in Table 1 below.

【0045】次いで、活物質としての平均粒径3μmの
LiCoO2粉末89重量部、導電フィラーとしてのグ
ラファイト粉末(ロンザ社製商品名;KS6)8重量部
および結着剤としてのポリフッ化ビニリデン樹脂(呉羽
化学社製商品名;#1100)3重量部をN−メチルピ
ロリドン25重量部にデイゾルバーおよびビーズミルを
用いて攪拌、混合して活物質含有ペーストを調製した。
このペーストを前記集電体であるAl箔両面に被覆され
た導電性中間層上にそれぞれ塗工した後、乾燥させ、さ
らにプレス、スリット加工を施して厚さ180μmの9
種のリール状正極を作製した。
Next, 89 parts by weight of LiCoO 2 powder having an average particle diameter of 3 μm as an active material, 8 parts by weight of graphite powder (trade name, KS6, manufactured by Lonza) as a conductive filler, and polyvinylidene fluoride resin as a binder ( An active material-containing paste was prepared by mixing and mixing 3 parts by weight of N-methylpyrrolidone with 25 parts by weight of N-methylpyrrolidone using a dissolver and a bead mill.
This paste is applied onto the conductive intermediate layer coated on both sides of the Al foil as the current collector, and then dried, further pressed and slit to give a 180 μm thick
A kind of reel-shaped positive electrode was produced.

【0046】<負極の作製>まず、グラファイト(ロザ
ン社製商品名;KS15)100重量部にスチレン/ブ
タジエンラテックス(旭化成社製商品名;L1571、
固形分48重量%)4.2重量部、カルボキシメチルセ
ルロース(第一製薬社製商品名;BSH12)の水溶液
(固形分1重量%)130重量部および水20重量部を
添加し、混合してペーストを調製した。つづいて、この
ペーストを厚さ10μm、幅570mmの銅箔に塗布
し、乾燥した後、プレス、スリット加工を施して厚さ1
60μmのリール状負極を作製した。
<Preparation of Negative Electrode> First, styrene / butadiene latex (trade name, L1571 manufactured by Asahi Kasei Corporation) was added to 100 parts by weight of graphite (trade name, KS15, manufactured by Rozan Co., Ltd.).
4.2 parts by weight of solid content (48% by weight), 130 parts by weight of an aqueous solution (1% by weight of solid content of BSH12) of carboxymethylcellulose (Daiichi Pharmaceutical Co., Ltd .; BSH12) and 20 parts by weight of water are added, mixed and paste is added. Was prepared. Subsequently, this paste was applied to a copper foil having a thickness of 10 μm and a width of 570 mm, dried, and then pressed and slit to a thickness of 1 μm.
A 60 μm reel-shaped negative electrode was produced.

【0047】次いで、前記正負極の間にポリエチレン製
微多孔膜を挟んだ後、捲回機により渦巻き状に捲回し、
つづいて、この円筒状物を10kg/cm2の圧力で圧
縮して偏平状電極体(発電要素)を作製した。ひきつづ
き、外装缶内に前記偏平状電極体を挿入し、六フッ化燐
酸リチウムの電解質をエチレンカーボネートとジメチル
カーボネートの混合溶媒(混合比;1:2)で1モル/
L溶解した非水電解液を注入した後、前記外装缶の開口
部に封口体をレーザ溶接することにより前述した図1に
示す構造および同様な構造でPTC素子を付設しない非
水電解液二次電池(リチウムイオン二次電池)を組立て
た。
Next, after a polyethylene microporous membrane is sandwiched between the positive and negative electrodes, it is spirally wound by a winding machine.
Subsequently, the cylindrical material was compressed at a pressure of 10 kg / cm 2 to produce a flat electrode body (power generation element). Subsequently, the flat electrode body was inserted into the outer can, and the electrolyte of lithium hexafluorophosphate was mixed with a mixed solvent of ethylene carbonate and dimethyl carbonate (mixing ratio: 1: 2) at 1 mol / l.
After injecting the dissolved non-aqueous electrolyte, the sealing body is laser-welded to the opening of the outer can to form a non-aqueous electrolyte secondary having a structure similar to that shown in FIG. A battery (lithium ion secondary battery) was assembled.

【0048】(比較例1)正極としてAl箔の両面に活
物質含有層を直接被覆したものを用いた以外、実施例1
〜9と同様、前述した図1に示す構造および同様な構造
でPTC素子を付設しない非水電解液二次電池(リチウ
ムイオン二次電池)を組立てた。
Comparative Example 1 Example 1 was repeated except that an active material-containing layer was directly coated on both sides of an Al foil as a positive electrode.
As in the case of Nos. 1 to 9, a nonaqueous electrolyte secondary battery (lithium ion secondary battery) having the structure shown in FIG.

【0049】得られた実施例1〜9および比較例1の満
充電時の電圧を下記表1に併記する。
The full-charge voltages of the obtained Examples 1 to 9 and Comparative Example 1 are also shown in Table 1 below.

【0050】また、各実施例1〜9および比較例1のP
TC素子を付設した二次電池について、4.2V満充電
にした後、最大10Vの電源を用いて1500mAの電
流でさらに充電し、電池がガス噴出、発火した場合には
その時点まで、ガス噴出に至らない場合には8時間通電
し続けた。このような単電池の過充電時の状況を下記表
2に示す。また、実施例1および比較例1における充電
時間と電池電圧との関係を図2に示す。
In each of Examples 1 to 9 and Comparative Example 1, P
After charging the rechargeable battery with the TC element to 4.2 V at full charge, the battery was further charged with a current of 1500 mA using a power supply of a maximum of 10 V, and when the battery blew and ignited, the gas was blown up to that point. If not reached, the power was kept on for 8 hours. The situation at the time of overcharging of such a single cell is shown in Table 2 below. FIG. 2 shows the relationship between the charging time and the battery voltage in Example 1 and Comparative Example 1.

【0051】さらに、各実施例1〜9および比較例1の
PTC素子を付設しない二次電池をそれぞれ3直列、3
並列で合計9個接続し、組電池を作製した。これら組電
池を最大15Vの電源で3000mA、最長8時間の過
充電を行なった。この時の放電容量、単電池の状況およ
び組電池の状況を調べた。その結果を下記表2に示す。
Further, the secondary batteries without the PTC element of each of Examples 1 to 9 and Comparative Example 1 were
A total of nine batteries were connected in parallel to make a battery pack. These battery packs were overcharged at 3000 mA for a maximum of 8 hours with a power supply of a maximum of 15 V. At this time, the discharge capacity, the condition of the unit cell, and the condition of the assembled battery were examined. The results are shown in Table 2 below.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】前記表2から明らかなように実施例1〜9
の二次電池は、比較例1の二次電池に比べて、組電池に
し、過充電した時に安定した電流抑制、電流遮断性能を
有することがわかる。
As is clear from Table 2 above, Examples 1 to 9
It can be seen that the secondary battery of No. 1 is a battery pack and has stable current suppression and current interrupting performance when overcharged, as compared with the secondary battery of Comparative Example 1.

【0055】また、図2から明らかなようにPTC素子
を組み込んだ実施例1の二次電池では正極の導電性中間
層の高抵抗体化に伴なう発熱によりPTC素子が作動し
て電流を効果的に低減できることがわかる。
Further, as is apparent from FIG. 2, in the secondary battery of Example 1 in which the PTC element is incorporated, the PTC element operates due to the heat generated due to the increase in the resistance of the conductive intermediate layer of the positive electrode, and the current flows. It can be seen that it can be reduced effectively.

【0056】なお、前記実施例では角形の非水電解液二
次電池を例にして説明したが、これに限定されるもので
はない。例えば、円筒型、コイン型、偏平型、ペーパー
型の二次電池にも同様に適用することができる。
In the above embodiment, the prismatic non-aqueous electrolyte secondary battery has been described as an example, but the present invention is not limited to this. For example, the present invention can be similarly applied to cylindrical, coin, flat, and paper secondary batteries.

【0057】[0057]

【発明の効果】以上詳述したように、本発明によれば組
電池としての使用において各単電池の過充電時の安全
性、信頼性を向上させることが可能で、スペース増大を
招く電流遮断弁を必要としない高容量の組電池用非水電
解液二次電池を提供できる。
As described above in detail, according to the present invention, it is possible to improve the safety and reliability at the time of overcharging of each unit cell when used as an assembled battery, and to cut off the current which causes an increase in space. A high-capacity non-aqueous electrolyte secondary battery for an assembled battery that does not require a valve can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる非水電解液二次電池の一例であ
る角型リチウムイオン二次電池を示す部分切欠斜視図。
FIG. 1 is a partially cutaway perspective view showing a prismatic lithium ion secondary battery as an example of a nonaqueous electrolyte secondary battery according to the present invention.

【図2】実施例1および比較例1の過充電時における充
電時間と電池電圧、電流との関係を示す特性図。
FIG. 2 is a characteristic diagram showing a relationship between a charging time, a battery voltage, and a current at the time of overcharging in Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1…外装缶、 3…電極体、 4…負極、 5…セパレータ、 6…正極 8…蓋体、 14…PTC素子。 DESCRIPTION OF SYMBOLS 1 ... Outer can, 3 ... Electrode body, 4 ... Negative electrode, 5 ... Separator, 6 ... Positive electrode 8 ... Lid, 14 ... PTC element.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H022 AA09 CC12 CC16 CC21 EE05 KK01 5H029 AJ12 AK03 AL06 AL07 AL12 AM03 AM04 AM05 AM07 DJ06 DJ07 DJ08 DJ16 EJ04 HJ01 HJ18  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H022 AA09 CC12 CC16 CC21 EE05 KK01 5H029 AJ12 AK03 AL06 AL07 AL12 AM03 AM04 AM05 AM07 DJ06 DJ07 DJ08 DJ16 EJ04 HJ01 HJ18

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極、セパレータおよび非水電解
液を備えた組電池用非水電解液二次電池であって、 前記正極は、集電体と活物質含有層の間に過充電時に高
抵抗体に変化する導電性中間層を配置した構造を有する
ことを特徴とする組電池用非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery for an assembled battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the positive electrode is provided between a current collector and an active material-containing layer when overcharged. A non-aqueous electrolyte secondary battery for an assembled battery, having a structure in which a conductive intermediate layer that changes into a high-resistance body is arranged.
【請求項2】 前記導電性中間層は、炭素質導電性粒子
と結着剤とを含有することを特徴とする請求項1記載の
組電池用非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the conductive intermediate layer contains carbonaceous conductive particles and a binder.
【請求項3】 前記導電性中間層は、前記結着剤が前記
炭素質導電性粒子に対して10重量%以上、100重量
%未満配合されることを特徴とする請求項2記載の組電
池用非水電解液二次電池。
3. The assembled battery according to claim 2, wherein the conductive intermediate layer contains the binder in an amount of 10% by weight or more and less than 100% by weight based on the carbonaceous conductive particles. For non-aqueous electrolyte secondary batteries.
【請求項4】 前記炭素質導電性粒子は、カーボンブラ
ック類であることを特徴とする請求項2または3記載の
組電池用非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery for an assembled battery according to claim 2, wherein the carbonaceous conductive particles are carbon blacks.
【請求項5】 前記非水電解液は、電解質としてフッ素
含有リチウム塩を含有し、かつ非水溶媒として環状エス
テルを含有することを特徴とする請求項1〜4いずれか
記載の組電池用非水電解液二次電池。
5. The non-aqueous electrolyte for an assembled battery according to claim 1, wherein the non-aqueous electrolyte contains a fluorine-containing lithium salt as an electrolyte and a cyclic ester as a non-aqueous solvent. Water electrolyte secondary battery.
【請求項6】 前記正極活物質は、リチウム−遷移金属
複合酸化物からなり、満充電時の電圧が4V以上である
ことを特徴とする請求項1〜5いずれか記載の組電池用
非水電解液二次電池。
6. The non-aqueous solution for an assembled battery according to claim 1, wherein the positive electrode active material is made of a lithium-transition metal composite oxide, and has a voltage of 4 V or more when fully charged. Electrolyte secondary battery.
【請求項7】 さらに前記正極もしくは負極に接続され
るPTC素子を備えたことを特徴とする請求項1〜6い
ずれか記載の組電池用非水電解液二次電池。
7. The non-aqueous electrolyte secondary battery for an assembled battery according to claim 1, further comprising a PTC element connected to the positive electrode or the negative electrode.
JP10334158A 1998-11-25 1998-11-25 Nonaqueous electrolyte secondary battery for assembled battery Pending JP2000164206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10334158A JP2000164206A (en) 1998-11-25 1998-11-25 Nonaqueous electrolyte secondary battery for assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10334158A JP2000164206A (en) 1998-11-25 1998-11-25 Nonaqueous electrolyte secondary battery for assembled battery

Publications (1)

Publication Number Publication Date
JP2000164206A true JP2000164206A (en) 2000-06-16

Family

ID=18274197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10334158A Pending JP2000164206A (en) 1998-11-25 1998-11-25 Nonaqueous electrolyte secondary battery for assembled battery

Country Status (1)

Country Link
JP (1) JP2000164206A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087814A1 (en) * 2007-01-16 2008-07-24 Panasonic Corporation Nonaqueous electrolyte secondary battery
JP2010272281A (en) * 2009-05-20 2010-12-02 Denso Corp Nonaqueous electrolyte battery electrode, and nonaqueous electrolyte battery
US8304105B2 (en) 2003-11-21 2012-11-06 Lg Chem, Ltd. Electrochemical cell having an improved safety
JP2013073830A (en) * 2011-09-28 2013-04-22 Toyota Motor Corp Electrode for secondary battery and manufacturing method therefor
JP2013137864A (en) * 2011-11-11 2013-07-11 Toshiba Corp Battery
CN103928686A (en) * 2014-04-22 2014-07-16 深圳市振华新材料股份有限公司 Self-scattering current collector, electrodes and lithium battery with current collector and application of current collector
WO2015046492A1 (en) * 2013-09-30 2015-04-02 凸版印刷株式会社 Electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2015216007A (en) * 2014-05-09 2015-12-03 凸版印刷株式会社 Positive electrode for lithium ion secondary battery, method for manufacturing positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US9705126B2 (en) 2010-10-21 2017-07-11 Toyota Jidosha Kabushiki Kaisha Battery electrode and use thereof
JP2018026304A (en) * 2016-08-12 2018-02-15 株式会社豊田中央研究所 Current breaking element and method of manufacturing the same
CN109155402A (en) * 2016-05-12 2019-01-04 艾利电力能源有限公司 Positive electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN109155395A (en) * 2016-05-12 2019-01-04 艾利电力能源有限公司 Positive electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2019066066A1 (en) * 2017-09-29 2020-12-03 株式会社Gsユアサ Electrodes and power storage elements

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304105B2 (en) 2003-11-21 2012-11-06 Lg Chem, Ltd. Electrochemical cell having an improved safety
US8673498B2 (en) 2007-01-16 2014-03-18 Panasonic Corporation Nonaqueous electrolyte secondary battery
WO2008087814A1 (en) * 2007-01-16 2008-07-24 Panasonic Corporation Nonaqueous electrolyte secondary battery
JP2010272281A (en) * 2009-05-20 2010-12-02 Denso Corp Nonaqueous electrolyte battery electrode, and nonaqueous electrolyte battery
US9705126B2 (en) 2010-10-21 2017-07-11 Toyota Jidosha Kabushiki Kaisha Battery electrode and use thereof
JP2013073830A (en) * 2011-09-28 2013-04-22 Toyota Motor Corp Electrode for secondary battery and manufacturing method therefor
JP2013137864A (en) * 2011-11-11 2013-07-11 Toshiba Corp Battery
WO2015046492A1 (en) * 2013-09-30 2015-04-02 凸版印刷株式会社 Electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN105580167A (en) * 2013-09-30 2016-05-11 凸版印刷株式会社 Electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN103928686A (en) * 2014-04-22 2014-07-16 深圳市振华新材料股份有限公司 Self-scattering current collector, electrodes and lithium battery with current collector and application of current collector
JP2015216007A (en) * 2014-05-09 2015-12-03 凸版印刷株式会社 Positive electrode for lithium ion secondary battery, method for manufacturing positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN109155402A (en) * 2016-05-12 2019-01-04 艾利电力能源有限公司 Positive electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN109155395A (en) * 2016-05-12 2019-01-04 艾利电力能源有限公司 Positive electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US11276849B2 (en) 2016-05-12 2022-03-15 ELIIY Power Co., Ltd Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN109155402B (en) * 2016-05-12 2023-04-28 艾利电力能源有限公司 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US11652202B2 (en) 2016-05-12 2023-05-16 ELIIY Power Co., Ltd Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2018026304A (en) * 2016-08-12 2018-02-15 株式会社豊田中央研究所 Current breaking element and method of manufacturing the same
JPWO2019066066A1 (en) * 2017-09-29 2020-12-03 株式会社Gsユアサ Electrodes and power storage elements
JP7262394B2 (en) 2017-09-29 2023-04-21 株式会社Gsユアサ Electrodes and storage elements

Similar Documents

Publication Publication Date Title
JP5049680B2 (en) Nonaqueous electrolyte battery and battery pack
JP4454950B2 (en) Nonaqueous electrolyte secondary battery
US8003243B2 (en) Spirally wound secondary battery with uneven termination end portions
JP4905267B2 (en) Positive electrode mixture and non-aqueous electrolyte battery
JP2004063343A (en) Lithium ion secondary battery
JP4567822B2 (en) Square non-aqueous electrolyte secondary battery
JP5053044B2 (en) Nonaqueous electrolyte secondary battery
JP2000058115A (en) Nonaqueous battery electrolyte and secondary battery using the same
JP2000164206A (en) Nonaqueous electrolyte secondary battery for assembled battery
JP2003092148A (en) Nonaqueous secondary battery
US20080113260A1 (en) Prismatic nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2016143123A1 (en) Nonaqueous electrolyte battery and battery pack
JP2008159385A (en) Lithium secondary battery
JP3735937B2 (en) Terminal cap and cylindrical non-aqueous secondary battery using them
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JP5865951B2 (en) Nonaqueous electrolyte battery and battery pack
JP2009059571A (en) Current collector for battery, and battery using this
JP2006134758A (en) Secondary battery
JPH11273674A (en) Organic electrolyte secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JP2003272704A (en) Nonaqueous secondary battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP2009295554A (en) Battery
JP2005209395A (en) Nonaqueous electrolytic solution secondary battery
JPH11265700A (en) Nonaqueous electrolyte secondary battery